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Abstract

This paper presents a simple model of state-dependent pricing that allows iden-
ti�cation of the relative importance of the degree of price rigidity that is inherent to
the price setting mechanism (intrinsic) and that which is due to the price�s driving
variables (extrinsic). Using two data sets consisting of a large fraction of the price
quotes used to compute the Belgian and French CPI, we are able to assess the role
of intrinsic and extrinsic price stickiness in explaining the occurrence and magni-
tude of price changes at the outlet level. We �nd that infrequent price changes are
not necessarily associated with large adjustment costs. Indeed, extrinsic rigidity
appears to be signi�cant in many cases. We also �nd that asymmetry in the price
adjustment could be due to trends in marginal costs and/or desired mark-ups rather
than asymmetric cost of adjustment bands.
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1 Introduction

Following the seminal contributions of Cecchetti (1986) on newspaper prices, Kashyap (1995)

on catalog prices (both using US data), and Lach and Tsiddon (1992) on meat and wine

prices in Israel, a recent wave of empirical research has provided new evidence on consumer

and producer price stickiness at the micro level. Bils and Klenow (2004) and Klenow and

Kryvstov (2005) provide studies on consumer prices in the US and Dhyne et al. (2006)

give a synthesis of the recent studies carried out for the euro area countries. Studies

of producer prices include Alvarez et al. (2006), Cornille and Dossche (2006), Loupias,

Heckel and Sevestre (2007) and Sabbatini et al. (2005) among many others.

One of the main conclusions of these studies is the existence of a signi�cant degree of

heterogeneity in the degree of price �exibility across di¤erent product categories. Some

products are characterized by a high frequency of price changes, with outlets reseting

their prices almost on a continuous basis (for instance, oil products and perishable goods),

whilst other product categories are characterized by a very low frequency of price changes

(for instance, in some services). Aucremanne and Dhyne (2004) also document a high

degree of heterogeneity in the duration of price spells (and hence in the frequency of price

changes) even within relatively homogeneous product categories. Indeed, several studies

have shown that the frequency of consumer price changes not only di¤ers across product

categories, but also varies across categories of retailers.1 Hyper and super-markets also

tend to change their prices more frequently than local corner shops.

These studies are, however, silent as to the reasons for such infrequent price changes.

A low frequency of price change has sometimes been taken as evidence of nominal or

intrinsic price rigidity, namely price rigidity that is inherent to the price-setting mech-

anism. This ignores the role of extrinsic rigidity in price stickiness, namely the type of

price rigidity that is induced by a low degree of volatility of either common or idiosyn-

cratic shocks to the marginal cost and/or the desired mark-up.2 Indeed, infrequent price

changes are not necessarily due to high cots of price adjustments (i.e. nominal or intrinsic

rigidities). When marginal costs and other market conditions do not vary, �rms have little

or no incentive to change their prices. In this paper, we aim at identifying the respec-

tive contributions of intrinsic and extrinsic rigidities to the observed price stickiness. For

that purpose, we develop a state dependent price-setting model, close in spirit to Cec-

1See Baudry et al. (2007), Fougère, Le Bihan and Sevestre (2007), Jonker, Blijenberg and Folkertsma
(2004), and Veronese et al. ( 2005).

2Here we are adopting a terminology used in Altissimo, Erhmann and Smets (2006) to characterize
the di¤erent sources of in�ation persistence.
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chetti (1986), that relates price changes to the variations in an unobserved optimal price

re�ecting common and idiosyncratic movements in marginal costs and/or in the desired

mark-up, but where price changes are subject to price adjustment costs.3 Compared to

the existing literature, we argue and show that the frequency of price changes may be

a poor indicator of intrinsic price rigidities. Our estimates reveal that the scarcity of

price changes for some services in particular originates essentially from extrinsic rigidities

rather than from high intrinsic rigidities.

The outline of the rest of the paper is as follows. We �rst present the theoretical

model in Section 2. We then discuss the estimation procedure in Section 3. Section 4

describes the micro price data sets used and presents the estimation results. Section 5

concludes.

2 A Canonical Model of Sticky Prices

It is now a well-established stylized fact that most consumer prices remain unchanged

for periods that can last several months (e.g. see Bils and Klenow, 2004, Dhyne et al.,

2006, among many others). Indeed, for a number of reasons (physical menu costs, fear

of consumer anger, etc.), retailers may be reluctant to immediately adjust their prices to

changes in their environment (costs increases/decreases, demand variations, changes in

local competition, etc.). Such a behavior can be modelled assuming �xed price adjust-

ment costs that do not depend on the size of the price change,4 leading to an optimal

price strategy of the (s; S) variety. See, for example, Sheshinski and Weiss (1977, 1983),

Cecchetti (1986), and Gertler and Leahy (2006).

A simple representation of this behavior can be written as:

p
(j)
it =

8<: p
(j)
i;t�1 if

���p(j)�it � p(j)i;t�1
��� � c(j)it ;

p
(j)�
it if

���p(j)�it � p(j)i;t�1
��� > c(j)it ; (1)

where p(j)it is the (log) observed price of a product j in outlet i at time t, p
(j)�
it is the (log)

optimal price that would be set in the absence of any adjustment costs, and c(j)it denotes

3The use of state dependent price-setting rules by �rms seem to be supported by surveys. Indeed,
Fabiani et al. (2005) report that in the euro area 66% of �rms consider pure or mixed state dependent
pricing rules in order to decide when to change their prices.

4Several papers have found evidence of �xed physical menu costs of price adjustment (Levy et al., 1997,
Zbaracki et al., 2004). However, Zbaracki et al. (2004) argue that, in addition to these �xed physical
menu costs, managerial and customers costs are convex in the price change, while survey responses
discussed in Blinder et al. (1998) suggest that price adjustment costs might be �xed.
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the thresholds beyond which outlets �nd it pro�table to adjust their prices in response

to a shock, i.e. the extent to which price changes are costly; c(j)it essentially represents

the costs incurred by the outlet when changing its price.5 In what follows to simplify the

notation we drop the superscript j and continue to refer to cit as the adjustment cost,

although it is clear that cit goes beyond physical menu cost (see below), and represents

all types of costs associated with the price change by outlet i in period t. We shall also

refer to the condition

jp�it � pi;t�1j � cit; (2)

as the �price change trigger� condition. The magnitude of cit characterizes the extent

of intrinsic price rigidity. The larger it is, the lower the likelihood of a price change in

response to a given shock.

This model is very close in spirit to the econometric model proposed by Rosett (1959)

for the analysis of frictions in yield changes. However, we depart from Rosett�s model

in that, in our model, the adjustment threshold, cit, only a¤ects the decision to change

prices but not the level of the newly set prices, p�it. Indeed, we consider that when �rms

decide to adjust their prices, they fully adjust to the optimal price while in Rosett�s

model, agents are assumed to reduce the magnitude of their e¤ective adjustment by the

amount of the adjustment cost they incur. Denoting by I(A) an indicator function that

takes the value of unity if A > 0 and zero otherwise, model (1), can be written as:

pit = pi;t�1 + (p
�
it � pi;t�1)I(p�it � pi;t�1 � cit) (3)

+(p�it � pi;t�1)I(pi;t�1 � p�it � cit):

This formulation is reasonably general and allows the adjustment cost to vary both

over time and across outlets. Assuming constant and identical adjustment costs might

be considered as a too strong assumption since, as documented in Aucremanne and

Dhyne (2004) and Fougère, Le Bihan and Sevestre (2007) among others, price setting can

be strongly heterogeneous across outlets, even within relatively homogeneous product

categories. At the outlet level, some price trajectories may be characterized by very

frequent price changes, while others may be characterized by infrequent price changes.

Moreover, as described in Campbell and Eden (2005), some price trajectories at the micro

level exhibit long periods of price stability followed by periods of frenetic price changes.

As noted by Caballero and Engel (2006), this pattern of price changes suggests that cit is

5For the sake of simplifying notations, we will not, in the sequel, use anymore the index j for products
since we estimate this model for each product separately.
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best modelled as a stochastic process. Another argument for adopting such an approach

lies in the synchronization of price changes within stores. Midrigan (2006) documents

that a lot of price changes are particularly small compared to the average magnitude

of price changes.6 Following Lach and Tsiddon (2005), he rationalizes these small price

changes by the existence of economies of scales in price changes for multi-product sellers.

This may be accounted for by allowing for some variability in adjustment costs.

As mentioned above, cit is only partly determined by the narrow traditional notion

of menu costs (the cost of changing posted prices, including managerial and decision

costs), but it is also intended to re�ect a broader notion of costs of price adjustments.

For instance, the magnitude of cit may re�ect the speci�c marketing policy of outlets,

regarding sales or promotions. They may also capture the degree of customers anger

against price changes, as in Rotemberg (2003). If a �rm fears to lose a signi�cant fraction

of its customers when it changes its prices, it will keep its prices constant as long as the

expected loss induced by a non optimal price is smaller than the expected loss associated

with customers anger. Interpreting the adjustment costs as a proxy of the importance of

customer relationship instead of traditional price adjustment costs is supported by surveys

on price setting behavior. Indeed, Fabiani et al. (2005) for the euro area, Aucremanne

and Druant (2005) for Belgium or Loupias and Ricart (2006) for France, on the basis of

surveys about �rms�price setting behavior, indicate that a major source of price stickiness

lies in customer relationships (existence of implicit or explicit contracts), while physical

menu costs are not considered as a major source of nominal rigidity.7

Now, the question arises as whether we can also identify extrinsic rigidities, i.e. those

corresponding to the low variability of the fundamentals underlying prices such as changes

in marginal costs caused by input price variations or demand variations, changes in the

mark-up caused by varying market competition, etc. Consider that, for a given product

line, retailer i that operates on a market characterized by imperfect competition sets

optimally its price at its marginal cost, MCit, augmented by its desired mark-up rate

(MUit):

P �it =MCit � (1 +MUit):
6Using US data, Midrigan (2006) indicates that 30% of the observed price changes are smaller than

half of the average absolute size of price changes. For Belgium, 34% of the observed price changes full�ll
a similar condition. This proportion is close to 50% in France.

7Although these studies relate to producer prices, one can expect these particular observations to be
also relevant for consumer prices.
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Using logarithms, the (log) optimal price may be written as:

p�it = mcit + �it:

Unfortunately, despite their size and coverage, the data sets available on consumer prices

do not provide any information on costs and demand conditions faced by outlets. In spite

of this, it is possible, as we shall show below, to extract information on the probability

distribution of p�it, using a non-linear unobserved common factor model. To this end, we

have decomposed the (unobserved) optimal price p�it as follows:

p�it = ft + x
0
it� + vi + "it; (4)

where ft represents the unobserved common component of p�it, xit is a vector of observable

retail-speci�c variables, vi are retail-speci�c time-invariant unobservable e¤ects, while

"it accounts for �rm-speci�c idiosyncratic shocks. The common component, ft; can be

viewed as the (log) producer price paid by all outlets, apart from a scaling constant.

The remaining terms in (4) are intended to capture the di¤erences in marginal costs

and mark-ups across the outlets. The above decomposition also allows us to distinguish

between extrinsic and intrinsic sources of price rigidities. Changes in the marginal costs

as well as other changes in the market conditions (competition, demand variations) that

are common to all outlets, as re�ected in ft, can be viewed, as a �rst source of extrinsic

rigidity.

The variables xit are introduced to control for the possible e¤ects of store type (such

as hyper or supermarket versus corner shop) or geographical location (city centre or

suburbs), and other observable characteristics on price setting behavior of the outlets.

The retail-speci�c unobservable e¤ects, vi; account for the heterogeneity in the level

of observed prices at the product category level that cannot be traced to observables

(product di¤erentiation and/or the ability of retailer i to consistently price above or below

the common component ft, e.g. because of local competitive conditions). "it accounts

for idiosyncratic shocks to marginal costs and/or to the desired mark-up that depend on

some particular factors such as speci�c changes in (local) competition conditions, rebates

on the wholesale price obtained by large retailer chains, management quality, quality of

customer relations. This component also includes outlet speci�c seasonal patterns arising

from speci�c sales and other forms of market promotions. The magnitude of idiosyncratic

shocks, as measured by the standard deviation of "it, say �", is then also informative about

the extent of extrinsic rigidity. For example, everything else being equal, we would expect
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products with low estimates of �" to have also relatively low frequency of price changes.

