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Domain Adaptation for Statistical Machine Translation and

Neural Machine Translation

Jian Zhang

Abstract

Both Statistical Machine Translation and Neural Machine Translation (NMT) are data-

dependent learning approaches to Machine Translation (MT). The prerequisite is a large

volume of training data in order to generate good statistical models. However, even if a

large volume of training corpora are available for MT, finding training data which are simi-

lar to the specific domains is still difficult. The MT models trained using the limited specific

domain data cannot have sufficient coverage on the linguistic phenomena in that domain,

which makes this a very challenging task. Because word meanings, genres or topics differ

between domains, using additional data from other domains can increase the dissimilari-

ties between the training and testing data, and result in reduced translation quality. Such

a challenge is defined as the ‘domain adaptation’ challenge in the literature. In this thesis,

we investigate domain adaptation in two different scenarios, namely a domain-awareness

scenario and a domain-unawareness scenario.

In a domain-awareness scenario, the domain information is given explicitly in the train-

ing data. We are interested in developing domain-adaptation techniques which transfer

knowledge gained from other domains to a desired domain. In the approach proposed here

probabilistic values indicating the domain-likeness features for words are estimated by the

context rather than by the words themselves. We then apply those features to the combined

translation models in an MT system. We empirically show that translation quality can be

significantly improved, i.e. absolute 0.36 (1.3% relative) and 0.82 (2.66% relative) Bilin-

gual Evaluation Understudy (BLEU) scores in two experiments, compared with previous

related work.

xvi



We then turn our interest to the recently proposed neural network training (Cho et al.

2014, Sutskever et al. 2014). We describe a domain-adaptation approach which can exploit

large pre-trained word vector models. We evaluate our approach on both Language Model

(LM) and NMT tasks to demonstrate its efficiency, effectiveness and flexibility in a domain-

awareness scenario. We observe that the proposed approach can reduce the perplexity by

7.4 points compared to the baseline neural network LM. In the NMT experiment, we achieve

0.82 (absolute, 2.3% relative) and 0.42 (absolute, 1.3% relative) improvements in BLEU

score on two test sets compared with the NMT model without adaptation.

In a domain-unawareness scenario, the domain information is not given explicitly in

the training data. The training data is heterogeneous, e.g. originating from tens or even

hundreds of different resources without well-defined domain labels. We overcome such a

challenge by deriving the topic information from the training corpora using well-estimated

topic modelling algorithms. In this scenario, we pay particular attention to the most recent

NMT framework. We are concerned with improving the overall translation quality. Ex-

perimentally, we show that our model can improve 1.15 (absolute, 3.3% relative) and 1.67

(absolute, 5.4% relative) in BLEU score in contrast with the NMT baseline model.

xvii



Chapter 1

Introduction

Corpus-based machine translation (CBMT), e.g. Statistical Machine Translation (SMT) or

Neural Machine Translation (NMT), is an active research topic in Natural Language Pro-

cessing (NLP) with attention from many researchers. The training phase is a data-dependent

process. The translation quality of a CBMT system is strongly influenced by the quantity

and the quality of the training data (Bertoldi and Federico 2009, Haddow and Koehn 2012,

Wang et al. 2012, Luong and Manning 2015). The quality factor means that the training data

needs to be clean and drawn from the same domain as the testing data. The quantity factor

requires that the size of the training data should be large enough to cover the linguistic phe-

nomena in the desired domain. Therefore, a prerequisite for a Machine Translation (MT)

system, e.g. a CBMT system, is to collect as much high-quality training data as possible to

achieve good performance.

Despite the increasing amounts of data available from the web, they are nevertheless

restricted to a limited number of domains and language pairs. Furthermore, human language

is a complex system, so it is practically impossible to collect complete knowledge for any

language in any domain. Therefore, it is frequently necessary to supplement the scarce

training data of the desired domain with some additional data from other domains (Axelrod

et al. 2011, Haddow and Koehn 2012).

However, one challenge arises: when there are dissimilarities between the training and
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News Newspapers everywhere carried stories predicting that computer systems
would crash on January 1, 2000, causing much of the world to shut down.

Europarl I propose that we vote on the request of the Group of the Party of European
Socialists that the Commission statement on its strategic objectives should
be reinstated.

Figure 1.1: These examples show that domains can be distinguished according to the provenances
of the data, where the sentence in the News data is more informal than the sentence in the Europarl
data. These sentences are selected from the News corpus and the Europarl corpus (Koehn 2005).

testing domains, the performance of a MT system decreases. Such a challenge is often

referred as ‘domain adaptation’ in the literature. In this thesis, we report our research on

domain adaptation for two MT paradigms: SMT and NMT. The aim of this study is to

investigate new domain-adaptation approaches to improve the translation quality.

1.1 What are Domains?

In most previous work, the term “domains” refers to the “provenance” of the training data,

e.g. Foster and Kuhn (2007), Moore and Lewis (2010), Bisazza et al. (2011), Haddow and

Koehn (2012), Sennrich (2012). Essentially, this means that the data in one corpus may

be in a different domain than the data in another corpus. Chen et al. (2013) state that “the

best translation practice differs widely across genres, topics, and dialects”, and define a

combination of all these factors to represent domains. Domains can also be interpreted as

the difference of words and grammars between corpora (Pecina et al. 2012). Hasler (2015)

defines domains as the thematic content in the training data, which might be described as

the topics contained in the data.

In this thesis, we follow previous work (Bisazza et al. 2011, Chen et al. 2013) and note

that domains depend on several factors, e.g. provenance, genres, topics, dialects or styles,

and even the combination of all those factors.

Figure 1.1 and Figure 1.2 demonstrate examples of using provenance or topic as do-

mains to distinguish domains, respectively. In Figure 1.1, the example sentences have dif-
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Finance The consumer price index, a main gauge of inflation, rose 2.7 percent in
February, the National Bureau of Statistics announced Thursday.

Political High number reflects the novelty of the policy and program responsibili-
ties and the requirement to enhance public confidence in the government’s
capacity to respond to national security and terrorism threats.

Figure 1.2: These examples show that domains can be distinguished according to the topics of the
data. The sentence in the Finance domain describes the study of financial investments, whereas the
sentence in the Political domain describes the international affairs. The examples are selected from
the Common Crawl corpus which are crawled from web pages.

ferent origins, e.g. the News corpus and the Europarl corpus (Koehn 2005). In Figure 1.2,

the example sentences are selected from the same corpus – the Common Crawl corpus.1

However, two sentences are different in topics, e.g. the Finance topic or the Political topic.

1.2 Research Hypothesis

The training data of a MT system could be collected from various resources, e.g. from a

small or an extensive domain, with or without well-defined domain labels, or are separated

into many corpora or mixed as a single large corpus. Training data in the desired domain

might even be unavailable. Motivated by the above challenges, we assume the following

two scenarios in this thesis:

Domain-awareness: The domain information is given explicitly in the training data.

Domain-unawareness: The domain information is not given explicitly in the training

data.

In a domain-awareness scenario, we are interested in developing domain-adaptation

techniques which transfer knowledge gained from the other domains to a desired domain.

Furthermore, we assume that a small amount of training data in the desired domain is avail-

able, namely the In-Domain (ID) training data. We also assume that the training data from
1http://commoncrawl.org/
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ID Corpus

GD Corpus

(a) A domain-awareness scenario

Training Corpus

(b) A domain-unawareness scenario

Figure 1.3: A domain-awareness scenario vs. a domain-unawareness scenario. In a domain-
awareness scenario, the domain information is given explicitly in the training data. Furthermore,
we assume that a small amount of training data (the ID corpus) which is close to the desired do-
main is available and the training data from the other domains (the GD corpus) is large in size. In
a domain-unawareness scenario, the domain information is not given explicitly in the training data.
They may originate in tens or even hundreds of different resources without well-defined domain
labels. Therefore, we concatenate all the training data and rely on some topic-learning algorithms to
discover the domains.

the other domains – the General-Domain (GD) training data – are large in size, as seen in

Figure 1.3a. In this scenario, we are concerned with making better use of the large GD

training data to further improve the translation quality in ID.

In a domain-awareness scenario, we are aware of which parts of the training data are

the ID and which parts are the GD training data. However, this is not always true in prac-

tice (Hasler 2015). For example, the training data may come from tens or even hundreds

of different resources without well-defined domain labels to distinguish them. Therefore,

we focus on a different challenge in a domain-unawareness scenario; the domain informa-

tion is not given explicitly in the training data. However, we can treat the domains as the

latent variables in the training data and rely on well-established topic-learning algorithms,

e.g. Latent Dirichlet Allocation (LDA) (Blei et al. 2003) or Hidden Topic Markov Model

(HTMM) (Gruber et al. 2007), to discover the domain information. In this scenario, we are

concerned with making a better lexical choice and improving the overall translation quality.

Figure 1.3b is an illustration of the training data in a domain-unawareness scenario where
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we assume that all data from different resources are concatenated into a single corpus.

1.3 Motivations and Research Questions

Word and phrase meanings are implied by the context rather than by the words themselves

(Banchs 2014). One way to establish the domain for a word or a phrase is to determine the

domain of the sentence from which they emanate. For example, if a sentence has a higher

probability of being in a domain, the words or phrases within that sentence are also more

likely to be in the same domain, and vice versa. Given such observation, our hypothesis is

that the context (either words around or even the full sentence) of words can be used as an

important feature for domain-adaptation challenge. Accordingly, our first research question

is:

RQ1 In a domain-awareness scenario, how can we further improve the cur-

rent domain adaptation method of an SMT by availing of the domain-likeness

of the context in which a word or a phrase appears?

To answer RQ1, we describe a domain-likeness model that can be used to estimate

probabilities of bilingual phrase pairs are in ID or GD. Furthermore, we apply estimated

probabilities to an SMT system to demonstrate the translation quality improvements over

the current domain-adaptation approach (Bisazza et al. 2011), which uses a binary type

feature indicating the provenance of the phrase translations.2 Our probability estimation

can be interpreted as the distance from ID to GD, i.e. phrase pairs with lower probability

values indicate that they are close to ID; phrase pairs with higher probability values indicate

that they are far away from ID and close to GD. The domain-likeness model is trained with

features inspired by a commonly used data selection approach (Axelrod et al. 2011).

Because MT technologies have changed rapidly in recent years, our attention is always

on the state-of-the-art methods. We move our focus from SMT to the more recently pro-

posed neural network training after RQ1.
2We will provide a review for current domain-adaptation approaches in Section 2.3.
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There are several aspects which motivated us to study domain-adaptation in neural net-

work training. Firstly, recent studies have shown remarkable results in applying neural net-

works in NLP, especially using Recurrent Neural Network (RNN). For example, Mikolov

et al. (2010) report that the perplexity was significantly reduced when using RNN for Lan-

guage Model (LM) training compared to the traditional n-gram LM training. In the field of

MT, significant improvements have also been observed (Bahdanau et al. 2015, Luong et al.

2015b, He et al. 2016, Tu et al. 2016) when utilizing neural network training in translation.

This success has strongly motivated us to study this approach in the domain-adaptation

challenge. Secondly, there is very little work to be found in the MT literature to address

the domain-adaptation challenge related to neural network training. Most previous work

(Luong et al. 2015b, He et al. 2016, Tu et al. 2016) aims to increase general model perfor-

mance regardless of domain. Moreover, previous domain-adaptation techniques based on

n-gram LM and SMT (Foster and Kuhn 2007, Bisazza et al. 2011, Hasler et al. 2012, Zhang

et al. 2014b) are not feasible to be transferred directly to neural network framework as the

learning algorithms used between the two approaches are different. Thus, there is a need to

investigate new approaches under the neural network framework. Finally, neural network

training is still a data-driven process, so we expect that the domain-adaptation challenge to

be relevant here too.

One of the important building block in a neural network is the word embedding layer,

which is used to represent words in the word vectors. Such representations are known

to be better at generalization than plain text format (Mikolov et al. 2013b) because the

neural network is able to learn which words are semantically close and then switch one to

a neighbouring one. A word vector layer (word vector model) can also be pre-trained with

a large amount of data (Mikolov et al. 2013a, Pennington et al. 2014) and used to initialize

the embedding layer in a neural network in the situation when the relevant training data

is limited. Our hypothesis is that the pre-trained and the task-specific-trained word vector

models are complementary with each other in a neural network training. The pre-trained

word vector models can be applied to overcome the challenge that ID training data is too
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small in domain adaptation. Accordingly, our second research question is:

RQ2 Whether the vector model trained using GD data can be used in domain

adaptation in a domain-awareness scenario?

To address RQ2, we propose a novel domain-adaptation mechanism in neural network

training. Instead of learning and adapting the neural network on millions of training sen-

tences – which can be very time-consuming or even infeasible in some cases – we design a

domain-adaptation gating mechanism which can be used in RNN and quickly learn the GD

knowledge directly from the pre-trained word vector models with little speed overhead. We

make a comparison between several adaptation techniques. Furthermore, we also apply the

proposed approach into an NMT system to demonstrate its effectiveness.

While RQ1 and RQ2 are based on a domain-awareness scenario, we then switch our

attention to the domain-unawareness scenario. As a matter of fact, a domain-unawareness

scenario is common in MT training, where a huge amount of training data is often collected

regardless of domain. There are no well-defined domain labels. All data are mixed as a

single corpus; some sentences can be very close to the testing domain and most not.

When the domain information is not explicitly given, such as in a domain-unawareness

scenario, one approach is to use the latent domain information captured by the well-established

topic-learning algorithms, e.g. LDA or HTMM, to guide the translation process (Hasler

et al. 2012, Zhang et al. 2014b) in the SMT framework. However, it is unclear whether and

how the similar method can be also applied on the NMT models. Accordingly, our RQ3 is

as follows:

RQ3 How word topic distributions can be used to improve translation qual-

ity for NMT models in a domain-unawareness scenario?

One observation we obtain from MT training data is that some of the words within the

same sentence often belong to the same (or similar) topic. The similar “topic consistent”

behaviour is also observed by Su et al. (2015). Intuitively, if we can guide the translation
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process by maintaining the same topic in the translations, better translations can be pro-

duced. We propose to achieve this by incorporating word topic information in source and

target sentences in an NMT system. Furthermore, we will find that applying topic informa-

tion in an NMT system can not only improvement the translation quality, but also lower the

number of Unknown (UNK) tokens appearing in the translations.

1.4 Outline

In this thesis, we address the domain-adaptation challenge in two scenarios: the domain-

awareness and domain-unawareness scenarios. Overall, the goal is to improve the MT

quality by using domain-adaptation techniques. This thesis comprises six chapters includ-

ing the current introductory chapter.

In Chapter 2, we provide background information about MT models and algorithms.

However, we do not try to exhaustively cover all aspects in the field, but to only focus on

the work related to this thesis. We will also review related work on domain adaptation for

MT.

In Chapter 3, we study the translation model combination approach of Bisazza et al.

(2011), where a binary type of provenance feature is used when the models are combined.

In our work, we propose a more fine-grained translation model combination approach. The

used feature is estimated by a domain-likeness model. We show that our approach can

significantly improve translation quality over the previous approach. In our analysis, we

also provide phrase pair distributions and examples in the combined translation model.

In Chapter 4, we move our attention to neural network training approaches, particu-

larly on the neural LM (Mikolov et al. 2010) and NMT models (Bahdanau et al. 2015).

We study the possibility of adapting large pre-trained word vector models (Collobert et al.

2011, Mikolov et al. 2013a, Pennington et al. 2014) into ID LM training. We propose

several adaptation mechanisms. Our work has the advantages of (i) very little computa-

tion overhead in the neural network training framework, (ii) benefiting the lower-frequency
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words in the training data, and (iii) the flexibility of being used in any sequential network

applications when an RNN is used. We present our experimental results on neural LM and

NMT to show the efficiency of the proposed approach.

In Chapter 5, our focus is on the NMT models. We first present the “topic consistent”

(Su et al. 2015) observation where some of the words within the same sentence often belong

to the same or similar topic. Then we propose our topic-based NMT models that are built

with the incorporation of word topic information learned from the training data. In our

analysis, we show that our models can produce better translations and a lower number of

UNK tokens.

We conclude in Chapter 6 with a summary of our work and contributions of the thesis.

Finally, we present avenues for future work.

In summary, all of our proposed domain-adaptation approaches and experiments are

presented in Chapter 3, 4 and 5, which are related to RQ1, RQ2 and RQ3, respectively.

RQ1 and RQ2 are studied in a domain-awareness scenario, and RQ3 is studied in a domain-

unawareness scenario.

1.5 Related Publications

The published papers which are related with this thesis are as follows:

1. Jian Zhang, Liangyou Li, Andy Way, Qun Liu. (2016). Topic-Informed Neural Ma-

chine Translation. In Proceedings of the 26th International Conference on Computa-

tional Linguistics, pages 1807–1817, Osaka, Japan, December 11-17 2016.

2. Jian Zhang, Xiaofeng Wu, Andy Way, Qun Liu. (2016). Fast Gated Neural Domain

Adaptation: Language Model as a Case Study. In Proceedings of the 26th Interna-

tional Conference on Computational Linguistics, pages 1386–1397, Osaka, Japan,

December 11-17 2016.

3. Jian Zhang, Liangyou Li, Andy Way, Qun Liu. (2014). A Probabilistic Feature-

Based Fill-up for SMT. In Proceedings of the 11th Conference of the Association
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for Machine Translation in the Americas, (Vol. 1: MT Researchers Track), pages

96–109, Vancouver, BC, October 22-26 2014.
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Chapter 2

Background

In this chapter, we provide basic information about Machine Translation (MT) models and

algorithms. MT is an active research field in Natural Language Processing (NLP) and many

models and approaches have been intensively studied in the literature. Furthermore, the

technologies used in MT have also changed rapidly in recent years. Therefore, we do not

try to exhaustively cover all aspects in the field, but only focus on work which is related to

this thesis.

