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Abstract

To further our understanding of the effectivenes®afring or experience curves to
forecast technology costs, a statistical analysis usstgrigal data has been carried out.
Three hypotheses have been tested using availablsatatthat together shed light on
the ability of experience curves to forecast futehhology costs. The results indicate
that the Single Factor Learning Curve is a highfgaive estimator of future costs with
little bias when errors were viewed in their log fotntdowever it was also found that
due to the convexity of the log curve an overestiomatif potential cost reductions
arises when returned to their monetary units. Furthesniar effectiveness of
increasing weights for more recent data was tested Wéaighted Least Squares with
exponentially increasing weights. This resulted indasts that were typically less
biased than when using Ordinary Least Square anddtigédl the potential benefits of
this method.
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1. Introduction

In order to improve our understanding of the effesrtess of learning curves or
experience curves for forecasting technology costigtastical analysis of a range of
technologies has been carried out. Three hypothesediean tested using available
data sets that together shed light on the abilityefaming curves to forecast future
technology costs. The aims of this research are simithataf McDonald and
Schrattenholzer (2001, p255) who analyse the véitiabnd evaluate the usefulness of
learning curves for applications in long-term energylet®. However, where they
focused on the variability of the actual long terawrieng rates between energy
technologies, this research directly evaluates théyafal the Single Factor Learning
Curve (SFLC) to make forecasts about future costs usstgyical data. Throughout the
text reference has been made to both learning caneexperience curves. The term
‘learning curve’ has been used to refer to the géwerecept while the term
“experience curve” refers more specifically to thicgkation of costs (or prices) as a
function of cumulative experience.

Initially the hypothesis that experience curves candssl as an unbiased estimator of
future costs has been tested by calculating the disbibaf forecast errors when using
historical experience curve rates as a predictor.sébend hypothesis tested refers to
the question ‘do experience curves as a predictartofd costs improve as more
experience is accumulated?’ This has been tested bpfweayempirical analysis
comparing the forecasts made with fewer data pointsrexésts that were made later
on with access to a greater number of data pointslly-tha hypothesis has been tested
relating to whether the explaining power of oldatadis less important than that of the
more recent data by using weighted least squares vptmextially higher weights
being placed on more recent data. Together thetsesfuthis research provides an
initial appraisal of the usefulness of experience esifor forecasting as well as some
interesting data in terms of variability of forecastargors both for the individual
technologies tested as well as the set of forecasts aggdegyer all technologies.

In the absence of easy to use and reliable models bodweto make cost projections
for new technologies, experience curves have beenaxsedsively in the literature to
provide indications of “potential” cost reduction aperience is gained and “potential”
learning investments required to reach a situatidsredik-even, the point where a new
technology surpasses an incumbent technology in terntsbeffectiveness. The
method has nevertheless been criticised for a numlssrioherent weaknesses. First it
IS important to note that learning curves are a hetiristasure without a solid
theoretical basis although further work continuesis area (such as by Wene author of
IEA 2000). The simplicity of the SFLC that calculatbst/price uniquely as a function
of cumulative experience, can also be seen as a wesakimee, for instance, it does not
take into account R&D or other technology specidictdrs. On the other hand the 2
Factor Learning Curve (2FLC), usually incorporattgnulative production and
cumulative R&D spending, is difficult to implement deets need for hard to acquire
data and also, in the case for wind and solar at, lbasause it has shown poor results
(Papineau 2004). Studies based on multi-factor legrcuirves use technical factors to
explain changes in the dependant variable (usualtg pr cost) and have been shown
to offer highly informative results, such as in the azfsae flying fortress (Mishina
1999), the chemical industry (Lieberman 1984) and wiomer (Coulomb & Neuhoff
2005) . Nevertheless, despite their evident relevandescribing historical trends,



when it comes to predicting future costs one faceslagroof compounding
uncertainties. That is, not only should the relation&i@tween independent and
dependant variables be maintained but one must alablédo forecast future values
for what are generally highly uncertain independemiables.

A further perceived limitation is the absence of floosts that have been shown to exist
particularly for technologies that reach maturity e@xplanation is that when growth
of experience begins to decline, ‘forgetting by doing’ becomes an important factor.
On the other hand, most technologies relevant to airclzainge are still far from
reaching maturity. One fortuitous result is that leagréurves used in this field may be
somewhat more accurate than learning curves used tobgesost reductions in more
mature technologies. To take advantage of this situédicus has remained during the
project on technologies that continued to grow. Aeopossible limitation is that
improvements in quality, such as in the automotive inglusain offset the expected
reductions in cost (examples given in McDonald & S¢brditolzer 2001and Colpier &
Cornland 2002). Coulomb & Neuhoff (2005) suggest ithdélhe case of wind power,
turbine size could also have an important effect amiag rates and that wind turbines
have suffered from recent diseconomies of scale, atdaabe production side. Once
they converge to an optimal size, one could expestéf cost reductions” since simple
cost reductions would then be the main focus. Such dearopstructural change can
lead to a dynamically shifting learning rate, somegtihmat exponentially increasing
weights would help to rectify.