This factor may also be an important source of infrequent price changes if we consider the

results reported in Fabiani et al. (2005), Aucremanne and Druant (2005) or Loupias and

Ricart (2006). Indeed, these papers show that, in addition to customer relationship, what

is considered as a major source of price rigidity by �rms is the fact that their marginal

costs are relatively stable. Finally, following Golosov and Lucas (2003), this idiosyncratic

component might be a crucial factor in capturing the very diverse price dynamics that

are observed even for relatively homogenous product categories. This point is illustrated

in the price trajectories for oranges in Belgium and men�s socks in France displayed in

�gures Figures 1.A and 1.B, respectively.
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Figure 1.A. - 50 Price trajectories - Oranges (in EUR/Kg) - Belgian CPI
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Figure 1.B - 50 Price trajectories - Men�s socks (in EUR) - French CPI

Although our model is relatively close to the one presented for instance in Tsid-

don (1993) or Ratfai (2006), we depart from the existing empirical literature in several

ways.
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First, rather than using a proxy for the common component ft (a sectoral producer

price index is often used in this respect; see Ratfai, 2006), we estimate it out of the micro

price data. One important advantage of proceeding in this way is to ensure the coherency

of this common component with the dynamics of micro price decisions as stated by our

model.

Second, we also depart from the existing empirical literature in the information used in

our estimation procedure. Most of the literature estimates state-dependent pricing model

using binary response or duration models (Cecchetti, 1986, Aucremanne and Dhyne, 2005,

Campbell and Eden, 2006, Fougère, Le Bihan and Sevestre, 2007, Ratfai, 2006) and

therefore neglects the information contained in the magnitude of price changes. However,

as we show below, this information is crucial in order to identify the volatility of the

idiosyncratic shocks and for disentangling the idiosyncratic shocks (to marginal costs

and/or desired mark-ups) from the stochastic price adjustment costs.

2.1 Extensions to the basic model

The above model can be generalized in a number of ways. Here, we discuss two important

extensions.

2.1.1 Gradual adjustment

One important extension is to allow for only a partial adjustment of prices to their

optimal values. While the basic model assumes that, once the retailers decide to adjust

their prices, they fully adjust to the optimal price p�it, retailers may possibly decide to

proceed only with a partial adjustment of their prices, setting their new price pit as

(1� �) p�it + �pi;t�1, where � is the partial adjustment coe¢ cient (0 � � < 1). Such

a partial adjustment process may be motivated on several grounds. First, uncertainty

surrounding the evaluation of the size and source (common or idiosyncratic) of the shocks

to the marginal cost and/or desired mark-up may lead �rms to adopt a conservative

attitude towards price changes. Indeed, competition on the product market may induce

�rms to proceed only to partial price adjustments in response to shocks, in order to keep

their market shares when they do not know about their competitors�reaction. Secondly,

under consumers�inattention (Levy et al., 2005), it may be more pro�table for outlets

to perform gradual adjustments to the optimal price level rather than a single large

price change. Thirdly, if the information gathering process is costly as in Mankiw and

Reis (2002), some �rms may consider as more pro�table to base their current price decision

8



partly on past information.

In that case, the price change trigger condition becomes:

j(1� �) p�it + �pi;t�1 � pi;t�1j > cit;

or, equivalently,

(1� �) jp�it � pi;t�1j > cit:

A non zero � parameter introduces an additional source of rigidity due to price level

persistence, and accordingly adds a backward-looking component in the model.

2.1.2 Asymmetric adjustment costs

Another natural extension of the basic model is to allow for asymmetric price adjustments,

by allowing the size of the adjustment costs for downward and upward price movements

to be di¤erent. This is justi�ed in theory where �rms discount future pro�ts, or if the

pro�t function and the distribution of shocks themselves are asymmetric. Indeed, Aucre-

manne and Dhyne (2004) and Baudry et al. (2007), among others, have highlighted that

price decreases are less frequently observed than price increases, especially in the service

sector. This could result from asymmetric price adjustment costs and, more speci�cally,

from stronger downward intrinsic rigidities (as discussed in Hall and Yates, 1998, and

Yates, 1998). In order to test this assumption, one can extend our basic speci�cation and

write:

pit = pi;t�1 + (p
�
it � pi;t�1)I(p�it � pi;t�1 � cUit) (5)

+(p�it � pi;t�1)I(pi;t�1 � p�it � cLit):

If cLit > cUit, this model will produce more price increases than price decreases, for

given values of ft. However, it is important to stress that asymmetric thresholds do not

necessarily re�ect the asymmetry in strictly de�ned adjustment costs. Other sources of

asymmetry such as the asymmetry of the pro�t function, of the probability distribution

of shocks or the fact that �rms discount future pro�ts, all could contribute to asymmetric

price adjustments. The range of inaction will then be asymmetric even if price adjustment

costs are similar upwards and downwards.

It is also worth mentioning that asymmetry in the thresholds of inaction is su¢ cient

but not necessary for generating more price increases than price decreases. Our baseline

model, with cLit = cUit = cit, will generate more price rises than price falls, so long as ft
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exhibits a positive drift, as in Ball and Mankiw (1994).

These are important extensions, but to keep the computations manageable, in the

empirical section we shall focus on the symmetric case.

3 Estimation of the Model

One can combine equations (3) and (4) representing our baseline price-setting model into

the following econometric representation:

pit � pi;t�1 = (ft + x
0
it� + vi + "it � pi;t�1)I(ft + x0it� + vi + "it � pi;t�1 � cit) (6)

+(ft + x
0
it� + vi + "it � pi;t�1)I(pi;t�1 � ft � x0it� � vi � "it � cit):

There are essentially two groups of parameters to estimate in this model. First, the

unobserved common components, ft, which can also be viewed as unobserved time e¤ects.

Second, the other structural parameters: c and �c which respectively denote the mean

and standard deviation of cit, �", the standard deviation of the idiosyncratic shocks "it,

�v, the standard deviation of the �rm speci�c random e¤ect, vi, and �; the parameters

associated with the observed explanatory variables, xit.

The estimation of the baseline model can be carried out in two ways. One can use

an iterative procedure that combines the estimation of the ft�s using the cross-sectional

dimension of the data with the maximum likelihood estimation of the remaining structural

parameters, conditional on the �rst-stage estimate of ft. Alternatively, one can use a

standard maximum likelihood procedure, where the ft�s are estimated simultaneously

with the other parameters. The two procedures lead to consistent estimates, provided

N and T are su¢ ciently large. It is worthwhile noting that if N is small, one would

face the well-known incidental parameters problem: the bias in estimating ft, due to

the limited size of the cross-sectional dimension, would contaminate the other parameter

estimates. In the alternative situation where T happens to be small, the problem of

the initial observation would then become an important issue. Therefore, our estimation

procedure is essentially valid for relatively large N and T . Fortunately, in our context,

prices of most of the products we consider have been observed monthly over the period

1994:7 - 2003:2 (i.e. more than 100 months), and the number of outlets selling the various

products we consider are also relatively large, being only slightly less tgab 300, both in

Belgium and in France.
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3.1 Estimation of ft using cross-cectional averages

As mentioned above, ft is in practice an unobserved time e¤ect that needs to be estimated

along with the other unknown parameters. It re�ects the common component in the

marginal cost and desired mark-up for each particular product for which we estimate

the model. Thanks to the very large size and high degree of disaggregation of our data,

we can split our data sets according to a very detailed de�nition of the products while

keeping, at the same time, a large number of price trajectories in the sub-samples to be

analyzed.

Moreover, because we are able to consider precisely de�ned types of products sold in a

particular outlet, it is reasonable to assume that any remaining cross-sectional heterogene-

ity in the price level can be modelled through the observable outlet-speci�c characteristics,

xit, and through random speci�c e¤ects (accounting for outlets unobserved characteris-

tics). Accordingly, we assume that, conditional on hit = (ft;x0it; pi;t�1)
0; (cit; vi; "it)

0 are

distributed independently across i, and that cit and "it are serially uncorrelated. Due to

the non-linear nature of the pricing process and to make the analysis tractable, we shall

also assume that 0BB@
cit

vi

"it

1CCA jhit v i:i:d:N
0BB@
0BB@
c

0

0

1CCA ;
0BB@
�2c 0 0

0 �2v 0

0 0 �2"

1CCA
1CCA :

The assumption of zero covariances across the errors is made for convenience and can be

relaxed.

Before discussing the derivation of ft we state the following lemma, established in the

Appendix, which provides a few results needed below.

Lemma 1 Suppose that y v N(�; �2) then

E [yI(y + a)] = ��

�
a+ �

�

�
+ ��

�
a+ �

�

�
;

E

�
�

�
y + a

b

��
=

bp
b2 + �2

�

�
a+ �p
b2 + �2

�
;

Ey

�
�

�
y + a

b

��
= �

�
a+ �p
b2 + �2

�
;

where � (�) and� (�) are, respectively, the density and the cumulative distribution function
of the standard normal variate, and I (A) is the indicator function de�ned above.
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Let

dit = ft + x
0
it� � pi;t�1; �it = vi + "it v N(0; �2�);

and note that �2� = �
2
v + �

2
". Consider now the baseline model, (6), and using the above,

write it as

�pit = (dit + �it)I(dit + �it � cit) + (dit + �it)I(�dit � �it � cit);

or

�pit = (dit + �it) + (dit + �it) [I(dit + �it � cit)� I(dit + �it + cit)] :

Denote the unknown parameters of the model by � = (c;�0; �2c ; �
2
v; �

2
")
0, and note that

E (�pit jhit;� ) = dit + git;

where git = g1;it + g2;it, with

g1;it = ditE [I(dit + �it � cit)� I(dit + �it + cit) jhit;� ] ;

and

g2;it = E [�itI(dit + �it � cit)� �itI(dit + �it + cit) jhit;� ] :

Also, under our assumptions 
cit

�it

!
jhit v i:i:d:N

  
c

0

!
;

 
�2c 0

0 �2v + �
2
"

!!
:

It is easily seen that

E [I(dit + �it � cit)� I(dit + �it + cit) jhit;� ]

= �

0@ dit � cq
�2c + �

2
�

1A� �
0@ dit + cq

�2c + �
2
�

1A :
Using the results in Lemma 3.1 and noting that �it jhit;� v N(0; �2�), then

E [�itI(dit + �it � cit) jhit;�;cit ] = ���
�
dit � cit
��

�
:
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Hence, taking expectations with respect to cit, we have

E [�itI(dit + �it � cit) jhit;� ] = ��E
�
�

�
dit � cit
��

�
jhit;�

�
:

Again using the results in Lemma 3.1 we have

E

�
�

�
dit � cit
��

�
jhit;�

�
=

��q
�2c + �

2
�

�

0@ dit � cq
�2c + �

2
�

1A ;
and therefore,

E [�itI(dit + �it � cit) jhit;� ] =
�2�q
�2c + �

2
�

�

0@ dit � cq
�2c + �

2
�

1A :
Similarly,

E [�itI(dit + �it + cit) jhit;� ] =
�2�q
�2c + �

2
�

�

0@ dit + cq
�2c + �

2
�

1A :
Collecting the various results we obtain

g1;it = dit

24�
0@ dit � cq

�2c + �
2
�

1A� �
0@ dit + cq

�2c + �
2
�

1A35 ;
and

g2;it =
�2�q
�2c + �

2
�

24�
0@ dit � cq

�2c + �
2
�

1A� �
0@ dit + cq

�2c + �
2
�

1A35 :
Note that g1;it and g2;it are non-linear functions of ft and depend on i only through the

observable, pi;t�1 and xit. It is therefore possible to compute ft for each t in terms of

pi;t�1; xit and �. Then, following Pesaran (2006), the cross-sectional average estimator of

ft, denoted by ~ft; can be obtained as the solution to the following non-linear equation

