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Abstract
A time-varying quantile can be �tted to a sequence of observations

by formulating a time series model for the corresponding population
quantile and iteratively applying a suitably modi�ed state space sig-
nal extraction algorithm. It is shown that such time-varying quantiles
satisfy the de�ning property of �xed quantiles in having the appropri-
ate number of observations above and below. Expectiles are similar
to quantiles except that they are de�ned by tail expectations. Like
quantiles, time-varying expectiles can be estimated by a state space
signal extraction algorithm and they satisfy properties that generalize
the moment conditions associated with �xed expectiles. Time-varying
quantiles and expectiles provide information on various aspects of a
time series, such as dispersion and asymmetry, while estimates at the
end of the series provide the basis for forecasting. Because the state
space form can handle irregularly spaced observations, the proposed
algorithms can be easily adapted to provide a viable means of comput-
ing spline-based non-parametric quantile and expectile regressions.
KEYWORDS: Asymmetric least squares; cubic splines; dispersion;

non-parametric regression; quantile regression; signal extraction; state
space smoother.
JEL Classi�cation: C14, C22
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1 Introduction

The movements in a time series may be described by time-varying quantiles.
These may be estimated non-parametrically by �tting a simple moving av-
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erage or a more elaborate kernel. An alternative approach is to formulate
a partial model, the role of which is to focus attention on some particular
feature - here a quantile - so as to provide a (usually nonlinear) weighting
of the observations that will extract that feature by taking account of the
dynamic properties of the series. The model is not intended to be taken as
a full description of the distribution of the observations. Indeed models for
di¤erent features, for example di¤erent quantiles, may not be consistent with
each other.
In an earlier paper, we showed how time-varying quantiles could be �tted

to a sequence of observations by setting up a state space model and itera-
tively applying a suitably modi�ed signal extraction algorithm; see De Rossi
and Harvey (2006). Here we determine the conditions under which a linear
time series model for the quantile will satisfy the de�ning property of �xed
quantiles in having the appropriate number of observations above and below.
Expectiles are similar to quantiles except that they are de�ned by tail ex-

pectations. Newey and Powell (1987) discuss the theory underlying expectiles
and show how they can be applied in a regression context using asymmetric
least squares. Here we show how time-varying expectiles can be estimated
by a state space signal extraction algorithm. This is similar to the algorithm
used for quantiles, but, because the criterion function is everywhere di¤eren-
tiable, estimation is more straightforward and much quicker. We then show
that the conditions needed for a time-varying expectile to generalize the mo-
ment conditions associated with �xed expectiles are similar to those needed
for a time-varying quantile to satisfy the de�ning property of �xed quantiles.
With Gaussian observations the mean is more e¢ cient than the median

and this remains true when they are time-varying. More generally expectiles
are likely to be more e¢ cient than quantiles for many distributions, but this
then raises the question of the interpretation of expectiles. What exactly
do they mean and are they of any practical value? A �xed expectile will
correspond to a particular �xed quantile but this is not necessarily the case
when they are time-varying. Issues of interpretation aside, there is also the
question of robustness: expectiles are more sensitive to outliers. Breckling
and Chambers (1988) try to combine robustness and e¢ ciency by adapting
Huber�s M-estimation method to produce what they callM�quantiles. This
idea can also be extended to a dynamic setting.
Section 2 reviews the ideas underlying �xed quantiles and expectiles. Sec-

tion 3 then describes the signal extraction algorithms for estimating them
when they are time-varying and establishes some basic properties. The use
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of cross-validation to estimate key parameters is considered in section 4.
Section 5 illustrates how time-varying quantiles and expectiles provide infor-
mation on various aspects of a time series, such as dispersion, asymmetry and
kurtosis. Section 6 notes that estimates at the end of the series are the basis
for forecasting. Just as time-varying quantiles provide a di¤erent approach
to the one adopted by Engle and Manganelli (2004) for assessing value at
risk, so time-varying expectiles o¤er an alternative to the methods proposed
by Granger and Sin (2000).
The �nal part of the paper is concerned with non-parametric estimation

of regression models using splines. It has long been known that cubic splines
can be �tted by signal extraction procedures because the state space form can
handle irregularly spaced observations from a continuous time model; see, for
example, Wahba (1978) and Kohn, Ansley and Wong (1992). The proposed
algorithms for time-varying quantiles and expectiles are easily adapted so as
to provide a viable means of computing spline-based non-parametric quantile
and expectile regressions. As well as illustrating the technique, we give a
general proof of the equivalence between splines and the continuous time
models underlying our signal extraction procedures for quantiles, expectiles
and M�quantiles.

2 Quantiles and expectiles

Let �(�) - or, when there is no risk of confusion, � - denote the ��th quantile.
The probability that an observation is less than �(�) is � ; where 0 < � < 1:
Given a set of T observations, yt; t = 1; ::; T; (which may be from a cross-
section or a time series), the sample quantile, e�(�); can be obtained by sorting
the observations in ascending order. However, it is also given as the solution
to minimizing

S� =

TX
t=1

�� (yt � �) =
X
yt<�

(� � 1)(yt � �) +
X
yt��

�(yt � �) (1)

with respect to �; where �� (:) is the check function, de�ned for quantiles as

�� (yt � �) = (� � I(yt � � < 0)) (yt � �) (2)
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and I(:) is the indicator function. Di¤erentiating (minus) S� at all points
where this is possible gives X

IQ(yt � �(�));

where

IQ(yt � �t(�)) =

�
� � 1; if yt < �t(�)
� ; if yt > �t(�)

(3)

de�nes the quantile indicator function1 for the more general case where the
quantile may be time-varying. Since �� (:) is not di¤erentiable at zero, the
quantile indicator function is not continuous at 0 and IQ(0) is not deter-
mined.
The sample quantile, e�(�); is such that, if T� is an integer, there are T�

observations below the quantile and T (1��) above. In this case any value ofe� between the T� � th smallest observation and the one immediately above
will make

P
IQ(yt � e�) = 0: If T� is not an integer, e� will coincide with

one observation. This observation is the one for which
P
IQ(yt�e�) changes

sign. These statements need to be modi�ed slightly if several observations
take the same value and coincide with e�: Taking this point on board, a
general de�nition of a sample ��quantile is a point such that the number of
observations smaller, that is yt < e�; is no more than [T� ] while the number
greater is no more than [T (1� �)]:
In quantile regression, the quantile, �t(�); corresponding to the t � th

observation is a linear function of explanatory variables, xt; that is �t = x
0
t�.

The quantile regression estimates are obtained by minimizing
P

t �� (yt�x0t�)
with respect to the parameter vector �: Estimates may be computed by linear
programming as described in Koenker (2005).
If it is assumed that the observations are independently drawn from an

asymmetric double exponential distribution,

p(ytj�t) = �(1� �)��1 exp(���1�� (yt � �t)); (4)

where � is a scale parameter, maximising the log-likelihood function is equiv-
alent to minimising the criterion function S� in (1). Thus the model, (4),
de�nes �t as a (population) quantile by the condition that the probability of
a value below is � while the form of the distribution leads to the maximum

1Note that when viewed as a function of x; IQ(x); the derivative of �� (x); is known as
the in�uence function.
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likelihood (ML) estimator satisfying the conditions for a sample quantile,
when � is constant, or a quantile regression estimate. Since quantiles are
�tted separately, there is no notion of an overall model for the whole distri-
bution and assuming the distribution (4) for one quantile is not compatible
with assuming it for another. Setting up this particular parametric model is
simply a convenient device that leads to the appropriate criterion function
for what is essentially a nonparametric estimator.
Just as the idea of the median may be extended to quantiles, so the con-

cept of the mean may be extended to expectiles. The population expectiles,
�(!); are similar to quantiles but they are determined by tail expectations
rather than tail probabilities. For a given value of ! the sample expectile,e�(!); is obtained by minimizing a function of the form S! with

�!(yt � �(!)) = j! � I(yt � �(!) < 0)j (yt � �(!))2; 0 < ! < 1: (5)

This criterion function is obtained if the observations are assumed to be
independently drawn from an asymmetric normal distribution, that is, that
is

p(ytj�t) =
p
1� ! +

p
!