To better understand the usefulness and robustnessex{pgbeence curve paradigm,
this paper measures the effectiveness a posteriori sitrtipge SFLC to forecast future
costs for a range of technologies. A number of diffeneethods to calculate the
experience curve parameters are compared including®yd_east Squares (OLS), the
standard method used for experience curve calculaimh$Veighted Least Squares
(WLS) with exponentially higher weightings goingrtmre recent information. This
assumes that the most recent data offers a better reptement how a technology will
continue to learn than older data. The Robust L&gsares (RLS) method, that weights
the data according to the deviation from the linbeast fit, was also utilised with the
aim of reducing the effect of outliers. This puts lesgtteon sudden changes in market
conditions or various sources of data error that coalge strong temporary
fluctuations in price.

In all, the fundamental concept of this research pe@milar to that of Everett and
Farghal (1994, 1997a and 1997b) in their use ohlegrcurves to predict total time or
cost required for future cycles of a repetitive cardton activity. The emphasis and
methods used, however, are quite different. In pdaticheir work focussed on an area
that should in theory be far easier to forecast sime@tojects were generally over a
shorter time period, remained more or less identicablahdot cross regional
boundaries. Furthermore they focused on the use of Bingdechniques that reduced
the importance of the more recent data and look#tkagrror of total costs required to
reach the ‘final’ cumulative output. Since in thigppawe are dealing with technologies
that are changing over 10 or 20 years or longer avigheater likelihood of fundamental
shifts in the learning curve, we have considered weggtiata in such a way that recent
data has a stronger influence over forecasts. Furthermsioce there is generally no
pre-decided limit to the total output of a technglotlis paper also makes forecasts for
a set number of doublings of cumulative capacity wigcsp effort to capture the



uncertainty distributions of the forecasts made. Desipéetrong grounding of this
paper in actual historical statistics there still remaotgpe for sample selection bias
since all of the technologies selected have certagaghed some level of success.
Nevertheless by evaluating the effectiveness of thrailggcurve and measuring the
uncertainties surrounding its forecasts, the papenéstalespond in part to the
acknowledged limitations of the experience curve mdsieth limitations include
comments by Wene (IEA 2000) where he highlighted fiflethat expected benefits
will not materialise,” and of Grubler et al. (199810% who warned of the dangers of
“best guess’ parameterisation”.

The following section provides a literature revieWaarning curves and their ability to
predict future learning investments. The forecast misdélen discussed as are the
assumptions made and the data sources used. This is foligviled results of the
model and a discussion on the ability for technologyrieg investments to be
predicted through learning curve methods.

2. Literature review of learning curves

In the overview of the 1998 Energy Economics spesfale on ‘The Optimal Timing of
Climate Abatement’, Carraro and Hourcade pointedlminotable influence that
learning appeared to have on the calculation ofesb@nt costs. According to their
survey of Energy-Economics-Environment (E3) models, iegrimtroduced around a
50% drop in abatements costs. The IEA publication deigmce Curves for Energy
Technology Policy’ (IEA 2000) presents a broad ovemof the work covered up to
the end of the 1990’s and also presents the findings tine 1999 IEA workshop on
this subject. Their recommendation was that experiefieets should be “explicitly
considered in exploring scenarios to reduce CO2 emssiot calculating the cost of
reaching emissions targets” (IEA 2000, p114).

Empirical evidence for learning curves was first discedan 1925 at the Wright-
Patterson Air Force Base where it was discoveredplbtting an aeroplane’s
manufacturing input against cumulative number of pldngs on a log-log scale
produced a linear result. The benefits in efficiefuynd were proclaimed by Wright as
being the result of “Learning by Doing” in his 193@htication. This “learning curve”
was calculated for a manufacturing input such as tinshasn in Equation (1), where
N;was the labour requirements per unit output for peftipcK; the cumulative output in
units by the end of the period. In the equationsahe constant and ‘b’ the learning
coefficient as determined by regression analysis:

logN, =a-Dblog X, 1)

The next major advancement in learning curves was maéderbw in his 1962
publication (Arrow 1962, IEA 2000). He generalighd learning concept and put
forward the idea that technical learning was a redfdixperience gained through
engaging in the activity itself. Undertaking an aity, Arrow suggested, leads to a
situation where “favourable responses are selectediowet (Arrow 1962, p156).

During the 1960’s the Boston Consulting Group (BCQE)arised the learning curve.
They further developed the theory and publishednalrau of articles on the subject



(BCG 1968 in IEA 2000, Henderson 1973a, HendersoBld)9They also coined the
term “experience curve”, as distinct from “learningvairwhich related to ‘unit total
costs’ as a function of ‘cumulative output’, rathemthanit inputs’ as a function of
‘cumulative output’ as shown in Equation (2). In thigiation the cost per unit {C
depends on the cumulative number of units produceéand the constant ‘a’ and
coefficient ‘b’ that that can be found using regressanalysis. This can be rewritten
into a simpler form, as shown by Equations (3) to Equd#d. The Progress Ratio (PR)
defined in Equation (5) and Equation (6) is a wideded ratio of final to initial costs
associated with a doubling of cumulative output. Tearhing Rate (LR) represents the
proportional cost savings made for a doubling of cunwdaiutput as presented in
Equation (7).

logC, = a-blog X, 2)
C, =constiX ™ 3)
X -b

Ct = Co[x—tj

° (4)
The so called Progress Ratio (PR) and the Learning (RR) are defined as follows:

-b

PR:&:(Zxo] | (5)
CO XO

PR=2" | (6)
LR=1-PK, 7)

Despite a strong preference for the use of cost fdathis type of analysis, lack of such
information often leads to replacing cost with praata which is more readily available
(IEA 2000). This leads to an equivalent formulatampresented in Equation (8) and
Equation (9).

logP, =a—Dblog X, ®)

ofz)
°7 )

Where b is the learning coefficient aRglandX, are the price and cumulative output
during the initial period.