�pt = ~ft + �x
0
t� + �gt(

~ft); (7)

where

�pt =

NX
i=1

wit pit, �xt =
NX
i=1

wit xit; and �gt(ft) =
NX
i=1

wit git,
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and fwit; i = 1; 2; ::; Ng represent a predetermined set of weights such that

wit = O(N
�1); and

NX
i=1

w2it = O(N
�1):

For a given value of � and each t, (7) provides a non-linear function in ~ft. This

equation clearly shows that unlike the linear models considered in Pesaran (2006), here

the solution to the common component ft does not reduce to an average of (log) prices. In

particular, ~ft also accounts for the dynamic feature of the price-setting behavior through

the �gt component, which depends on pi;t�1. Equation (7) has a unique solution as long

as c > 0. A proof is provided in Appendix A. It is also easily seen that under the

cross-sectional independence of vi and "it, �gt (ft)! E (git) and ~ft � ft
p! 0, as N !1.8

3.2 Conditional likelihood estimation with no individual e¤ects

In this section, we derive the maximum likelihood estimation of the structural parameters,

�, conditional on ft and assuming there are no �rm-speci�c e¤ects, so that �2v = 0, and

hence in this case � = (c;�0; �2c ; �
2
")
0. Given the distributional assumptions stated in

Section 3.1, and de�ning � it as cit � c, our baseline model can be rewritten as

�pit = dit + "it + (dit + "it) fI [dit + "it � � it � c]� I [dit + "it + � it + c]g ;

where  
� it

"it

!
v iid N

  
0

0

!
;

 
�2c 0

0 �2"

!!
; for i = 1; 2; :::; N ; t = 1; 2; :::; T:

Equivalently

�pit = dit + "it + (dit + "it) fI [dit � c+ "1it]� I [dit + c+ "2it]g ;

where

"1it = "it � � it; "2it = "it + � it;
8For the sake of simplicity, we assume here that the panel data sample is balanced: all outlets are

observed over the full time period. This is not the case in practice. However, the result can be easily
generalized to unbalanced panels assuming that Nt !1 for each t (see the Appendix A).
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with0BB@
"1it

"2it

"it

1CCA � iidN

0BB@
0BB@
0

0

0

1CCA ;
0BB@
�2" + �

2
c �2" � �2c �2"

: �2" + �
2
c �2"

: : �2"

1CCA
1CCA ; for i = 1; 2; :::; N ; t = 1; 2; :::; T :

Let

� 1it =

(
1 if �pit = 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

� 2it =

(
1 if �pit > 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

� 3it =

(
1 if �pit < 0 for i = 1; 2; :::; N and t = 1; 2; :::; T;

0 otherwise

Then conditional on ft; t = 1; 2; :::; T and the initial value pi0; the log-likelihood func-

tion of the model for each i can be written as

Li(� jf ) = Pr (�pi1 jpi0 ) Pr (�pi2 jpi0; pi1 )

�Pr (�pi;T jpi0; pi1; :::; pi;T�1 )� Pr (pi0)

where f = (f1; f2; :::; fT )0. In view of the �rst-order Markovian property of the model we

have

Li(� jf ) = Pr (�pi1 jpi0 ) Pr (�pi2 jpi1 )

�Pr (�pi;T jpi;T�1 )� Pr (pi0) :

When T is small, the contribution of Pr (pi0) could be important. In what follows we

assume that pi0 is given and T reasonably large so that the contribution of the initial

observations to the log-likelihood function can be ignored.

To derive Pr (�pit jpi;t�1; ft ) we distinguish between cases where �pit = 0; �pit > 0
and �pit < 0, noting that

Pr (�pit j�pit = 0; pi;t�1; ft ) = Pr ("1it � c� dit ; "2it � �c� dit)

= Pr ("1it � c� dit)� Pr ("1it � c� dit ; "2it � �c� dit)

= �

 
c� ditp
�2" + �

2
c

!
� �2

 
c� ditp
�2" + �

2
c

;
�c� ditp
�2" + �

2
c

;
�2" � �2c
�2" + �

2
c

!
= �1it;
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where �2 (x; y; �) is the cumulative distribution function of the standard bivariate normal.

Similarly

Pr (�pit j�pit > 0; pi;t�1; ft ) = Pr ("it = �pit � dit) Pr ("1it � c� dit ; "2it > �c� dit j"it )

=
1

�"
�

�
�pit � dit

�"

��
�

�
�c+�pit

�c

�
� �

�
�c��pit

�c

��
= �2it;

and

Pr (�pit j�pit < 0; pi;t�1; ft ) = Pr ("it = �pit � dit) Pr ("1it < c� dit ; "2it � �c� dit j"it )

=
1

�"
�

�
�pit � dit

�"

��
�

�
�c��pit

�c

�
� �

�
�c+�pit

�c

��
= �3it:

Hence

` (�; f) =
NX
i=1

lnLi(�; f) =
NX
i=1

TX
t=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] : (8)

The ML estimator of � is given by

�̂ML(f) = argmax
�
` (�; f)

and for N and T su¢ ciently large we have:

p
NT

�
�̂ML(f)� �

�
av N(0;V�),

where V� is the asymptotic variance of the ML estimator and can be estimated consis-

tently using the second derivatives of the log likelihood function.

Remark 1 In the case where ft, t = 1; 2; :::; T are estimated, the ML estimators

will continue to be consistent as both N and T tend to in�nity. However, the asymptotic

distribution of the ML estimator is likely to be subject to the generated regressor problem.

The importance of the generated regressor problem in the present application could be

investigated using a bootstrap procedure.

3.3 Conditional likelihood estimation with random e¤ects

Consider now the random e¤ects speci�cation where p�it = ft + x
0
it� + vi + "it, and note

that

Cov(p�it; p
�
it0 jxit;xit0 ) = �2v for all t and t0; t 6= t0:
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Under this model, the probability of no price change in a given period, conditional on

the previous price, pi;t�1; will not be independent of episodes of no price changes in the

past. So we need to consider the joint probability distribution of successive unchanged

prices. For example, suppose that prices for outlet i have remained unchanged over the

period t and t+ 1, then the relevant joint events of interest are

Ait : f�c� � it � dit � "it + vi � c+ � it � ditg ;

and

Ai;t+1 :
�
�c� � i;t+1 � di;t+1 � "i;t+1 + vi � c+ � it � di;t+1

	
:

An explicit derivation of the joint distribution of Ait and Ait+1 would seem rather

di¢ cult. An alternative strategy is to use the conditional independence property of

successive price changes, and note that for each i, and conditional on v = (v1; v2; ::::; vN)0

and f , the likelihood function will be given by

L(�;v; f) =
NY
i=1

TY
t=1

[�1it(vi)]
�1it [�2it(vi)]

�2it [�3it(vi)]
�2it ;

where

�1it(vi; ft) = �

 
c� vi � ditp
�2" + �

2
c

!
� �2

 
c� vi � ditp
�2" + �

2
c

;
�c� vi � ditp

�2" + �
2
c

;
�2" � �2c
�2" + �

2
c

!
;

�2it(vi; ft) =
1

�"
�

�
�pit � vi � dit

�"

��
�

�
�c+�pit

�c

�
� �

�
�c��pit

�c

��
and

�3it(vi; ft) =
1

�"
�

�
�pit � vi � dit

�"

��
�

�
�c��pit

�c

�
� �

�
�c+�pit

�c

��
:

The random e¤ects can now be integrated out with respect to the distribution of vi
[assuming vi � N (0; �2v) , for example] and then the integrated log-likelihood function,
Ev [`(�;v; f)], maximized with respect to �.9

9A further extension of the model would consist of including also a �rm speci�c e¤ect into the menu
cost. However, the estimation of this model would then requires a double integration with respect to the
distribution of the two individual e¤ects.
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3.4 Full maximum likelihood estimation

In the case where N and T are su¢ ciently large, the incidental parameters problem does

not arise and the e¤ects of the initial distributions, Pr (pi0), on the likelihood function

can be ignored. Then, the maximum likelihood estimators of � and f can be obtained as

the solution to the following maximization problem:

�̂
fML; b�ML

�
= argmax

f ;�

TX
t=1

NX
i=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] : (9)

Note that for a given value of � the ML estimator of ft can be obtained as

f̂t(�) = argmax
ft

NX
i=1

[� 1it ln(�1it) + � 2it ln(�2it) + � 3it ln(�3it)] ;

and will be consistent as N ! 1, since conditional on � and ft, the elements in the
above sum are independently distributed. Also for a given estimate of f , the optimization

problem de�ned by (9) will yield a consistent estimate of � as N and T !1. Iterating
between the solutions of the two optimization problems will deliver consistent estimates

of � and f1; f2; :::; fT , even though the number of incidental parameters, ft; t = 1; 2; :::; T ,

is rising without bounds as T !1. This is analogous to the problem of estimating time
and individual �xed e¤ects in standard linear panel data models. Individual �xed e¤ects

can be consistently estimated from the time dimension and time e¤ects from the cross

section dimension.

3.5 Some monte carlo simulations

In order to evaluate the performance of the two alternative estimation procedures (that is,

the iterative procedure based on the cross-sectional estimates of ft and the Full Maximum

Likelihood estimation of the model), we carried out a limited number of Monte Carlo

simulations. We generated the log price series according to the baseline model, (6), by

setting c = 0:15, �" = 0:05, �c = 0:01 and simulating the common factors as the �rst

order autoregressive process

ft = �0 + �1 ft�1 + !t; !t v i:i:d:N(0; �2!);
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with �0 = 0:05, �1 = 0:90, and �! = 0:10. In Table 1, we report the average (across

R replications10) of the point estimates of c, �", �c and �v and their average standard

errors in di¤erent setups. Concerning the estimation of ft, we compute the RMSE with

respect to the true ft and compare the standard deviation of the true ft with that of the

estimated ft. In our reference case, the sample size is set at N = 50, T = 50.

c aP ac av RMSEÝ
æ
f tÞ

RMSEÝ
æ
f tÞ

RMSEÝf tÞ
R

Average frequency of price changes i 0.27

With random effects True value 0.15 0.05 0.01 0.025

N=50, T=50, full ML ML(.) 0.150 0.049 0.011 0.027 0.00020 1.0011 500

std(.) 0.0014 0.0011 0.0013 0.0030

No random effects True value 0.15 0.05 0.01 0

N=50, T=50, full ML ML(.) 0.150 0.049 0.007 0.00014 1.0018 500

std(.) 0.0014 0.0011 0.0013

N=25, T=50, full ML ML(.) 0.150 0.048 0.006 0.00029 1.0051 500

std(.) 0.0019 0.0015 0.0018

N=50, T=25, full ML ML(.) 0.150 0.049 0.003 0.00014 1.0022 500

std(.) 0.0019 0.0015 0.0018

N=50, T=25, iterative ML ML(.) 0.148 0.051 0.006 0.00017 0.9907 500

std(.) 0.0019 0.0016 0.0017

Average frequency of price changes i 0.12

With random effects true value 0.300 0.050 0.100 0.025

N=50, T=50, full ML ML(.) 0.302 0.047 0.103 0.029 0.0005 1.0042 500

std(.) 0.0070 0.0017 0.0055 0.0037

With random effects true value 0.300 0.100 0.125 0.250

N=100, T=100, full ML ML(.) 0.307 0.099 0.131 0.247 0.0055 1.1720 500

std(.) 0.0105 0.0026 0.0078 0.0242

R is the number of replications, ML(.) is the average of the point estimates, std(.) is the average

of the standard deviation of the estimated coefficient,
RMSEÝ

æ
f tÞ

RMSEÝf tÞ
stands for the ratio of the standard

deviation of the estimated f t over the standard deviation of the true f t.

Table 1 - Monte Carlo Simulations

Under both estimation procedures, initial values for the estimation of ft are set to pt.

In the iterative procedure, a �rst set of estimates for the remaining parameters of the

model, �, are then obtained by maximum likelihood, which is in turn used to compute

another estimate of the unobserved common components, and the procedure is iterated

until convergence. The standard errors of the parameter estimates are computed from

the second derivatives of the full log-likelihood function.