This chapter is organized as follows: we first introduce the framework of Phrase-based

Statistical Machine Translation (PBSMT), including the models and evaluation metrics

in Section 2.1. We then give background information about Neural Machine Translation

(NMT) in Section 2.2, including word vector models, Recurrent Neural Network (RNN),

RNN Language Model (LM) and NMT models. In Section 2.3, we present related domain-

adaptation work in this thesis. Section 2.4 lists the tools used in this thesis. Finally, we

summarize the content of this chapter in Section 2.5.

For notational convenience, we use the following notations through this chapter. As-

sume a sentence pair F and E, where F is in the source language, and E is in the target

language. F = {f1, f2, . . . , fl−1, fl} and E = {e1, e2, . . . , eq−1, eq}, where l and q rep-

resent the sentence lengths, and f and e denote the words in the sentences for F and E,

respectively. We also use i (1 6 i 6 l) and j (1 6 j 6 q) to represent the word positions in
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Sender (E) Noisy Channel Receiver (F )

Figure 2.1: Noisy channel model

F and E, respectively.

2.1 Phrase-based Statistical Machine Translation

Statistical Machine Translation (SMT) has received the most research attention since Brown

et al. (1990, 1993). The training of an SMT system is a data-driven process, where large

amounts of training data are required in order to sufficiently cover the linguistic phenomena

for the desired language pair. The training data requires to be parallel, where each sentence

in the target language is the translation of the corresponding sentence in the source lan-

guage. An SMT system consists of several models: a translation model is used to translate

text from a source language to a target language; an reordering model decides in which

order of the translates are produced and a LM is used to evaluate the fluency for the transla-

tions. These models are integrated using the log-linear framework (Och and Ney 2002) as

feature functions to optimize the model weights.

In the rest of Section 2.1, we formally define the noisy channel model, log-linear frame-

work, translation model, reordering model and LM.

2.1.1 The Noisy Channel and Log-linear Framework

Early SMT was based on the classical noisy channel model used in speech recognition,

as seen in Figure 2.1. In the noisy channel model, a distorted message is observed by the

receiver and we want to recover the original message sent by the sender. In this formulation,

the translation problem is regarded as the decoding of the target sentenceE given the source

sentence F (as seen in Figure 2.1). Based on Bayes decision theory, we can formulate SMT

as in Equation (2.1) (Brown et al. 1990, 1993):
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Ê = arg max
E

P (E|F )

= arg max
E

P (F |E)P (E)

P (F )

= arg max
E

P (F |E)P (E)

(2.1)

where Ê denotes the translation output which has the highest translation probability. In a

nutshell, we need to find Ê given F . In Equation (2.1), the translation problem is factored

into P (F |E) and P (E). P (F |E) and P (E) represent the inverse translation probability

and language model probability, respectively. The denominator P (F ) in Equation (2.1)

is ignored since it remains constant for a given source sentence F . The advantage of this

decomposition is that we can learn separate probabilities in order to compute Ê.

The log-linear framework (Och and Ney 2002) is a generalization of the noisy channel

approach to formulate SMT, as presented in Equation (2.2):

Ê = arg max
E

P (E|F )

= arg max
E

{
exp

M∑
m=1

λmhm(E,F )

∑
E′∈E

exp
M∑
m=1

λmhm(E′, F )

}

= arg max
E

{exp
M∑
m=1

λmhm(E,F )}

(2.2)

where M indicates the total number of features, hm(E,F ) indicate feature functions on

F and E, and λm are the corresponding optimal weights, which are learned from a small

set of parallel sentences. Such a process is often called tuning, and the small set of par-

allel sentences is called the tuning (or development) set. The denominator in Equation

(2.2) is ignored since it is a constant denoting the sum of the probabilities of all possible

translations. The log-linear framework has the advantages of including additional feature

functions which can usually improve the translation quality and be optimized by only tuning
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the feature weights.

2.1.2 Translation Model

In Brown et al. (1990, 1993), words are used as the fundamental translation units, namely

word-based models. Word-based models introduce the concept of a word-alignment model

which maps words in a sentence pair with translation probabilities (word-translation prob-

abilities). A word-alignment model treats word-alignments as hidden variables and can be

learned iteratively from a bilingual corpus using the Expectation-Maximization (EM) algo-

rithm (Dempster et al. 1977). The translation probability of a target sentence is composed

of the product of word-translation probabilities which are leaned from a bilingual corpus.

However, words are not the best translation units because one source word can be trans-

lated into multiple words in the target language, and vice versa, there is no local context

used in translation. Therefore, the word-based SMT model is not widely used nowadays.

The state-of-the-art SMT (Koehn et al. 2003) uses phrases as translation units. A phrase is

a sequence of words with not necessarily linguistically motivated. Using phrases instead of

words has several advantages: we can overcome the obstacles in word-based models and

translate multiple words from a source language to a target language as a single unit.

The PBSMT proposed in Koehn et al. (2003) consists of inverse phrase translation prob-

ability, inverse lexical translation probability, direct phrase translation probability and direct

lexical translation probability. The bilingual phrase pairs, i.e. the target phrase is the trans-

lation of the source phrase, are firstly extracted based on word alignments using alignment

tools, such as GIZA++ (Och and Ney 2003). Because single directional word alignments

only allow many-to-one mappings, symmetrized word alignments (by training word align-

ments in both directions) are often used to obtain many-to-many alignments. The extraction

process follows heuristics (i) no word can be aligned to the outside of the extracted phrase

pairs, (ii) no phrase can be extracted if only unaligned words can be found.

As seen in Figure 2.2, we cannot extract phrase pair (f1 f2 , e1 e2) since f2 is also

aligned with e3 and e4 outside of the extracted phrase pair. As another example, f5 or f6
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e1 e2 e3 e4 e5 e6 e7 e8 e9

f1

f2

f3

f4

f5

f6

f7

f8

f9

Figure 2.2: An example of phrase pair extraction using “consistent with a word alignment” (Koehn
et al. 2003) algorithm. The black colored cells indicate the word alignment, e.g. word f1 is aligned
with word e1. We cannot extract phrase pair (f1 f2 , e1 e2) since f2 is also aligned with e3 and e4
outside of the extracted phrase pair. As another example, f5 or f6 cannot be extracted individually
since they are not aligned with any e.

cannot be extracted individually since they are not aligned with any e. Such an extraction

algorithm is defined as “consistent with a word alignment” (Koehn et al. 2003).

Given a collection of phrase pairs, the direct phrase translation probability can be esti-

mated using relative frequency as follows:

p(f̄ |ē) =
count(f̄ , ē)∑
f̄ count(f̄ , ē)

(2.3)

where f̄ and ē are the source and target phrase pairs, respectively. The length of the ex-

tracted phrase pairs can be different. In practice, we set the maximum length to 7 (Koehn

et al. 2003).

However, we always observe lower frequency for longer phrases, the translation prob-

abilities computed from lower frequency phrase pairs are unreliable and cannot truly rep-

resent the actual translation occurrence. Thus, the lexical translation probability feature is

introduced, which is estimated as in Equation (2.4):
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Source: f1 f2 f3 f4 f5 f6 f7

Target: e1 e2 e3 e4 e5 e6 e7 e8

m m d s d

Figure 2.3: Possible orientations in reordering model, where m is the monotone orientation, s is the
swap orientation and d is the discontinuous orientation. Given a current phrase pair with respect to
the previous target phrase, the monotone orientation predicts if the current source phrase is located
immediately to the right of the previous source; the swap orientation predicts if the current source
phrase is located immediately to the left of the previous source and the discontinuous orientation
predicts if the current source phrase is located anywhere else (not monotone or swap).

p(f̄ |ē, a) =
l∏

i=0

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

w(fi|ej) (2.4)

where a is the word alignment; l is the length of source phrase f̄ ; i and j indicate the word

position in f̄ and ē, respectively. w(fi|ej) is the lexical weights as in Equation (2.5):

w(fi|ej) =
count(fi, ej)∑
f ′ count(f

′, ej)
(2.5)

where f ′ indicates all source words aligned with ej .

The inverse phrase translation probability and inverse lexical translation probability can

also be computed accordingly.

2.1.3 Lexicalised Reordering Model

Different reordering models have been proposed for PBSMT in the literature (Koehn et al.

2005, Xiong et al. 2006, Galley and Manning 2008, Bisazza and Federico 2013). We will

focus the most widely used one. Motivated by Tillmann (2004), the lexicalized reordering

model (Koehn et al. 2005, Galley and Manning 2008) estimates three types of orientations

– monotone, swap and discontinuous – of a phrase pair based on previous adjacent target

phrase, as illustrated in Figure 2.3. Given a current phrase pair with respect to the previ-
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ous target phrase, the monotone orientation predicts if the current source phrase is located

immediately to the right of the previous source; the swap orientation predicts if the current

source phrase is located immediately to the left of the previous source and the discontinuous

orientation predicts if the current source phrase is located anywhere else (not monotone or

swap). The reordering probabilities are computed as follows:

po(orientation|f̄ , ē) =
count(orientation, f̄ , ē)∑

o count(o, f̄ , ē)
(2.6)

where f̄ and ē are the source and target phrase pairs, respectively. The reordering can also

be in two directions, e.g. backward and forward directions, and computed accordingly.

2.1.4 n-gram Language Model

The n-gram LM is an essential component in SMT. It is used to evaluate the fluency of the

translations in the target language. It estimates the likelihood of a word appearing next in a

sequence of target words. According to the chain rule, an n-gram LM can be denoted (using

target sentence E as an example) as in Equation (2.7):

p(e0, e1, . . . , ej−1, ej) = p(e0)p(e1|e0) . . . p(ej |e0, e1, . . . , ej−1) (2.7)

However, it is impossible to compute such statistics in real life, as we could never observe

all possible sequences in a language. Furthermore, due to the fact that computation costs

are high and data becomes scarce for longer sentences, we only consider a limited n − 1

number of historical words according to the Markov assumption. For example, a bigram

language model is computed as in Equation 2.8:

p(e0, e1, . . . , ej−1, ej) = p(e0)p(e1|e0) . . . p(ej |ej−1) (2.8)

The n-gram probabilities are estimated by counting relative frequencies, as in Equation
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(2.9),

p(ej |ej−n, . . . , ej−1) =
count(ej−n, . . . , ej−1)∑
e
count(ej−n, . . . , ej)

(2.9)

In order to avoid a zero probability prediction, smoothing methods should be applied, such

as the add-one smoothing or Kneser-Ney smoothing (Chen and Goodman 1996).

As n-gram LMs measure the probability of how likely words are appearing next in a

sentence, a ‘good’ n-gram LM should assign a higher probability to an observed text than a

‘bad’ LM. To evaluate the performance of an n-gram LM, we use perplexity, as in Equation

(2.10):

perplexity = 2H(test,LM) (2.10)

where H(test, LM) is the cross-entropy value modelling two distributions: test is the test

data indicating a (true) distribution and LM is the LM distribution. The cross-entropy is

defined as in Equation (2.11):

H(test, LM) = − 1

|test|
log p(test|LM) (2.11)

which indicates as the average negative log-likelihood per word. |test| is the total number

of words in test.

A lower perplexity value indicates a better n-gram LM. In the domain adaptation litera-

ture (Moore and Lewis 2010, Axelrod et al. 2011, Duh et al. 2013), the perplexity value of

a sentence given by an LM trained with domain data can be interpreted as the closeness of

the sentence to that domain. The lower the perplexity is, the more likely the sentence is in

that domain.

In SMT trainings, the LM can be built solely from the target side of the parallel data.

In practice, much larger amounts of monolingual data are used to supplement the target-

language data in the parallel corpus.
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2.1.5 Machine Translation Evaluation Metrics

To evaluate SMT translation quality, we use automatic evaluation metrics. Compared to

human evaluation, automatic evaluation metrics are faster and more consistent. Many auto-

matic evaluation metrics have been proposed in the field, e.g. Sentence Error Rate (SER),

Word Error Rate (WER) (Stolcke et al. 1997), Bilingual Evaluation Understudy (BLEU)

(Papineni et al. 2002), METEOR (Banerjee and Lavie 2005) and Translation Edit Rate

(TER) (Snover et al. 2006). In this thesis, we choose to use BLEU to estimate the SMT

translation quality as it is the most commonly used one in MT.

BLEU is a reference-based MT evaluation metric, so reference translations are essential

when computing the evaluation scores. It is language-independent. The output of BLEU

is a score between 0 and 100% indicating the similarity between the MT outputs and the

reference translations. BLEU is computed over the entire test set. The higher the scores

are, the better the translations are. BLEU scores are computed based on a modified n-gram

precision, as in Equation (2.12):

BLEU = BP ∗ exp

N∑
n=1

1

N
log(
|mn ∩mr|
|mn|

) (2.12)

where n represents the order of the n-grams compared between the translations and refer-

ences. Typically, n is from 1 to 4. mn and mr indicate the n-grams occurring in the MT

outputs and the corresponding references, respectively. |mn∩mr| is the number of n-grams

occurring in both translations and references. In the case of multiple occurrences n-grams,

we clip |mn∩mr| to the maximum number of times that an n-gram occurs in the reference.

The motivation is that MT systems can overgenerate improbable translations and “a refer-

ence word should be considered exhausted after a matching candidate word is identified”

(Papineni et al. 2002). A high BLEU score candidate translation should also match the

reference translations in length, therefore, BP is introduced. BP is the brevity penalty to

penalize shorter translations than the references, which is computed as in Equation (2.13):
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BP = exp
max(1− length(r)

length(n)
,0) (2.13)

where n and r indicate the translation output and reference translation, respectively.

2.1.6 Summary

In summary, Figure 2.4 describes the process of PBSMT training. Given a parallel training

corpus, words within the corpus are first aligned and phrase pairs are extracted using the

word-aligned parallel training corpus. We can then learn the translation model and the

lexicalised reordering model as described in Section 2.1.2 and 2.1.3, respectively. Using

the target training data (or concatenating with some extra monolingual data in the target

language if available), we can also learn an n-gram LM as described in Section 2.1.4. After

this, the models are optimized under the log-linear framework as described in Section 2.1.1

to maximize the performance using a small tuning set. Translation performance is measured

with an evaluation metric, such as BLEU. With the optimized weight parameters of the

features in the models, we can now translate and evaluate the test set to output the evaluation

scores which indicate the performance of the PBSMT system.

2.2 Neural Machine Translation

As presented in Section 2.1, PBSMT consists of a translation model, a reordering model and

an LM, which are linearly integrated using the log-linear framework. NMT (Sutskever et al.

2014, Cho et al. 2014, Bahdanau et al. 2015, Luong et al. 2015b), being a new approach,

employs an individual large neural network to model the entire translation process. Tu et al.

(2016) state the advantages of NMT over SMT are as follows:

• NMT uses distributed word representations during training,

• Explicit feature design is not required to capture translation regularities in NMT,
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Figure 2.4: This diagram shows the training steps of a PBSMT system.

21



1 2 3 4 5 6 7 8

w1 -0.326 0.326 0.036 0.708 -0.535 1.709 -0.981 0.496
w2 0.941 -0.284 -0.337 0.349 0.761 -0.039 -0.662 1.438
w3 -0.355 0.292 0.989 -0.834 0.769 0.740 0.152 -0.420
w4 0.934 -0.552 0.418 0.555 -1.894 -0.273 -0.711 0.092
w5 1.696 0.994 0.960 0.039 -0.631 0.783 0.538 -0.822
w6 0.552 -0.807 0.066 -0.862 0.473 -0.240 -0.974 -0.975
w7 -0.211 -1.714 0.557 -0.740 -0.907 -0.830 0.517 0.749
w8 -0.734 -0.040 1.509 -0.795 0.006 0.512 -0.970 -0.028
w9 -0.311 0.447 -0.825 -1.027 1.335 0.696 0.621 0.546
w10 -0.809 -1.078 0.847 -0.446 -0.789 -0.577 0.472 -0.734

Figure 2.5: A word vector model is a v × n matrix, where v is the size of vocabulary and n is
size of the word vector. In this example, the size of the vocabulary is 10 (w1 . . . w10), each word is
represented in 8 dimensions (size of the word vector).

• NMT is based on RNNs, which are better at capturing long-distance reordering than

SMT.

In this section, we review word vector models, RNNs, RNN LM, the encoder-decoder

NMT framework (Cho et al. 2014, Sutskever et al. 2014), the state-of-the-art attention-based

NMT (Bahdanau et al. 2015) and bidirectional RNNs.

2.2.1 Word Vector Models

Word vectors (Distributed word representations) are important building blocks in neural

networks. In NLP, word vectors have the advantage that similar words are represented

closely in the vector space.

A word vector model is a v×n matrix which can map a word in a vocabulary to a real-

value word vector, where v is the size of vocabulary and n is size of the word vector. Figure

2.5 is an illustration of a word vector model. While much work has been introduced (Hinton

et al. 1986, Rumelhart et al. 1986, Mikolov et al. 2013a, Pennington et al. 2014) for word

vector models, in this thesis we focus on the approach proposed by Mikolov et al. (2013a).

In Mikolov et al. (2013a), labelled data is not required for the word vector model training.

It uses context words as features to predcit the current word. A recent study (Mikolov et al.

2013c) showed that distributed word representations can capture linguistic regularities and
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Figure 2.6: Word vector model architectures proposed in Mikolov et al. (2013a).

similarities in the training corpus. For example, given the word vectors of words ‘king’,

‘man’ and ‘woman’, we can apply vector operations on them, such as:

king - man + woman

The result word vector is close to the word representation of ‘queen’.1

Mikolov et al. (2013a) proposed two different architectures for distributed word repre-

sentation training, where the Continuous Bag of Words (CBOW) architecture predicts the

current word based on the context words, and the Skip-gram predicts surrounding words

given the current word. Intuitively, the CBOW architecture reverses the training of the

Skip-gram, as seen in Figure 2.6.2 For example, assume the following sentence is the train-

ing data for the distributed word representation training:

The cat is sitting on the mat .