The use of price data reduces the quality of theiecal analysis as prices can vary due
to market influences. As proposed by BCG, redustiorcost that are made early in the
product’s development are often not passed onetdtiyer, as shown in Figure 1. This
situation can remain until there is a ‘shake-upthef industry due to increased
competition (BCG 1968 in IEA 2000). Furthermoreeda the discovery that
knowledge diffusion could have a serious impaclonig-term cost advantages
(Lieberman 1987), learning curves began to losedav
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Figure 1 Price development of a new product as forulated by BCG (Source IEA
2000)

Figure 2 presents learning rates for a numberemtetity producing technologies
where electricity costs are shown in 1990 US dsler kWh and are graphed against
cumulative production in TWh. The graphic showslthes of best fit on a log-log scale
with associated progress ratios included. For éadimology the linear slope shown is
equal to the ‘-b’ as described in Equation (2).sTéan also be transferred into a
Learning Rate (LR) by using Equation (7). For egamn this study, photovoltaics has
a PR of 65% (the very upper limit of published fimgk) which means that if there was
a doubling of cumulative photovoltaic electricityoduction then the price according to
the learning curve theory should be reduced to 66&e present value. Alternatively
one could say that for every doubling of cumulagveduction, there is a cost reduction
equal to the Learning Rate (LR) which is 1-PR, 563
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Figure 2 Progress Ratios of Electric Technologies U, 1980-1995 (Source IEA
2000)

In Figure 3, the shaded area represents the cumautaists needed to reach the break-
even point. What is important to note here is tdmy the area that lies above the



baseline alternative is considered a learning imvest (in the case of renewable
electricity the baseline assumption is generallystered to be traditional fossil fuel
power stations, hence making a further assumpiiahstuch a value for cost can be
forecasted). In situations where niche marketstéfor example solar PV electricity
for remote areas or hand held devices), the redjlé@ning investments is further
reduced as shown by the unshaded step-like art@ ofiagram. Unfortunately, even a
small error of plus or minus .02 in the learninggrean lead to very large errors in the
final Break-even point which can limit the usefidsef learning curves in making
reliable forecasts of learning investments.
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Figure 3 Cumulative learning investment requiremets with different value niche
markets (Schaeffer 2004 p18).

Not only has the standard SFLC been used, but d&euaif more complex versions
have also been developed. One common example &t which combines both
‘learning-by-doing’ and ‘leaning-by-searching’ thratates cost reductions to both

cumulative experience and cumulative R&D as deedrib Equation (10).

-b -c
o) 4

X, K, (10)
This presupposes that spending on R&D can alsodwljgve cost reductions, through
all stages of a product’s life cycle, and thus lsacome an important factor when
forecasting the effects of, say, increasing R&Dnslieg. There are, however, serious
limitations on publicly available data about prev&&D expenditure and so it can be
very difficult to make an accurate representatibthis factor (Junginger 2005). Lack of
such data explains perhaps why the SFLC is oftemptéferred choice in technology
modelling though it has also been suggested by satiors that R&D has only a
minor and often statistically insignificant effewt costs when used with historical data.
Papineau (2006) for example found the results oDR@&isappointing” for wind and
solar production. She suggested that this may berdpart to the relative benefits of
other forms of government intervention “such agdlisubsidisation” that lead to
increased cumulative production, rather than ire@san R&D. Furthermore the
relationship between R&D investment and cost radostinvolve relatively long



delays, which may go part way to explaining thd latstatistical evidence for the
benefits of R&D investments. Rubin et al. (2004pahote that “cumulative production
or capacity can be considered a surrogate for éam@imulated knowledge gained from
many different activities whose individual contrilmns cannot be readily discerned or
modelled”. One explanation for some of the difftguh arriving at accurate results for
the 2FLC is a “virtual cycle’ or positive feedbatdop between R&D, market growth
and price reduction which stimulated its developth@W~anatabe 1999 in Barreto &
Kypreos 2004, p616). Here the authors concluded‘seand models for the role of
R&D in the energy innovation system are not yetlabée” (Barreto & Kypreos 2004,
p616).

When looking at learning in the wider environmestagll as in firm specific situations,
an important role is played by technology spillog#ects. Here the learning
mechanism is associated not just with learning sifigle technology but instead the
entire cluster of related technologies. Learninggahat incorporate spillovers within
clusters of technologies have also been calcuktddncluded in energy technology
models (Gritsevski & Nakicenovic 2000). To whatexktclustering technologies
together can improve forecasts within the learmingye paradigm remains unclear due
to added uncertainties that comes with the inctusioother factors.

The question of floor-costs has also been raisddeéorts to calculate their value with
respect to minimum material costs for specific texdbgies have been carried out
(Zweibel 1999, Neuhoff 2005). Zweibel (1999) looksdong term goals for the solar
market and concluded that costs of 1/3 USD/Wp cbeldeached, thus making it a
financially viable alternative to fossil fuel eldctty despite the existence of the floor
costs calculated. However as these calculationbased on engineers perceptions of
how a technology will develop, they may not be dbléake into account important
advancements in the core materials, technologiesetinods that engineering
assessments are based on. According to Schaedfgd)(2engineering studies have
always been far too optimistic in assessing futass”. He notes that although some of
the predictions with learning curves were “jusbad”, with a longer history of
statistics, the match of experience curves basgégirons with actual realisations can
be pretty good” (2004 p8). As can be seen from & abheither method used to predict
future costs were very accurate and this was ihduag to an assumed continuous
growth rate of the most recent years statisticeigtones as high as 50%) that did not
materialise. Nevertheless, Schaeffer suggestedhbagxperience curve projections
were generally more accurate than the optimistigrezering predictions found in the
literature.