The estimation of the models with and without random e¤ects by the Full Maximum

Likelihood roughly leads to similar results The point estimates and precision of the es-
10Because the estimation procedure with random e¤ects takes much more time, we ran most simulations

without random e¤ects, and the number of replications is limited to 500.
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timators are of the same order of magnitude, although the estimation of �c appears to

improve in a model with random e¤ects. Considering the model without random e¤ects,

the estimates of the parameters c and �" obtained by Full ML are essentially unbiased.

However, �c appears slightly underestimated in the simulations without random e¤ects,

contrary to the case with random e¤ects. The unobserved component, ft, is also very

precisely estimated, and its volatility is only 0.14% higher than that of the true ft.

Unsurprisingly, the precision of the estimates increases with the total size of the

sample N � T , as suggested by a comparison of the standard errors of the coe¢ cients c,
�" and �c, in the three alternative sets of simulations without random e¤ects. However,

increasing N and T do not play a symmetrical role in improving the precision of the

point estimates. For small values of N there seems to be a downward bias in estimating

�". Furthermore, the RMSE of bft is higher and its volatility relative to that of the true
ft increases11. Decreasing T from 50 to 25 does not seem to have any signi�cant impact

on the estimates, except for �c which is now more severely underestimated. It might be

for only quite low values of T that the impact of ignoring the initial observations in the

likelihood function could be non negligible.

We also report a comparison of the full ML and iterative estimation procedures. The

results suggest that the point estimates of the coe¢ cients are very close, and that the

iterative procedure delivers a smoother ft than the full ML.12 The full ML may produce

slightly better results in the sense that, as compared to the iterative procedure, the

di¤erence between the point estimate of c and its true value is smaller, the RMSE of

the estimated ft as compared to the true ft is lower, and its volatility is closer to the

true one. Finally, in practice, the iterative procedure is much more time consuming than

the "Full Maximum Likelihood" method. Therefore, we chose to estimate our baseline

pricing model using the Full Maximum Likelihood method. Indeed, given the above

Monte-Carlo results and the large size (in both N and T ) of our samples, we know that

the two methods will not di¤er in any signi�cant way and that the estimates obtained

with the Full ML will be consistent and have a good precision.

In the above exercises, the parameters chosen lead to a frequency of price changes

of around 27%. This is close to the frequency of price changes reported by Bils and

11When the number of trajectories is small, the unobserved component ft is poorly estimated, because
the cross-sectional dimension is too small for the idiosyncratic shocks, "it, to cancel out by aggregation.
This results in excessive volatility in the estimated ft. Consequently, in order for the model to be in line
with the observed frequency of price changes, the volatility of the idiosyncratic shock has to diminish.
12Iterative estimations made on real data for a limited number of products also produce less or equally

volative ft as compared to the full ML estimate of ft. The estimates of the other parameters are similar
in the two estimation procedures.
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Klenow (2004) or Klenow and Kryvstov (2006) for the US. For a better comparison with

our results and data sets, we also carried out a set of experiments where the frequency

of price changes was set to around 12%, which is closer to the frequencies observed in

Europe (Dhyne et al., 2006). For these experiments, c is set equal to 0.30 (and �c is also

increased to 0.10). As expected, the precision of the estimates is reduced when less price

changes are observed. This is particularly true for c and �c, which appear only in the

part of the model corresponding to the price change trigger condition. Deviations from the

true values, although larger than for higher frequencies of price changes, remain limited.

Finally, we also report simulations for parameter values and sample size that are closer

to our estimates based on Belgian and French data. Compared to the preceding case, the

size of the idiosyncratic shock, �", and random e¤ects, �v, are increased, while that of the

common shock, �! is reduced to 0.025. N and T are set to 100. Results are reported in

the last panel of Table 1. They are of the same order of magnitude. Di¤erences with the

true values are slightly reduced,except for c and �c.In this setup where the idiosyncratic

shock plays a dominant role, with a reduced volatility of the true ft, bft is less precisely
estimated and its volatility is larger as compared to the that of the true ft.13

4 Estimation Results

The estimates of our baseline model, (6), are based on individual consumer price quotes

compiled by the Belgian and French statistical institutes for the computation of their

consumer price indices.14 These data refer to monthly price series of individual products

sold in a particular outlet. The period covered has been restricted to the intersection of

the two databases, that is July 1994 - February 2003. See Appendix B for further details

about the two data sets.

Since we want to estimate our model for narrowly de�ned products, price series have

been grouped into 368 product categories for Belgium and 305 for France. However, as

the estimation procedure is particularly time consuming,15 the estimation has only been

conducted on a subset of randomly selected product categories, with price trajectories of

at least 20 months.16 As a result we end up estimating our baseline model for 98 product

13�" is now four times larger as �! while in the preceding exercise, �" was one half of �!.
14Each of these two datasets contains more than 10 millions observations. They are described in detail

in Aucremanne and Dhyne (2004) for Belgium and in Baudry et al. (2007) for France.
15The estimation of our model for a typical product category, using S.A.S. 8.02 on a 1.6 Ghz P4

computer takes between 3 to 5 days.
16We de�ne a price trajectory as a continuous sequence of price reports referring to one particular

product sold in store i. The prices we refer to are (logs of) prices per unit of product so that promotions
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categories in Belgium and for 93 categories in France. Extended versions of the model

(that allow for gradual or asymmetric adjustment costs) are also estimated with Belgian

data for some selected product categories.

As stated above, we have opted, for practical reasons, for the "Full Maximum Likeli-

hood" estimator so that we have simultaneously estimated, for each product category, the

unobserved common component, ft, as well as the other parameters, namely, the average

level of the adjustment cost, c, and its variability, �c, the magnitude of the idiosyncratic

shocks, �", and the variability of �rms speci�c desired mark-up, �v. Finally, as we lack

information on local competition or other factors that might a¤ect the (log) optimal price,

the outlet speci�c regressors, xit, included in the model only contain a dummy variable

corresponding to the nature of the outlet: the dummy takes the value of 1 whenever the

outlet is a supermarket and 0 otherwise.

The response of actual prices to changes in the common component of the "optimal"

price clearly depends on the pro�le of this common component. Variations in this common

component are likely to induce price changes, even though they are partly predictable. For

instance, changes in conventional wages are a good example of such predictable changes

that induce variations in the optimal prices which in turn, are likely to lead to changes

in actual prices. Such wage increases are largely predictable17 and have a clear impact on

prices (e.g. see Loupias, Heckel and Sevestre (2007) for a study of French industrial price

movements and Stahl (2005) for a study on German industrial prices).

Obviously, unpredictable common shocks (such as the impact of the "mad cow disease"

on the demand for beef, the variations in the price of raw materials, or bad weather

conditions a¤ecting the harvest of vegetal products) may also have an impact on the

likelihood of a price change.

In order to help interpret the impact on price changes of the variations in ft, we

propose a decomposition of these variations into several components: a trend, an au-

toregressive component and a random component. More speci�cally, for each product

category, the estimates bf1; bf2; :::; bfT are used to �t an AR(K) model18
bft = �0 + �1t+ KX

k=1

�k bft�k + !t; !t v i:i:d:N
�
0; �2!

�
:

in quantities are also captured in our analysis.
17For instance, in France, changes in the minimum wage are decided by the government and are put

into e¤ect annually in July. In Belgium, conventional wage changes for the next two years are negotiated
every two years.
18For each product category, K is selected to eliminate any serial correlation in !t, using AIC applied

to autoregressions with the maximum value of K set to 12.
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To characterize the magnitude of common variations in the optimal price, p�it, in the fol-

lowing subsections, we use two di¤erent measures : the unconditional standard deviation

of ft, �f and the standard error of shocks to the common factors, �!. The tables also

provide some basic statistics such as the sum of the autoregressive coe¢ cients, � =
KP
k=1

�k.

and the autocorrelation coe¢ cients of orders 1, 2, 3, 4, 6 and 12 of the estimated ft�s.

Table 2 below presents a summary of the estimates by broad product categories.19

4.1 Assessing intrinsic rigidities

Overall, the estimates obtained for Belgium and France lead to similar conclusions. The

average level of the adjustment cost is estimated to represent one third of the price level

(36% in Belgium and 31% in France). These estimates are comparable to the relative

magnitude of the estimated menu costs reported in Levy et al. (1997) for the US. Indeed,

Levy et al. (1997), using a data set on prices, sales and costs in 5 large multi-store chains,

report estimates of menu costs in the US retail grocery trade, ranging from $0.46 to $1.33

per price change; which represent 27% to 40% of the average price level.

Since numerous studies point to a remarkable ranking of the frequency of price changes

according to the product category (e.g. see Bils and Klenow, 2004, for the US and Dhyne

et al., 2006, for the euro area), it is also worth considering the average adjustment costs

by product categories. These are given in the �rst column of Table 2.20 The most striking

conclusion from the simple comparison of the price change frequencies with the estimated

adjustment costs is that indeed, the incidences of less frequent price changes are often

associated with larger estimates of the adjustments costs.

The relatively high frequency of price changes observed for energy and especially oil

products can partly be explained by relatively low adjustment costs: the mean adjustment

cost estimate, ĉ, for oil energy products is on average in the range 0.012 - 0.014 for

Belgium and 0.004 - 0.007 for France, compared to sample averages for the product

categories as a whole. of 0.365 for Belgium and 0.328 for France. Similarly, numerous

19Tables A and B in the appendix �rst present detailed results for the estimated structural parameters
and the time-series representation of the estimated common component. These tables also include some
basic statistics that characterize the price setting behavior of each product category (frequency of price
changes, average absolute size of price changes, share of price increases) and indicators of the ability of
the model to replicate these characteristics. In the case of Belgium, the correlations between bft and pt
and between bft and the log of the product category price index, ln(IPt), are also provided. Tables C
and D in Appendix C provide further statistics associated with the estimated common component.
20The �gures in this table are unweighted. They have been computed after the exclusion of 8 products

for Belgium and 2 products for France for which the model appeared to �t particularly badly to the
data. See Section 4.4 below.
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price changes of perishable food products are associated with low mean adjustment costs.

Our estimates for these products are very close to the numbers reported in Ratfai (2006)

for meat products in Hungary. At the opposite, manufactured goods and services exhibit

higher mean adjustment costs that explain, at least partly, the often underlined stronger

stickiness of their prices.