The CBOW architecture models the conditional probability p(sitting|cat, is, on, the) (if

the current word is sitting and we use forward and backward context window of 2); the
1This example is taken from Mikolov et al. (2013c)
2This figure is taken from Mikolov et al. (2013a).
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x0 x1 x2 x3

h0 h1 h2 h3hinitRecurrent layer:

Input layer:

Figure 2.7: A simple unfold RNN which maintains a context vector covering previous sequential
information. For example, h1 is computed using w1 and h0. Later, h1 is involved in the computation
of h2. hinit is the initial state (a vector of zeros or random numbers) of the network. The context
vector is also refereed as the hidden state of an RNN and xt is the input at time step t.

Skip-gram architecture models the conditional probability p(cat, is, on, the|sitting) (if the

current word is sitting and in the 0-skip-4-gram setting). In the Skip-gram architecture,

the output is not limited to the immediate context of the input word, we can train the model

by skipping a number of words in its context, hence the name of this architecture is called

Skip-gram.

Apart from the aforementioned word vector model training methods, word vector mod-

els can also be trained together with other tasks (Collobert et al. 2011). As an example, the

word vectors used later in Section 2.2.3 involve specific word-vector training for an LM. At

the beginning of training, we randomly initialize the word vector for each word in the train-

ing vocabulary. Then the word vectors are updated using the errors learned by predicting

the current word given its previous words in a sentence.

The dimensions of word vector representation can be different. In practice, a size be-

tween 300 to 600 is an efficient setting for most tasks.

2.2.2 Recurrent Neural Network

RNNs build neural networks on sequential inputs and assume that the hidden states within

the network are dependent, which is true in many sequence prediction tasks. The hidden

states can be thought of a ‘memory’ to maintain the previous history.

A simple RNN, as seen in Figure 2.7, consists of two layers: an input layer and a

recurrent layer. The recurrent layer maintains a context vector covering previous sequential

information. Each context vector ht in an RNN is computed by the current input xt and
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previous context vector ht−1. The context vector is also refereed as the hidden state of an

RNN and xt is the input at time step t. A non-linear function is then applied to the current

context vector ht. A simple RNN can be formalized as in Equation (2.14):

ht = sigmoid(Wxt + Uht−1) (2.14)

whereW and U are the corresponding weight parameters. sigmoid is a non-linear function

defined as in Equation (2.15):

sigmoid(x) =
1

1 + e−x
(2.15)

where e is Napier’s constant.

However, it is known that simple RNNs suffer from the vanishing gradient problem

(Bengio et al. 1994), where for long sequence inputs, the early contexts are often forgotten

and overwritten by the later contexts. The Long Short-Term Memory (LSTM) (Hochre-

iter and Schmidhuber 1997) or the more recently introduced Gated Recurrent Unit (GRU)

(Chung et al. 2014) use gates to control the information flow from previous words, which

are better at capturing long-term dependencies than simple RNNs, and are thus often chosen

in practice.

The GRU, as illustrated in Figure 2.8, consists of an update gate and a reset gate, as in

Equation (2.16):

ut = sigmoid(Wuxt + Uuht−1)

rt = sigmoid(Wrxt + Urht−1)

h̃t = tanh(Wxt + (rt � ht−1))

ht = (1− ut)� h̃t + ut � ht−1

(2.16)

where ut is the update gate and rt is the reset gate. h̃t is the candidate activation (Chung
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hinit h0 h1 h2 h3u0 u1 u2 u3

h̃0 h̃1 h̃2 h̃3

x0 x1 x2 x3

r0 r1 r2 r3

Recurrent layer:

Candidate activation:

Input layer:

Figure 2.8: Illustration of an GRU network, which consists of an update gate u and a reset gate r.
Dashed lines indicate the computations for u and r, as seen in Equation (2.16) (the bias values are
omitted). hinit is the initial state (a vector of zeros) of the network.

et al. 2014) and� is the element-wise multiplication operation. ht is the linear-interpolated

output between the previous hidden state ht−1 and the candidate activation. Intuitively,

the update gate determines the interpolation weights between the previous hidden state

ht−1 and the candidate activation, and the reset gate determines the information flow from

previous hidden states. If the reset gate is set to 1 and the update gate is set to 0, the GRU

is equivalent to a simple RNN. Wu, Uu, Wr, Ur, W and U are the weight parameters, and

bu, br and b are the bias values of the corresponding gates. tanh is the hyperbolic tangent

function.

GRU is a simplified version of LSTM with fewer gates and has been growing increas-

ingly popular. The performance of GRU and LSTM are comparable according to Chung

et al. (2014). Thus, we use GRUs in this thesis.

2.2.3 Recurrent Neural Network Language Model

The main drawback of the n-gram LM is that it uses the Markov assumption due to data

sparsity for a large number of historical words, whereas the neural LM has no such assump-

tion. It can capture much longer history by using RNN than n-gram LM. In addition, the

neural LM is better at generalization for words as distributed word representations are used

in training.

The neural LM models the probability of the next word given the previous words. The
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hinit h0 h1 h2 h3u0 u1 u2 u3

h̃0 h̃1 h̃2 h̃3

x0 x1 x2 x3

w0 w1 w2 w3

p0 p1 p2 p3

r0 r1 r2 r3

Recurrent layer:

Candidate activation:
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Output layer:

Figure 2.9: This diagram shows an RNNLM. It has an input layer, a recurrent layer and an output
layer. The recurrent layer uses a GRU network. hinit is the initial state (a vector of zeros) of the
network. For example, if the current input word is w1, we first learn the word vector x1 in the input
layer, then compute the context vector h1 in recurrent layer using the GRU network. In the output
layer, we compute the probability of the current output p1 using a softmax function.

simplest RNN LM has an input layer, a recurrent layer and an output layer, as seen in Figure

2.9. The input layer learns word vectors. The recurrent layer can either be a simple RNN

or GRU. The output layer operates a softmax function to compute probability distributions

over all words in the vocabulary. We can formally define a neural LM (assume that the

recurrent layer is a single layer GRU network), as in Equation (2.17):

xt = M(wt)

ut = sigmoid(Wuxt + Uuht−1 + bu)

rt = sigmoid(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + U(rt � ht−1) + b)

ht = (1− ut)� ht−1 + ut � h̃t

p(t) = softmax(S(ht))

(2.17)

where wt is the input word, M is the word vector matrix, xt is the word vector of wt, ht
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is the current context vector computed using a GRU network and S is a transform function

which can convert ht into a vector with dimensions equal to the size of the vocabulary.

As we defined in the GRU Equation (2.17), h̃t is the candidate activation GRU and � is

the element-wise multiplication operation. Wu, Uu, Wr, Ur, W and U are the weight

parameters, and bu, br and b are the bias values of the corresponding gates.

For initialization, the weights parameters in the neural LM can be initialized with ran-

dom values. Words are sequentially fed to the model. At the output, each word is assigned

with a probability to indicate the likelihood of being the next word. At each training step,

we use cross-entropy to compute the error vectors, model weights are updated with the

standard back-propagation algorithm (Rumelhart et al. 1988). For example, we can define

the cross-entropy error function as in Equation (2.18):

C(y, ŷ) = −
∑
i

yi log(ŷi) (2.18)

where y is the predicted probability distribution and ŷ is the true distribution. In practice,

we can back-propagate errors not only for time t, but also even further. For example, a more

complicated back-propagation through time algorithm (Rumelhart et al. 1995) is commonly

used to back-propagate errors to the previous constant time-steps. The RNN is unfolded

into a flat architecture through time for a certain amount of time-steps and the errors are

summed up for all unfolded time-steps. Then gradients of the error are computed and

model parameters are updated.

The training of a neural network LM normally runs many epochs, where each epoch

loops through all the training data. The model is considered to have converged when no

significant improvements are observed based on the log-likelihood on the evaluation data.

The perplexity evaluation for n-gram LMs is also used for neural LM.

As a pre-processing step in neural LM training, since the softmax function in Equa-

tion (2.17) needs to distribute probability distributions over all words (typically hundreds

of thousands in size), it is a time-consuming operation, we also need to map the lower
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frequency words into the Unknown (UNK) token.

After a neural network LM is trained, the input layer can also be thought as a task-

specific word-vector model (Collobert et al. 2011). Therefore, word vector models can be

pre-trained as we described in Section 2.2.1 or in a task-specific training as the input layer

of a neural LM.

Neural network LMs are not restricted to only using RNNs. Early research (Bengio et al.

2003) uses a feed-forward neural network, whereas Wang et al. (2015) use a convolutional

neural network. Different data representations have also been explored in recent research,

e.g. characters are used for training instead of words (Kim et al. 2016).

2.2.4 Encoder-Decoder Framework

In a nutshell, the fundamental job of the encoder-decoder framework (Cho et al. 2014,

Sutskever et al. 2014) in NMT is to probabilistically decode a target sequence given the

encoded source sequence, where the two sequences can be of different lengths.

Figure 2.10 illustrates translation process for a source sentence with 4 input words

{f1, . . . , f4}, where hf indicates the source context vectors at each time step of the source

input; c is a fixed-size vector representing the source sentence (c = hf4 , which is the last

time step of the encoder RNN); he indicates the target context vectors at each time step

of the target output and e represents the translated words. Thus, the current output he4 is

conditioned on c, he3 and e3. Then, he4 can be used to predict e4.

The encoder-decoder framework formulates the translation problem as Equation (2.19):

p(E|F ) =

j∏
n=0

p(en|e0:n−1, F ) (2.19)

This can be interpreted as the translation probability of a target sentence E given a source

sentence F is computed by multiplying the translation probabilities of each target word; and

the translation probability of of each target word, e.g. en, is computed as the conditional

probability of given source sentence F and previous target translations e0:n−1.
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Notations:
f1,...,f4: Source words e1,...,e4: Target words
hf1 ,...,hf4 : Source context vectors he1,..., he4: Target context vectors
c: Source context vector (last time step)

Figure 2.10: The graphical illustration of the encoder-decoder framework. The source sentence has
4 input words {f1, . . . , f4} and the current predicting word is e4 in the target. hf indicates the
source context vectors at each time step of the source input; c is a fixed-size vector representing the
source sentence (c = hf4 , which is the last time step of the encoder RNN); he indicates the target
context vectors at each time step of the target output and e represents the translated words. Thus,
the current output he4 is conditioned on c, he3 and e3. Then, he4 can be used to predict e4.

The conditional probability is given by the decoder, which uses the softmax function

outputting the probability distribution of all words e in the target language, as in Equation

(2.20):

p(e|e1:j−1, F ) = softmax(S(tj−1, hj , c)) (2.20)

where c is the source context vector computed by the encoder, tj−1 is the word vector of

target word j − 1, hj is the target context vector for time j and softmax is a function defined

as in Equation (2.21):

softmax(xt) =
ext∑
v exv

(2.21)

where v is the target vocabulary size, e is Napier’s constant and xt is the input of the

softmax function. It is known that the softmax function is inefficient because the probability
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distribution is on all words in the target vocabulary, and such an operation is required at

each training step. We often reduce the target vocabulary size by replacing lower frequency

words to a special token: the UNK token.

In Equation (2.20), S is a function that can transform the inputs into a vector of size v,

and hj is defined as in Equation (2.22):

hj = g(tj−1, hj−1) (2.22)

where g is a GRU network. Thus, we use the source input sentence and previously translated

words to make predictions for the next word.

The NMT model can be trained with the mini-batch Stochastic Gradient Descent (Rob-

bins and Monro 1951) algorithm together with Adadelta (Zeiler 2012), and is validated

based on cross-entropy error. During training, we save the trained model based on the num-

ber of model parameters updates. For example, the trained can be saved at every 1,000

updates. We can then compute the BLEU scores of each saved model using development

data. The best-performing model is the final trained NMT model.

During training, a special token – end-of-sentence (EOS) – is used to append at the end

of training sentences. In the decoding phase, then translation process stops if the current

output word is the EOS token.

2.2.5 Attention-based Neural Machine Translation

The encoder-decoder framework uses a fixed-size vector to represent the whole source in-

put. Although GRU networks are known to be better at capturing long-range dependen-

cies, experimental results (Bahdanau et al. 2015) show that translation quality decreases for

long input sentences. Accordingly, Bahdanau et al. (2015) use an attention model to learn

dynamic soft-alignment during the network training. With the attentional model, source

information can be spread across the source context vector, and the decoder can selectively

pay attention to different parts of the source context during decoding.
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Figure 2.11: The graphical illustration of the attention-based NMT, where hf indicates the source
context vectors and he indicates the target context vectors. Suppose there are 4 source input words
{f1, . . . , f4} and the current predicting word is e4 in the target. The encoder reads the source input
words and produces the source context vectors for each source input word. Next, the attention model
⊕ computes weights (α1,4, α2,4, α3,4 and α4,4) for each hf and outputs a weighted sum of hf – a
distinct source context vector c4. Then, the distinct source context vector c4, previous translation e3
and previous target context vector he3 are used to obtain the current target context vector he4, which
is used to output translation probability for all target words.

Figure 2.11 is a graphical illustration of the attention-based NMT model, where hf

indicates the source context vectors and he indicates the target context vectors.3 Suppose

there are 4 source input words {f1, . . . , f4} and the currently predicted word is e4 in the

target. The encoder reads the source input words and produces the source context vectors for

each source input word. Next, the attention model computes weights (α1,4, α2,4, α3,4 and

α4,4) for each hf and outputs a weighted sum of hf – a distinct source context vector. Then

the distinct source context vector c4, previous translation e3 and previous target context

vector he3 are combined as the current target context vector he4, which is used to output

translation probability for all target words.

We now formally define the attention-based NMT (Bahdanau et al. 2015). The align-
3Gates in the GRU networks are eliminated.
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ment model that scores the alignment at position i and j in F and E respectively, is com-

puted as in Equation (2.23):

eij = vT a(hj−1, hi) (2.23)

where hj−1 is the target hidden state of E and hi is the source context vector at time i in

F computed by the encoder RNN, and a is a non-linear function, such as the tanh function.

v ∈ Rn is a weight matrix.

Thus, a distinct source context vector cj can be computed for each word in E, and the

source context vector c is rewritten as in Equation (2.24):

cj =
m∑
i=1

αijhi (2.24)

where αij is a normalized weight for each context vector of source input in {0 . . . i}, com-

puted as in Equation (2.25)

αij =
exp(eij)∑m
i=1 exp(eij)

(2.25)

Thus, we can update Equation (2.22) with cj , such as in Equation (2.26):

hj = g(tj−1, hj−1, cj) (2.26)

And Equation (2.20) is also updated according such as in Equation (2.27)

p(e|e1:j−1, F ) = softmax(S(tj−1, hj , cj)) (2.27)

2.2.6 Bidirectional Recurrent Neural Network

During the encoding phase, words can also be fed into the decoder in both directions, using

what is known as a bidirectional RNN (Schuster and Paliwal 1997). The intuition behind
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Figure 2.12: The graphical illustration of the bidirectional RNN.

using such a model is to include both positive and negative time steps of the source input

during encoding.

Figure 2.8 is a graphical illustration of the bidirectional RNN, which consists of for-

ward (
−→
h1,. . . ,

−→
h4 are the context vectors) and backward (

←−
h1,. . . ,

←−
h4 are the context vectors)

RNNs, where {f1, . . . , f4} are the input sequences. The outputs are the concatenations of

the context vectors at corresponding time steps, such as h1 = [
−→
h1,
←−
h1]. A bidirectional

RNN used in NMT “contains the summaries of both the preceding words and the following

words” (Bahdanau et al. 2015) for source inputs. Because an RNN can represent recent

inputs better, the outputs of a bidirectional RNN are focused on the context words on both

sides (positive and negative time steps) of the current word. Sutskever et al. (2014) also

claim that it is “extremely valuable” and can “greatly boost the performance” by using the

reversed source sentences information in NMT models.

2.2.7 Summary

Over the last few years, neural network training has attracted much interest and demon-

strated promising results. For example, NMT systems achieved many state-of-the-art re-

sults on a number of language pairs (Cettolo et al. 2015, 2016, Bojar et al. 2016). In this

subsection, we first reviewed the important building blocks in neural network training – the

word vector models. We then introduced the RNN, particularly the GRU network, which
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has been used in many sequence prediction tasks. Next, we provided information on two

applications which are related with this thesis – RNN LMs and NMT. We also discussed

attention-based NMT using bidirectional RNN.

2.3 Domain Adaptation for MT

The focus of this thesis is applying domain adaptation in MT systems. In this subsection,

we review some of selected works for in-depth discussion. We first discuss methods that

make better use of the training data which can be applied in both SMT and NMT systems,

i.e. the data selection approaches. We then review methods of domain adaptation in SMT,

such as SMT model combination and SMT topic-based domain adaptation. Next, we study

domain-adaptation approaches for neural LM and NMT. At the end of this subsection, we

provide our summary for this subsection.

2.3.1 Data Selection

Domain adaptation via data selection focuses on making efficient use of General-Domain

(GD) training data in order to improve the translation quality of MT systems. The data

selection approaches are applicable to the domain-awareness scenario, where there is a

clear boundary between the In-Domain (ID) and GD training data. The preliminary setting

for using data selection in domain adaptation is that there is a limitation on the size of ID

training data, while large amounts of GD training data are normally thought easier to obtain.

The aim of data selection is to select some sentences which are similar to the ID training

data from a large amount of GD training data. It has the advantage that it can potentially

remove some noisy (e.g. incorrectly aligned) data (Haddow and Koehn 2012). The data

selection approaches can be used in n-gram LM, SMT, neural LM or NMT tasks.