Table 1 Comparison of engineering versus learning cue/estimates to actual costs.
Figure from Schaeffer (2004 p8).

Bottom-up | Year of Years Year of Bottom-up | Experience | Actual

Study study statistics projection | cost Curve cost | average
projection | projection selling
(5 W ($/Wp) price

(3 Wp)

JBLB86-31 1978 1976-1977 1086 1,63 0.86 11,94

farget

JBL8&-31 1985 1076-1984 1088 2,17 6.35 9.12

Cz

JBLE8G-31 1983 1076-1984 1002 1,02 280 7,70

Dendretic

EPRI 1986 | 1986 1976-1985 2000 1,50 0.79 5.05

MUSIC 1995 1676-1995 2000 0o 4.07 4.05

FM, 1996

Ongoing research has endeavoured to search eyegrdat the causes and agents of
learning, far beyond the simple experience cureesnaonly found in the literature and
many of the energy or E3 models. Generally thelt®siithese more complex models
can allow for a greater understanding of varioskiéal factors relevant to the
technology being tested (Nemet 2005, Coulomb & NE2005, Mishina 1999).
Nevertheless models based on technical factorersafimitation that experience curve
models do not; they rely on intimate knowledgeh&f mechanisms leading to cost
reductions. Although this makes perfect senserigef explaining past cost (or price)
trends it may not be as valuable when trying tedast future costs where new
challenges may require unforeseen mechanismsahatat be endogenised into a
technical factor model (as suggested by Coulombefiidff 2005). Furthermore such
models would be difficult if not impossible to inde in many E3 models due to their
complexity and the lack of the required data witmost models.

The heterogeneity of these and many other aspétiie onovation process is a
reminder of the arbitrary nature of the learningvewparadigm. The unexplainable or
unforeseen leaps and periods of stagnation orimietion visible in many learning
curves studied only serve to remind us of the prega reliance on learning curves
found in many E3 models. This is true not onlydesessing the costs associated with
new technologies but also for forecasting the cass®ciated with existing technologies
such as the requirement for SOx and NOx scrubbersal plants. This returns us once
again to what has been asserted by various autsdhe largest limitation to the use of
experience curves: the need for more accurateatiatahe inherent uncertainty
associated with the learning model itself (for amste Papineau 2004, IEA 2000). One
approach to deal with this problem is to “incorgerstochastic learning curve
uncertainty” directly into the model (Papineau 200%0), potentially reducing the
dangers of using the learning curve method fordaséng. This research project aims
to support the inclusion of stochastic modellindgeairning by providing statistical data
on the effectiveness of learning curves to foreftgatre technology costs.



3. A Statistical model for evaluating learning curve cet forecasting

Regression analysis has been used to test 3 hgesthelating to the use of experience
curves for forecasting technology costs (please ti@t prices have been used as a
proxy for costs throughout). These are:

H1: Experience curves can be used as an unbiadadater of future technology costs
H2: The ability to forecast technology costs im@®®@s more data points are added

H3: Recent data is more important than older dataférecasting the cost of a specific
technology

Hypothesis 1 was tested by considering the shagieeddrror distribution both in terms
of mean deviation and skewness.

Hypothesis 2 was tested by comparing the distiaoubf the forecast errors using only
the first half of the forecast data set to thahgshe second half.

Hypothesis 3 was tested using the Weighted Leasar8q (WLS) regression function
from Matlab and using exponentially increasing va&sgoy 10% to 20% per year. Here
an annual increase in the weighting factor of "efqent has been used and a number of
different values of this weighting factor ‘w’ tedtavith the results for 10% and 20%
presented here. Schaeffer (2004) proposed usirghtigg factors for the calculation of
learning curves, however rather than weighting datrding to the uncertainty in the
cost/price estimate of each data point as he stegjesxponential weightings have been
used to describe the (potential) reduced importahoéder data as compared to newer
data in explaining future costs of a given techggldrhere is also an important

problem relating to data quality at the early ssagieproduction, in particular due to the
pricing strategies of companies. Forward sellingristance in the hope of creating a
market and reaching desired cost levels or monsiobehaviour aiming to cream
profits and recover previous investments are 2 suemples. Although we have not
endeavoured to account for such uncertaintiesisnpdgmper, the development of criteria
and weighting factors specific to these kind offjfeans could lead to more accurate
results. Nevertheless by considering increasingtigs for newer data we are able to
test the importance of earlier information as coragdo more recent information for
making long term forecasts.