4�
p
�!(1� !)

exp(���2�!(yt � �t)): (6)

Di¤erentiating S! and dividing by minus two gives

TX
t=1

IE(yt � � (!)) (7)

where

IE(yt � � (!)) = j! � I(yt � �(!) < 0)j (yt � � (!)); t = 1; :::; T: (8)

There is no problem with de�ning IE(0) : since (8) is continuous, IE(0) = 0:
The sample expectile, e�(!); is the value of �(!) that makes (7) equal to zero.
Setting ! = 0:5 gives the mean, that is e�(0:5) = y: For other ! it is necessary
to iterate to �nd e�(!). In a regression context �(!) = x0t� and the estimates
are obtained by asymmetric least squares.
The population expression corresponding to (7) is

(1� !)

�(!)Z
�1

(y � �(!)) dF (y) + !

1Z
�(!)

(y � �(!)) dF (y) ; (9)
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where F (y) is the cdf of y: Setting it to zero gives the expectile. Newey
and Powell (1987, theorem 1) show that a unique solution exists if E(y) =
�(0:5) = � exists. A simple re-arrangement of the equation with e�(!) is set
to e�(�) gives
! =

R �(�)
�1 (y � �(�))dF (y)R �(�)

�1 (y � �(�))dF (y)�
R1
�(�)
(y � �(�))dF (y)

=

hR �(�)
�1 ydF (y)

i
� ��(�)

2
hR �(�)
�1 ydF (y)

i
� �+ (1� 2�)�(�)
(10)

For a Gaussian distribution

! =
(2�)�1=2 exp(��(�)2=2) + ��(�)

(2=�)1=2 exp(��(�)2=2) + (2� � 1)�(�) (11)

where �(�) is the ��quantile fromN(0; 1). Thus for � = 0:01; 0:05; 0:10; 0:25;
0:331 the corresponding values of ! are 0:00146; 0:0124; 0:0344; 0:153 and
0:250: For a uniform distribution we can �nd an expression for �(�) in terms
of � with the result that ! = � 2=(2� 2� 2� +1): Similarly, if the observations
are assumed to come from a double exponential (Laplace) distribution,

! =
(ln(2�)� 1) exp(� jln(2�)j)� �2 ln(2�)

2(ln(2�)� 1) exp(� jln(2�)j) + 2(1� 2�) ln(2�) ; � � 0:5; (12)

see appendix B. For all these distributions, �(!) = �(�) implies ! < � for
� < 0:5 (and ! > � for � > 0:5): Conversely j�(�)j < j�(�)j.
The asymptotic distributions of the sample quantiles and expectiles can

be found in Koenker (2005, p 71-2) and Newey and Powell (1987, theorem
3) respectively. Thus, for a standard Gaussian distribution, the variances
of the limiting distribution for the quantiles at � = 0:5; 0:25; 0:10; 0:05 and
0:01 are 1:57; 1:86; 2:92; 4:47 and 13:94. The corresponding �gures for ex-
pectiles, using the !0s obtained from (11), are 1; 1:29; 2:44; 4:23 and 16:28.
The expectiles are more e¢ cient, except in the extreme tails. For a Laplace
distribution, on the other hand, quantiles are more e¢ cient, while with a
heavy-tailed distribution, such as the Cauchy, the expectiles may not even
have a limiting distibution.
Breckling and Chambers (1988) try to combine robustness and e¢ ciency
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by considering M�quantiles, denoted M(�). Let

IM(yt�M(�)) =

8>><>>:
(� � 1)�(�L);

(1� �)(yt �M(�));
if
if

yt < M(�)� �(�L)
M(�)� �(�L) < yt < M(�)

�(yt �M(�));
��(�U);

if
if

M(�) � yt < M(�) + �(�U)
yt �M(�) + �(�U)

(13)
where �(�L) and �(�U) depend on some measure of scale. The M�quantile
is estimated by solving

P
IM(yt�fM(�)) = 0: Note that, as with expectiles,

it is not generally true that M(�) is the same as the ��quantile.

3 Signal extraction

Amodel-based framework for estimating time-varying quantiles, �t(�); can be
set up by assuming that they are generated by a Gaussian stochastic process
and are connected to the observations through a measurement equation

yt = �t(�) + "t(�); t = 1; :::; T; (14)

where Pr(yt� �t < 0) = Pr("t < 0) = � with 0 < � < 1: The problem is then
one of signal extraction with the model for �t(�) being treated as a transition
equation. By assuming that the serially independent disturbance term, "t;
has an asymmetric double exponential distribution, as in (4), and is inde-
pendent of the disturbances driving �t; we end up choosing the estimated
quantiles so as to minimise

P
t �� (yt � �t) subject to a set of constraints

imposed by the time series model for the quantile. The model for expec-
tiles, yt = �t(!) + "t(!); is similar, except that the distribution of "t(!) is
asymmetric normal.
We will focus attention on three time series models, all of which are able

to produce quantiles and expectiles that change relatively slowly over time
with varying degrees of smoothness.

3.1 Models for evolving quantiles and expectiles

The simplest model for a stationary time-varying quantile is a �rst-order
autoregressive process

�t(�) = (1� �� )�
y
� + ���t�1(�) + �t(�); j�� j < 1; t = 1; :::; T; (15)

7



where �t(�) is normally and independently distributed with mean zero and
variance �2�(�); that is �t(�) � NID(0; �2�(�)); �� is the autoregressive pa-

rameter and �y� is the unconditional mean of �t(�). In what follows the �
appendage will be dropped where there is no ambiguity. The models for
expectiles are of exactly the same form.
The random walk quantile is obtained by setting � = 1 so that

�t = �t�1 + �t; t = 2; :::; T:

The initial value, �1, is assumed to be drawn from a N(0; �) distribution.
Letting � ! 1 gives a di¤use prior; see Durbin and Koopman (2001). A
nonstationary quantile can also be modelled by a local linear trend

�t = �t�1 + �t�1 + �t (16)

�t = �t�1 + �t

where �t is the slope and �t is NID(0; �
2
�). It is well known that in a

Gaussian model setting

V ar

�
�t
�t

�
= �2�

�
1=3 1=2
1=2 1

�
(17)

results in the smoothed estimates being a cubic spline; see the penultimate
section.