Product type åc aP ac au a f ag _ Freq |Ap| %up
Energy (BE ­ 3 product categories ; FR ­ 2 product category)

Average ­ Belgium 0.014 0.030 0.006 0.091 0.176 0.038 0.866 0.731 0.043 0.535

Average ­ France 0.005 0.026 0.004 0.155 0.112 0.018 0.794 0.799 0.023 0.572

Perishable food (BE ­ 24 product categories ; FR ­ 13 product categories)

Average ­ Belgium 0.274 0.097 0.143 0.154 0.073 0.030 0.674 0.230 0.128 0.648

Average ­ France 0.196 0.097 0.136 0.267 0.067 0.015 0.901 0.254 0.107 0.574

Non perishable food (BE ­ 12 product categories ; FR ­ 11 product categories)

Average ­ Belgium 0.309 0.080 0.173 0.202 0.055 0.018 0.802 0.127 0.104 0.627

Average ­ France 0.190 0.067 0.125 0.239 0.064 0.014 0.806 0.198 0.059 0.589

Non durable goods (BE ­ 15 product categories ; FR ­ 31 product categories)

Average ­ Belgium 0.375 0.079 0.178 0.233 0.064 0.013 0.852 0.147 0.089 0.686

Average ­ France 0.430 0.108 0.219 0.433 0.074 0.043 0.283 0.119 0.180 0.551

Durable goods (BE ­ 17 product categories ; FR ­ 13 product categories)

Average ­ Belgium 0.547 0.079 0.264 0.228 0.057 0.014 0.739 0.055 0.076 0.613

Average ­ France 0.314 0.076 0.180 0.420 0.077 0.030 0.785 0.137 0.083 0.487

Services (BE ­ 19 product categories ; FR ­ 21 product categories)

Average ­ Belgium 0.400 0.049 0.178 0.162 0.107 0.009 0.743 0.040 0.062 0.836

Average ­ France 0.370 0.074 0.177 0.274 0.066 0.023 0.612 0.083 0.054 0.744

Full basket (BE ­ 90 product category ­ FR ­ 91 product categories)

Average ­ Belgium 0.365 0.076 0.178 0.187 0.077 0.019 0.754 0.146 0.092 0.681

Average ­ France 0.328 0.087 0.176 0.341 0.071 0.028 0.593 0.157 0.109 0.595

Table 2 - Estimation results by broad product categories

Another striking result is that, for all product types, except for oil products, the

average adjustment costs are larger than the average size of price changes. Initially, this

may be considered as a rather puzzling result. However, it can be rationalized noting the

stochastic nature of the adjustment cost variable, cit. Indeed, since the distribution of cit
is symmetric around its mean, c, the likelihood that a price change occurs is larger the

lower the realized adjustment cost i.e., for negative values of (cit � c), as compared to
the positive case where cit � c is positive. Therefore, small price changes are more likely
than large ones, which lowers the average size of price changes.21 This may explain why,

despite signi�cant average adjustment costs, a large number of small price changes are

observed.
21We thank H. LeBihan for this insight. This is easy to check with a simulation where, setting �2c equal

to 0 leads to the expected result: the average size of price changes is larger than c.
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Although we observe globally the expected negative correlation between the frequency

of price changes and the estimated mean adjustment cost, the observed di¤erences in

the frequency of price changes across products are not fully explained by those in the

estimated c. This can be illustrated by the following two examples. First, the monthly

frequency of price changes associated with beef sirloin (14.9%) in the Belgian data set

represents only a fourth of the frequency of price changes of Kiwis (54,2%). However, the

adjustment costs of these two products are of the same order of magnitude (ĉ equal to

0.166 for sirloin compared to 0.141 for Kiwis). Therefore, di¤erences in the frequency of

price changes must originate in di¤erences in the size of the common and/or idiosyncratic

shocks. A second interesting example relates to men�s suit and sugar in France. While the

observed frequencies of price changes of these two products are quite similar (16.7% and

17.0%, respectively), their estimated adjustment costs di¤er markedly as their respective

estimates are 0.33 for the former product and only 0.13 for the latter.

4.2 Assessing extrinsic rigidities

Our estimates show that extrinsic rigidity (the magnitude of shocks, both common and

idiosyncratic, to the optimal price) does play an important role in explaining the fre-

quency of price changes. This result can be readily illustrated using the two examples

discussed above. In the case of men suits and sugar in France, we observe strong di¤er-

ences in the pro�le and magnitude of the shocks a¤ecting the optimal prices of these two

product categories. First, the overall variability of the common component ft (as mea-

sured by �f) appears to be larger for men suits than for sugar. Interestingly, the pro�les

over time of these two common components di¤er markedly. Indeed, the autocorrelation

pro�le of the estimated ft�s for men suits exhibit a high degree of autocorrelation at lag

orders 6 and 12, suggesting strong seasonal e¤ects in prices. A reasonable interpretation

of this result lies in the prevalence of promotion sales that strongly a¤ect prices of cloth-

ing. This is a situation where the pro�le of the common component contributes to the

understanding of the observed frequency of price changes. Second, idiosyncratic shocks

a¤ecting men suit optimal prices are of a much larger magnitude than those a¤ecting

sugar prices, explaining why men suit prices vary as much as sugar prices over time,

despite its higher adjustment costs. The importance of the idiosyncratic component may

re�ect the outlet speci�c "marketing policy" regarding sales. Consider now Kiwis and

sirloin in Belgium. While the frequencies of their price changes are quite di¤erent, these

two products exhibit very similar mean adjustment cost estimates Then, this di¤erence

must stem from di¤erences in the magnitude of idiosyncratic shocks a¤ecting the price of
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these two products (�" equals 0.058 for sirloin compared to 0.203 for Kiwis) and/or from

di¤erences in the the unconditional variability of the common factors associated with

these two product categories (�f equals 0.020 for sirloin compared to 0.172 for Kiwis).

Overall, our estimates clearly show the relative importance of idiosyncratic shocks for

our understanding of the price change frequencies. With a very few exceptions (mainly

energy products), the magnitude of idiosyncratic shocks is generally larger than the (un-

conditional) variability of the common component �f . Over the entire range of products,

the ratio of b�" to b�f takes values above one for 60% of the product categories in Belgium
and in 70% of cases in France.22 Considering b�! instead of the unconditional standard
deviation of the ft�s obviously yields much larger values for this ratio. This result is in

line with the conclusion of Golosov and Lucas (2003) who state that price trajectories at

the micro level are largely a¤ected by idiosyncratic shocks.

4.3 Intrinsic and extrinsic rigidities and the frequency of price

changes

Our main �ndings so far, can be summarized as follows: the relatively high frequency of

price changes observed for energy, and especially oil products, can be explained by the

low values of the mean adjustment costs parameter, but also by a signi�cant variability ofbft for this product category. Indeed, for Belgium, the unconditional standard deviation
of bft; b�f ; lies between 0.114 and 0.263 for the three energy products considered (resp.
between 0.091 and 0.133 in France) while it averages to only 0.077 for the set of products

as a whole (resp. 0.071 in France). Both in Belgium and France, the consumer prices of the

energy products is thus largely determined by the common movements in marginal costs

(which are highly correlated with the price of oil products on the international markets

as illustrated in Figure 2). The contribution of idiosyncratic shocks and the dispersion of

�rm speci�c mark-ups is of second order importance, compared to what is observed in

the other product categories.23

22The average value of this ratio over the 88 product categories considered in the Belgian sample is
1.74 and it is 1.59 in the French sample.
23In the case of Belgium, this might be due to the fact that oil prices at the gas station are regulated

(there is an agreement between the government and oil companies to set up the maximum prices of oil
product).
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Estimates of ft for heating oil and Rotterdam heating oil in euros
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Figure 2 - Evolution of common component bft for heating oil and of
refined oil on Rotterdam Market

The perishable food product categories, which rank second in terms of the frequency

of price changes both in Belgium and in France, are characterized by medium sized

adjustment costs (c is estimated to be 0.274 in Belgium, 0.196 in France) but these

product categories are a¤ected by relatively important common and idiosyncratic shocks.

In other words, intrinsic rigidities appear here again to be the main reason for the observed

"mild" stickiness of these product prices. It is worth noticing that for France, the slightly

lower frequency of price changes observed for non perishable food products seems to be

only the consequence of lower idiosyncratic shocks, all the other parameters being quite

close to those obtained for non perishable food products. This is another clear illustration

of the role of extrinsic rigidity. At the opposite side of the spectrum, the most sticky

components of the CPI in Belgium (services and durable goods) and in France (services)

are characterized by higher adjustment costs but also, in Belgium, by smaller idiosyncratic

and common shocks. Some services in France are also characterized by smaller shocks

but there seems to be a signi�cant heterogeneity in this respect. Finally, the frequency of

price changes for the remaining categories (non perishable food and non durable industrial

goods in Belgium; durable and non durable goods in France) is driven by both slightly

larger than average adjustment costs and a lower variability of the idiosyncratic and

common components of the optimal price. Then, the relative stickiness of these prices

are due to both intrinsic and extrinsic rigidities, where the latter seems to be more

"concentrated" in the common component of the price, while idiosyncratic shocks appear
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to be an important factor of price variability in those sectors.

In conclusion, the frequency of price changes seems, unsurprisingly, to be closely

related to the ratio of the variability of the optimal price over time, as measured byq
�2" + �

2
f , to the mean adjustment cost parameter c. Indeed, the simple correlation

between the frequency of price changes and this ratio is 0.708 for Belgium, and 0.818 for

France.

For a deeper understanding of the link between the frequency of price changes and

the structural parameters of the model, we have estimated a simple equation relating the

frequency of price changes to the estimated adjustment costs parameter, ĉ, the volatility

of the idiosyncratic and the common shocks, �̂" and �̂!, respectively. Two groups of re-

gressions are run. First, three linear regressions explaining the observed frequency of price

changes (freqi) are estimated by OLS. A second set of regressions with the dependent

variable de�ned as the logit transformation of the frequencies (i.e. ln [freqi=(1� freqi)])
is also estimated by the quasi maximum likelihood (QML) estimation procedure proposed

by Papke and Wooldridge (1996). These regressions are run on the sample of product cat-

egories for which the quality of the �t was good (see below), i.e., 90 product categories for

Belgium and 91 product categories for France. Table 3 reports the results (with standard

errors in brackets). The QML and OLS provide qualitatively similar results, although

the QML procedure provides a better �t,24 which favours a non-linear relation between

the structural parameters and the frequency of price changes.

OLS QML

Ý1Þ Ý2Þ Ý3Þ Ý4Þ Ý5Þ Ý6Þ

const
Ý0.019Þ
0.252

Ý0.011Þ
0.146

Ý0.012Þ
0.154

Ý0.240Þ
?1.044

Ý0.112Þ
?1.732

Ý0.104Þ
?1.673

France
Ý0.015Þ
?0.050

Ý0.008Þ
?0.012

Ý0.008Þ
?0.014

Ý0.106Þ
0.054

Ý0.057Þ
0.165

Ý0.053Þ
0.152

åc
Ý0.043Þ
?0.715

Ý0.026Þ
?0.409

Ý0.029Þ
?0.433

Ý0.476Þ
?6.169

Ý0.210Þ
?4.171

Ý0.287Þ
?4.607

aP
Ý0.184Þ
1.643

Ý0.098Þ
1.121

Ý0.119Þ
1.223

Ý1.592Þ
10.000

Ý0.898Þ
9.205

Ý1.167Þ
11.579

ag
Ý0.344Þ
1.603

Ý0.186Þ
0.493

Ý0.202Þ
0.441

Ý2.590Þ
10.980

Ý2.223Þ
4.929

Ý2.331Þ
3.197

a P
2+a g

2

åc
­

Ý0.004Þ
0.101 ­ ­

Ý0.048Þ
0.416 ­

a P
åc

­ ­
Ý0.014 Þ
0.069 ­ ­

Ý0.124 Þ
0.030

ag
åc

­ ­
Ý0.017 Þ
0.075 ­ ­

Ý0.176 Þ
0.639

R2 0.649 0.906 0.898 0.800 0.940 0.955

Table 3 - Relation between frequency of price changes and structural

parameters
24This is particularly true of the speci�cation that excludes the ĉ=�̂".
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These regressions con�rm that the frequency of price changes is strongly in�uenced

by the size of the shocks, as estimated by �̂" and �̂!, relative to the adjustment costs

parameter, ĉ. If larger adjustment costs tend to signi�cantly reduce the frequency of price

changes, this e¤ect can be partly o¤set by larger shocks to the marginal costs/desired

mark-up. Introducing the relative importance of idiosyncratic shocks and common shocks

separately also indicates that it is mostly the relative size of the common shock that

determines the frequency of price changes.25

4.4 Evaluating the �t of the model

In order to assess how well the model �ts the data, we compare the realized frequency

and average size of price changes with those obtained by simulating the model. More

precisely, for each product, we simulate an unbalanced panel of price trajectories starting

with pi0, the observed initial value of each price trajectory i, using the estimated values

of c, ft and randomly generated "it�s and cit�s with respective standard-errors b�", b�c as
well as an estimate of ui. Indeed, as the true initial value pi0 is used as starting value

of the ith price trajectory, the true ui should be used to simulate the subsequent price

observation of that trajectory. Since ui is unknown, the simulation exercise is based on

an estimated bui which is computed by re-estimating our baseline model with trajectory
speci�c �xed e¤ects, keeping the other parameters of the model (bc, b�", b�c, bft) as given.
The time dimension of the simulated trajectory i is set to coincide with the length of the

associated realized price trajectory. The number of price trajectories in the simulated

panels is given by the number of trajectories in the observed panels. The experiment is

repeated 1000 times for each trajectory.