The steps of this model executed in Matlab carubensarised by the flowchart in

Figure 4. The regression analysis of step 1 has bedertaken using logarithmic base 2
of both price and cumulative output. In step 2ngghe resulting learning curve,
forecasts were made for one to six doublings ofudative learning. The error of the
forecast is calculated both in logarithmic ternswell as calculating the percentage
error in monetary units. Finally, each forecast been compared to the actual
historical data from which forecast error histogsaeme drawn. When comparing the
forecasts to the historical data, simple lineagrpblation has been used between future
data points. Error has been calculated as a deniittm the forecasted value, such that
a positive value indicates that the forecast waddw, while a negative value indicates
that the forecast was too high. Finally anothea gatint is added to the data series and
forecasts are updated.
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Figure 4 Flowchart of the statistical model developeth Matlab

0 Acquire Data Points
Starting with first 2 data points

1 Regression Analysis

Using all data to date

2 Generate Forecasts

Based on the regression line of best fit

3 Error Calculations

Compare forecasts to actual historical data

4 Add Data Point

Re-evaluate the regression and forecasts

It is important to note here that the ‘future’ ensidered not in terms of time units, but
in terms of extra units of cumulative experiencetpot) gained. Hence predictions are
made for a certain cumulative experience withowvking in which year it will be
reached. Furthermore, for the reasons describeceadrad also stated by Junginger et
al. (2005) and many others, price data has beahassa proxy for cost data and only
the simplest of the experience curve methods, Fi€CShas been used to reduce the
issue of data availability.

4. Data Sources

As wide a variety as possible of technologies andgsses relevant to large scale
renewable energies and falling more or less equritythe three categories, namely
‘Big plants’, ‘Modules’ and ‘Continuous Operatiomave been collected. The data came
from a variety of sources with a number of the d&ts being made available from
previous studies that took place at IASA (McDon&l&chrattenholzer 2001). In
general the raw data provided (in real monetarysiimias used without any
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conversions, filtering or smoothing. One except®the Combined Cycle Gas Turbine
(CCGT) where data provided by Colpier was alreamwerted from ‘costs per installed
capacity’ to ‘costs per electricity produced’ (200Phe focus has been on technologies
that remained in their growth stages in order wicdhproblems associated with
‘forgetting by not doing’ and where data for forsttag at least 3 doublings of
technologies was available, the exception beindganevhere less data was available as
shown in Table 2.

The result of using this selecting criteria hasnbimat all of the technologies by their
very inclusion are technologies that have hadastlsome degree of success. This
selection bias means that the results may notgresentative of all technologies.
Furthermore, due to limited access to data andelextion criterion, the set of 12
technologies which combined allow for up to 130wtbal short term forecasts (1
doubling of cumulative experience) can not be agslita be representative of all
technologies but does offer a number of highlywahe initial findings with regards to
energy technology forecasting and modelling.

Table 2 Technology details and sources included in trsetudy

Initial = Hnal = Deta  Forecasted
Technology type Lhits Year = Year Points doublings Source
QOGT Hectricity Uso@OKAh-Twh - 1981 1997 15 36 QleasonColpier 2002
Bigplans  Niclear Instalation SHOW-GV 1975 | 198 = 19 20 fﬁf‘msad (O inMES
SOGT Instalation SHOW-GV | 196 1981 1 89 IASAV\EC (1998), p50
Solar Production SWp-MAp 1975 2008 2 96 Mayoook (2006)
SonyLaser Diode Production | yen-1o00uits | 1982 1994 13 133 ,'\J/E;ngf Spering (159)in
e Ford Model-T Shipments SO Mg gz 73 Aoreyatiare(or) i
Average DramMBit Production| — $Muit- Mt 1974 | 1998 % 206  Mdor&Awsd (7779
EBhanol Production Ller’ey) 190 2004 % 53 CGoderberg et . (2004)
Acrylonitrile Production H66)urit - Lrits 1959 1972 14 30 Liebenren (1984)
ﬁ%‘s PolyethyleneLDProduction | Se9urit-uis =~ 1968 1972 15 35 Licbemen(198)
Polyethylene-HD Production HeQuit-uits | 198 | 1972 15 39 Liebermen(1984)
Polyester Fbers Production HEBnit-urits | 1960 | 1972 13 44 Lieberman (1984)

12



5. Results

As well as the aggregated results presented ifirthkesubsection, 3 individual case
studies of particular relevance to energy and reévenergy technologies will

initially be presented in detail. Each case stumiypes from one of the three technology
groups as set out by Christiansson (1995), nangelytinuous operation’, ‘modules’
and ‘big plants’.

Continuous operation case study — Brazilian Ethanol

Although Brazilian ethanol production may not be thost general example of a
“continuous operation” technology, it does provadealuable case study for evaluating
the effectiveness of learning by doing as a medmarfior a technology to reach cost
effectiveness. It may also be considered as ofteedkew large scale renewable energy
technologies that has been able to reach costigtfeess. For each technology the
output graphics use the lightest lines to repregentearning curve made with fewer
data points and the darkest lines with the largesof data points. In the case of
Ethanol in Figure 5, it can be seen that the stdgbke learning curve has mostly
increased as experience has been gained. Thevidunai graphics represent the 4
methods modelled, namely OLS, WLS where the wenigjstare exponentially
increasing by 10% and 20% per year and finally RLS.