3.2 Theory and computation

The theory underlying the signal extraction approach to time-varying quan-
tiles and expectiles can be stated generally for a model in state space form
(SSF). This then leads on to a general algorithm based on the Kalman �lter
and associated smoother (KFS).
The state space model for a univariate time series is:

yt = z0t�t + "t; V ar("t) = ht; t = 1; :::; T (18)

�t = Tt�t�1+�t; V ar(�t) = Qt

where �t is an m� 1 state vector, zt is a non-stochastic m� 1 vector, ht is a
scalar, Tt is an m�m non-stochastic transition matrix and Qt is an m�m
covariance matrix. The speci�cation is completed by assuming that �1 has
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mean a1j0 and covariance matrix P1j0 and that the disturbances "t and �t are
independent of each other and of the initial state. In what follows we will
assume that the initial state and the �0ts are normally distributed. We will
also assume that ht is positive and Qt positive de�nite for all t = 1; :::; T:
The joint density of the observations and the states is, ignoring irrelevant

terms,

J = �
TX
t=1

h�1t �� (yt � z0t�t)�
1

2

TX
t=2

�0tQ
�1
t �t �

1

2
(�1�a1j0)0P�11j0(�1�a1j0);

(19)
where �� (yt � z0t�t) is as in (2) or (5) and ht = � or �2 in a time-invariant
model. For expectiles, di¤erentiating J with respect to each element of �t
gives

@J

@�1
= z1(2=h1)IE(y1 � z01�1)�P�11j0(�1�a1j0) +T

0
2Q

�1
2 (�2�T2�1)

@J

@�t
= zt(2=ht)IE(yt � z0t�t)�Q�1

t (�t�Tt�t�1) +T0t+1Q�1
t+1 (�t+1�Tt+1�t) ;

t=2; : : : ; T � 1;
@J

@�T
= zT (2=hT )IE(yT � z0T�T )�Q�1

T (�T�TT�T�1) : (20)

The smoothed estimates, e�t; satisfy the equations obtained by setting these
derivatives equal to zero. When ! = 0:5, they may be computed e¢ ciently by
the Kalman �lter and associated smoother (KFS) as described in Durbin and
Koopman (2001, pp. 70-73). If all the elements in the state are nonstationary
and given a di¤use prior, that is �1 � N(0; �I); the last term in J disappears.
The treatment of the di¤use prior in the KFS is not trivial but methods exist
for dealing with it; see de Jong (1989) and Koopman (1997). An algorithm
is available as a subroutine in the SsfPack set of programs within Ox; see
Koopman et al (1999).
More generally, for any expectile, adding and subtracting zth�1t z

0
t�t to

the equations in (20) yields

zth
�1
t [z

0
t�t + 2:IE (yt � z0t�t)]� zth�1t z0t�t; t = 1; : : : ; T: (21)

This suggests that we set up an iterative procedure in which the estimate of
the state at the i-th iteration, e�(i)t ; is computed from the KFS applied to a

9



set of synthetic �observations�constructed as

by(i�1)t = z0b�(i�1)t + 2:IE
�
yt � z0tb�(i�1)t

�
: (22)

The iterations are carried out until the b�(i)0t s converge whereupon e�t(!) =
z0te�t: The algorithm can be easily adapted to estimate M�quantiles.
For quantiles, the �rst term in each of the three equations of (20) is given

by zth�1t IQ(yt � z0t�t) and the synthetic observations in the KFS are

by(j�1)t = z0tb�(j�1)t + IQ
�
yt � z0tb�(j�1)t

�
; t = 1; :::; T (23)

However, the possibility of a solution where the estimated quantile passes
through an observation means that the algorithm has to be modi�ed some-
what; see De Rossi and Harvey (2006).
For the random walk quantile, the crucial parameter is the quasi-signal

noise ratio, q�(�) = �2�(�)=�: (The � subscript will be dropped if there is no
ambiguity). For a doubly in�nite sample

e�t = 1� �

1 + �

1X
j=�1

�jjj[e�t+j + IQ(yt+j � e�t+j)]; (24)

where � = (q� + 2)=2 �
�
q2� + 4q�

�1=2
=2; see De Rossi and Harvey (2006,

section 3.3). The corresponding expression for expectiles is similar:

e�t = 1� �

1 + �

1X
j=�1

�jjj[e�t+j + 2IE(yt+j � e�t+j)] (25)

with � de�ned with q� = �2�=�
2 replacing q�: However, because IE (times

two) replaces IQ; it is easy to see that �; and hence q is not a¤ected by
a change in scale. Note that when ! = 0:5 expression (25) reduces to the
classic Wiener-Komogorov formula.

3.3 Properties

Estimates of time-varying quantiles and expectiles obtained from the smooth-
ing equations of the previous sub-section can be shown to satisfy properties
that generalize the de�ning characteristics of �xed quantiles and expectiles.
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De�nition 1 The fundamental property of sample time-varying quantiles is
that the number of observations that are less than the corresponding quantile,
that is yt < e�t(�); is no more than [T� ] while the number greater is no more
than [T (1� �)]:

De�nition 2 The basic moment condition for time-varying expectiles is that
the weighted residuals sum to zero, that is

TX
t=1

j! � I (yt � e�t(!))j :(yt � e�t(!)) = 0 (26)

In order to establish the conditions under which these properties holds,
we �rst prove a preliminary result for any time series model in SSF, (18). It is
assumed that the state has been arranged so that the �rst element represents
the level and that (without loss of generality) the �rst element in zt has been
set to unity. Let the �rst derivative, with respect to �t; of the second term
of J be written J 02 =

PT
t=1At�t; where the A0

ts are m�m matrices.

Lemma 3 For a model in SSF with a di¤use prior on the initial state, a
su¢ cient condition for the �rst element in the vector J 02 to be zero is that the
�rst column of Tt�I consists of zeroes for all t = 2; :::; T .

Proof - Summing the terms in derivatives in question givesX
At�t = (Q

�1
2 T2 �T02Q�1

2 T2)�1

+
T�1X
t=2

(Q�1
t+1Tt+1 �T0t+1Q�1

t+1Tt+1 +T
0
tQ

�1
t �Q�1

t )�t +
�
T0TQ

�1
T �Q�1

T

�
�T(27)

The matrix associated with �1 isA1 = Q
�1
2 T2�T02Q�1

2 T2 = (I�T02)Q�1
2 T2:

A su¢ cient condition for it to have a null �rst row is that I�T02 has a null
�rst row. The matrix associated with �T is (T0T � I)Q�1

T and the condition
for it to have a null �rst row is that T0T �I has a null �rst row. On examining
the matrices, At; t = 2; ::; T � 1; associated with the remaining state vectors
we see that an analogous condition is su¢ cient for each to have a null �rst
row.

Remark 4 Letting some of the states have proper priors does not a¤ect the
result as long as they are uncorrelated with the di¤use prior on the �rst
element in the state.
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Proposition 5 If the condition of the Lemma holds, then, for expectiles, the
generalized moment condition

TX
t=1

j! � I(yt � z0te�t)j (yt � z0te�t)=ht = 0;
holds. If ht is time-invariant, the basic moment condition, (26), is satis�ed.

The result follows because, when the �rst element in the vector
P
At�t

is zero, di¤erentiating the �rst term in J gives

TX
t=1

h�1t IE(yt � z0te�t) = 0:
The results for quantiles require a little more work.

Proposition 6 If ht is time-invariant and the conditions of Lemma 1 hold,
the estimated quantiles satisfy the fundamental property.

Proof - Suppose that the only one point at which the quantile passes
through an observation is at t = s; so e�s = ys: All the derivatives of J;
de�ned in (19) with �� (:) is as in (2), can be set to zero apart from this one.
However, a small increase in e�s gives IQ(ys � e�s) a value of � � 1 while a
small decrease makes it equal to � : Thus to have

IQ(ys � e�s) +X
t6=s

IQ(yt � e�t) = 0
implies

�� �
X
t6=s

IQ(yt � e�t) � 1� � :

When the quantile passes through k observations, a similar argument leads
to

�k� �
X
t=2C

IQ(yt � e�t) � k (1� �) (28)

where C is the set of all points such that e�s = ys. Now suppose that n denotes
the number of observations (strictly) below the corresponding quantile while
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n = (T�n�k) is the number (strictly) above. Then, abbreviating IQ(yt�e�t)
to IQt; X

t=2C

IQt = n (� � 1) + (T � n� k) � = T� � n� k�

Now
P

t=2C IQt � �k� implies n � [�T ] because
P

t=2C IQt would be less
than �k� if n were greater than [�T ]. Similarly,

P
t=2C IQt � k(1 � �)

implies n � [(1� �)T ] because
P

t=2C IQt = n� (1� �)T + k (1� �) would
be greater than k(1� �) if n were to exceed [(1� �)T ].