Lü et al. (2007) use information retrieval techniques in a transductive learning frame-

work to increase the count of important ID training instances, which results in phrase-pair

weights being favourable to the development set. Biçici and Yuret (2011) employ a fea-
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ture decay algorithm which can be used in both active learning and transductive learn-

ing settings. The decay algorithm is used to increase the variety of the training data by

devaluing features that have already been seen from a training set. In recent studies, a

cross-entropy difference method has seen increasing interest for the problem of SMT data

selection (Moore and Lewis 2010, Axelrod et al. 2011). The training data set is ranked

using cross-entropy difference from LMs trained on ID or GD sentences. A threshold is

then set to select the pseudo-ID sentences. The intuition is to find sentences as close to

the target domain and as far from the average of the GD as possible. Later, Mansour et al.

(2011, p. 2) argue that “An LM does not capture the connections between the source and

target words, and scores the sentences independently”, and linearly interpolate IBM model

1 (Brown et al. 1990, 1993) into the cross-entropy difference framework. The translation

performance is improved on both Arabic-to-English and English-to-French translation tasks

compared with the standalone cross-entropy difference approach. Toral (2013) also makes

use of linguistic information, such as lemmas, named entity categories and part-of-speech

tags, when computing the cross-entropy difference. Another extension of Axelrod et al.

(2011) is Banerjee et al. (2012) who propose an approach to perform batch selection with

the objective of maximising the SMT performance. Later, Duh et al. (2013) report “the

neural language model (Bengio et al. 2003) is a viable alternative, since its continuous vec-

tor representation of words is well-suited for modelling sentences with frequent unknown

words, providing smooth probability estimates unseen but similar contexts”. They then

adapt the cross-entropy difference approach using neural LM. Chen and Huang (2016) and

Peris et al. (2016) use neural network training to select ID training data where selection

problem is treated as a classification task.

However, data selection approaches have several drawbacks. Firstly, data selection is a

rather heavy-handed approach. Sentences in the GD data set are either selected and used

in SMT training or ignored, despite the fact that those sentences that are not selected might

still have a positive contribution to the performance of an SMT performance (Haddow and

Koehn 2012). Furthermore, data selection approaches are classified as a ranking task. The
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Figure 2.14: SMT Model combination paradigm

GD training data is ranked according to some distance measure, e.g. cosine similarity or

cross-entropy difference, compared to the ID training data. A threshold of the selected

portion of the GD data needs to be determined empirically. Figure 2.13 illustrates the

schematic relationship between the amount of selected GD data with the corresponding

SMT performance. In general, we observe SMT performance improvements by adding

more selected data (Kirchhoff and Bilmes 2014), the performance reaches a peak point

and then begins to decrease. To learn the selected portion of data to reach such a peak

point requires us to train and test on many SMT systems, which is a very time-consuming

process.
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2.3.2 Domain Adaptation for SMT

SMT model combination approaches are used when multiple sub-models are available, e.g.

each sub-model is trained on its own domain. After the combination operation, a single

global model is produced. Figure 2.14 illustrates the SMT model combination paradigm in

the case where ID and GD are both available. The combined global model is then used for

decoding. Because the model combination technique needs to know the domains of each

sub-model, it falls into our domain-awareness scenario.

Linear combination (Foster and Kuhn 2007) linearly combines sub-models into one

global model, as defined in Equation (2.28):

global model =
∑
c

λc[sub modelc] (2.28)

where c indicates a domain. Thus, each model of a domain has its corresponding weight

λ and
∑

c λc = 1. The weights are learned according to some distance metrics, e.g. tf/idf,

perplexity, Latent Semantic Analysis or the EM algorithm, in Foster and Kuhn (2007). In

the experiments of Foster and Kuhn (2007), using the EM algorithm to learn λ slightly

outperforms other distance metrics in terms of BLEU score. Bisazza et al. (2011, p. 3) also

note that “there is not a consensus on the best technique to optimize the mixture weights”

in the linear combination.

One drawback of the linear combination approach is that the phrase pairs in the ID trans-

lation model can be penalized when learning λ in Equation (2.28). For example, the EM

algorithm will assign higher probabilities to the phrase pairs in the GD translation model if

the GD translation model already has good coverage of the desired domain. Consequently,

correct phrase pairs in the ID translation model are ignored during decoding and the trans-

lation performance decreases (Chen et al. 2014). To overcome such an issue, Foster et al.

(2013) propose to balance the λ learning process by randomly sampling an equal number

of instances between ID and GD translation models.

As we mentioned in Section 2.1.1, the log-linear framework has the ability to include
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more feature functions. Accordingly, the sub-models of each domain can be interpolated

into the log-linear framework. Such a combination technique can be denoted as in Equation

(2.29):

global model = exp
∑
c

λc[sub modelc] (2.29)

Therefore, the weights of log-linear combination are optimized directly using the stan-

dard tuning procedure. However, log-linear combination has a serious drawback. During

translation, either the translation hypotheses must be found in all sub-models or a smooth

value must be given, in order to avoid a zero probability for the missing hypotheses. Oth-

erwise, useful information contained in the small sub-models might be discarded (Foster

et al. 2013, Chen et al. 2014). As an alternative, Koehn and Schroeder (2007) investigate an

idea of using separate models as alternative decoding paths, where a phrase pair is scored

by each model individually and each model has its own set of optimized weights.

Another well-established SMT model combination approach is called model fill-up

(Nakov 2008). In the fill-up approach, models which are trained on the ID training data

are unchanged in the global model. However, models trained using the GD data are ‘filled’

into the global model. Only phrase pairs in the GD model that are not appeared in the ID

model are added into the global model, as in Equation (2.30):

global model = sub modelc ∪ {sub modelĉ − sub modelc} (2.30)

where sub modelc and sub modelĉ indicate the ID and GD models, respectively. The rela-

tive complement of sub modelĉ in sub modelc is represented as sub modelĉ−sub modelc}.

Furthermore, a new feature value (1 or 0.5) is allocated to each phrase pair in the combined

model to indicate its provenance. Bisazza et al. (2011) modify the feature value of Nakov

(2008) by using an additional feature, such as 1 (= exp(0)) and 2.718 (= exp(1)), to define

the provenance of each phrase pairs in the translation models. The attractive properties of

the fill-up approach can be seen from experimental results which demonstrate comparable

translation performance with linear and log-linear combination approaches. It can also in-
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crease the efficiency of the tuning procedure (Bisazza et al. 2011). For example, the tuning

of the fill-up approach converges much faster than the log-linear combination approach as

there are more parameters to tune in the latter case.

The model combination technique is one of the most popular domain-adaptation ap-

proaches in MT. Using model combination, we introduce additional knowledge from other

domains to overcome the out-of-vocabulary words problem when using only the insufficient

ID data.

The model combination technique is applicable to the domain-awareness scenario,

where there is a clear boundary between the ID and GD training data. However, in a

domain-unawareness scenario, the domain information is not given explicitly in the train-

ing data. One approach is to use the topic information as domains to perform adaptation,

namely topic-based domain adaptation.

In topic-based domain adaptation, the domains in the training data are introduced im-

plicitly by some topic learning algorithms. It is not a hard-handed – 1 or 0 relationship

between domains – approach to represent domains, but to use probabilities instead. The

topic-based domain adaptation falls into our domain-unawareness scenario.

Su et al. (2012) employ two topic models trained on the monolingual ID data and the

source side of the parallel GD data. The translation models are then conditioned on the

probabilities mapping between the ID topic distribution to the GD topic space. Eidelman

et al. (2012) achieve translation performance improvement by including a lexical weight

topic feature into the translation models. The lexical feature is conditioned on the topic

distributions learned on the source side of the training sentences using Latent Dirichlet

Allocation (LDA) (Blei et al. 2003). Hasler et al. (2012) learn topic features for word and

phrase pairs, the features are then added as sparse features into SMT. However, Hidden

Topic Markov Model (HTMM) (Gruber et al. 2007) is employed instead of LDA. Xiao

et al. (2012) and Zhang et al. (2014b) focus on document translations and propose a topic-

similarity model and a topic-sensitivity model for SMT. The topic-similarity model is used

to encourage or penalize topic-sensitive rules, and the topic-sensitivity model is applied to
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balance the topic-insensitive rules. Su et al. (2015) observe that words are consistent with

topics in the target sentences. In their work, a context-aware topic model is integrated into

the translation system for better lexical selection.

We will shortly discuss some other domain-adaptation techniques in SMT. A self-

enhancement approach is also used to overcome the challenge of insufficient ID training

data (Ueffing 2006, Schwenk 2008, Bertoldi and Federico 2009), where an ID SMT sys-

tem is employed to translate the monolingual data into the target language and the resultant

translations are used as additional training data. A more fine-grained investigation on the

self-enhancement approach is proposed by Chen et al. (2008), where different approaches

are proposed for the translation model, reordering model and LM. Wang et al. (2012) use

a classifier at decoding time to classify source sentences into the most favourable domains.

Given the classified domain, the decoder can then decode with domain-specific features.

Haddow and Koehn (2012) discuss the usefulness of domain adaptation in the phrase pair

extraction and translation model training steps. One of the conclusions is that while GD can

improve the translation coverage for rare words, it may be harmful for common ID words.

This suggests that the translations which contain a lot of ID evidence should be kept. Chen

et al. (2013) assign vector-similarity measures to the entries in translation models. The

similarities are computed by comparing the vectorized representation of translation model

entries extracted from the development set and the training set.

2.3.3 Domain Adaptation for NMT

In neural LM, one approach to performing domain adaptation is to use an additional adapta-

tion layer to combine the GD LM into the ID LM (Park et al. 2010, Ter-Sarkisov et al. 2015).

However, a LM trained on all GD data is required, which can be time-consuming if the GD

data is very large. Curriculum learning (Bengio et al. 2009), which rearranges the training

data in a particular order to improve generalization, has also been applied on neural LM

domain adaptation by Shi et al. (2013). In Mikolov and Zweig (2012), word predictions

are conditioned on the word topic representations. Thus, building multiple topic-specific
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language models is avoided.

To date, several domain adaptation techniques for NMT models have been proposed in

the literature. Luong and Manning (2015) find that using ID training data to fine-tune the

existing GD NMT models can be a very useful domain-adaptation technique. An absolute

gain of 3.8 BLEU points improvement can be observed on the International Workshop on

Spoken Language Translation task in the English-to-German language pair. Servan et al.

(2016) apply a similar idea in a specific Computer Assisted Translation framework. Another

difference between Luong et al. (2015b) and Servan et al. (2016) is that Luong et al. (2015b)

conduct training over many more iterations than the work in Servan et al. (2016). Freitag

and Al-Onaizan (2016) also report the efficiency of fine-tuning on ID data. However, one

drawback of the fine-tuning approach is that there is an assumption that there are only two

domains.

Inspired by Sennrich et al. (2016), Kobus et al. (2016) annotate domain tags in NMT

training. The sentence-domain tag is appended to each source sentence; the word-domain

tag is concatenated with each source token. For example, if the training or testing source

sentence belongs to the Medical domain, a sentence-domain tag @MED@ is appended to

the end of the source sentence during training and testing. The word-domain tag is used in

a similar way but appended to each source word. A prerequisite of such an approach is to

know the domain of the translating sentences in advance.

2.3.4 Summary

For a better illustration, Figure 2.15 presents the overall domain adaptation for the MT work

described in Section 2.3. It is worth mentioning that our RQ1 is related to the SMT model

combination section, RQ2 is related to neural LM and NMT domain adaptation section and

RQ3 is related to the neural NMT domain adaptation section. Finally, our proposed method

in Chapter 3 for RQ1 is inspired by the cross-entropy difference method described in the

data selection section.
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Figure 2.15: Domain adaptation related work
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2.4 Summary

In this chapter, we provided detailed background information related to this thesis. We

firstly reviewed the models and the overall framework in a PBSMT system. We discussed

the BLEU evaluation metric. We also gave information about n-gram LM. We then stud-

ied the most recently proposed work on neural LM and NMT. We also reviewed selected

domain-adaptation approaches in the MT literature in the categories of data selection, do-

main adaptation for SMT and domain adaptation for NMT.

In the next chapter, we will address our first research question:

RQ1 In a domain-awareness scenario, how can we further improve the cur-

rent domain adaptation method of an SMT by availing of the domain-likeness

of the context in which a word or a phrase appears?

We present a unique translation model combination approach which can be thought of

as an extension of previous studies of Bisazza et al. (2011).
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Chapter 3

Domain Adaptation for SMT by

Probabilistic Combination of Models

3.1 Introduction

When there is a clear boundary between the domains in the training data, i.e. in the domain-

awareness scenario, one approach is to train two separate translation models in Statistical

Machine Translation (SMT), namely an In-Domain (ID) translation model and a General-

Domain (GD) translation model. The two translation models can later be combined into a

single global translation model (as seen in Figure 2.14). Such a combination method is often

called ‘model combination’ in SMT (Foster and Kuhn 2007, Bisazza et al. 2011, Foster et al.

2013, Chen et al. 2014). It is an effective technique when the ID training data is too small

in size and the vocabulary coverage is low (many untranslated words) in translation outputs

because it uses the GD translation model to increase the vocabulary coverage as the GD

training data is much larger in size. Furthermore, we can also maintain the topics or styles

of the ID data if the model combination approach is used.

One model combination approach, namely the fill-up method of Nakov (2008), uses a

feature value to define the origin of each phrase pair in the translation models, i.e. 1 and 0.5

for phrase pairs in the ID and GD phrase table, respectively. Bisazza et al. (2011) extend
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Figure 3.1: The fill-up (Bisazza et al. 2011) model combination approach with a provenance type
feature, where (S,T ), (S′,T ′) and (S

′′
,T
′′
) represent the phrase pairs in the ID, GD and global

translation models, respectively. F represents the added feature column in the global translation
model. The phrase pairs in the ID translation model are kept in the global translation model with
the additional feature value of exp(0); the GD phrase pairs which can be found in the ID translation
model are ignored, e.g. (S0,T0). Otherwise, the phrase pairs will be added into the global translation
model with an additional feature value of exp(1), e.g. (S3,T3) and (S4,T4).

the original fill-up method with a provenance type feature: values of 2.718 (=exp(1)) and 1

(=exp(0)) are applied to the phrase pairs in the global translation model. The combination

in Bisazza et al. (2011) uses rules as seen in Figure 3.1, where (S,T ), (S′,T ′) and (S
′′
,T
′′
)

represent ID, GD and global translation models, respectively. All phrase pairs in the ID

translation model are kept in the global translation model, with the provenance feature value

of exp(0). If a GD phrase pair can be found in the ID translation model, it will be ignored

in the global translation model. Otherwise, phrase pairs in the GD translation model will be

added into the global translation model with the provenance feature value of exp(1).

The fill-up method of Bisazza et al. (2011) uses tuning to learn weights for the global

translation model. The optimized weight of the provenance feature indicates a scaling factor

of the phrase pairs added from GD translation model into the global translation model. For

example, the tuning process outputs a single feature weight, which is then applied to the
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Source: 价格 运运运行行行 反映 了 国内 市场 形势 变化 。

Target: Price movement reflects the changes in the domestic market situation .

Source: ASP 支持 多 种 语言 脚本 运运运行行行 环境 。

Target: ASP supports multi-language script running environment .

Figure 3.2: An example of phrase pair extraction from parallel sentences. We can extract phrase pairs
“(运行, movement)” from the first sentence pair and “(运行, running)” from the second sentence
pair.

provenance feature (either 2.718 or 1) during the decoding phase. Bisazza et al. (2011) show

that the fill-up method can outperform other translation model combination approaches, i.e.

linear or log-linear combinations, with less model weights to optimize, which motivated us

to study it.

However, GD translation models are often trained using large corpora which comprise

different domains. Some GD data can be more similar/dissimilar to the ID data. Therefore,

if only features like 2.718 or 1 are used in the global translation model, the entire phrase

pairs in the GD translation model will either be marked as close to or far away from the

desired domain. The ‘good’ or ‘bad’ phrase pairs in the GD translation model are all used

by the same tuned weights.

For example, in Figure 3.2, we can extract phrase pairs “(运行, movement)” and “(运行,

running)” from the two Chinese-to-English sentence pairs. We assume these sentence pairs

are extracted from the GD corpus. Thus, both phrase pairs will be added into the global

translation model with the same additional feature value of exp(1) and compete with each

other. However, it is obvious that the phrase pair “(运行, running)” is a better phrase pair

if ‘Computer Technology’ is the target domain, where more attention should be given to it

than “(运行, movement)” in the global translation model.

Additionally, the phrase pair extraction step in Phrase-based Statistical Machine Trans-

lation (PBSMT) (Koehn et al. 2003) is not linguistically motivated. The contextual infor-
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mation, i.e. words around the extracted phrase pairs, is largely ignored. The extraction

process simply follows the heuristic that extracted phrase pairs need to be consistent with

the corresponding word alignments (Koehn et al. 2003). However, according to the distri-

butional hypothesis, word meanings are implied by the context rather than by the words

themselves (Banchs 2014). The contextual information can be a useful indication to mea-

sure the closeness of a phrase pair from ID to GD. In this chapter, we seek to answer our

first research question:

RQ1 In a domain-awareness scenario, how can we further improve the cur-

rent domain adaptation method of an SMT by availing of the domain-likeness

of the context in which a word or a phrase appears?

To answer RQ1, we propose a fine-grained translation model combination approach,

which can be thought as an extension of previous studies (Nakov 2008, Bisazza et al. 2011).

Instead of assigning the same feature value of exp(1) to all phrase pairs in a GD translation

model, we estimate and assign a probabilistic feature value to each phrase pair in the GD

translation model. For example, we assign different feature values to the phrase pairs “(运

行, running)” and “(运行, movement)” to give more attention to the one which is closest

to ID. The probabilistic feature values are interpreted as the distance of phrase pairs to ID,

i.e. phrase pairs with lower probability values indicate that they are close to ID (shorter

distance, more likely to be in ID); phrase pairs with higher probability values indicate that

they are far away from ID (longer distance, more likely to be in GD). It is worth mentioning

that RQ1 is related to the SMT model combination section (Section 2.3.2).