Figure 5 Log-log representation of learning curveit to Brazilian ethanol data
using various methods

Brazilian Ethanol Brazilian Ethanol
Learning curve {log2) Learning curve {log2)
with OLS with WLS weighting 10%

IS
o

o~

w
o

35

Log of price
Log of price

w

12 13 14 15 18 17 18 12 13 14 15 16 17 18
Log of cumulative production Log of cumulative production
Brazilian Ethanol Brazilian Ethanol

Learning curve (log2) Learning curve (log2)
with WLS weighting 20% with robust least squares

Log of price
Log of price

12 13 14 15 16 17 18 12 13 14 15 16 17 18
Log of cumulative production Log of cumulative production

As one would expect for WLS with exponentially ieasing weightings, the later
predictions represented by the darker lines are tablollow more closely the trend of
Ethanol to become cheaper faster than the inikipéeence curve projected. The curve
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for ethanol also shows many of the non-linear dttaretics as has been demonstrated
in the literature such as the “deviations from logarity at the beginning and tail of the
curve” (Antes, Yeh & Berkenpas 2005; p7), howewes effect was not generally
systematic across technologies. Despite thesetdmaat can be seen when looking at
the non-linear graphical representation (usingdaieshformat rather than log-log format
as shown in Figure 6), that even during this elapexiod very significant cost

reductions took place.

Figure 6 Non-linear representation of learning curvdit to Brazilian ethanol data

using OLS and Weighted LS methods
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Finally, in the case for Ethanol an excellent opyaity exists for the consideration of
the relative effectiveness of these methods tarchete the learning investment
required to reach the price level of an incumbealhhology. Here an approximate price
level of the non-renewable energy that it replapesol has been used as the incumbent
price level. The “learning investments” required tloe technology to reach break-even
has been calculated by integrating the extra ¢batdie between the horizontal
incumbent technology baseline and the actual dataegrice paid to ethanol producers
and forecasts thereof as shown in Figure 6. Tautatke the entire forecasted learning
investment required, historical values are usezhtoulate the investments to date and
then the difference between the learning curveciseand the baseline has been
integrated to determine future learning investmeadsiired to reach break-even.
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Figure 7 Predicted learning investments at each perib Please note that the
reference line represents observed total learning irestments.
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In the case of Ethanol, as shown in Figure 7, aBo¥é of the total investment was
required before the experience curve forecast Wista provide a response that was
out by less than a factor of 10. The figure shdves, tin at least some cases, the use of a
WLS can help track technologies undergoing a graghitt in learning rates.
Unfortunately, as shown in the final part of theulés, it was found that on average the
use of WLS increased the distribution of errorauftoreduced their bias when
aggregated over all technologies and individuadasts. This suggests that under
certain circumstances WLS may in fact be preferabts the standard OLS method
however not in all cases.

Finally, by comparing the projections at each pfar 1 (light) to 6 (dark) doublings

of cumulative capacity, a visual aid has been amer showing whether or not
forecasts for individual technologies improved ggegience was gained. As shown in
Figure 8, for Brazilian Ethanol the error increagsdorecasts were made for a greater
number of doublings. This is not surprising sirtde generally easier to make
projections in the shorter term than in the lortgem. What was surprising however
was that the general trend in the absolutefleglue of the error for each level of
forecast also increased as experience was gainsdl$o important to note that errors
calculated in logarithmic terms leads to a veryipalar understanding. For example if
you take an error of +1 in lgdormat, it would demonstrate that the actual pwes out
by a factor of 21, in other words double (or 10086\&) the forecasted value. An error
of -1 on the other hand represents being out lag®i of 2-1, which is only half (or
50% below) the forecasted value. Furthermore apitome down forecast errors need
to come down proportionally in order to maintaimstant logarithmic error.
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Figure 8 Forecast error (og,) as a function of (og,) cumulative production. Note
that the robust least squares method requires 3 data pais to make the first line of

best fit reducing the number of forecasts possible
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Big plants case study — CCGT

The data set for CCGT originally came from a redicst of over 200 published
contract costs in trade journals for new CCGT @d@lpier & Cornland 2002). The
data was then converted from cost per MW of instiedlapacity to cost per kWh of
produced electricity holding gas costs constang Miain reason for this conversion was
that CCGT cost reductions were often traded offregjanore expensive quality and
efficiency improvements. CCGT operators are gehenatlerested in the reduction of
the cost of producing electricity and not simplg tieduction of installation costs
making the former a more relevant dependant vaiabl
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Figure 9 Technology price (solid) and Annual Produdbn Growth (dashed) for
CCGT energy production.
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Figure 10 Experience curves for CCGT using cost of ergy production with
constant gas costs versus cumulative energy produced.
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From Figure 10 we see a case where the use of @k §dnerated a wider range of
learning curve results which in the end seemeat@ Iproved less effective than the
standard OLS method. Furthermore, as shown in Eijirvhere we have assumed a
target price of the 1997 value of 3.37 USc(1990¥kWwas found that the forecasted
cumulative learning investment cost is very ungerteéhen using learning curve
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analysis and here too was off by a factor of 1More during some periods with the
worst forecasts being made with WLS.

Figure 11 Predicted learning investments at each peaxil. The reference line
represent the total learning investments to reach 199rice levels.
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Figure 12 Forecast error (og,) as a function of (og,) cumulative production.
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Looking at the forecast error in Figure 12 and Feégl3 it can be seen that the 6
forecasts that were able to be made for 2 doublfigsmulative production (in the
case of CCGT, about 8 or 9 years into the futurdicated errors in the range of 18%
under to 10% over the actual values recorded whédeotal cost reductions for almost 4
doublings of cumulative energy production went frér8 to 3.37 c/kWh or about 25%
of the final price over 16 years.
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Figure 13 Forecast error ratio calculated as a part brecorded value as a function
of (log,) cumulative production
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Modules case study — Solar