Proposition 7 If ht is not time-invariant, the estimated quantiles satisfy a
generalization of the fundamental property, which is that

X
t2B

1=ht � �
TX
t=1

1=ht and
X
t2A

1=ht � (1� �)
TX
t=1

1=ht

where t 2 B denotes the set of observations below the corresponding quantile
and t 2 A denotes the set above.

The result follows because corresponding to (28) we have

��
X
t2C

1=ht �
X
t=2C

(1=ht)IQ(yt � z0te�t) � (1� �)
X
t2C

1=ht (29)

The condition of the lemma is obviously satis�ed by the random walk.
It is also satis�ed by the local linear trend with (pd) covariance matrix as
in (17); the SSF for the local linear trend has �t = (�t; �t)

0 and z0 = (1 0):
When a model contains a �xed level, as with the AR(1) process of (15), it
may be put in the state vector and (without any loss in generality) assigned
to the �rst position. Thus if the level is denoted �y; we put �yt = �yt�1 in
the transition equation. If �yt is treated as stochastic, the condition in the
lemma holds.2Finally, in a model with �xed explanatory variables, xt; the

2From the computational point of view including �y in the state may not be e¢ cient.
If it is taken out, it can be estimated by a single closed form equation expressed in terms
of the current estimates of the state. For example with an AR(1) model for expectiles,
with the stationary zero mean component, �t� �y; initiated with mean zero and variance
�2�=(1� �2),

e�y = (1� �)(e�1 + e�T ) + (1� �)2PT�1
t=2 e�t

(T � 2)(1� �)2 + 2(1� �)

The estimator, e�y; has an appealing symmetry.
13



�rst equation in (18) becomes

yt = x
0
t� + z

0
t�t + "t; t = 1; :::; T

and if the coe¢ cient vector is put in the state vector as �t and given a di¤use
prior, the conditions apply to the transition equation for �t as before.
Finally we turn to the conditions under which quantiles and expectiles

match up when they are time-varying.

Proposition 8 If the distribution of y is time invariant when adjusted for
changes in location and scale, and is continuous with �nite mean, the popula-
tion ��quantiles and !�expectiles coincide for ! satisfying (10). Assuming
this to be the case, e�t(!) is an estimator of the e��quantile, �t(e�); where e� is
de�ned as the proportion of observations for which yt < e�t(!); t = 1; :::; T:
When used in this way we will denote the estimator e�t(!) as e�t(e�): Note

that it satis�es the fundamental property of de�nition 1 by construction.
However, it will not, in general, coincide with the time-varying e��quantile
estimated directly since it weights the observations di¤erently. In particular,
it is unlikely to pass through any observations.

3.4 Non-parametric smoothing

When the quantiles or expectiles change over time they may be estimated
non-parametrically. The simplest option is to compute them from a moving
window. More generally estimation at any point in time is carried out by
minimising a local check function, that is

Ph
j=�hK(j=h)�� (yt+j � �t) where

K(:) is a weighting kernel and h is a bandwidth; see Yu and Jones (1998)
and the references therein. Di¤erentiating with respect to �t and setting to
zero de�nes an estimator, b�t; in the same way as was done in section 2. For
quantiles b�t must satisfy

hX
j=�h

K(j=h)IQ(yt+j � b�t) = 0 (30)

with IQ(yt+j�b�t) de�ned appropriately if yt+j = b�t: Adding and subtractingb�t to each of the IQ(yt+j � b�t) terms in the sum leads to

b�t = hX
j=�h

K(j=h)[b�t + IQ(yt+j � b�t)]:
14



It is interesting to compare this with the weighting scheme implied by the
random walk model where K(j=h) is replaced by �jjj so giving an (in�nite)
exponential decay. An integrated random walk implies a kernel with a slower
decline for the weights near the centre; see Harvey and Koopman (2000).
The time series model determines the shape of the kernel while the signal-
noise ratio plays the same role as the bandwidth. Of course, the model-
based approach not only provides the basis for forecasting but it also has the
advantage that it automatically determines a weighting pattern at the end
of the sample that is consistent with the one in the middle.
Given the connection with non-parametric smoothing, the following propo-

sition is relevant later when we go on to discuss setting parameters for ex-
tracting quantiles and expectiles. The only reason it doesn�t apply directly
is that in the model-based formula, b�t+j is used instead of b�t when j is not
zero.

Proposition 9 If the same kernel and bandwidth are used for di¤erent quan-
tiles and expectiles they cannot cross (though they may touch).

The result follows for quantiles on noting that, if b�t does not coincide
with an observation, (30) is

(� � 1)
X
j2B

kj + �
X
j2A

kj = 0

where kj = K(j=h)=
Ph

j=�hK(j=h) � 0 and B(A) denotes the set of k0js; j =
�h; ::; h; such that yt+j is below (above) b�t: The result should now be ap-
parent from inspection though it becomes even clearer if the equation is
re-arranged to give � =

P
j2B kj; if � increases then b�t must increase to (at

least) the observation immediately above for
P

j2B kj to increase. Remember

that when b�t is equal to an observation, IQ is set to a value, � �; such that
� � 1 < � � < �: If (the original) b�t is equal to an observation then

(� � 1)
X
j2B

kj + �
X
j2A

kj + � �kC = 0

where kC denotes the weight for the observation equal to b�t: On re-arranging
� =

X
j2B

kj + (� � � �)kC

15



Since � > � �; b�t cannot decrease when � increases, since if it did, � � = �
and the right hand side decreases. Note that the weights don�t have to be
symmetric for the above result to hold, so it applies to points at the end of
the sample, or near to it.
An expectile will not normally be equal to an observation so

!
X
j2A

kj(yt+j � b�t) = (1� !)
X
j2B

kj(yt+j � b�t)
and it is clear that if ! increases then b�t must also increase to compensate.
4 Parameter estimation

As noted at the end of sub-section 3.2, the decay in the weighting pattern is
determined by parameters q� and q� for quantiles and expectiles respectively.
Note that q� is expressed relative to � which is not a variance although it is
treated as such when the KFS is run. Hence q� is not a true signal-noise ratio
and, as was noted in sub-section 3.2, it is not scale invariant. De Rossi and
Harvey (2006) discusse some of the practical implications for estimation.

4.1 Maximum likelihood

Maximum likelihood (ML) estimation of the unknown parameters is easily
carried out for Gaussian unobserved components models using the predic-
tion errors from the Kalman �lter. Figure 1 shows 288 monthly �gures on
US in�ation3 from 1981(7) to 2005(6). Although �tting a local level model
(random walk plus noise) gives some residual serial correlation the model is
not unreasonable. The ML estimate of the signal-noise ratio, q�; is 0:011: If
this value is used for all expectiles, the result is as shown in the �gure4.
Figure 2 shows cubic spline expectiles, that is from a local linear trend

with disturbance covariance matrix as in (17), all with a signal-noise ratio,
q� = �2�=�

2
"; estimated by ML for the mean as 0:00007. They are somewhat

smoother but quite close to the RW expectiles of �gure 1.

3To be precise, the �rst di¤erence of the logarithm of the personal consumer expenditure
de�ator (all) as given by Stock and Watson (2005).