For each product category and their simulated counterparts, the frequency of price

changes, the average (absolute) size of price changes and the share of price increases are

computed. Scatter plots of these statistics for the 98 product categories in the Belgian CPI

are presented in Figure 3. Similar graphs would be obtained using the French estimates.

Figures 3a shows that, except for a small number of products (8 out of 98), the observed

frequencies of price changes match the simulated ones quite well. The same is also true

for France where except for 2 product categories (out of 93), the actual and simulated

frequencies match very closely.26 The few cases where the simulations do not match the

25Using the standard deviation of f̂t instead of �̂! does not induce any change in the conclusions.
26The 10 product categories for which our estimated parameters do not allow to replicate the char-

acteristics of the observed price trajectories are, for Belgium, "Dining room oak furniture", "Cup and
saucer", "Parking spot in a garage", "Fabric for dress", "Wallet","Small anorak (9 month)"; "Men T
Shirt" and "Hair spray 400 ml", and for France, "classic lunch in a restaurant" and "pasta". These
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realizations are con�ned to product categories with relatively rigid prices. In the case of

these products our simulations lead to an overestimation of the frequency of price changes,

and to an underestimation of the average size of the price change. Moreover, these product

categories are characterized by a very high degree of heterogeneity in the price dynamics,

which translates into a large degree of heterogeneity in the adjustment costs parameter,

cit. When �c is very large as compared to c, our model could, in principle generate

negative menu costs. This leads to a failure of the simulated samples to reproduce the

data characteristics.27

Figure 3 - Characteristics of observed and simulated trajectories

The quality of the �t appears to be less satisfactory regarding the two other charac-

teristics of price changes: their average magnitude and the proportion of price increases,

both for Belgium and France. While the proportion of price increases seems to be un-

derestimated in most cases, the magnitude of price changes is overestimated. Since the

products were not considered in the OLS/QML estimation presented in section 4.3
27The detailed results are provided in appendix C.
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estimated common component appears to �t quite well the speci�c price indices of each

category (see the correlation between ft and these indices in table A, appendix C), it

seems reasonable to conclude that the cause of this problem lies, at least partly, in the

idiosyncratic shocks a¤ecting the optimal prices. Indeed, this outcome may result from

an overestimation of the size of the idiosyncratic shock and/or from the assumption of

pure randomness of the cit�s around their mean. Given this randomness, we may face a

number of cases where an observed price increase (resp. a decrease) corresponds, in our

model to a situation which would normally induce no price changes (because cit is high

and positive), thus implicitly requiring a large positive (resp. negative) shock to make the

observed price change likely. Accounting for di¤erences in adjustment costs that are not

purely random (such as di¤erences across types of outlets, seasonal variations, etc.) might

then be a way to improve our estimates. Regarding the underestimation of the propor-

tion of price increases, one may wonder whether the assumption of no serial correlation

in the "it and the symmetric distribution of the cit�s may explain the underestimation

of the proportion of price increases. Indeed, one can observe that for the few products

exhibiting a low proportion of price increases, this proportion is overestimated. It might

be the case that the symmetry assumed here leads to a bias of the frequency of price

increases towards 0:5. A �rst exploration of this asymmetry issue is provided below.

4.5 Some Extensions of the Empirical Results

4.5.1 Gradual adjustments

As stated in Section 2, several factors, such as the structure of local competition across

outlets, the degree of uncertainty in the identi�cation of the shocks to the marginal

cost, consumers�inattention, or costly information can motivate a partial adjustment to

shocks. However, in order to observe such gradual movements in prices, price changes

should be made on a relatively frequent basis. If a �rm adjusts its price only once a year,

a gradual change might not be sensible. Therefore, a price setting model with partial

adjustment should only be estimated for product categories with relatively frequent price

changes. For these product categories, the partial adjustment parameter � introduces an

additional source of intrinsic rigidity.

In the following table, we present the estimation results associated with a set of

three product categories characterized by relatively frequent price changes (heating oil,

oranges and roses). We also present the estimation results for two product categories that

in comparison are characterized by less frequent price changes (namely central heating
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repair tari¤ and hourly rate of a painter).

Parameters Heating oil Oranges Roses Central heating Painter
åc 0.025DD 0.075DD 0.076DD 0.396DD 0.144DD

aP 0.052DD 0.247DD 0.291DD 0.074DD 0.220DD

ac 0.010DD 0.056DD 0.033DD 0.190DD 0.066DD

aX 0.044DD 0.109DD 0.247DD 0.151DD 0.221DD

å
V 0.342DD 0.395DD 0.436DD 0.076DD 0.864DD

Logl 14755.9 ?13921.2 ?6098.8 ?3114.5 ?2311.9
ag 0.097 0.067 0.076 0.004 0.062

_ 0.867 0.498 1.038 0.848 0.187

Table 4 - estimation results with gradual adjustment - Belgium

** = signi�cant at the 1% level * = signi�cant at the 5% level

The results are summarized in Table 4. The estimates of �, the parameter of the

partial adjustment, is statistically signi�cant for all �ve product lines considered, with

values that seem eminently sensible for product categories characterized by very frequent

price changes. Our estimates indicate that for this kind of products, there is a statistically

signi�cant evidence of gradualism in the price setting behavior of �rms. This clearly

indicates an additional source of extrinsic rigidity. The estimate of � for "central heating

repair tari¤" is much smaller, and is in accordance with our prior belief that when a

�rm adjusts its price rarely, it does it (almost) fully. However, we obtain a very high

estimate of � for an "hourly rate of a plumber" which is di¢ cult to explain from an

economic point of view. This last result could be due to the fact that the estimation of

a gradual adjustment price setting model on price trajectories that do not contain any

price change might be quite problematic. We have conducted some simulations showing

that the observation of �at price trajectories biases the estimation of the � parameter

towards one, introducing a high volatility in the unobserved common component.

4.5.2 Asymmetric adjustment costs

As mentioned earlier, our estimates so far are based on the assumption of symmetric

adjustment costs. As noted earlier this assumption does not rule out asymmetry in

the observed direction of price changes. If the estimated common component; f̂t, is

characterized by a positive (negative) trend, our price setting model will generate more

price increases (decreases). This is consistent with the argument of Ball and Mankiw

(1994).

However, in order to test whether relaxing this assumption could help in capturing

the observed degree of asymmetry in the direction of price changes, we have estimated
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our baseline model introducing di¤erent average adjustment cost parameters for price

increases (cU) and for price decreases (cL).28 This estimation has been conducted on

product categories mainly exhibiting symmetric price changes (e.g. oranges and heating

oil) and for product categories that largely show asymmetric price changes (e.g. special

beer in a bar, dry cleaning of a shirt). The results are given in Table 5.

Oranges Special beer Heating oil Dry cleaning (shirt) Biscuits Sausage Cheese (Edam)

cup 0.079DD 0.543DD 0.025DD 0.556DD 0.226DD 0.440DD 0.323DD

cdown?cup 0.000 ?0.002D 0.001DD ?0.004DD 0.000 ?0.001DD 0.000

aP 0.159DD 0.052DD 0.036DD 0.063DD 0.067DD 0.110DD 0.086DD

ac 0.063DD 0.237DD 0.011DD 0.251DD 0.146DD 0.230DD 0.174DD

au 0.109DD 0.151DD 0.040DD 0.172DD 0.189DD 0.165DD 0.134DD

hyper ?0.019DD 0.000 ? ? ?0.036DD ?0.108DD ?0.020

§ÝSÞ ?27381.4 ?3076.4 13892.6 ?2651.650 ?19870.0 ?17460.127 ?12410.890

Table 5 - Estimation results with asymmetric menu costs - Belgium

** = signi�cant at the 1% level * = signi�cant at the 5% level

The main conclusion emerging from these estimates is that adjustment costs associated

with price decreases do not seem to di¤er much from the adjustment costs associated with

price increases. Even if the di¤erence between the two adjustment costs are statistically

signi�cant, the di¤erence does not seem to be economically important. Although this

conclusion is based on a limited number of cases, it supports the view that asymmetric

price changes are more likely to result from a trend in ft rather than from asymmetric

adjustment costs. However, further research is needed to check whether other sources of

asymmetry may matter or not.

5 Conclusion

Modern macroeconomics has emphasized the role of price rigidity in the impact of mone-

tary policy on economic activity and in�ation dynamics. The slope of the New Keynesian

Phillips curve typically depends on intrinsic price rigidity. Most previous empirical liter-

ature approximated these intrinsic rigidities by the frequency of price changes. However,

in the case of state dependent rules, the frequency of price changes does not only de-

pend on the size of the adjustment costs (intrinsic rigidity), but is also a¤ected by the

distribution of shocks that a¤ect outlets (extrinsic rigidity).

28It is also possible to introduce asymmetry in the variability of the adjustment costs, but we do not
pursue this here.
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Following this new strand in theoretical models (see Dotsey, King and Wolman, 1999,

and Gertler and Leahy, 2006), we specify a state-dependent (s,S) type model where outlets

do not necessarily instantaneously adjust their prices in response to changes in their

environment. Since the optimal price targeted by outlets is unobserved, we decompose it

into three components: �rst, a component that is shared across all outlets selling a given

fairly homogeneous product. From an economic point of view, this component re�ects

the average marginal cost augmented with the average outlet-speci�c desired mark-up

associated with this particular product. We model this as a common factor. The second

component of the unobserved optimal price is an outlet speci�c e¤ect, which accounts

for product di¤erentiation, local competition conditions, etc.. The third component is

an idiosyncratic term, re�ecting shocks that may a¤ect the outlet speci�c optimal price

(possibly due to outlet speci�c demand shocks or unexpected changes in costs, etc.).

This set up involves modeling of the price changes as a non-linear dynamic panel

model with unobserved common e¤ects, which allows us to decompose price stickiness

into intrinsic and extrinsic components, associated with the variability of the various com-

ponents of the (unobserved) optimal price. Making use of two large data sets composed

of consumer price records used to compute the CPI in Belgium and France, we estimate

these di¤erent components for a large number of homogenous product categories. Our

results show that the now well-documented di¤erences across products in the frequency

of price changes do not strictly correspond to di¤erences in terms of adjustment costs; i.e.

intrinsic rigidity does not su¢ ce to explain the frequency of price changes. What seems

to drive the frequency of price changes is the relative importance of adjustment costs to

the size of the shocks, common and/or idiosyncratic.

The high frequency of price changes in the most �exible components of the CPI (energy

products and perishable foods) is mainly related to large idiosyncratic and/or common

shocks, and not necessarily to small adjustment costs. Conversely, the stickier components

of the CPI (durable industrial goods and services) exhibit very low idiosyncratic and

common shocks, often in addition to large adjustment costs.

Another important feature of our model is the use of stochastically varying inaction

thresholds following Caballero and Engel (2006). This feature helps to explain some of the

stylized facts of price setting practices (seasonal pricing, heterogeneity in price stickiness

across outlets in terms, synchronization of price changes across and within stores).

Our results also strongly favor the introduction of heterogenous price behaviors in

macroeconomic models. Two recent papers examine the implications of heterogeneity

of (Calvo) pricing for the New Keynesian Phillips Curve. Using sectoral data on prices
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and marginal costs, Imbs et al. (2006) show that estimates of the NKPC that do not

account for industry-level heterogeneity substantially overestimate the backward look-

ing component, and slightly underestimate the role of marginal costs on in�ation. In

a multi-sector general equilibrium model, Carvalho (2006) shows that under heteroge-

neous pricing, monetary policy has larger and more persistent real e¤ects than those

predicted by single-�rm models . In contradiction to the existing view on this issue (Bils

and Klenow, 2004, Dhyne et al., 2006), our results indicate that heterogeneity across

�rms (or product categories) should not necessarily be introduced only through di¤erent

degrees of nominal/intrinsic rigidity, but also through di¤erences in extrinsic rigidities.
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Appendix A: Mathematical Proofs

Proof of the �rst part of Lemma 1.
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Proof of the uniqueness of ~ft (the non-linear cross section average estimator

of ft). Let
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and
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and note that we have
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The cross-sectional average estimate of ft is now given by the solution of the non-linear

equation
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First it is clear that 	( ~ft) is a continuous and di¤erentiable function of ft, and it is

now easily seen that
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	( ~ft)! �1:

Also the �rst derivative of 	(ft) is given by29
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29Recall that the weights, wit; are non-zero pre-determined constants, and in particular do not depend
on ft.
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and
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and it is easily seen that h(zit( ~ft)) is symmetric, namely h(zit( ~ft)) = h(�zit( ~ft)). Focusing
on the non-negative values of zit( ~ft) it is easily seen that

h(zit)) =
zitp
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i
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and by symmetry h(zit)) � 0, for all ~c � 0. Hence, qit > 0 for all i and t, and ~c � 0:

Therefore, it also follows that 	0(ft) > 0, for all value of wit � 0 and c � 0. Thus, by the
�xed point theorem, 	(ft) must cut the horizontal axis but only once.