Solar PV provides a good example of the use andedarof using experience curves to
forecast future costs of an energy technologg & good example since solar PV
modules are generally accessed by an internatinagdet allowing for worldwide
appraisal of the technology. Prices have also hedidocumented and 2 groups in
particular have developed long time scale data(ddycock’s World PV Market
Report and the Strategies Unlimited Data sets).
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Figure 14 Technology price (solid) and Annual Prodution Growth (dashed) for
Solar Module production.
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It also shows the typical random jumps and shiftearning rate that could be expected
from any technology having undergone such an iser@gacumulative learning.
Nevertheless, this technology shows a reasonabbptnexperience curve where price

reductions have occurred somewhat linearly to ases in cumulative production when
mapped on a log-log scale.
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Figure 15 Log-log representation of learning curveif to solar PV module price
data using various methods. Note that solar has not yetached large scale
competitivity, the price level used as a baseline o$MWp has been arbitrarily
chosen. Such a price level would greatly increasedmumber of competitive
applications if not allow PV to become completely & effective.
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Figure 16 and Figure 15 together present an irttegeesult of the use of exponentially
increasing weights. Since the experience curveesieguces over the period of the data
set, the WLS method was able to track the chantgaming rate making the forecasts
for total learning investments more accurately tthenstandard OLS method.
Unfortunately it remained difficult or impossible know from the limited data

available whether the shift to a lower learningnatis indeed a permanent shift or
merely a period of stagnation. Using the simpleeeigmce curve based model described
in this research, it has been possible to makatsttal evaluation of how effective
different methods have been in the past over aerahtechnologies to help advise
which method tends to work best on average. Thesdts are presented in the
following sub-section on aggregated results.
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Figure 16 Predicted learning investments at each pearil. Please note that the
reference line represents total investments by 2003.
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Figure 17 Forecast error (og,) as a function of (og,) cumulative production.
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Aggregated results for experience curve forecasts

In this section the various experience curve foatoh and their ability to forecast into
the future are compared by consolidating the fateeaors for each number of
doublings into the future all onto a single grapdscshown in Figure 18.

Figure 18 Histogram of the log of the errors over altechnologies and for the
forecast at every period of each technology where aNable historical data exists
for 1 doubling of cumulative experience
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This first example offers the most reliable infotraa with the largest number of data
points available allowing for what turns out todeeasonably smooth distribution.
Unfortunately, a single doubling of experience nefé typically to somewhere in the
region of 2 to 6 years depending on the growth ehtae technology in question. It also
depended on the stage that the technology wasade $he time taken to generate a
doubling of experience increases as the stock miutative experience also increases,
even when the growth rate of a technology remamnstant. What the graphical
representation of the data does show is that tteedst error in log format is a very
good first order approximation with the distributibeing both symmetrical and
unbiased with a mean value that is statisticallydifberent from zero for both the OLS
and WLS methods. It is also interesting to note tihe OLS method offered the best
results in terms of mean deviation of forecastregiral as such is the least biased
estimator of future costs in the short term while overall error in terms of standard
deviation was slightly reduced when using the WL&hud.

Making forecasts further into the future, Figurest®ws that the experience curve
continues to provide reasonably symmetric and weloiaesults even after 3 doublings
of cumulative experience, which generally took bew 6 and 12 years. Here the OLS
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method proves to be the most accurate in termaridince but worse than the others in
terms of bias.

Figure 19 Histogram of the log of the errors for 3 dobling of cumulative
experience
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Now looking further ahead to Figure 20 where thaee6 doublings of cumulative
experience it can be seen that the reduced datéspiailable and the reduced number
of technologies that contribute to the data saticed the quality and reliability of the
results. As shown in Table 2, only 4 technologesain that contributed data for 6
doublings of experience, SCGT, Solar, DRAMs anceL&xodes. The results are
nevertheless quite promising, since with a prograss of, say, 20% the reduction
(logy) in costs would be la¢0.8°) or approximately -1.93. Hence a mean error of
prediction (also log of about 0.07 is very low compared to the togaluctions that
have occurred supporting strongly the use of erpeg curve to attain at worst an
unbiased and symmetric estimator of future cosggiwe found that OLS gives the
most accurate forecasts in terms of standard dewiaf the error, but a higher mean
deviation than WLS with 10% and 20% weighting fastd his would suggest that
WLS may in fact be a suitable method for long-tembiased estimator calculations of
future costs along with the standard OLS method.
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Figure 20 Histogram of the log of the errors for 6 dobling of cumulative
experience

Error Histogram (log) with OLS Error Histogram (log) with WLS
for 6 doublings of experience for 10% weighting and 6 doublings of exp.
mean = -0.068221 std. dev.= 1.0578 mean = -0.030405 std. dev.= 1.1439
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Although it has been shown that experience cureeg@lly give unbiased and
reasonably symmetric forecast of future costsag’terms, the same can not be said
for the actual cost forecasted. Since the resutsymmetric and unbiased in log
format and due to the convexity of the logarithioicction, it can be expected that
results returned to monetary values will be asymmand biased. Here the
distributions become more biased towards positaltees and asymmetric as the
forecasts goes further into the future indicatimgt tmean forecasts using the SFLC
were lower than actual mean observed cost levels.
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Figure 21 Histogram of error ratios over all technologies for 1 doubling of
cumulative experience
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Figure 22 Histogram of error ratios over all technologies for 3 doubling of
cumulative experience
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Figure 23 Histogram of error ratios over all technologies for 6 doubling of
cumulative experience