4Busetti and Harvey (2006) propose tests for determining whether such movements
represent signi�cant departures from a time invariant distribution around the mean.
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Figure 1: Time-varying RW expectiles �tted to monthly US in�ation
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Figure 2: Time-varying cubic spline expectiles
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4.2 Cross -validation

Setting the q0�s for all expectiles equal to the ML estimate for the mean
is not always desirable. The same is true for quantiles. Furthermore ML
estimation of q� for the median is far more di¢ cult because the prediction
error decomposition only applies to Gaussian models.
The cross validation (CV) criterion for the mean is

CV =

TX
t=1

(yt � e�(�t)t )2;

where e�(�t)t is the smoothed estimator of �t when yt is dropped. In the
Gaussian case it can be computed from a single pass of the the KFS; see de
Jong (1988). Kohn, Ansley andWong (1992) compare ML and CV estimators
for models of this kind and conclude, on the basis of Monte Carlo experiments
that, even though ML tends to perform better, cross validation represents a
viable alternative.
For time-varying quantiles, the appropriate cross validation function is

CV (�) =
TX
t=1

�� (yt � e�(�t)t ) (31)

where e�(�t)t is the smoothed value at time t when yt is dropped. A similar
criterion, CV (!); may be used for expectiles. Unfortunately, there appears
to be no simple way of computing CV (�) and CV (!); ! 6= 0:5; from the
KFS and it would appear necessary to resort to a �brute force�approach in
which all T observations are dropped one at a time. However, if this is done,
the number of iterations for each t may not be large as the starting values of
the quantiles, obtained from dropping an adjacent observation will usually
be close to the solution.

4.3 Choice of parameters for di¤erent quantiles

How might the q0s vary with �? Figure 3 shows the smoothed estimates of
the median and other quantiles, all modelled as random walks, for the US
in�ation data of �gure 1. The q1=20� s; were estimated by CV as 0.004, 0.008,
0.004, 0.006 and 0.008 for the 10%, 25 %, 50%, 75% and 90% respectively.
In small samples there is a danger in estimating these parameters separately
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Figure 3: In�ation with two 25% quantiles

for di¤erent quantiles. For example �(0:25) is very variable as q1=2�(0:25) = 0:008:
When it is �tted with q1=2 = 0:004; as for the median, the changes are much
less abrupt and more in keeping with the other quantiles.
The above example illustrates that one reason for having the q0s the

same is that they are less vulnerable to small sample variation. We also
saw in sub-section 3.4 that because the smoothed estimators of quantiles are
closely related to non-parametric estimators, they are less likely to cross.
Nevertheless, we may well have quantiles changing at di¤erent rates. For
example with stock prices the median might be time-invariant. A compromise
is perhaps to let q be a simple function of � : These considerations also apply
to expectiles.

5 Dispersion, Asymmetry and Heavy Tails

The time-varying quantiles provide a comprehensive description of the dis-
tribution of the observations and the way it changes over time. The choice
of quantiles will depend on what aspects of the distribution are to be high-
lighted. For example, the lower quantiles, in particular 1% and 5%, are par-
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ticularly important in characterizing value at risk over the period in question.
A contrast between quantiles may be used to focus attention on changes in
dispersion, asymmetry or kurtosis. Evidence that changing asymmetry and
kurtosis are a feature of some �nancial time series can be found in, for ex-
ample, Jondeau and Rockinger (2003).
As noted in proposition 9, time-varying quantiles and expectiles will co-

incide if the shape of the distribution is constant over time. Its location and
scale can vary, but not skewness and kurtosis. Thus �t(!) = �t(�); t = 1; ::; T;
where ! depends on the standardized population distribution through (10).
When there are changes in the shape of the distribution, (population) expec-
tiles will not match up with quantiles.

5.1 Dispersion

The contrasts between complementary quantiles, that is

D(�) = �t(1� �)� �t(�); � < 0:5; t = 1; ::; T (32)

yield measures of dispersion. A corresponding measure from expectiles is

D�(�) = �t(1� �)� �t(�); � < 0:5; t = 1; ::; T

We can track its evolution, though it cannot be related to standard measures
of dispersion, such as the standard deviation, without an assumption about
the distribution. Figure 4 shows the interquartile range for US in�ation
(based on a RW with q = 0:004) and two IE ranges (based on IRWs).
When the distribution can be assumed symmetric about zero, the asymp-

totic results for �xed quantiles suggest that there is no gain from estimating
IQ ranges by multiplying the (1 � 2�) � th quantile for absolute values by
two5. However, this may not carry over to time-varying quantiles, because
the estimates are based on a localized weighting of observations. There is
also the issue of estimating q which is easier with absolute values (as it need
only be done once and it ensures the q0s are the same).

5The asymptotic variance of a �xed quantile contrast is easily obtained as
Avar( eD(�)) = 2Avar(e�(�))� 2Acov(e�(�)e�(1� �))
= 2�(1 � �)=f2 � 2�2=f2 = 2�(1 � 2�)=f2; where f = f (� (�)). This is the same as

the asymptotic variance of two times �(1� 2�) for jytj. In contrast to quantiles, it is not
possible to �nd a general formula relating the expectiles of a symmetric random variable
to the expectiles of its absolute value; the relationship depends on the distribution of y.
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Figure 4: Inter-expectile ranges for US in�ation (IRW) and IQ range (RW)

5.2 Tail dispersion and changing kurtosis

Some notion of the way in which tail dispersion changes can be obtained by
plotting the ratio of the estimated interdecile range (0:1 to 0:9) or the 0:05
to 0:95 range to the interquartile range, that is

eR(0:05=0:25) = eD(0:05)eD(0:25) = e�t(0:95)� e�t(0:05)e�t(0:75)� e�t(0:25) : (33)

For a normal distribution this ratio is 2.44, for t3 it is 3.08 and for a Cauchy
6.31. Figure 5 shows the 5% and 25 % quantiles and the plot of (33) for the
GM series.The calculations could also be done with symmetry imposed.
Similar plots to those shown in �gure 5 can be carried out with expectiles.

To assess the movements in excess kurtosis relative to a normal distribution
! is set according to (11), that is 0:0124 and 0:153 for � = 0:05 and 0:25
respectively.
There may be a variety of movements in di¤erent parts of the tail. To

illustrate, we consider a scale mixture of two Gaussian distributions with
time-varying weights and variances chosen so as to keep the overall variance
constant over time. Speci�cally, while the variance of the �rst component
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Figure 5: Interquartile, 5%-95% range and (lower graph) their ratio for GM

was set equal to one, the variance of the second component was allowed
to increase, as a linear function of time, from 20 to 80. The weights used
to produce the mixture were adjusted so as to keep the overall variance
constant6, at a value of ten. As a result, the shape of the distribution changes
because of changes in the tail dispersion. (As might be expected, the 25%
and 75% quantiles are almost constant). What is particularly interesting is
that the 5% and 1% quantiles move in di¤erent directions. As can be seen
from �gure 6, the (theoretical) 5% quantile decreases while the 1% quantile
increases. It can be shown that kurtosis is a linear function of time, increasing
during the period from 5.7 to 21.9. Plotting dispersion for di¤erent � provides
a more comprehensive picture.
The quantiles were estimated from the absolute values of 500 observations

generated from the above model. Cross validation was used to select q� for a
RW model for the 50%, 90% and 98% quantiles of the absolute values. These
correspond to the 25%, 5% and 1% (and 75%, 95% and 99% ) quantiles of
the raw data. The estimate of q�(:05) was 0.1. As can be seen from �gure 6,

6The variance of the second component is �2t = 20 + (60=500)t; t = 1; ::; 500, and the
probability of the �rst component is (1� 9=(�2t � 1)):
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Figure 6: Absolute values of simulated series, true quantiles and random
walk 98%, 90% and 50% quantiles �tted to simulated data by CV.

the estimated quantiles track the true quantiles quite well.
In order to compare expectiles and quantiles in this case, we used the

!0s corresponding to � = :25; :10; :05 and :01 for a normal distribution7.
In contrast to the quantiles, the two upper theoretical expectiles, shown in
�gure 7, both indicate increased dispersion over time. The lower expectiles
are essentially constant.