3.2 Our Approach

This section describes a fine-grained translation model combination approach. Figure 3.3

illustrates the proposed method, where (S,T ), (S′,T ′) and (S
′′
,T
′′
) represent ID, GD and

global translation models, respectively. Phrase pairs in the ID translation model are kept

in the global translation model with the additional feature value exp(0). GD phrase pairs
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Figure 3.3: The fill-up model combination approach with probabilistic features, where (S,T ),
(S′,T ′) and (S

′′
,T
′′
) represent ID, GD and global translation models, respectively. F represents

the feature column. Phrase pairs in the ID translation model are kept in the global translation model
with the additional feature value exp(0). GD phrase pairs which can be found in the ID translation
mode are ignored, i.e. (S0,T0). Otherwise, phrase pairs will be added into the global translation
model with an additional probabilistic feature value, e.g. (S3,T3) and (S4,T4). The probabilistic
feature values for GD phrase pairs are computed by a domain-likeness model.

which can be found in the ID translation model are ignored, i.e. (S0,T0). Otherwise, phrase

pairs will be added into the global translation model with an additional probabilistic feature

value, e.g. (S3,T3) and (S4,T4). The probabilistic feature values for GD phrase pairs are

computed by a domain-likeness model.

The probability feature is interpreted as the distance from ID to GD, i.e. phrase pairs

with lower probability feature values indicate that they have shorter distance to ID; phrase

pairs with higher probability feature values indicate that they have longer distance to ID.

3.2.1 Domain-likeness Model

The domain-likeness model, which is trained using a Support Vector Machine (SVM)

(Cortes and Vapnik 1995), which is a well-known machine-learning algorithm often applied

to classification or regression tasks. In classification, SVM maps a testing instance into a
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hyperplane which optimally separates the training data, and then outputs the predicted class

label that the testing instance belongs to.

The advantage of choosing a SVM as our learning algorithm is that it supports kernels.

In some situations, the features used in training are linearly non-separable for a training

algorithm. A kernel function is able to project those features into a high-dimensional space,

e.g. by computing the similarities between the features using a similarity function. Thus,

the separability of the features can be improved.

The objective function of SVM is defined by Cortes and Vapnik (1995) as in Equation

(3.1):

min
w,b,ξ

1
2w

Tw + C
l∑

i=1
ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, y ∈ {1,−1}

(3.1)

where w is the weight vector, C is a tunable trade-off parameter indicating a penalty for

misclassified decisions, l is the number of training instances, and ξi is known as the slack

variable. φ is the kernel function (Radial Basis Function), which can be defined as in

Equation (3.2):

φ(u, v) = exp{−γ|u− v|2} (3.2)

where the gamma parameter γ is a tunable variable which adjusts the width of the kernel

function. SVM can not only predict class labels, but also give a probability estimation for

every prediction (Chang and Lin 2011). In our work, we use this predicted probability to

indicate the domain-likeness estimation.

The domain-likeness model is trained using the SVM implementation of Dimitriadou

et al. (2009). It is an interface to the libsvm (version 2.6) (Chang and Lin 2011) implemen-

tation.

50



3.2.2 From Phrase Pairs to Sentence Pairs

Figure 3.3 shows that we need to predict a probability value for a given phrase pair using the

domain-likeness model. However, distinguishing domains directly for phrase pairs is a great

challenge: phrases are too short in a translation model. The typical phrase pair length (either

source-phrase or target-phrase) is 7 tokens in the default translation model in Moses (Koehn

et al. 2007), and phrase pairs with 3 tokens in length already have the greatest contribution

to translation outputs (Koehn et al. 2003). Previous work shows that distinguishing the

domains for phrases can be useful to the translation models by employing a large set of

feature to distinguish phrase sense Carpuat and Wu (2007). Giménez and Màrquez (2007)

use only source language with a local-context (5 tokens to the left and to the right), and

words, parts-of-speech and lemmas features are also used. Neale et al. (2016) use rich

semantic ontologies from WordNet (Miller 1995) on a weighted graph representation to

perform word sense disambiguation.

In this work, we make the assumption that phrase pairs are in the same domain as the

sentence pairs from which they are extracted to overcome the challenge of distinguishing

domains directly for phrase pairs. Such an assumption is often applied in SMT data se-

lection algorithms for domain adaptation (Moore and Lewis 2010). In Moore and Lewis

(2010), the cross-entropy values are computed at the sentence level. The selected ones are

then used for phrase extraction which are added into the translation models. In our case,

we first find out the sentence pair from which a given phrase pair is extracted from, then we

compute a probability estimation for that sentence pair. Therefore, the contextual informa-

tion of the phrase pairs is used.

3.2.3 Domain-likeness Model Feature Set

Motivated by Moore and Lewis (2010), Axelrod et al. (2011), where cross-entropy values

are used as evidence to separate domains, we also use cross-entropy values as our features

for the domain-likeness model training.

In Axelrod et al. (2011), sentence pairs are ranked based on cross-entropy difference of
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domains, such as in Equation (3.3):

Score(s, t|SIN, SGD, TIN, TGD) =

HLM(SIN)(s)−HLM(SGD)(s) +HLM(TIN)(t)−HLM(TGD)(t)
(3.3)

where s and t are the given sentence pair to rank; and SIN , SGD, TIN and TGD represent

the Language Model (LM) training corpus of source ID, source GD, target ID and target

GD, respectively. We train LMs using SIN , SGD, TIN and TGD, then compute HLM(SIN)(s),

HLM(SGD)(s), HLM(TIN)(t) and HLM(TGD)(t) representing ID LM and GD LM the cross-

entropy values for the given s or t, accordingly. The sum of the cross-entropy differences,

i.e. HLM(SIN)(s)−HLM(SGD)(s) and HLM(TIN)(t)−HLM(TGD)(t), are then used for rank-

ing.

Accordingly, we design our feature template into three sets:

• Domain Features in Source Language: the domain evidence shown from the source

side of the training data. We use the cross-entropy values computed from the ID and

GD LM in this feature set, i.e. HLM(SIN)(s) and HLM(SGD)(s) in Equation (3.3).

• Domain Features in Target Language: the domain evidence shown from the target

side of the training data. We use the cross-entropy values computed from the ID and

GD LM in this feature set, i.e. HLM(TIN)(t) and HLM(TGD)(t) in Equation (3.3).

• Domain Distance Features: a feature set representing the cross-entropy differences,

i.e. HLM(SIN)(s)−HLM(SGD)(s), HLM(TIN)(t)−HLM(TGD)(t)

and Score(s, t|SIN, SGD, TIN, TGD) in Equation (3.3).

Following Axelrod et al. (2011), SIN and TIN can be obtained directly from the ID SMT

training data; SGD and TGD are randomly selected from the GD SMT training data; tokens

in SGD and TGD are treated as unknown tokens unless they appear at least twice in SIN and

TIN , respectively.

One concern is that a phrase pair in a translation model can be extracted from a num-

ber of different training sentence pairs. Accordingly, those training sentence pairs will be

52



estimated to have different feature values by our domain-likeness model. We define the

following three simple heuristics to address this issue:

• Min: the feature value uses the minimum domain-likeness estimations from the ex-

tracted sentence pairs. The motivation for this is that if a phrase pair is extracted from

a sentence pair which has strong evidence to be excluded from GD, such a phrase pair

should not be classified as ID.

• Arithmetic Mean: use the arithmetic mean of all the domain-likeness estimations.

There is no bias to any sentence pair since all sentence pairs will be able to contribute

to the final feature value.

• Geometric Mean: use the geometric mean value to describe the central tendency

of all domain-likeness estimations.

3.2.4 Domain-likeness Model Training

We use the training data of French-to-English language pair from the Workshop on Statisti-

cal Machine Translation (WMT) and International Workshop on Spoken Language Trans-

lation (IWSLT) translation tasks as the same language pair is also used in Bisazza et al.

(2011). In the WMT data, News Commentary and Europarl data (Koehn 2005) are used

as the ID and GD corpus, respectively.1 In the IWSLT data, Technology, Entertainment,

Design (TED) and news-commentary-v9 data (Tiedemann 2012) are used as as the ID and

GD corpus, respectively. We first perform some standard data-cleaning steps, including to-

kenization, punctuation normalization, replacement of special characters, lower casing and

long sentence removal (>80), resulting in the preprocessed data summarized in Table 3.1.

We use scripts provided within Moses (Koehn et al. 2007) for all cleaning steps.

The experimental setup is to assess our approach in both of the following situations: (i)

the GD dataset being significant larger than the ID data, as seen in the WMT corpus, and

(ii) the two datasets being similar in size, as seen seen in the IWSLT corpus.
1http://www.statmt.org/wmt07/shared-task.html
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Corpus Sentences Tokens
(French/English)

WMT

ID Training (News Commentary) 42,884 1,197k/1,018k
GD Training (Europarl) 1,257,436 37,487k/33,788k

Development (news-dev2007) 1,064 31k/25k
Test (news-test2007) 2,007 58k/49k

IWSLT

ID Training (TED) 106,642 2,152k/2,016k
GD Training (news-commentary-v9) 181,274 5,580k/4,509k

Development (ted-dev2010) 934 20k/20k
Test (ted-test2010) 1,664 33k/31k

Table 3.1: Corpus statistics of the French-to-English language pair

M N T
WMT 40,000 2,884 1,064

IWSLT 50,000 5,000 934

Table 3.2: Domain-likeness model training data statistics, where M, N and T are the data sizes (in
sentences) used for training, tuning and testing, respectively.

C γ ID Accuracy
WMT 16 0.125 81.39%

IWSLT 2 0.03125 85.65%

Table 3.3: Domain-likeness models tuned parameters C and γ, where C is the trade-off parameter
in Equation (3.1), and γ adjusts the width of the kernel function in Equation (3.2). We use the SMT
tuning data to test our domain-likeness model, with the accuracy based on ID.

The data statistics of our domain-likeness model for training, tuning and test sets are

summarized in Table 3.2. Following Moore and Lewis (2010), we randomly select (from

Table 3.1) the equal number (size M) of sentences as ID and GD corpus to train the domain-

likeness model; N training sentences to tune the parameters in Equations (3.1) and (3.2).

The test data (size T in Table 3.2) for the domain-likeness models are the corresponding

tuning data from Table 3.1.

In Moore and Lewis (2010), only 4-gram LMs are used to distinguish between ID and

GD. In order to increase the variety of our feature set, we train n-gram LMs, where n =

{2. . . 5}, as we described in Equation (3.3). We then extract the perplexity features from

each n setting as the feature template we described in Section 3.2.2. The tuned parameters

and model accuracies are presented in Table 3.3.
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Algorithms Tuning Test

WMT

Binary Fill-up (Bisazza et al. 2011) 27.33 28.01
Probabilistic Fill-up (Min) 27.27 28.03

Probabilistic Fill-up (Arithmetic Mean) 27.84 28.21
Probabilistic Fill-up (Geometric Mean) 28.00 28.37‡

IWSLT

Binary Fill-up (Bisazza et al. 2011) 27.66 30.82
Probabilistic Fill-up (Min) 28.05 30.73

Probabilistic Fill-up (Arithmetic Mean) 28.14 31.64‡
Probabilistic Fill-up (Geometric Mean) 28.02 31.21‡

Table 3.4: BLEU scores of provenance fill-up and probabilistic fill-up. We use ‡ to indicate statis-
tically significant (Koehn 2004) improvements upon the baseline fill-up system. The significance
testing uses bootstrapping method (Koehn 2004) at the level p = 0.01 level with 1,000 iterations.

3.3 Experiments

3.3.1 SMT Experimental Setup

Training data in Table 3.1 are also used for our SMT experiments. The PBSMT systems

are trained using Moses (Koehn et al. 2007). The reordering model is not included in our

translation system since we are interested only in measuring the system effects coming

from translation models. We use the word aligner MGIZA (Gao and Vogel 2008) for word

alignments in both translation directions, and then symmetrize the word alignment models.

The translation systems are tuned with minimum error rate training (Och 2003) using case-

insensitive BLEU (Papineni et al. 2002) as the optimization measure. We use the Moses

default LM toolkit KenLM (Heafield 2011) at tuning and decoding time. We set our baseline

systems to be the fill-up system (Bisazza et al. 2011), which has been integrated within

Moses.

3.3.2 Domain Adaptation Results

Table 3.4 reports our experimental results on the corresponding development and test sets.

We use ‡ to indicate statistically significant (Koehn 2004) improvements over the baseline

fill-up system. The significance testing uses the bootstrapping method (Koehn 2004) at the

p = 0.01 level with 1,000 iterations.

The result on the WMT data experiment shows that the probabilistic feature fill-up

systems using three heuristics for domain-likeness calculation can improve the translation
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performance over the baseline system. The system using the central tendency heuristic

(Geometric Mean) for domain-likeness estimation outperforms the others, obtaining 0.36

absolute BLEU score and 1.3% relative improvements over the baseline system, which is

statistically significant.

In the IWSLT experiment, the Geometric Mean calculation produces a strong BLEU

score, 0.39 absolute (1.3% relative) higher compared to the baseline system. However,

the Arithmetic Mean calculation achieves the best result in this experiment with a 31.64

BLEU score, which is absolute 0.82 (2.66% relative) BLEU score higher than the baseline

system on the test set. Both of the above two systems in the IWSLT experiment qualify as

statistically significant improvements over the baseline system at p = 0.01 level. The Min

system produces a similar result with 0.1 absolute BLEU score difference compared to the

baseline system.

3.3.3 Comparison with Data Selection

In this experiment, we compare our probabilistic feature fill-up approach with the data

selection approach proposed in Axelrod et al. (2011). In general, data selection is one

of the standard approaches used in domain adaptation in SMT. However, it requires us to

train many SMT systems on different proportions of the selected GD data. We can then

evaluate each system in order to determine the one with the best translation performance.

In this experiment, we first rank the GD corpus according to the cross-entropy difference

defined in Equation (3.3). We then select the top-p proportion of the ranked GD corpus to

concatenate to the ID corpus, which is then used to train the PBSMT systems. We employ

the same experimental settings described in Section 3.3.1 for this set of experiments except

that the word alignments are computed in advance using the combination of all ID and GD

data.2 The tuning and test data sets described in Table 3.1 are also used in order to compare

these results with those results described in Table 3.4.

Figures 3.4 and 3.5 illustrate the effects of the selection proportion and BLEU score
2Thus, we do not need to run word alignment models for each system, which is time-efficient.
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Figure 3.4: BLEU scores with different p proportion of data selection on WMT data set, where the
optimal translation system is p = 0.2. All fill-up approaches can outperform the optimal translation
system.

on the corresponding test data of the trained systems. As we might expect, additional

GD training data can benefit translation performance, with 20% and 65% selections of GD,

obtaining 27.28 and 31.73 BLEU scores on the WMT and IWSLT experiments, respectively.

In addition, we found that it is harmful to translation quality if a large proportion of GD

data is included, i.e. when p >20% and p >65% in the WMT and IWSLT experiments,

respectively, as this results in the domain of the training data shifted from ID to GD.

In contrast, the provenance and probabilistic feature fill-up systems can outperform

the optimal data selection system in the WMT data set. Thus, we conclude that GD data

contribute positively to the translation system, and that data selection for SMT may be con-

sidered a somewhat heavy-handed approach. A similar conclusion is also drawn in Haddow

and Koehn (2012). When Geometric Mean is used to compute the domain-likeness fea-

ture value, we can observe an absolute 1.09 (3.98% relative) improvement in BLEU score

compared to the optimal data selection system. This improvement is statistically significant

at the p = 0.01 level with 1,000 iterations.
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Figure 3.5: BLEU scores with different p proportion of data selection on IWSLT data set, where the
optimal translation system is p = 0.65. Fill-up (ArithmeticMean) produces a comparable result
with the optimial translation system in the data selection experiment.

However, the optimal data selection system in the IWSLT experiment performs better

than all the provenance and probabilistic feature fill-up systems. We think the reason for

this is that the GD data may be rather similar (useful) to ID. For example, the variance in

translation quality is very small for the systems when p >0.65, with the difference being

only between 0.06 and 0.25 BLEU scores. Even the system trained using the concatenated

ID and GD training data (p = 1) can already achieve a good result, which is a 0.08 lower

BLEU score than the best performing data selection system (p = 0.65).

3.4 Analysis

In this section, we first study the distribution of the phrase pairs added into the final merged

translation model. We then provide examples of phrase pairs regarding the probabilistic

domain-likeness feature.
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Figure 3.6: Filtered GD translation model phrase pairs counts with intervals of 0.05 according to
the domain-likeness feature value in the IWSLT experiment. The phrase pair counts are displayed
on a logarithmic scale on the x-axis. The numbers beside each bar indicate the number of phrase
pairs which fall into the corresponding interval. For example, there are 17,022, 26,438 and 34,956
of phrase pairs fall into the intervals of 0.65 ˜ 0.70 when the Min, Arithmetic Mean and Geometric
Mean heuristics are used, respectively. The approach of Bisazza et al. (2011) assigns a fixed value
of 1.0 to all GD phrase pairs.
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3.4.1 Distributions

The main difference between our approach with the previous fill-up method (Bisazza et al.

2011) is the additional features employed: a probabilistic domain-likeness feature is used

in this work, while a provenance feature is applied in previous work. It is easy to establish

that the ID part of the produced translation model is identical in both approaches, and that

the total number of phrase entries is also the same. Thus, we mainly focus on the phrase

pairs of the GD translation model in this section. We take the IWSLT experiment as a case

study.

The IWSLT experiment merges translation models trained separately on different do-

mains: 5,790,068 and 12,915,64 phrase pairs can be found in the ID (TED corpus) trans-

lation model and the GD (news-commentary-v9 corpus) translation model (filtered using

the corresponding test set), respectively. There are 236,779 phrase pairs in the ID trans-

lation model which conflict with the phrase pairs in the GD translation model, and so

they are neglected. The final global translation model contains 18,468,938 phrase pairs,

whereas the standalone translation model using the concatenated ID and GD corpus pro-

duces 18,339,548 phrase pairs.