Error Histogram Ratio with OLS Error Histogram Ratio with WLS
for 6 doublings of experience for 10% weighting and 6 doublings of exp.
mean = 0.2007 std. dev.= 0.6464 mean = 0.25008 std. dev.= 0.71579
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To test the second hypothesis, the error distolgtof the forecasts have been
compared using the earlier data only against @&taagd more complete set of data. The
mean error from observed values was then comparte tvariance of the error and to
determine any bias. The results showed that hawiorg information produced better
results in terms of bias with almost all forecdatggregated over all technologies). On
the other hand, the standard deviation of the émaeased by about 50% as can be
seen when comparing the results in Figure 24. Tre=sdts suggest that the experience
curve does become more effective in terms of bamgnbiased estimator for
forecasting a technology’s cost however has diltfycun standing up to the smaller
margin for uncertainty (in absolute terms) that esmwith the error measure as
calculated in this research (in terms of log défeges). Unfortunately these findings are
particularly sensitive to the data sets used antiesoesults for this hypothesis remain
somewhat inconclusive.

Figure 24 Comparing forecasts made with less and moraformation

Error Histogram (log) low info with OLS Error Histogram (log) high info with OLS
for 3 doublings of experience for 3 doublings of experience
mean = -0.23008 std. dev.= 0.40739 mean = -0.030438 std. dev.= 0.67802
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6. Discussion and Conclusion

Grubler, Nakicenovic and Nordhaus (2002) raiseginestion of whether “we have
sufficient scientific knowledge about the sourced management of innovation to
properly inform the policymaking process that ati$gechnology-dependant domains
such as energy” to which they believe the answ& g yet”. Perhaps due to this
insufficiency and the lack of a clearly superiouhstic or innovation theory for
forecasting technology costs, and despite the rshastcomings of the learning curve
theory, experience curves continue to be used widdlis current research does not try
and improve the underlying theory of experiencevesy but instead tests empirically
using historical data the validity of learning cesvfor forecasting and provide a first
order approximation of the uncertainties that efxispotential growth technologies
such as renewable energies. As a result of thieicupiece of research, evidence
supporting the following conclusions has been found

Hypothesis 1, that experience curves can be usad asbiased estimator of future
technology prices was found to be TRUE with respethe available data using
logarithmic costs. This suggests that a simple gapee curve using price data alone
can be an effective estimator of future pricesgdéahnologies during their growth
phases in a competitive international market. Theneains the caveat that due to the
convexity of the logarithmic function and the urdsd results found when using the
log-log format, experience curves viewed in lineams tend on average to
underestimate future costs.

Hypothesis 2, that the ability to forecast techggloosts “improves” as more data
points are added was in one sense found to be TiIRWat the forecasts with more
data tended to be less biased, though in termaraince it was found to be FALSE as
the variance actually increased with accumulatixgeeence. Perhaps this result occurs
simply because although the actual error of a sl monetary units may decrease
drastically, the error in terms of Ipdifferences as well as required injections of &ind
to further push the technology down the learningyeumay in fact be increasing (for
instance in the case of forward selling at the fiexrel or the provision of subsidies at
the government level). Finally, as can be seemfost technologies, the distance
between data values on the quantity axis getsiciosgcloser together as a technology
matures since every doubling of experience require® and more time. Along with
this added time requirement one would also exgerpossibility of increased
uncertainty. Access to a larger representativebda@would certainly help to bring
more concrete results in particular with respechis hypothesis.

Hypothesis 3, that the use of exponentially indreas/eights when using weighted
least squares allows for improved accuracy of ptexis turned out to be in one sense
TRUE and in one sense FALSE. It was found that allehe technologies tested, the
use of WLS generally increased the variance ofdhecasts as compared to the OLS
method but decreased the mean deviation or ‘bfasieoforecast. This would suggest
that although the standard OLS method is a higtiéctve predictor of future
costs/costs, there may be opportunities for WLBet@ superior method for producing
these experience curves.
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One of the principal difficulties with informing poy makers on how best to bring
about cost reductions of renewable energy techredag to decide how to divide a
limited budget so that it is concentrated enoughriiog about desired cost reductions of
a chosen technology while being broad enough &r @frange of possible technical
solutions in the case that the technologies fikdtgal as winners turn out to be
undesirable or unsuccessful (one only needs t& thfithe public resistance to on shore
wind farms in the UK and elsewhere). As remarkgdene in his IEA publications.
“learning opportunities in the market and learnimgestments are both scarce
resources” suggesting that the concentration aiuregs is key to generating solutions,
whilst on the other hand, the “availability of reveble resources, reliability of the
energy system and the risk of technology failucgune a portfolio of carbon-free
technologies” (IEA 2000, IIASA approach, see, &gtsevski & Nakicenovic 2000). In
this paper the distributions of forecasted techgwlarice errors has been calculated
based on historical data, allowing future portfaksearch to take this information into
account when designing energy technology portfolios

A great deal more work needs to follow in this arearder to increase our
understanding of the evolution of technology costs.example, improving data quality
and increasing the number and scope of technoléesésd using a similar analysis
would help provide more accurate results. It map &le important to consider the
importance of autocorrelation to allow for betterdcasts and simulations of future
technology costs. Data permitting it would be vietgresting to test other formulations
such as the 2FLC or methods that account for tdoggalusters for their ability to
improve forecast quality. Finally, investigatingetbircumstances and criterion where
the use of WLS would be preferred over the stan@rd would also constitute an
interesting area for further research.
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