5.3 Asymmetry

For a symmetric distribution

S(�) = �t(�) + �t(1� �)� 2�t(0:5); � < 0:5 (34)

7Other possibilities would be to work out the !0s from a heavy tailed distribution or
to calculate them from estimated time-invariant quantiles via (10). However, all that is
needed is a reasonable spread of expectiles in order to give a general impression of the
overall pattern.
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is zero for all t = 1; :::; T . Hence a plot of this contrast, or of the stan-
dardized measure8 S(�)=D(�); shows how the asymmetry captured by the
complementary quantiles, �t(�) and �t(1 � �) changes over time. A similar
contrast for expectiles will also show the evolution of asymmetry, but not in
the same way.

6 Prediction and �ltering

The smoothed estimate of a quantile at the end of the sample, e�T jT ; is the
�ltered estimate. Predictions, e�T+jjT ; j = 1; 2; :::; are made by straightfor-
wardly extending these estimates according to the time series model for the
quantile. For a random walk the predictions are e�T jT for all lead times, while
for a more general model in SSF, e�T+jjT = z0Tj e�T : As new observations
become available, the full set of smoothed estimates should theoretically be
calculated, though this should not be very time consuming given the starting
value will normally be close to the �nal solution. Furthermore, it may be

8See, for example, Stuart and Ord (1987, p343-4).
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quite reasonable to drop the earlier observations by having a cut-o¤, �; such
that only observations from t = T � � + 1 to T are used.
Insight into the form of the �ltered estimator can be obtained from the

weighting pattern used in the �lter from which it is computed by repeated
applications; see (24). For a random walk quantile and a semi-in�nite sample
the �ltered estimator must satisfy

e�tjt = (1� �)

1X
j=0

�j[e�t�jjt + IQ(yt�j � e�t�jjt)]
where � is the parameter de�ned below (24) and e�t�jjt is the smoothed esti-
mator of �t�j based on information at time t; see, for example, Whittle (1983,

p69). Thus e�tjt is an exponentially weighted moving average (EWMA) of the
synthetic observations, e�t�jjt + IQ(yt�j � e�t�jjt): Similarly for an expectile

e�tjt(�) = (1� �)
1X
j=0

�j[e�t�jjt + 2IE(yt�j � e�t�jjt)]:
7 Nonparametric regression with cubic splines

A slowly changing quantile can be estimated by minimizing the criterion
function

P
��fyt � �tg subject to smoothness constraints. The cubic spline

solution seeks to do this by �nding a solution to

min
TX
t=1

��fyt � �(xt)g+ �2

�Z
f�00(x)g2dx

�
(35)

where �(x) is a continuous function with square integrable second derivative,
0 � x � T and xt = t: The parameter �2 controls the smoothness of the
spline. We show in appendix A that the same cubic spline is obtained by
quantile signal extraction of (16) and (17) with �2 = �=2�2� : A random walk
corresponds to �0(x) rather than �00(x) in the above formula; compare Kohn,
Ansley and Wong (1992). Our proof not only shows that the well-known
connection between splines and stochastic trends in Gaussian models carries
over to quantiles, but it does so in a way that yields a more compact proof
for the Gaussian case and shows that the result holds for expectiles. We
furthermore establish the existence and uniqueness of the solution.
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The SSF allows irregularly spaced observations to be handled since it can
deal with systems that are not time invariant. The form of such systems is
the implied discrete time formulation of a continuous time model; see Harvey
(1989, ch 9). For the random walk, observations �t time periods apart imply
a variance for the discrete random walk of �t�2�; while for the continuous time
IRW, (17) becomes

V ar

�
�t
�t

�
= �2�

�
(1=3)�3t (1=2)�2t
(1=2)�2t �t

�
(36)

while the second element in the �rst row of the transition matrix is �t: The
importance of this generalisation is that it allows the handling of nonpara-
metric quantile and expectile regression by cubic splines when there is only
one explanatory variable.9 The observations, which may be from a cross-
section, are arranged so that the values of the explanatory variable are in
ascending order. Then xt is the t� th value and �t = xt � xt�1:
Bosch, Ye and Woodworth (1995) propose a solution to cubic spline quan-

tile regression that uses quadratic programming10. Unfortunately this neces-
sitates the repeated inversion of large matrices of dimension up to 4T � 4T .
This is very time consuming11. Our signal extraction appears to be much
faster (and more general) and makes estimation of � a feasible proposition.
Bosch et al. had to resort to setting � as small as possible without the
quantiles crossing.
The fundamental property of quantiles continues to hold with irregularly

spaced observations. All that happens is that the SSF becomes time-varying.
If there are multiple observations at some points then n; the total number of
observations, replaces T; number of distinct points, in the summation. The
proof follows by adding more �(:) terms at times where there are multiple
observations.

9Other variables can be included if they enter linearly into the equation that speci�es
�t:
10Koenker et al (1994) study a general class of quantile smoothing splines, de�ned as

solutions to

min
X

�fyi � g(xi)g+ �
�Z

jg00(x)jp
�1=p

and show that the p = 1 case can be handled by LP algorithm.
11Bosch et al (1995) report that it takes almost a minute on a Sun workstation for

sample size less that 100.
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Proposition 10 If n denotes the total number of observations while T is
the number of distinct points at which observations occur, the fundamental
property of quantiles is stated in terms of n rather than T .

The only di¤erence in the proof is in the summation involving IQ(:)0s
which now becomes

nX
j=1

h�1t IQ(yj(t) � z0te�t)
where yj(t) denotes that the j � th observation is observed at point t for
t = 1; :::; T:

Proposition 11 If there are multiple observations at some points, the gen-
eralized moment condition for expectiles is

nX
j=1

h�1t
��� � I(yj(t) � z0te�t)�� (yj(t) � z0te�t) = 0

The generalized cross-validation algorithm is regarded as being more ap-
propriate for irregularly spaced observations; see Kohn et al (1992). However,
it is not clear how to apply it with the brute force algorithm. Here we use
the basic CV criterion, (31), for both quantiles and expectiles.
An example of cubic spline regression is provided by the �motorcycle

data�, which records measurements of the acceleration, in milliseconds, of
the head of a dummy in motorcycle crash tests. The data set was originally
analysed by Silverman (1985) and has been used in a number of textbooks,
including Koenker (2005, p 222-6). The observations are irregularly spaced
and at some time points there are multiple observations. Harvey and Koop-
man (2000) highlight the stochastic trend connection.
Figure 8 shows the IRW time-varying expectiles obtained using the value

of q� = 0:07 computed by CV for the mean. The ML estimate of q� reported
by Harvey and Koopman (2000, p 17) is q� = 0:03; using this gives slightly
less movement but there is little di¤erence in the overall pattern. Although
the expectiles lack the nice interpretation of quantiles, the graph gives a
clear visual impression of the movements in level and dispersion. (Of course
if we count the number of observations below each expectile, they can be
interpreted as quantiles if we are prepared to assume that the shape of the
distribution is time invariant.)

27



5 10 15 20 25 30 35 40 45 50 55

125

100

75

50

25

0

25

50

75

Obs ×  time
ω =0.25 q=0.07 ×  time
ω =0.75 q=0.07 ×  time

ω =0.05 q=0.07 ×  time
ω =0.5 q=0.07 ×  time
ω =0.95 q=0.07 ×  time

Figure 8: Cubic spline expectiles �tted to the motorcycle data. The para-
meter q� is estimated by cross validation.