Figure 3.6 demonstrates the distributions of the GD phrase pairs in the merged phrase

table in this work and that of Bisazza et al. (2011). For the phrase pairs in this work, we first

group the phrase entries in the merged phrase tables with intervals of 0.05 according to the

domain-likeness feature value. Recall that the domain-likeness feature value is interpreted

as the distance from ID to GD, i.e. phrase pairs with lower probability values indicate that

they are close to ID; phrase pairs with higher probability values indicate that they are far

away from ID and close to GD. Therefore, the instances in the 0.00 ˜ 0.05 interval are

phrase pairs which are predicted to be the closest to ID by our domain-likeness model. All

phrase pairs in Bisazza et al. (2011) are in the 0.95 ˜ 1.00 interval since a fixed feature

value (exp(1)) is used.

We can observe in Figure 3.6 that the domain-likeness model predictions fall mostly

into the 0.00 ˜ 0.05 or 0.95 ˜ 1 intervals. We think that this prediction follows the natural
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Source J’imaginais un truc dans le genre de la marche des pingouins,
alors j’ai regardé Miguel.

Reference I was imagining a march of the penguins thing, so I looked at
Miguel.

Bisazza et al. (2011) I was imagining the works of the penguins, so I looked
Miguel.

This work I was imagining the march of the penguins, so i looked at
Miguel.

Figure 3.8: The example shows that the domain-likeness probabilistic feature can be helpful in
producing better translations. The source sentence has a phrase ‘la marche des’. The expected
translation is ‘a march of’ in the reference, and the phrase pair ‘(la marche des ||| the march of)’ can
be extracted from the GD corpus. Our approach is able to produce a better translation as the phrase
pair ‘(la marche des ||| the march of)’ (in the format of source ||| target) is determined to be close to
ID. The example is selected from the test data in the IWSLT experiment.

composition of the GD data set, so that the composition can be described as consisting of

some ID related sentences, some mixed-domain sentences and some GD sentences. All

three heuristics create similar numbers of phrase entries for each interval group at the up-

per bound range: 0.00 ˜ 0.45. Later, there is a dramatic increase in the quality of phrase

pairs at the interval 0.50 ˜ 0.55 for the Geometric Mean system. A similar increase

also can be found in the Arithmetic Mean system at the interval 0.60 ˜ 0.65, but the

increasing curve is sharper compared with the growth in Geometric Mean. However, the

curve of the Min system is much smoother so that no fluctuation can be observed except a

small improvement at the interval 0.50 ˜ 0.55. The trend of the Min, Geometric Mean

and Arithmetic Mean plots can be observed as in Figure 3.7 where we can see that the

Geometric Mean domain-likeness model predicts more phrase pairs that are close to ID

than the Min and Arithmetic Mean domain-likeness models do. In this case, the ap-

proach in Bisazza et al. (2011) can be thought as a special case of our approach where all

phrase pairs in the GD are assigned the feature value of 1 (exp(1)).

62

~
~
~
~


Phrase Pairs Probability
la marche des ||| the march of 0.001

ne voulons pas ||| aren’t willing to do 0.019
nous ne sommes pas ||| we know we are not 0.061

laissez moi ||| let me 0.102
principalement ||| was predominantly 0.999
politique nucléaire ||| nuclear policy 0.999

sans précédent ||| undertake unprecedented 0.999
efficacité ||| effectiveness was limited 0.999

Table 3.5: Phrase pair examples (in the format of source ||| target) with the domain-likeness proba-
bilistic values, where lower probability values indicating the phrase pair is close to ID.

Source Phrase Target Phrase Probability

dans le monde entier
around the world 0.026

worldwide 0.509
global platform 0.541

en particulier dans
at least in 0.004

especially those in 0.661
particularly given 0.937

Table 3.6: This table shows that the phrase pair examples of the same source phrases are ranked
according to the domain-likeness probabilistic values, where lower probability values indicate the
likelihood that the phrase pair is close to ID. For example, the domain-likeness model determines
that the target phrase ‘around the world’ is closer to ID than the target phrase ‘global platform’ for
the same given source phrase ‘dans le monde entier’.

3.4.2 Examples

In this work, we expect that the phrase pairs with a lower domain-likeness probability (indi-

cating close to ID) will be selected in translations. Figure 3.8 shows a translation example.

The source sentence has a phrase ‘la marche des’. The expected translation is ‘a march

of’ in the reference, and the phrase pair ‘(la marche des ||| the march of)’ (in the format

of source ||| target) can be extracted from the GD corpus. When the translation models are

combined, our approach estimates that phrase pair ‘(la marche des ||| the march of)’ is more

close to ID, so it is selected in the translation. In contrast, in Bisazza et al. (2011) all phrase

pairs extracted in the GD corpus are given the same feature value and compete with each

other, which may be the reason that a different translation with the reference is produced.

Table 3.5 shows examples of GD phrase pairs with the assigned probabilities in the IWSLT
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experiment. For example, we can see that the phrase pair ‘(la marche des ||| the march of)’

has a probability of 0.001 as if it were extracted from ID.

Table 3.5 shows the phrase pairs that are ranked according to the probabilities estimated

by the domain-likeness model. The phrase pairs are selected from the GD translation model

in the IWSLT experiment. Recall that we use the TED data as the ID training data, and

the news-commentary-v9 corpus as the GD training data in the IWSLT experiment. Both

the TED and news-commentary-v9 data are spoken language data. However, we observe

that the TED corpus is less formal than the news-commentary-v9 corpus. Therefore, we

expect that the domain-likeness model can also make this distinction. For example, a phrase

pairs assigned with a lower probability should be more informal than those with higher

probabilities.

In Table 3.6, we can observe that the source phrase ‘dans le monde entier’ can have

three different corresponding target phrases, which are ranked as ‘around the world’ being

the closest to the ID and ‘global platform’ closest to the GD. We think such a ranking is

accurate since the phrase ‘around the world’ is more informal than ‘global platform’. A

similar example can also be observed for the case of ‘en particulier dans’ as the source

phrase in Table 3.6.

3.5 Contribution

In translation model combination, previous fill-up work tries to define a provenance feature

value to all phrase pairs extracted from the GD training data. However, we think such a

provenance feature may cause potential ID phrase pairs to be treated unfairly.

We extended the previous provenance feature to a domain-likeness probabilistic feature,

which represents the domain-likeness of a phrase pair being in GD. Such an approach can

distinguish the extracted phrase pairs in the GD phrase model. For example, higher feature

values will be assigned to phrase pairs that are predicted to be closest to the GD; lower

feature values will be assigned to the phrase pairs that are predicted to be far away to
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the ID. This is a “soft” approach to combine translation models which can achieve better

translation quality compared to previous work.

Furthermore, we confirmed several previous research findings, including that (i) data

selection is a heavy-handed approach, (ii) the unselected GD data can still also make good

contributions to the translation system, and (iii) it is harmful to translation quality if a large

proportion of GD data is concatenated with ID data for SMT training.

As a side note, in the domain-awareness scenario, we do not distinguish sentences in

the ID training data, such as there is only one boundary between the ID and GD training

data and all sentences in the ID training data are equally important to the desired domain.

Therefore, the domain-likeness model we proposed in this chapter does not make proba-

bility estimations on ID training data. However, it is possible to apply the domain-likeness

model also on ID training data if we are not in such a scenario.

3.6 Summary

In this chapter, we described an efficient translation model combination approach to address

RQ1 in the domain-awareness scenario. We described the rationale behind our probabilistic

feature fill-up approach and explained our intuitions regarding the domain-likeness model

feature set.

We used the assumption that phrase pairs are in the same domain as the sentence pairs

which they are extracted from. Our feature value is predicted using the contextual informa-

tion of phrase pairs. Furthermore, we use the learned domain-likeness probabilistic feature

to balance domain weights of phrase pairs in ID and GD model combination.

We also designed two experimental scenarios, demonstrating that our fill-up approach

can significantly improve translation performance in both experiments compared to pre-

vious fill-up studies. We made comparisons and illustrated detailed analysis of the three

heuristics used for computing the probabilistic feature value. We also compared our ap-

proach with the data selection approach and found that our method can outperform or pro-
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duce comparable translation results, which can be thought as a substitution of data selection

methods.

However, Machine Translation (MT) is an active research area in which technologies

are being developed rapidly. With the availabilities of large training corpus and powerful

computational resources, neural network training has demonstrated to be the state-of-the-

art training algorithm in MT task. In the next chapters, we switch our attention to neural

network training in the domain-awareness scenario.
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Chapter 4

Domain Adaptation with Large

Pre-trained Word Vector Models

4.1 Introduction

It has been over two decades since the conventional Statistical Machine Translation (SMT)

(Brown et al. 1993) technique was proposed in the Machine Translation (MT) literature.

The aim of MT is clear: to obtain high-quality translations faster and cheaper. SMT has

certainly brought us closer to such a goal. However, new exciting and promising meth-

ods of how to translate text from one language to another language, or how to model a

language, have also been developed rapidly at the same time. In the previous chapter, we

investigated the model combination approach for domain adaptation under the traditional

statistical training framework. In this chapter, we move our attention to the most recent pro-

posed approach: neural network training. Our focus is on proposing a domain-adaptation

approach which can be used in the state-of-the-art neural Language Model (LM) and Neural

Machine Translation (NMT) (Bahdanau et al. 2015) models.

Firstly, researchers have been working on using a sequence-to-sequence neural architec-

ture to map source to target languages. Neural network training differs from the statistical

approaches: statistical approaches need hand-crafted features, such as the phrase translation
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features in SMT or the n-gram features in the n-gram LM; however, neural approaches have

the power to extract features automatically without human intervention. It is achieved by

building up connections between nodes in layers and learning weights between them.

Secondly, word vector representations (Mikolov et al. 2013a) are used to represent

words for almost all Natural Language Processing (NLP) tasks when neural network train-

ing is used. Such representations are known to be better at generalization than plain text

format (Mikolov et al. 2013b). For example, assume the following two sentences:

Sentence 1: The cat is sitting on the mat.

Sentence 2: The dog is sleeping on the rug.

A neural network is able to learn which words are semantically close and then switch one

to a neighbouring one. The network can learn that the word pairs cat and dog, sitting and

sleeping or mat and rug are much closer to each other in the high-dimensional space.

Thirdly, the two well-known pre-trained word vector models – the Google word2vec

model (Mikolov et al. 2013a) and the GloVe (Global Vectors for Word Representation)

(Pennington et al. 2014) model – have been successful applied in many previous work

(Mikolov et al. 2013b, Kim 2014, Zhang et al. 2014a). Both of them are trained with a

large amount of data which are either publicly unavailable (in the case of word2vec) or only

partially available (in the case of GloVe). They are often used in the situation when the

relevant data is limited in NLP tasks. For example, the human annotated training data in the

text classification task is often too small and difficult to scale. In practice, the pre-trained

word vectors are only used to initialize the embedding layer in the network.

Accordingly, our hypothesis is that the pre-trained and the task-specific-trained word

vector models are complementary with each other in a neural network training. The pre-

trained word vector models can be applied to overcome the challenge that In-Domain (ID)

training data is too small. However, the task-specific-trained word vector model cannot be

substituted to the pre-trained one directly since they are trained on different domains (the

pre-trained word vector models are often trained using very large General-Domain (GD)
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x0 x1 x2 x3
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h0 h1 h2 h3

x∗0 x∗1 x∗2 x∗3

M∗ M∗ M∗ M∗

h∗0 h∗1 h∗2 h∗3

w0 w1 w2 w3

Domain Adaptation on Context Vectors

Domain Adaptation on Word Vectors

Gated Domain Adaptation

Figure 4.1: A high-level overview of the proposed domain adaptation mechanisms using neural lan-
guage model as an example. The adaptation processes are on word vectors (Section 4.2.1), context
vectors (Section 4.2.2) or using gating mechanisms (Section 4.2.3).

training data). In this chapter, we address our second research question:

RQ2 Whether the vector model trained using GD data can be used in domain

adaptation in a domain-awareness scenario?

We propose to perform domain adaptation from the pre-trained word vector model into the

task-specific one. With such an approach, we can make use of huge GD corpora with little

speed overhead and also adapt the richer word representations leaned from GD data into ID

training.

4.2 Our Approach

This section describes several domain-adaptation mechanisms we propose to address RQ2.

We use Recurrent Neural Network (RNN) LMs as an example to illustrate the proposed

approaches.

For notational convenience, the following notations are used in this section:
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wt : input word in time t

M : a task-specific word vector model trained using limited ID data

M∗ : a pre-trained word vector model trained using huge GD data

xt : the word vector of wt obtained from M

x∗t : the word vector of wt obtained from M∗

x̂t : the domain-adapted word vector

ht : the context vector of input xt

h∗t : the context vector of input x∗t

ĥt : the domain-adapted context vector

Figure 4.1 illustrates the high-level overview of the proposed adaptation approaches in this

section. For example, we first propose to perform domain adaptation on word vectors (xt

and x∗t ), then we apply the domain adaptation on context vectors (ht and h∗t ). Finally, we

propose our gating mechanisms.

4.2.1 Adaptation on Word Vectors

We first propose to perform domain adaptation between xt and x∗t . Given wt, we can obtain

xt and x∗t word vectors from M and M∗, respectively. xt represents the word meaning in

ID and x∗t represents the word meaning in GD.

We now formally define the operations of domain adaptation on word vectors:

1. Word Vector Concatenation (WVC): we concatenate xt and x∗t , as in Equation (4.1):

x̂t = [x∗t , xt] (4.1)

2. Weighted Word Vector Concatenation (WWVC): we can extend the WVC approach

by applying a weight matrix W to control the information flow from M∗ to M , as in

Equation (4.2):

x̂t = [Wx∗t , xt] (4.2)
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x̂0 x̂1 x̂2 x̂3

h0 h1 h2 h3

+ + + +

x0 x∗0 x1 x∗1 x2 x∗2 x3 x∗3

w0 w1 w2 w3

Figure 4.2: RNNLM training with the proposed domain adaptation on word vectors. ⊕ indicates the
WVC, WWVC, WVS or WWVS domain adaptation operations. For example, we obtain x1 and x∗1
in time step 1. We then perform one of the proposed domain adaptation operations to compute x̂1,
which is used for LM training. hs are used to map to the size of vocabulary for the softmax function.

3. Word Vector Sum (WVS): we sum the vectors of xt and x∗t . In this approach, the two

vectors need to have the same dimensionality, as in Equation (4.3):

x̂t = x∗t + xt (4.3)

4. Weighted Word Vector Sum (WWVS): a similar weight control can also be applied

to the WVS approach, as in Equation (4.4):

x̂t = Wx∗t + xt (4.4)

We then can replace xt with x̂t in Equation (2.17) to obtain our proposed LM training

with domain adaptation on word vectors. Figure 4.2 is the illustration of this approach.

For example, we obtain x1 and x∗1 in time step 1. We then perform one of the proposed

domain-adaptation operations to compute x̂1, which is used for LM training.

4.2.2 Adaptation on Context Vectors

We can delay the domain-adaptation step until the context information is available during

our LM training. The RNN encapsulates the word vector of current word and previous

histories, and then produces the current context vector. Intuitively, if we maintain separate
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x0 x1 x2 x3

h0 h1 h2 h3

x∗0 x∗1 x∗2 x∗3

h∗0 h∗1 h∗2 h∗3

+ + + +

ĥ0 ĥ1 ĥ2 ĥ3

w0 w1 w2 w3

Figure 4.3: RNNLM training with the proposed domain adaptation on context vectors. ⊕ indicates
the CVC, WCVC, CVS or WCVS domain adaptation operations. ĥs are used to map to the size of
vocabulary for the softmax function.

RNNs, where one uses xt and another one uses x∗t , there will be two pieces of context

information available to us, namely ht and h∗t . ht and h∗t can be thought as the context

vectors with the meaning in ID and GD, respectively.

We now formally define the domain-adaptation operations used on context vectors:

1. Context Vector Concatenation (CVC): we can concatenate the two context vectors ht

and h∗t , as in Equation (4.5):

ĥt = [h∗t , ht] (4.5)

2. Weighted Context Vector Concatenation (WCVC): we can extend the CVC approach

by applying a concatenation weight on h∗t in Equation (4.5). Thus, the network can

have some simple control over the amount of the information flowing from GD, as in

Equation (4.6):

ĥt = [Wh∗t , ht] (4.6)

3. Context Vector Sum (CVS): we can also sum ht and h∗t . We then have the compacted

representation of two vectors, as in Equation (4.7):

ĥt = h∗t + ht (4.7)
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4. Weighted Context Vector Sum (WCVS): another approach is to apply a weight matrix

to h∗t . Thus the information from GD can be controlled before compacting, as in

Equation (4.8):

ĥt = Wh∗t + ht (4.8)

We then can replace ht with ĥt in Equation (2.17) to obtain our proposed LM training

with domain adaptation on context vectors. The previous hidden state ht−1 in Equation

(2.17) is also updated accordingly. Figure 4.3 is the illustration of LM training with domain

adaptation on context vectors.

It is worth mentioning that the non-weighted operations (WVC, WVS, CVC and CVS)

are the special cases of the corresponding weighted operations (WWVC, WWVS, WCVC

and WCVS, respectively) with the weight matrix are all 1s. However, one advantage of non-

weighted approaches is that less training parameters are used. More details about training

parameters will be described in Section 4.3.

4.2.3 Gated Domain Adaptation

However, directly applying adaptation on the word or context vectors may not be efficient

since the concatenation or sum operations are too simple. Furthermore, the outputs of the

adaptation operations are discarded at each time stamp and not being used at the next time

step. For example, ĥ0 in Figure 4.3 is only used to predict the probability for step 0, but not

being involved in the computation of step 1. Ideally, we want to have adaptation operations

that can learn from GD at time step n, which also can be sequentially used at time step

n+ 1, as if the RNN. Thus, we propose various gated domain-adaptation mechanisms.