Proof of the consistency of ~ft as an estimator of ft as N !1.
Let
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Consider now the mean-value expansion of 	(ft) around ~ft

	(ft)�	( ~ft) = 	0( �ft)(ft � ~ft);

where �ft lies on the line segment between ft and ~ft. Since 	( ~ft) = 0 and 	0( �ft) > 0 for

all �ft (as established above) we have
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hence E (~�it) = 0. Further, conditional on ft and xit; price changes, �pit, being functions
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of independent shocks vi and "it over i, will be cross sectionally independent. There-

fore, �it will also be cross sectionally independent; although they need not be identically

distributed even if the underlying shocks, vi and "it, are identically distributed over i.

Given the above results we now have (for each t and as N !1)
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Note that as N ! 1,

PN
i=1wit~�it

p! 0, and hence ~ft
p! ft, since 	0(ft) > 0 for all ft.It

must also be that �ft
p! ft.

In the case where wit = 1=N , we have

#2~f = lim
N!1

(
N�1PN

i=1 V ar(~�it)

[	0(ft)]
2

)
:

It also follows that ~ft � ft = Op
�
N�1=2�.
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Appendix B: Data Sources

The Belgian CPI data set :

The Belgian CPI data set contains monthly individual price reports collected by the

Federal Public Service "Economy, SMEs, Self-Employed and Energy" for the computation

of the Belgian National and Harmonized Index of Consumer Prices. In its complete

version, it covers the 1989:01 - 2005:12 period. Considering the whole sample, would have

involved analyzing more than 20,000,000 price records. For this project, we restricted the

analysis to the product categories included in the Belgian CPI basket for the base year

1996, and restricted our period of observation to the 1994:07 - 2003:02 period. Our data

set covers only the product categories for which the prices are recorded throughout the

entire year in a decentralized way, i.e. 65.5%. of the Belgian CPI basket for the base year

1996. The remaining 34.5% relate to product categories that are monitored centrally by

the Federal Public Services, such as housing rents, electricity, gas, telecommunications,

health care, newspapers and insurance services and to product categories that are not

available for sale during the entire year (some fruits and vegetables, winter and summer

fees in tennis club). Price reports take into account all types of rebates and promotions,

except those relating to the winter and summer sales period, which typically take place

in January and July. In addition to the price records, the Belgian CPI data sets provides

information on the location of the seller, a seller identi�er, the packaging of the product (in

order to identify promotions in quantity) and the brand of the product. For all products,

the price concept used in this paper correspond to the log of price per unit.

The French CPI data set :

The French CPI data set contains more than 13,000,000 monthly individual price

records collected by the INSEE for the computation of the French National and Harmo-

nized Index of Consumer Prices. It covers the period July 1994:07 - February 2003. This

data set covers 65.5%. of the French CPI basket. Indeed, the prices of some categories of

goods and services are not available in our sample: centrally collected prices - of which

major items are car prices and administered or public utility prices (e.g. electricity)- as

well as other types of products such as fresh food and rents. At the COICOP 5-digit

level, we have access to 128 product categories out of 160 in the CPI. As a result, the

coverage rate is above 70% for food and non-energy industrial goods, but closer to 50% in

the services, since a large part of services prices are centrally collected, e.g. for transport

or administrative or �nancial services.

Each individual price quote consists of the exact price level of a precisely de�ned

product. What is meant by �product� is a particular product, of a particular brand
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and quality, sold in a particular outlet. The individual product identi�cation number

allows us to follow the price of a product through time, and to recover information

on the type of outlet (hypermarket, supermarket, department store, specialized store,

corner shop, service shop, etc.), the category of product and the regional area where the

outlet is located (for con�dentiality reasons, a more precise location of outlets was not

made available to us). The sequences of records corresponding to such de�ned individual

products are referred to as price trajectories. Importantly, if in a given outlet a given

product is de�nitively replaced by a similar product of another brand or of a di¤erent

quality, a new identi�cation number is created, and a new price trajectory is started. On

top of the above mentioned information, the following additional information is recorded :

the year and month of the record, a qualitative �type of record�code and (when relevant)

the quantity sold. When relevant, division by the indicator of the quantity is used in order

to recover a consistent price per unit. The �type of record�code indicates the nature of

the price recorded: regular price, sales or rebates, or �pseudo-observation�(a "pseudo-

observation" is essentially an observation which has been imputed by the INSEE; see

Baudry et al. (2004) for more details on the way we have tackled such imputed values to

avoid creating "false" price changes).

Con�dentiality data restrictions

Due to strong con�dentiality restrictions, we are not allowed to provide anyone with

the micro price reports underlying this work. However, a data set containing simulated

data and the MatLab code of the estimation procedures are available on request (em-

manuel.dhyne@nbb.be). A SAS code is also available.

Appendix C - Detailed Results

Description of Tables A and B

Columns (2) to (6) refer to the results obtained by Full ML :

- c represents the estimated value of the average menu cost ;

- sige represents the estimated value of �" ;

- sigc represents the estimated value of �c ;

- sigu represents the estimated value of �� ;

- Logl represents the maximized value of the likelihood function ;

Columns (7) and (8) refer to the results associated to the time-series representation

of ft.
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- sig! represents the estimated value of �!;

- S(rhok) represents the estimated value of � =
KP
�i

i=1

Column (9) present the correlation between ft and the log of the product category

price index.

Columns (10) to (13) provide descriptive statistics of the data set (the average number

of observations each month, Nbar, the frequency of price changes, Freq, the average size

of price changes in absolute term, jDpj, and the share of price increases, %up.
Columns (14) to (16) provide averages of the frequency of price changes, Freq�, the

average size of price changes in absolute term, jDpj�, and the share of price increases,
%up� obtained on the basis of simulated data generated using the estimated structural

parameters and the estimated ft of each product categories. The simulation exercise is

replicated 1000 times.

Grey cells indicate product categories for which the model �ts the data poorly (low

correlation of ftwith the log of price index or with pt or poor replication of the data

characteristics by simulated data).

Description of Tables C and D

Columns (2) to (8) provide basic statistics describing the estimated ft :

- �f represents the unconditional standard deviation;

- ri represents the autocorrelation of order i.
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Product category Ξf r1 r2 r3 r4 r6 r12

Energy
Butane 0.153 0.983 0.959 0.937 0.918 0.890 0.801
Gasoline 1000­2000 liters 0.263 0.973 0.939 0.905 0.867 0.799 0.501
Eurosuper (RON95) 0.114 0.978 0.954 0.935 0.909 0.855 0.692
Perisable food
Paprika pepper 0.249 0.685 0.288 0.003 ­0.131 ­0.440 0.715
Skate (wing) 0.072 0.843 0.815 0.764 0.716 0.649 0.830
Oranges 0.111 0.881 0.660 0.423 0.242 0.081 0.745
Carrots 0.179 0.861 0.626 0.399 0.214 0.059 0.231
Apples, Granny Smith 0.140 0.885 0.678 0.515 0.404 0.266 0.612
Kiwis 0.172 0.947 0.862 0.763 0.662 0.551 0.820
Margarine (super) 0.024 0.896 0.830 0.779 0.776 0.748 0.500
Turkey filet 0.046 0.893 0.867 0.872 0.860 0.801 0.677
Sirloin 0.020 0.690 0.757 0.705 0.703 0.647 0.565
Cheese (Gouda type) 0.035 0.709 0.789 0.714 0.755 0.705 0.479
Full­fat fruit yoghurt 0.023 0.828 0.806 0.769 0.771 0.742 0.685
Butter 0.030 0.889 0.873 0.883 0.872 0.841 0.732
Emmentaler 0.037 0.638 0.651 0.761 0.664 0.657 0.491
Sausage 0.062 0.978 0.963 0.946 0.927 0.891 0.777
Cheese (Edam type) 0.050 0.910 0.918 0.908 0.889 0.896 0.845
Belgian waffle 0.027 0.526 0.615 0.502 0.515 0.438 0.387
Country paté 0.063 0.935 0.934 0.936 0.931 0.918 0.884
Rice pudding 0.059 0.852 0.836 0.868 0.864 0.854 0.780
Pastry (carré glacé) 0.076 0.952 0.940 0.937 0.935 0.914 0.915
Pastry (éclair) 0.070 0.829 0.827 0.858 0.799 0.814 0.793
Swiss cake 0.054 0.827 0.859 0.852 0.848 0.860 0.790
Whole wheat bread 0.030 0.870 0.866 0.861 0.851 0.827 0.716
Special bread 0.037 0.576 0.639 0.597 0.619 0.596 0.422
Bread roll 0.080 0.969 0.958 0.960 0.952 0.961 0.937
Non perishable food
Frankfurters 0.035 0.868 0.796 0.767 0.715 0.656 0.333
Biscuits 0.075 0.968 0.947 0.923 0.903 0.870 0.903
Fruit juice 0.043 0.866 0.849 0.821 0.780 0.748 0.633
Fishcakes 0.046 0.785 0.785 0.742 0.732 0.645 0.385
Val de Loire wine 0.030 0.960 0.962 0.936 0.928 0.892 0.823
Ice cream 0.085 0.950 0.939 0.920 0.902 0.865 0.816
Tinned apricot halves 0.043 0.857 0.847 0.858 0.779 0.765 0.622
Tinned tomatoes, peeled 0.075 0.937 0.913 0.896 0.890 0.831 0.784
Tinned peas 0.062 0.920 0.912 0.905 0.865 0.836 0.715
Tobacco 0.077 0.997 0.994 0.990 0.986 0.980 0.969
Sausage 0.061 0.994 0.990 0.984 0.978 0.966 0.909
Lemonade 0.026 0.124 0.211 0.331 0.359 0.344 0.183
Non durable goods
Roses 0.139 0.665 0.410 0.209 ­0.104 ­0.548 0.936
Chrysanthemums 0.126 0.784 0.432 ­0.015 ­0.425 ­0.887 0.914
Compact Disc 0.029 0.860 0.827 0.814 0.796 0.797 0.654
Hair spray 0.024 0.977 0.968 0.949 0.943 0.920 0.841
Cat food 0.028 0.579 0.621 0.577 0.596 0.596 0.395
Nail polish 0.088 0.978 0.970 0.965 0.960 0.969 0.960
Water­based paint 0.074 0.995 0.989 0.983 0.978 0.967 0.920
Oil­based paint 0.055 0.994 0.990 0.985 0.979 0.970 0.953
Water charge 0.080 0.879 0.886 0.890 0.868 0.834 0.811
Engine oil 0.089 0.999 0.998 0.997 0.996 0.994 0.988
Dracaena 0.019 0.969 0.962 0.948 0.946 0.929 0.889
Dry battery 0.130 0.998 0.997 0.995 0.994 0.989 0.977
Wool suit 0.006 0.880 0.803 0.779 0.745 0.642 0.643
Infants' anorak (9 month) 0.015 0.958 0.939 0.917 0.899 0.869 0.823
Men's socks 0.050 0.998 0.995 0.992 0.989 0.982 0.957
Dress fabric 0.027 0.993 0.989 0.986 0.981 0.977 0.956
Men's T shirt 0.017 0.978 0.948 0.919 0.892 0.847 0.705
Color film, 135­24 0.005 0.842 0.835 0.772 0.682 0.624 0.530
Zip fastener 0.034 0.968 0.958 0.951 0.941 0.937 0.901