Figure 9 shows the 75-25 and the 95-5 IE ranges. These measures track
movements in dispersion very clearly.
The random walk speci�cation is not su¢ ciently �exible to adapt to the

sharp change that occurs just before 15 seconds. This is particularly apparent
for the lowest expectile as can be seen from �gure 11. Figure 10 shows the
estimated time varying quartiles and median for the CV value of q� = 0:0625;
and a similar pattern is seen.
Harvey and Koopman (2000) re-estimate the spline with a correction for

heteroscedasticity constructed from the residuals. The SSF is easily amended
to allow for heteroscedasticity. A heteroscedasticity correction could also be
made for the expectiles using a range measure as in �gure 9.

8 Conclusions

Time-varying quantiles can be �tted iteratively applying a suitably modi�ed
state space signal extraction algorithm. Here we show that time-varying
expectiles can also be estimated by a state space signal extraction algorithm.
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Figure 10: Quartiles and median �tted to the motorcycle data for q� =
0:0625.
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Figure 11: Time varying RW expectiles �tted to the motorcycle data. The
parameter q� is estimated by cross validation.

The algorithm is much faster than the one for quantiles as there is no need to
take account of corner solutions. We derive the conditions under which time-
varying quantiles satisfy the de�ning property of �xed quantiles in having
the appropriate number of observations above and below it, while expectiles
satisfy properties that generalize the moment conditions associated with �xed
expectiles. Practical ways in which expectiles can be made robust are also
proposed.
Time-varying quantiles and expectiles provide information on various as-

pects of a time series, such as dispersion and asymmetry, and we investigate
how contrasts between them can be informative in pointing to departures
from the assumption of a distribution that is time invariant apart from lo-
cation and scale. A simulated example illustrates how tail dispersion, as
measured by di¤erent inter-quantile ranges, is a richer concept than kurtosis
and tracking the movements in di¤erent ��quantiles can be very informative.
Our model-based approach means that time-varying quantiles and expec-

tiles can be used for forecasting. As such they o¤er an alternative to methods
such as those in Engle and Manganelli (2004) and Granger and Sin (2000),
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that are based on conditional autoregressive models.
Finally we prove that if the underlying time series model is a Wiener

process or an integrated Wiener process, then the solution for quantiles, ex-
pectiles and M-quantiles is equivalent to �tting a spline; for an integrated
Wiener process this is a cubic spline. We furthermore establish the existence
and uniqueness of the solution. Because the state space form can handle
irregularly spaced observations, the proposed algorithms are easily adapted
to provide a viable means of computing spline-based non-parametric quantile
and expectile regressions. We demonstrated how this worked for the �motor-
cycle�data and showed, in that case, that �tting cubic spline expectiles gave
a clear visual impression of the changing distribution.
Further work remains to be done. In particular, there are the issues

of inference on parameters and the MSEs for smoothed estimates. It may
also be worth investigating whether joint estimation of a set of quantiles (or
expectiles) holds any advantages. Finally we note that Busetti and Harvey
(2006) have proposed tests for the null hypothesis that quantiles are time-
invariant.

A State space representation of quantile, ex-
pectile andM-quantile regression with smooth-
ing splines

Consider a set of n observations (y1; : : : ; yn) obtained at times (t1; : : : ; tn),
where 0 � t1 < : : : < tn � b. Moreover, consider a loss function �� (x) � 0
such that

R1
�1 exp [��� (x)] dx <1:We will deal with the problem of �nding

the function f : [0; b]! R that minimises

�m

Z b

0

�
f (m) (t)

�2
dt+

nX
i=1

�� (yi � f (ti)) (37)

for given � 2 (0; 1) and m, over all functions f having m � 1 absolutely
continuous derivatives and square integrable m�th derivative.
Now consider the time series representation obtained by assuming that:

�
�
f (0) ; f 0 (0) ; : : : ; f (m�1) (0)

�
� N (0; �Im) ;
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�
f (t) =

mX
j=1

tj�1

(j � 1)!f
(j�1) (0) + �w

Z t

0

(t� s)m�1

(m� 1)! dWs (38)

where Wt is a Wiener process (in terms of the notation of sub-section
3.1, �w = �� for m = 1 and �� for m = 2;

� the distribution of yijf (ti) is characterized by a pdf de�ned as

p (yijf (ti)) / exp
h
���1�� (yi � f (ti))

i
, (39)

where � is a constant.

De�ne y =(y1; : : : ; yn)
0 and f =(f (t1) ; : : : ; f (tn)). We will show that, if

�m = �=(2�2w), as � ! 1 the mode of the smoothing distribution p (f jy)
converges to the point (f (t1) ; : : : ; f (tn)) obtained by evaluating the solution
of the problem (37) at (t1; : : : ; tn).

Remark 12 Quantile regression can be obtained as a special case in which
�� (x) = (��I (x < 0))x and the distribution of yijf (ti) is asymmetric double
exponential with � = �. The quantile regression with smoothing splines prob-
lem described by Bosch et al. (1995) is a special case with m = 2. Similarly,
expectile regression corresponds to the assumption �! (x) = j! � I (x < 0)jx2,
which results in an asymmetric Gaussian distribution for the observations
conditional on the signal; here � = �2 in (6). The M-quantile regression as
described in Breckling and Chambers (1988) corresponds to setting �� (x) pro-
portional toj� � I (x < 0)j � (x), where � (x) is such that d� (x) =dx =  (x)
and  (x) is the in�uence function.

Remark 13 If the density in the measurement equation were Gaussian our
argument would provide an alternative proof of the result of Wahba (1978) for
the special cases m = 1; 2. This follows on noting that in a Gaussian model
conditional means and conditional modes coincide. Wahba�s proof requires
the explicit solution of the spline smoothing problem (derived in Kimeldorf
and Wahba (1971)), which is shown to be equal to the conditional mean. Our
proof simply shows that the two optimisation problems, i.e. �nding the mode
and �nding the optimal spline, are equivalent.

Remark 14 A su¢ cient condition for existence and uniqueness of the so-
lution to problem (37) is convexity of �� (x). This follows immediately from
the fact that if �� is convex then the log-likelihood of the time series repre-
sentation is strictly concave in Rn.

32



Proof

The mode of p(f jy) is found by solving maxf p(f jy):This is equivalent to
solving maxf p(y; f) and we proceed by �rst noting that

p(y; f) = p (yjf) p (f) : (40)

Consider the joint distribution p (f). It is a multivariate normal distribu-
tion with mean zero (because f(0); f 0(0); : : : have zero mean) and covariance
matrix �2Wn + �TT0, where

T0 =

26664
1 : : : 1
t1 : : : tn
...

...
tm�11 = (m� 1)! : : : tm�1n = (m� 1)!