We now formally define the operations used in gated adaptation approach:

1. Gated Word Vector Adaptation (GWVA): in the GWVA approach, we first design a

gate to control the information flow from w∗t , as in Equation (4.9):

uGWVA
t = σ(Wuxt + Uuht−1 +W ∗ux

∗
t + U∗uh

∗
t−1 + bu) (4.9)
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where uGWVA
t is the update gate on word vectors. It is computed using the known

knowledge of xt, x∗t , ht−1, and h∗t−1. When applying uGWVA
t , we use a linear sum to

combine xt and x∗t , as in Equation (4.10):

x̂t = uGWVA
t � xt + (1− uGWVA

t )� x∗t (4.10)

where x̂t is the domain-adapted word vector. Such an adaptation approach ensures

that when the gate uGWVA
t tends to 1, we only use the ID word vector xt, and when

uGWVA
t tends to 0, the information from x∗t is fully cascaded to the x̂t. To use x̂t, we

can simply replace it with the original xt in Equation (2.17).

2. Gated Context Vector Adaptation (GCVA): a similar gating mechanism can also be

applied to the context vector, as in Equation (4.11):

rGCVA
t = σ(Wrxt + Urht−1 +W ∗r x

∗
t + U∗r h

∗
t−1 + br) (4.11)

where rGCVA
t is the update gate on context vectors. We can also use the linear sum

operation to combine ht and h∗t , as in Equation (4.12):

ĥt−1 = rGCVA
t � ht−1 + (1− rGCVA

t )� h∗t−1 (4.12)

We then use the domain-adapted context vector ĥt−1 to replace the original context

vector ht−1 in Equation (2.17).

3. Gated Domain Adaptation (GDA): the GWVA and GCVA operations can be com-

bined. Therefore, we can have full control to the information flowing from GD in

training.

Figure 4.4, 4.5 and 4.6 illustrate the LM training with domain adaptation using GWVA,

GCVA and GDA, respectively. In Figure 4.6, h1 is computed by x̂1 and ĥ0, where x̂1 is

the adapted word vector and ĥ0 is the adapted context vector. x̂1 is obtained by performing
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h0 h1 h2 h3

x̂0 x̂1 x̂2 x̂3

x0 x1 x2 x3x∗0 x∗1 x∗2 x∗3

h∗0 h∗1 h∗2 h∗3

w0 w1 w2 w3

Figure 4.4: RNNLM training with the proposed gated adaptation on word vectors. The shadow
nodes indicate the gating operations. For example, h1 is computed by x̂1 and h0. x̂1 is the adapted
word vector, where the domain adaptation operation is applied from x1 and x∗1 as seen in Equation
(4.10). h∗1, h∗2, h∗3 and h∗4 are used to compute the gate as seen in Equation (4.9). ĥs are used to map
to the size of vocabulary for the softmax function.

h0 h1 h2 h3

x0 x1 x2 x3x∗0 x∗1 x∗2 x∗3

h∗0 h∗1 h∗2 h∗3

ĥ0 ĥ1 ĥ2 ĥ3

w0 w1 w2 w3

Figure 4.5: RNNLM training with the proposed gated adaptation on context vectors. The shadow
nodes indicate the gating operations. For example, h1 is computed by x1 and ĥ0, where ĥ0 is the
adapted context vector and obtained by performing domain adaptation operation on h0 and h∗0 as
seen in Equation (4.12). ĥs are used to map to the size of vocabulary for softmax function.

domain-adaptation operation on x1 and x∗1 as seen in Equation (4.10); ĥ0 is obtained by

performing domain-adaptation operation on h0 and h∗0 as seen in Equation (4.12).

It is also worth mentioning that the pre-trained GD word vector model is static, which

means it is not updated during training. This is because the pre-trained word vector model is

obtained from a very large GD data set. The word vectors in such a model are not domain-

specific. By keeping it static, we interpret it as a ‘knowledge database’, and the knowledge
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x0 x1 x2 x3

x̂0 x̂1 x̂2 x̂3

x∗0 x∗1 x∗2 x∗3
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Figure 4.6: RNNLM training with the proposed GDA operation. The shadow nodes indicate the
gating operations. For example, h1 is computed by x̂1 and ĥ0, where x̂1 is the adapted word vector
and ĥ0 is the adapted context vector. x̂1 is obtained by performing domain adaptation operation on
x1 and x∗1 as seen in Equation (4.10); ĥ0 is obtained by performing domain adaptation operation on
h0 and h∗0 as seen in Equation (4.12). ĥs are used to map to the size of vocabulary for the softmax
function.

should be consistent. Another practical reason for not updating the pre-trained GD word

vector model is that fewer parameters need to be optimized in the network. In general,

models with fewer parameters can make training converge faster.

4.3 Language Models and SMT Reranking Experiments

To demonstrate that the proposed approach can be successfully applied in different sequence-

to-sequence prediction tasks, we use neural LM experiment in this section and NMT exper-

iment in the next section.

4.3.1 Experimental Setup

Recall that the setting of the domain-awareness scenario is a small amount of ID training

data and a significant amount of GD training data. In our first set of experiments, we thus

choose to use the widely known Penn Treebank (Marcus et al. 1993) portion of the Wall

Street Journal corpus as the ID domain training data,12 and the pre-trained word vector
1We download the data from http://www.fit.vutbr.cz/˜imikolov/rnnlm/

simple-examples.tgz
2The most widely used data sets for evaluating performance of LMs.
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Sentences Tokens
Training 42,068 887,521

Validation 3,370 70,390
Test 3,761 78,669

Table 4.1: Statistics of the Penn Treebank corpus

Sentences Tokens Vocabulary Size
Training 181,108 4,691k 72,828
Validation 3,000 64k 7,761
Test 3,003 71k 8,187

Table 4.2: Statistics of the News corpus

Google word2vec (Mikolov et al. 2013a) as GD data.3 For the Penn Treebank data, the

words outside the 10K vocabulary frequency list are mapped to the special Unknown (UNK)

token; sections 0-20 are used for training, and sections 21-22 are used for validation. We

report the perplexity on data from sections 23-24. The pre-trained word vector Google

word2vec model is trained on about 100 billion words from different resources. The trained

model consists of 3 million words and phrases. The word vectors are 300-dimensional in

the word2vec model.

In our second set of experiments, the ID data is the news corpus of the target side of

the French-to-English News Commentary v10 from the WMT2015 translation task. We

use corpus newstest 2013 for validation and newstest 2014 for testing. For this set of data,

we map the words outside the 16K vocabulary frequency list to the special UNK token. We

also use the pre-trained word vector Google word2vec model as our GD data. More detailed

data statistics for Penn Treebank and News Corpus are summarized in Table 4.1 and Table

4.2, respectively.

All LMs in our experiments are trained with a single Gated Recurrent Unit (GRU)

hidden layer containing 600 hidden units. We uniformly initialize the weight parameters

between [-0.1,0.1]. We set the maximum number of training iterations to 25. We set the

initial learning rate to be 1, and then apply the learning rate with a decay factor of 0.5 after

14 iterations. The model is optimized using Stochastic Gradient Descent (SGD) with batch
3https://code.google.com/archive/p/word2vec/
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Validation Set Test Set Parameter Number
Baselines
Baseline (n-gram) 148.1 141.2 N/A
Baseline (word2vec) 121.9 117.7 1,417k
Baseline (RNN LM) 93.0 89.3 1,417k
Adaptation on Word Vectors
WVC 95.1 91.4 1,063k
WWVC 94.2 90.6 1,072k
WVS 88.4 85.2 1,063k
WWVS 104.3 100.7 1,072k
Adaptation on Context Vectors
CVC 90.4 86.2 1,225k
WCVC 88.6 85.1 1,261k
CVS 88.3 84.7 1,225k
WCVS 90.3 86.7 1,261k
Gated Adaptation
GWVA 91.0 87.9 1,243k
GCVA 90.3 86.8 1,330k
GDA 86.2 81.9 1,387k

Table 4.3: Language model perplexity on Penn Treebank corpus. This table lists all LM experiments
using the proposed domain adaptation mechanisms on Penn Treebank corpus. The GDA approach
achieves the best performance on both validation set and test set in perplexity. Parameter number
indicates the number of training parameters in the corresponding model.

size of 20. We set the back-propagation through time to 40 time steps4. The word vector

size in the input layer is set to 600 for the baseline models. For a fair comparison, we use

word vector size of 300 for the ID word vector and 300 for the pre-trained word vectors in

the adapted LMs.

4.3.2 RNNLM Adaptation on Penn Treebank

Table 4.3 lists the perplexity results in the LM experiments on Penn Treebank data. The

baseline (n-gram) model is a 5-gram LM trained using modified Kneser-Ney smoothing

(Chen and Goodman 1996). It results in 148.1 and 141.2 perplexities on the validation

and test data set, respectively. The baseline (word2vec) model is a neural LM using the pre-

trained word2vec model as the embedding layer. It can achieve 121.9 and 117.7 perplexities

on the validation and test data set, respectively. The baseline LM, which is a standard neural

LM trained without domain adaptation, can achieve an 99.0 and 89.2 perplexities on the
4The average number of tokens is 21 in Penn Treebank data. However, all sentences are concatenated and

then sliced into 40 tokens for model training.
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validation and test data set, respectively.

In the adaptation on word vectors experiments, we found that summing up the word vec-

tors (WVS) from ID and GD can outperform the concatenation approach (WVC). By apply-

ing a weight control to GD word vectors, the weighted concatenation approach (WWVC)

yields a slight improvement, but not in the sum up approach (WWVS).

A similar picture can also be seen in the adaptation on the context vectors experiments.

Adding up the context vectors (CVS) is more useful than concatenating the context vectors

(CVC). In addition, it is better to use the weight vector in the concatenation case. Thus, we

can draw the conclusion that information from GD should be compressed (summed) into

ID rather than using scattered (concatenated) representations.

However, weighted vectors can be harmful to the sum approaches, e.g. WWVS and

WCVS. We think this is because the weight matrix is “hidden” behind the sum operation as

seen in in Figure 4.7a. Thus the model can be hard to optimize. In contrast, when applying

weight matrix in the concatenation cases, the resulted vectors are still separable by domains

as seen in in Figure 4.7b. Thus the weights in such adapted models are easier to optimize.

However, observing the experimental results, only a small positive impact can be found

when applying weights on the concatenation approaches. For example, approximately 1

to 2 perplexity points difference can be found between WVC and WWVC, or CVC and

WCVC models. This indicates the approach of using weight matrix for domain adaptation

in neural network training is too simple.

In the gated adaptation experiments, the adapted LM from the context vectors can pro-

duce a better perplexity result than the one adapts from word vectors, where the GCVA

approach can reduce 3.0 perplexity points and the GWVA approach can reduce 1.4 perplex-

ity points compared to the baseline LM. Combining the two gates (GDA) yields the best

performed LM model in all proposed adaptation mechanisms. It reduces the perplexity by

7.4 points compared to the baseline RNN LM.
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ID Word
Vector Model

pre-trained GD
Word Vector Model

W

(a) Sum operation. ⊕ indicates the sum operation. A new vector is created after the sum operation,
which is inseparable in domains.

+

ID Word
Vector Model

pre-trained GD
Word Vector Model

W

(b) Concatenation operation. ⊕ indicates the concatenation operation. A new vector is concatenated
from ID and GD, which is still separable in domains.

Figure 4.7: Sum adaptation vs. concatenation adaptation.

4.3.3 Scalability Experiments

To demonstrate the scalability of the GDA adaptation approach, we also train LMs adapting

from other freely available word vector models. SENNA (Semantic/syntactic Extraction

using a Neural Network Architecture) is the word vector model received after a LM training

in Collobert et al. (2011). The training data is obtained from Wikipedia. GloVe (Pennington
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Validation Set Test Set
Word Embedding Size = 50
Baseline 104.5 101.3
SENNA Collobert et al. (2011) 95.5 92.0
GloVe (glove 6b) 95.3 91.3
Word Embedding Size = 100
Baseline 97.0 93.7
GloVe (glove 6b) 89.5 85.3
Word Embedding Size = 200
Baseline 94.2 91.0
GloVe (glove 6b) 86.6 82.8
Word Embedding Size = 300
Baseline 93.0 89.1
GloVe (glove 6b) 86.4 82.6
GloVe (glove 42b) 87.1 82.3
GloVe (glove 840b) 86.9 82.2
Google (word2vec) 86.2 81.9

Table 4.4: The GDA adaptation on different word vector models. This table presents the experimen-
tal results of GDA adaptation using different word vector models on the Penn Treebank corpus. The
proposed GDA approach can produce better LM perplexity results in all settings.

et al. 2014) provides several versions of word vector models. The glove 6b model is trained

on Wikipedia data and the English Gigaword Fifth Edition corpus;5 the glove 42b model

is trained on the Common Crawl data; and the glove 840b model is trained on the the

Common Crawl and additional web data.

Table 4.4 presents the experimental results of GDA adaptation using different word

vector models on the Penn Treebank corpus. The word embedding numbers in Table 4.4

indicate the word vector size of the adapting word vector model, e.g. the SENNA model has

a word vector size of 50 under Word Embedding Size = 50 setting. For a fair comparison,

we also ensure that the baselines in each setting have the same word embedding number as

the comparative models. For example, under the Word Embedding Size = 50 setting, we use

100 as the word embedding number for the baseline, and the models adapted from SENNA

or GloVe (glove 6b) use 50 as word embedding number for both ID and GD. In Table 4.4,

the GDA approach can produce better perplexity results in all settings.
5https://catalog.ldc.upenn.edu/LDC2011T07
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System Validation Set Test Set
Baseline LM 94.3 109.4
GDA LM (word2vec) 85.6 97.4

Table 4.5: Language model perplexity on News corpus. Using GDA adaptation approach, we can
decrease 12 perplexities on the baseline LM.

4.3.4 RNNLM Adaptation on News Corpus

Given the results of our prior experiments, we focused on the GDA adaptation approach

in our second set of experiments, where we firstly explore the GDA method on the much

larger News corpus (Table 4.2).

We first report in Table 4.5 the perplexity results of the baseline LM and the GDA LM

(adapting word2vec) on the News corpus. On the large training corpus, the GDA LM still

can yield a better perplexity than the baseline LM which has no adaptation. The difference

between the two LMs is 12 perplexity points. Such a result suggests that the performance

of the GDA approach is also scalable to a large data set.

Our second experiment investigates whether the GDA method can be helpful on the

lower-frequency words. Recall that one of the data prepossessing step in a neural LM

training is to map lower-frequency words into a special UNK token. Two reasons can

be cited. First, reducing the vocabulary size can be more efficient in terms of training

time. The softmax function (as seen in Equation (2.17)) needs to output the probability

distribution to all words. Using a large vocabulary size means more computation is required

in a neural LM training. The second reason is that word embeddings are not accurate for

the lower-frequency words. Qu et al. (2015) demonstrated that models performance can

be increased by using more training data (increasing the vocabulary frequency) in several

sequence labelling tasks. Thirdly, less words in the vocabulary can make model easier to

learn. The task of training a neural LM model can be thought as a multi-class classification

problem where the predicting labels are the words in the training data and the features are

the previous words in a sequence. However, the model can only learn to predict the lower-

frequency words much fewer times than the high frequency words during the training phase,

which will result us a model can not perform well on those less seen words.
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System Validation Set Test Set
Baseline LM 207.1 266.0
GDA LM (word2vec) 190.1 244.8

Table 4.6: Language model perplexity on News corpus with all words in the vocabulary are used.
Using GDA adaptation approach, we can reduce 21.2 perplexities on the baseline LM. The perplexity
decreasing shows that the lower-frequency words can benefit from the proposed GDA approach.

System Tuning Test
Baseline 26.18 27.14
Baseline + Baseline LM Re-ranking 26.71 27.65
Baseline + GDA LM Re-ranking 27.17 27.96 †

Table 4.7: BLEU scores for the re-ranking task.

In our proposed GDA approach, we adapt pre-trained word vector models to the task-

specific word vector models. Therefore, our approach should be beneficial to the lower-

frequency words in the training corpus regarding learning better word vectors. In this ex-

periment, the LMs are trained without mapping lower-frequency words, i.e. we use all

words (72,828, as seen in Table 4.2) in the News corpus in training. We set the maximum

number of training iterations to 20 and the learning rate starts to decay after 3 iterations.

Others parameters are the same as we described in Section 4.3.1. Table 4.6 shows the per-

plexity results of the baseline LM and the GDA LM. Using GDA adaptation approach, we

can decrease 21.2 perplexities on the baseline LM. The perplexity decreasing shows that

the lower-frequency words can benefit from the proposed GDA approach.

Our third experiment on the News corpus is to apply the adapted LM to the SMT re-

ranking task. To train the Phrase-based Statistical Machine Translation (PBSMT) system,

we use the French-to-English News Commentary v10 and Europarl v7 corpus from the

WMT2015 translation task. The newstest 2013 and 2014 data sets are used for tuning

and testing for the translation system, respectively. The system is trained using the Moses

(Koehn et al. 2007) MT framework, with a reordering model (Koehn et al. 2005) and a

5-gram KenLM (Heafield 2011) language model. We use the default parameters in Moses

in all experiments.