Table C - Statistical properties of the common component bft - Belgium
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Product category Ξf r1 r2 r3 r4 r6 r12

Durable goods
LaserJet printer 0.060 0.625 0.541 0.485 0.493 0.296 ­0.171
VCR, four­head 0.177 0.979 0.969 0.964 0.968 0.978 0.974
Compact hi­fi system 0.126 0.999 0.997 0.996 0.994 0.992 0.988
Natural gas heater 0.092 0.979 0.966 0.961 0.957 0.947 0.949
Calculator 0.053 0.991 0.980 0.971 0.961 0.937 0.864
Toaster 0.013 0.935 0.866 0.814 0.744 0.611 0.215
Suitcase 0.046 0.964 0.944 0.930 0.914 0.888 0.833
Electric coffee machine 0.010 0.908 0.837 0.791 0.700 0.589 0.098
Children's bicycle 0.070 0.947 0.922 0.917 0.925 0.916 0.882
Electric fryer 0.017 0.979 0.953 0.928 0.900 0.827 0.585
Dictionary 0.053 0.779 0.594 0.535 0.453 0.303 0.190
Bed, slatted base 0.033 0.815 0.694 0.613 0.643 0.652 0.580
Stainless steel pan 0.034 0.992 0.988 0.981 0.973 0.954 0.896
Hammer 0.069 0.961 0.958 0.943 0.942 0.936 0.916
Glass, 4 mm 0.070 0.991 0.984 0.979 0.970 0.942 0.858
Dining room oak furniture 0.098 0.992 0.983 0.971 0.960 0.939 0.891
Spherical glasses 0.022 0.930 0.887 0.800 0.735 0.740 0.642
Wallet 0.069 0.996 0.991 0.985 0.978 0.965 0.938
Torus glasses 0.027 0.771 0.767 0.617 0.532 0.606 0.504
Cup and saucer 0.068 0.996 0.991 0.986 0.980 0.969 0.944
Services
School boarding fees 0.044 0.975 0.972 0.968 0.964 0.956 0.986
Hourly wage, painter 0.062 0.981 0.979 0.974 0.969 0.962 0.954
Hourly wage, garage mechanic 0.106 0.999 0.999 0.998 0.998 0.997 0.996
Annual cable subscription 0.029 0.858 0.835 0.779 0.756 0.735 0.674
Repair of central heating 0.059 0.995 0.994 0.990 0.987 0.981 0.972
Hourly wage, plumber 0.057 0.994 0.988 0.984 0.979 0.972 0.961
Passport stamp 1.044 0.959 0.914 0.868 0.821 0.722 0.551
Sole meunière 0.067 0.910 0.903 0.915 0.913 0.890 0.897
Dry cleaning, shirt 0.051 0.996 0.993 0.991 0.989 0.983 0.955
Pepper steak 0.052 0.998 0.996 0.994 0.992 0.988 0.970
Permanent wave 0.072 0.999 0.998 0.997 0.996 0.995 0.993
Domestic service 0.066 0.995 0.994 0.991 0.989 0.986 0.981
Funeral 0.055 0.884 0.881 0.858 0.853 0.892 0.867
School lunch 0.072 0.990 0.984 0.979 0.975 0.972 0.995
Self­service meal 0.025 0.545 0.343 0.289 0.183 0.319 0.402
Parking spot in a garage 0.094 0.997 0.993 0.988 0.982 0.974 0.957
Wheel balancing 0.026 0.991 0.983 0.974 0.966 0.950 0.932
Special beer 0.069 0.988 0.983 0.984 0.981 0.982 0.967
Aperitif 0.076 0.997 0.995 0.994 0.993 0.990 0.977
Videotape rental 0.011 0.868 0.852 0.823 0.758 0.729 0.547
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Product category ÷f r1 r2 r3 r4 r6 r12
Energy
Eurosuper 0.091 0.980 0.953 0.929 0.900 0.841 0.650
Gas­Oil 0.133 0.986 0.964 0.942 0.918 0.873 0.671
Perishable food
Roast­beef 0.054 0.983 0.967 0.951 0.936 0.098 0.956
Beef burger 0.041 0.898 0.901 0.885 0.875 0.207 0.768
Lamb 0.108 0.988 0.977 0.964 0.953 0.433 0.852
Fresh pork meat 0.072 0.919 0.862 0.785 0.708 0.379 0.292
Ham 0.083 0.980 0.963 0.948 0.926 0.266 0.721
Sausages 0.055 0.952 0.934 0.925 0.903 0.372 0.644
Chicken 0.132 0.987 0.972 0.953 0.933 0.840 0.715
Rabbit/Game 0.071 0.945 0.911 0.864 0.827 0.376 0.699
Creme fraiche 0.030 0.980 0.967 0.954 0.933 0.480 0.742
Milky Desserts 0.053 0.981 0.972 0.970 0.966 0.733 0.945
Cottage cheese 0.055 0.987 0.982 0.980 0.970 0.769 0.933
Processed cheese 0.068 0.966 0.964 0.959 0.960 0.881 0.927
Butter 0.054 0.991 0.987 0.985 0.982 0.733 0.938
Non perishable food
Rusks and grilled breads 0.036 0.878 0.850 0.835 0.839 0.519 0.694
Flour 0.054 0.974 0.972 0.975 0.962 0.786 0.944
Pasta 0.210 0.997 0.991 0.984 0.977 0.935 0.900
Canned vegetables 0.032 0.959 0.954 0.946 0.927 0.559 0.859
Sugar 0.060 0.996 0.993 0.992 0.990 0.739 0.970
Chocolate 0.071 0.988 0.981 0.980 0.980 0.816 0.963
Desserts 0.108 0.963 0.971 0.965 0.964 0.858 0.938
Coffee 0.055 0.939 0.847 0.741 0.641 0.478 0.054
Tea 0.085 0.981 0.982 0.981 0.975 0.961 0.959
Fruit juices 0.034 0.912 0.918 0.897 0.889 0.473 0.871
Whisky 0.008 0.582 0.413 0.386 0.250 ­0.078 0.176
Pet food 0.161 0.966 0.931 0.925 0.920 0.915 0.882
Non durable goods
Fabrics 0.065 0.100 ­0.183 0.084 ­0.161 ­0.089 0.612
Men coats 0.065 0.118 ­0.154 ­0.094 ­0.290 ­0.052 0.844
Men suits 0.086 0.271 ­0.105 ­0.055 ­0.132 ­0.061 0.858
Men trousers 0.054 0.122 ­0.281 ­0.141 ­0.321 ­0.174 0.798
Skirt 0.097 0.138 ­0.335 ­0.392 ­0.381 ­0.161 0.828
Dress 0.156 0.414 0.140 0.157 0.172 0.084 0.786
Women trousers 0.059 0.130 ­0.244 ­0.221 ­0.269 ­0.061 0.672
Women jacket 0.113 0.284 ­0.009 ­0.003 ­0.008 ­0.080 0.794
Children trousers 0.112 0.752 0.645 0.640 0.629 0.436 0.883
Children suits 0.224 0.481 0.392 0.390 0.440 0.356 0.545
Men shirts 0.078 0.059 ­0.390 ­0.236 ­0.403 ­0.144 0.897
Men socks 0.043 0.075 ­0.050 0.009 0.126 0.051 0.329
Men sweater 0.068 0.273 0.148 0.263 0.133 ­0.051 0.825
Women sweater 0.081 0.056 ­0.263 ­0.106 ­0.266 ­0.146 0.749
Children sweater 0.091 0.430 0.150 0.147 0.177 0.134 0.704
Babies clothes 0.112 0.083 0.027 0.273 0.107 0.074 0.474
Men shoes 0.057 0.127 ­0.126 ­0.223 ­0.147 ­0.072 0.721
Women shoes 0.085 0.317 ­0.043 0.008 ­0.032 0.065 0.895
Children shoes 0.084 0.126 ­0.185 ­0.201 ­0.236 ­0.024 0.795
Blankets and coverlets 0.045 0.186 0.134 0.432 0.203 ­0.071 0.792
Fabrics for furniture 0.046 0.548 0.476 0.516 0.461 0.012 0.581
Batteries 0.023 0.762 0.765 0.755 0.740 0.546 0.540
Car tyres 0.053 0.951 0.948 0.936 0.930 0.898 0.840
Musical disks 0.046 0.978 0.952 0.942 0.930 0.896 0.881
Blank tapes and disks 0.019 0.463 0.367 0.404 0.319 0.343 0.202
Flowers 0.058 0.853 0.538 0.205 ­0.093 ­0.446 0.923
Children books 0.073 0.940 0.939 0.921 0.925 0.915 0.916
Newspapers 0.041 0.919 0.895 0.907 0.900 0.892 0.814
Paper articles 0.077 0.816 0.646 0.633 0.663 0.524 0.722
Leather articles 0.041 0.206 0.169 0.237 0.268 0.571 0.600
Babies apparel 0.051 0.597 0.708 0.640 0.691 0.619 0.580
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Product category ÷f r1 r2 r3 r4 r6 r12
Durable goods
box­mattress 0.037 0.170 0.306 0.123 0.243 0.055 0.574
Armchairs and canapes 0.065 0.886 0.877 0.911 0.864 0.231 0.893
Washing machine 0.035 0.823 0.830 0.819 0.769 0.311 0.687
Vacuum­cleaner 0.032 0.475 0.494 0.502 0.442 0.148 0.420
Electrical tools 0.030 0.430 0.430 0.415 0.412 ­0.005 0.286
Bicycles 0.042 0.757 0.718 0.705 0.668 0.088 0.555
Trailor 0.127 0.839 0.802 0.763 0.736 0.697 0.489
Phone set 0.132 0.985 0.984 0.983 0.978 0.976 0.949
TV set 0.226 0.952 0.953 0.956 0.941 0.926 0.886
Video camera 0.106 0.980 0.972 0.964 0.950 0.937 0.902
Music instrument 0.049 0.857 0.821 0.849 0.813 0.817 0.724
Electrical razor 0.085 0.672 0.675 0.690 0.673 0.721 0.565
Jewellery 0.031 0.686 0.701 0.651 0.639 0.656 0.467
Services
Shoe repair 0.061 0.787 0.797 0.781 0.727 0.244 0.392
Water distribution 0.016 0.825 0.771 0.749 0.676 ­0.229 0.570
Hourly rate in a garage 0.094 0.996 0.992 0.990 0.989 0.988 0.980
Car rent 0.047 0.277 0.233 0.302 0.319 0.283 0.226
Urban transports 0.081 ­0.147 0.074 0.046 0.058 ­0.016 0.067
Moving services 0.149 0.958 0.925 0.894 0.880 0.887 0.913
Pet care 0.046 0.911 0.888 0.864 0.859 0.881 0.875
cinemas 0.041 0.497 0.431 0.421 0.449 0.432 0.341
monument or museum entrance 0.129 0.962 0.959 0.950 0.936 0.923 0.857
Private high school 0.026 0.759 0.736 0.714 0.753 0.712 0.783
Private colleges/universities 0.030 0.812 0.772 0.783 0.718 0.604 0.797
classic lunch in a restaurant 0.025 0.964 0.911 0.858 0.808 0.712 0.417
coffee and hot drinks in bars 0.099 0.992 0.991 0.988 0.985 0.982 0.975
beer in bars 0.067 0.984 0.983 0.978 0.980 0.976 0.963
Non alcoolhic beverage in bars 0.052 0.940 0.933 0.945 0.914 0.914 0.908
Full­board hotel accomodation 0.055 0.982 0.962 0.944 0.938 0.940 0.985
men hairdresser 0.043 0.962 0.953 0.957 0.943 0.956 0.919
women hairdresser 0.049 0.955 0.952 0.944 0.949 0.960 0.941
Watch/clock repair 0.212 0.944 0.910 0.872 0.844 0.765 0.563
Day­care center 0.033 0.046 ­0.063 0.119 0.003 0.168 ­0.033
Home insurance 0.040 0.910 0.888 0.878 0.851 0.818 0.805
Car insurance 0.022 0.814 0.409 0.209 0.231 0.141 0.062
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