37775
and

Wn = Cov

" Z t1

0

(t1 � s)m�1

(m� 1)! dWs; : : : ;

Z tn

0

(tn � s)m�1

(m� 1)! dWs

!0#
:

Wahba (1978) shows that

lim
�!1

�
�2wWn + �TT0

��1
= ��2W�1

n

�
I�T

�
T0W�1

n T
��1

T0W�1
n

�
:

As a result

lim
�!1

p (f) / exp
�
� 1

2�2w
f 0W�1

n f +
1

2�2w
f 0W�1

n T
�
T0W�1

n T
��1

T0W�1
n f

�
:

De�ne

C =

�
T0W�1

n

U0

�
where U0 is a (n�m)� n matrix whose rows are orthogonal to the rows of
T0. The �rst term in the exponent can be written

� 1

2�2w
f 0W�1

n f = �
1

2�2w
f 0C0C�10W�1

n C
�1Cf

= � 1

2�2w
f 0C0 (CWnC

0)
�1
Cf

= � 1

2�2w
f 0C0

��
T0W�1

n T T0U
U0T U0WnU

���1
Cf

= � 1

2�2w
f 0W�1

n T
�
T0W�1

n T
��1

T0W
�1
n f �

1

2�2w
f 0U (U0WnU)

�1
U0f :
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Note that U0T = 0 by construction and since CW�1
n C

0 is block diagonal, so
is its inverse. As a result, the density of f becomes

lim
�!1

p (f) / exp
�
� 1

2�2w
f 0U (U0WnU)

�1
U0f

�
:

From (40) and (39) we have

lim
�!1

p (f jy) / exp
 
� 1

2�2w
f 0U (U0WnU)

�1
U0f � 1

!

nX
i=1

�� (yi � f (ti))

!
:

For m = 1 we can set

U0 =

26664
u01
u02
...

u0n�1

37775 ; u0i =

0@ 0; : : : ; 0
i-1 zeros

; �i0; �
i
1; 0; : : : ; 0

n-1-i zeros

1A ;

�i0 =
1

ti+1 � ti

�i1 = � 1

ti+1 � ti
:

It is easy to show that in this case (U0WnU)
�1 is a diagonal matrix with

entries t2 � t1; t3 � t2; : : : ; tn � tn�1. Thus

� 1

2�2w
f 0U (U0WnU)

�1
U0f = � 1

2�2w

nX
i=2

(ti � ti�1)

�
f(ti)� f(ti�1)

ti � ti�1

�2
:

Well known results on spline interpolation (summarized, for example, in
Schoenberg (1964)) imply that the solution to (37), f(t), is a piecewise linear
function with knots at t1; : : : ; tn. Thus we obtain

� 1

2�2w
f 0U (U0WnU)

�1
U0f = � 1

2�2w

Z b

0

[f 0 (t)]
2
dt:

If we set �1 = �=2�2w the maximisation problem is equivalent to minimising
(37) with respect to f for m = 1.
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The proof for m = 2 proceeds along the same lines. Here we set

U0 =

26664
u01
u02
...

u0n�2

37775 ; u0i =

0@ 0; : : : ; 0
i-1 zeros

; �i0; �
i
1; �

i
2; 0; : : : ; 0

n-2-i zeros

1A ;

�i0 =
1

ti+1 � ti

�i1 = � 1

ti+2 � ti+1
� 1

ti+1 � ti

�i2 =
1

ti+2 � ti+1
:

It can be shown thatWn has entries

[Wn]ij =
1

3
[min (ti; tj)]

3 +
1

2
jti � tjj [max (ti; tj)]2 .

Bosch et al. (1995) showed that

�m

Z b

0

[f 00 (t)]
2
dt = �f 0U (U0WnU)

�1
U0f

where f(t) is the solution to problem (37), a cubic spline with knots at
t1; : : : ; tn. Thus �nding the mode is equivalent to minimising (37) with re-
spect to f for m = 2 and �2 = �=2�2w.

B Calculations for Laplace distribution

If the observations are assumed to come from a double exponential (Laplace)
distribution with mean zero, p(y) = (1=4) exp(� jyj =2): Since

1

4

Z �(�)

�1
y exp(y=2)dy =

1

2
(�(�)� 2) exp(� j�(�)j =2); �(�) � 0

! =
1
2
(�(�)� 2) exp(� j�(�)j =2) + ��(�)

(�(�)� 2) exp(� j�(�)j =2) + (2� � 1)�(�) (41)

Furthermore
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1

4

Z �(�)

�1
exp(y=2)dy =

1

2
exp(�(�)=2) = � ; �(�) � 0

and so �(�) = 2 ln(2�); � � 0:5: Substituting in (41) gives (12).

Acknowledgements Early versions of this paper were presented at the
Econometrics in Rio conference in July 2006 and at the 4th Oxmetrics Users
Conference, CASS Business School, London in September, 2006. We would
like to thank David Hendry, James Davidson, Siem Jan Koopman and Roger
Koenker for helpful comments. We would like to thank the ESRC for �nancial
support under the grant Time-Varying Quantiles, RES-062-23-0129.

References

Bosch, R.J., Ye, Y., Woodworth, G.G., 1995. A convergent algorithm for
quantile regression with smoothing splines. Computational Statistics and
Data Analysis 19, 613-630.
Breckling, J., Chambers, R., 1988. M-quantiles. Biometrika 75, 761-771.
Busetti, F., Harvey, A.C., 2006. Tests of time-invariance. Mimeo.
De Jong, P., 1988. A cross-validation �lter for time series models. Bio-

metrika 75, 594-600.
De Jong, P., 1989. Smoothing and interpolation with the state-space

model. Journal of the American Statistical Association 84, 1085-1088.
De Rossi, G., Harvey, A.C., 2006. Time-varying quantiles. Faculty of

Economics, Cambridge, CWPE 0649.
Durbin, J., Koopman, S.J., 2001. Time series analysis by state space

methods. Oxford University Press, Oxford.
Efron, B., 1991. Regression percentiles using asymmetric squared error

loss. Statistica Sinica 1, 93-125.
Engle, R.F., Manganelli, S., 2004. CAViaR: Conditional autoregressive

value at risk by regression quantiles. Journal of Business and Economic
Statistics 22, 367�381.
Granger, C.W.J., Sin C-y., 2000. Modelling the absolute returns of dif-

ferent stock indices: exploring the forecastability of an alternative measure
of risk. Journal of Forecasting 19, 277-298.
Harvey, A.C., 1989. Forecasting, structural time series models and the

Kalman �lter. Cambridge University Press, Cambridge.

36



Harvey, A.C., Koopman, S.J., 2000. Signal extraction and the formula-
tion of unobserved components models. Econometrics Journal 3, 84-107.
Huber, P.J., 1981. Robust statistics. Wiley, New York.
Jondeau, E., Rockinger, M., 2003. Conditional volatility, skewness, and

kurtosis: existence, persistence and co-movements. Journal of Economic
Dynamics and Control, 27, 1699-1737.
Kimeldorf, G., Wahba, G., 1971. Some results on Tchebyche¢ an spline

functions. Journal of Mathematical Analysis and Applications 33, 82�95.
Koenker, R., 2005. Quantile regression. Cambridge University Press,

Cambridge.
Koenker, R., Pin, N.G., S. Portnoy, S., 1994, Quantile smoothing splines.

Biometrika, 81, 673-80.
Kohn, R., Ansley, C.F., Wong, C-H., 1992. Nonparametric spline regres-

sion with autoregressive moving average errors. Biometrika 79, 335-346.
Koopman, S.J., Shephard, N., Doornik, J., 1999. Statistical algorithms

for models in state space using SsfPack 2.2. Econometrics Journal 2, 113-166.
Newey, W.K., Powell, J.L., 1987. Asymmetric least squares estimation

and testing. Econometrica 55, 819-847.
Schoenberg, I.J., 1964. Spline functions and the problem of graduation.

Proceedings of the National Academy of Science 52, 947-950.
Silverman, B.W., 1985. Some aspects of the spline smoothing approach

to non-parametric regression curve �tting. Journal of the Royal Statistical
Society B 47, 1-52.
Stock, J.H., Watson, M.W., 2005. Has in�ation become harder to fore-

cast? Mimeo. www.wws.princeton.edu/mwatson/wp.html
Stuart, A., Ord, J.K., 1987. Kendall�s Advanced Theory of Statistics.

Volume 1. Charles Gri¢ n and Co., London.
Wahba, G., 1978. Improper priors, spline smoothing and the problem of

guarding against model errors in regression. Journal of the Royal Statistical
Society B 40 (3), 364�372.
Whittle, P., 1983. Prediction and Regulation. 2nd ed. Blackwell, Oxford.

37