We then use the LMs in Table 4.5 to re-rank PBSMT systems. Table 4.7 reports the

translation evaluation scores in the re-ranking task. Each score is the average score over
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Figure 4.8: Learning curves of the baseline LM and the GDA LM (adapting word2vec) on the Penn
Treebank corpus.
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85



three runs. On the testing data, the baseline PBSMT system achieves a BLEU score of

27.14. The re-ranked SMT systems using the LM without adaptation gains a 0.51 absolute

(1.8% relative) improvement in Bilingual Evaluation Understudy (BLEU) score. Using the

adapted LM for re-ranking, we can observe a 0.82 absolute (3% relative) improvement in

BLEU score. Comparing the two re-ranked systems, there is a 0.31 absolute (1.1% relative)

improvement in BLEU. We use † to indicate statistically significant (Koehn 2004) over the

SMT system re-ranked by the baseline LM. The significance testing uses bootstrapping

method at the level p = 0.05 level with 1,000 iterations.

4.3.5 Language Model Learning Curves

We can also observe the improvement of GDA over baseline model is obtained in the early

training iterations. We compare the learning curves between the baseline LM and the GDA

LM on validation and test data of the Penn Treebank. As Figure 4.8 shows, the predictions

become more certain and accurate after iterations for training both LMs. Already after

training iteration 2, the GDA LM starts to outperform the baseline LM in terms of perplexity

at every iteration. The plots flatten after 20 iterations, and the learning begins to converge

for both the baseline LM and GDA LM. The sharp perplexity decreasing after iteration 14

is the effects of applying learning rate decay. Figure 4.9 demonstrates the learning curves

between the baseline LM and the GDA LM on validation and test data of the New corpus

when all words in the vocabulary are used in training. The similar conclusion can also

be drawn in this plot that the GDA LM starts to outperform the baseline LM in terms of

perplexity at every iteration.

Recall that our hypothesis for this work is that the pre-trained and the task-specific-

trained word vector models are complementary with each other in a neural network training.

In this set experiments, we showed that the proposed approach is an effective method to

combine the pre-trained and the task-specific-trained word vector models.
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4.4 NMT Experiments

4.4.1 Experimental Setup

Our proposed GDA mechanism is not only limited to neural LM training. We are inter-

ested in exploring its performance on other NLP tasks, especially NMT. Fundamentally,

both neural LM and NMT are sequence-to-sequence prediction problems, so our GDA is

applicable to both tasks. For example, in NMT, we can perform adaptation on the target

context vector hj−1 in Equation (2.22) as we used in the adapted LMs.

In this experiment, we report our results on the National Institute of Standards and Tech-

nology (NIST) Open Machine Translation evaluation data set in the Chinese-to-English

translation direction. Our MT training data are extracted from Linguistic Data Consortium

corpora,6 and NIST 2002 is used as our development set. We use the NIST 2004 and 2005

data as our test sets. The English training data are tokenized and lowercased using scripts in

Moses (Koehn et al. 2007) machine translation framework. The Stanford Chinese word seg-

menter (Tseng et al. 2005) is used to segment the Chinese training data. In NMT, we limit

our vocabularies to the 16k most frequent words (Meng et al. 2015), which covers 97.57%

and 98.77% of the original words in the source and target training corpora, respectively.

Outside the 16k threshold, vocabularies are mapped to the UNK token.

We compare the adapted NMT system with two baselines. The PBSMT baseline is

trained using Moses (Koehn et al. 2007), with a reordering model (Koehn et al. 2005)

and a 5-gram KenLM (Heafield 2011) LM. We use the default parameters in Moses in

all experiments. Our second baseline is an NMT system without adaptation. The same

architecture described in Figure 2.11 is used. The word vectors are of size 600 for both

source and target words. The hidden layers are of size 1,024. We use beam search during

translating, with a beam size of 5. We use a mini batch (with batch size 32) SGD algorithm

together with Adadelta (Zeiler 2012) to train our models. All NMT models are trained up to

320,000 updates, and the models are saved at each 1,000 updates. We then choose the final
6LDC2002E18, LDC2003E07, LDC2003E14, LDC2004T07, the Hansards portion of LDC2004T08 and

LDC2005T06
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System NIST 2002 NIST 2004 NIST 2005
PBSMT 33.42 32.36 30.11
NMT 34.51 35.02 31.46
GDA NMT (glove 840b) 36.07 35.99‡ 31.73
GDA NMT (word2vec) 35.63 35.84‡ 31.88‡

Table 4.8: BLEU scores for NMT adaptation. We use ‡ to indicate statistically significant (Koehn
2004) improvements upon the NMT baseline model. The significance testing uses bootstrapping
method at the p = 0.01 level with 1,000 iterations.

model based on the BLEU score of the development data. The adapted NMT system uses

the same settings as our second baseline, except that the target word vector is adapted from

the GD word vector model using GDA. We demonstrate the performance of GDA using the

two large pre-trained word vector models, glove 840b and word2vec.

4.4.2 Results

Table 4.8 presents the experiment results when GDA is applied to NMT. We use ‡ to in-

dicate statistically significant (Koehn 2004) improvements over the NMT baseline model.

The significance testing uses bootstrapping method at the level p = 0.01 level with 1,000

iterations. PBSMT and NMT achieve 33.42 and 34.51 BLEU scores, respectively, on the

NIST 2002 development data, whereas GDA NMT obtains 36.07 and 35.63 BLEU scores,

respectively, on the NIST 2002 development data. If we look at the results on the test set,

there is no surprise that the baseline NMT can bring 2.66 (absolute, 8.2% relative) and 1.35

(absolute, 4.5% relative) improvements compared to the PBSMT system. When employ-

ing GDA in NMT training, we can gain 0.97 (absolute, 2.7% relative) and 0.82 (absolute,

2.3% relative) improvements on the NIST 2004 test data using glove 840b and word2vec

vector models, respectively. We also can observe BLEU score increases on the NIST 2015

test data, where 0.27 (absolute, 0.9% relative) and 0.42 (absolute, 1.3% relative) increase

are gained with glove 840b and word2vec vector models, respectively. This set of experi-

ments suggests that the proposed GDA approach can be applied not only to the LM task,

but also to the NMT task. Comparing the adaptations from glove 840b and word2vec, the

two systems provide comparable results, where no significant differences can be observed.
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4.5 Advantages

As a domain-adaptation approach for neural network applications, the GDA approach has

many advantages.

Firstly, GDA is very fast. There is very little speed overhead in the neural network

training framework. The reason is that we adapt from a pre-trained word vector model in-

stead of using additional training data. For example, data selection approaches try to select

the raw sentences from GD into ID which results the training data are increased in size.

However, we think such adaptation approaches are inefficient if a neural network training

is used. The additional data we selected using the standard data selection approach can

increase both training time and memory consumption in training. To find the optimized se-

lection portion from GD data is also an extremely time-consuming task since many models

need to be trained and evaluated. Our approach, however, makes the use of the internal data

representation in neural network training. There will be no extra training time brought by

the additional training corpus. Furthermore, the process of handling the GD training data

is also simplified. In our approach, the GD is given as the pre-trained word vector models.

The adapted RNNLM model is still trained using ID training data. The data processing step

for a GD training data is not required.

Secondly, our approach can also be beneficial to the lower-frequency words. In the

neural network training, we need to group the lower-frequency words into the UNK token

for time and performance efficiency reasons. The GDA approach can use the pre-trained

word models to result better word vectors for the lower-frequency words in the ID during

the training phase.

Thirdly, the GDA approach can be used in any sequential network applications, without

the requirement of additional task-oriented data. For example, we do not need additional

parallel corpus in MT tasks. The adaptation process only requires a pre-trained word vector

model, which can be obtained easily.
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4.6 Summary

This study makes several contributions to the field. First, we propose to adapt pre-trained

word vector models in domain adaptation which makes our work different to previously

proposed domain adaptation work. Secondly, we present several adaptation approaches and

make comparisons between them. In our experiments, the GDA mechanism based on GRU

outperforms the others. We also provide explanations as to why it is so efficient. Thirdly,

the GDA mechanism can be used in sequential neural network applications. We adapt the

GDA mechanism into the state-of-the-art NMT systems. We observe that the translation

quality can be significantly improved. Finally, it is very fast. This approach does not require

additional task-oriented data. For example, we only need the pre-trained word vector model

from GD.

In this chapter, we described an efficient domain-adaptation approach for RQ2 in the

domain-awareness scenario. Our focus was on the most recent neural network training for

LM and NMT. We gave detailed definitions for the proposed methods and compared those

approaches using different settings. In particular, we demonstrated the efficiency of GDA

on both small and large training data using neural LM as a case study. We also examined

this technique on various word vector models. When using the trained LM on the SMT re-

ranking task, we observed a significant improvement in translation quality in the re-ranking

task. We then employed the GDA method on NMT and demonstrated that it can also be

successfully used in other sequence-to-sequence prediction tasks.

However, sometimes we do not have a clear distinction between the ID and GD data,

but all data are mixed in domains. Word meanings, vocabulary coverage or writing styles

can still be different within the training corpus. We call such case as domain-unawareness

scenario. In fact, such cases are one of the most common situations we encounter in MT. In

the next chapter, we switch our attention to the domain-unawareness scenario and discuss

our last research question:

RQ3 How word topic distributions can be used to improve translation qual-
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ity for NMT models in a domain-unawareness scenario?
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Chapter 5

Topic-based Domain Adaptation for

Neural Machine Translation

5.1 Introduction

In the previous two chapters, we presented our work for RQ1 and RQ2 in a domain-

awareness scenario. The assumption we made in that scenario is that training data of a

domain is homogeneous. However, this is not always true in practice (Hasler 2015). The

training data may come from tens or even hundreds of different resources without well-

defined domain labels. It is possible that some of the data are from a small or an extensive

domain, and some can be very close to the desired domain and most not, or the training data

of the desired domain might even not be unavailable. We have to use whatever data avail-

able, e.g. to concatenate all training data into a large corpus to build the a model. Therefore,

the domain information is not given explicitly in the training data. We call this scenario a

domain-unawareness scenario. In this chapter, we extend the domain-adaptation challenge

into a domain-unawareness scenario and address our last research question:

RQ3 How word topic distributions can be used to improve translation qual-

ity for Neural Machine Translation (NMT) models in a domain-unawareness

scenario?
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Source Words:

英国

最大

银银银行行行

上

商商商业业业

分析

和

市市市场场场

股股股价价价

Target Words:

Commercial

analysis

and

market

stock

prices

on

Britain’s

biggest

bank

[

...

Financial Topic

...

]

Figure 5.1: This example shows that some words within the same sentence belong to the same (or
similar) topic. For example, source words “银行”, “商业”, “市场” and “股价”, and target words
“Commercial”, “market”, “stock”, “prices” and “bank” have higher probabilities of being in the
Financial Topic.

Additionally, we pay particular attention to the start-of-the-art NMT system (Bahdanau

et al. 2015).

In a domain-unawareness scenario, we confront two challenges: (i) how to discovery

domain information without explicit domain labels in training data, and (ii) how can we use

the discovered domain information in an NMT system.

Regarding to the first challenge in this scenario, we follow previous topic-based domain-

adaptation studies as discussed in Section 2.3.2. to use existing well-established topic mod-

elling tools, e.g. Latent Dirichlet Allocation (LDA) (Blei et al. 2003) or Hidden Topic

Markov Model (HTMM) (Gruber et al. 2007), to discover the topic information. We regard

topics as domains in this scenario.

Regarding to the second challenge, one observation we obtain from the training data is

that words in the sentences often belong to the same (or similar) topic regardless of domain.

As seen in Figure 5.1, source words “银行”, “商业”, “市场” and “股价”, and target words

“Commercial”, “market”, “stock”, “prices” and “bank” have higher probabilities of being

in the Financial topic. The similar “topic consistent” behaviour is also observed by Su
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Figure 5.2: The graphical model for smoothed LDA in plate notation (Blei et al. 2003).

et al. (2015). Recall that in NMT, the attention model is used to provide the ability that

a decoder can selectively pay attention to different parts of a source sentence to translate.

Therefore, intuitively, if we can leverage the source topic information to the attention model,

the decoder can also pay attention to the different parts of a source sentence with respect

to their topics. Furthermore, as previously translated words can be a strong indication to

influence the current translation in an NMT model, that is if we can provide the (target) topic

information of previously translated words to an NMT model, then the current translation

of being the similar topic as the previous ones should receive higher chances to be selected.

In contrast, words which are not favouring to any topics in the target vocabulary, e.g. the

Unknown (UNK) and the end-of-sentence (EOS) token, should have less chances to be

selected.

5.2 Topic Models

LDA (Blei et al. 2003) is a statistical model that tries to discover the hidden topic structures

in large document collections. It maps words in the documents to probability distributions

over topics. Figure 5.2 shows the graphical model of the LDA generative model in plate no-
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Figure 5.3: The graphical model for smoothed LDA with repeated word generation within a docu-
ment (Gruber et al. 2007).

tation. The generative process of the LDA model for a corpus consisting of M documents,

where each document has the length of Ni, i ∈ {1, ..,M}, can be described as follows:

1. Choose θi ∼ Dirichlet(α), where Dirichlet(α) is Dirichlet distribution with pa-

rameter α

2. Choose ϕk ∼ Dirichlet(β), where k ∈ {1, ..,K}, K is the number of latent topics

and Dirichlet(β) is Dirichlet distribution with parameter β

3. For each of the word wi,j , where j ∈ {1, .., Ni} and z is the topic assignment for

each word:

(a) Choose a topic zi,j ∼Multinomial(θi)

(b) Choose a word wi,j ∼Multinomial(ϕzi,j )

where each θ ∈ {θ1, ...θM} is a multinomial distribution over topics given a document.

Figure 5.3 shows the repeated word generation within a document of Figure 5.2. As

we can see, the word topics in LDA are assumed to be independent, i.e. z1, .., z4 (word

topics) can be the same or different within a document. Gruber et al. (2007) claim that such
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Figure 5.4: The graphical model for HTMM (Gruber et al. 2007).

an assumption is “an unrealistic oversimplification” and propose to use Hidden Markov

Models to capture local dependencies between words when learning the topics. Such a

topic detection algorithm is called HTMM, as seen in Figure 5.4. The transition probability

depends on θ and a topic transition variable ψN , π is the initial state of the Markov chain.

When ψN = 1, we choose a new topic from θ, when ψN = 0, the topic of the current

word is the same as the previous one. Gruber et al. (2007) assume that “topic transitions

can only occur between sentences”, which means ψN can only be nonzero for the first word

in a sentence. In HTMM, if ψN is forced to be 1 for all words, it becomes to be LDA since

we always choose a new topic; if ψN is set to be 0, all words in a document have the same

topic.

Topic models are trained using documents, it is also common that sentences are inferred

to represent mixtures of topics in Machine Translation (MT) (Eidelman et al. 2012, Xiong

et al. 2015). For example, we can train two topic models given a bilingual data: a source

topic model and a target topic model. In this work, we are interested in both LDA and

HTMM algorithms.
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Source Words:

英国 [0.04682]

最大 [0.04780]

银行 [0.08450]

上 [0.06116]

商业 [0.03349]

分析 [0.07266]

和 [0.13784]

市市市场场场 [0.46112]

股价 [0.02768]

EOS [0.02693]

Target Words:

Commercial

analysis

and

market

Figure 5.5: An example of “soft” alignment in NMT. The current translated word is “market”,
which is aligned to source word “市场” with a higher probability than the other source words, i.e.
the probability is 0.46112.

5.3 Our Approach

In this section, we provide details on our proposed models. More specifically, given the

topic distributions of source and target words, either using LDA or HTMM, we suggest

three different approaches to incorporate the topic distributions into the NMT models.

5.3.1 Topic-based Encoder

In the original NMT model we presented in Chapter 2, the attention model (Bahdanau et al.

2015) can selectively pay attention on different parts of the source context that are relevant

to the predicting target words. As a by-product of the attention model, a “soft” alignment

between the source input and translation is also generated. For example in Figure 5.5, the

current translated word is “market”, the attention model is paying more attention to the

source word “市场”. In the “soft” alignment output, target word “market” is aligned to

source word “市场” with a higher probability than the other source words.

Our intuition of the topic-based encoder is, if we can embed the topic distributions into

the source context vector, i.e. hi in Equation (2.23), the decoder therefore can also pay
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attention to the different parts of a source sentence with respect to their topics, the “soft”

alignment can then be more accurate on the source context, and translation performance

can be increased.

Therefore, we propose to argument the source context vectors with topic information

topic hfi as in Equation (5.1):

topic hfi = [hfi , β
f
i ] (5.1)

where βfi is the topic distribution for source word fi, which can be obtained from the

topic model pre-trained with the source side of the NMT training data.1 [hfi , β
f
i ] denotes

concatenation operation on hfi and βfi . For example, in our topic hfi vector, the last t

elements represent the topic distributions where t is the number of topics configured in

topic modelling. Furthermore, we need to update Equation (2.23), (2.24) and (2.25) to

Equation (5.2), (5.3) and (5.4), respectively, such as:

topic eij = vT a(hej−1, topic h
f
i ) (5.2)

topic cj =
m∑
i=1

topic αij topic h
f
i (5.3)

topic αij =
exp(topic eij)∑m
i=1 exp(topic eij)

(5.4)

in order to incorporate source topic information in the attention model.2 Therefore, the

decoder can pay attention to different parts of a source sentence with respect to the source

topic distributions.

We then update Equation (2.26) and (2.27) by substituting cj with topic cj to obtain

1We use f to indicate a context vector in encoder.
2We use e to indicate a context vector in decoder.
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Notations:
f1,...,f4: Source words e1,...,e4: Target words
hf1 ,...,hf4 : Source context vectors he1,..., he4: Target context vectors
βf1 ,...,βf1 : Source word topic distributions ⊕: Attention model
topic c4: Topic-based source context
vector
α1,4,...,α4,4: Soft-alignments

Figure 5.6: Graphical illustration of the topic-based encoder with 4 source words and 4 target words.
In this architecture, target word e4 is conditioned on the target context vector he4, which is computed
by the topic-based source context vector topic c4, the previous target context vector he3 and the
previous target word e3. Dashed nodes indicate translation histories.
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our topic-based encoder, as in Equation (5.5) and (5.6), respectively:

hej = g(tj−1, h
e
j−1, topic cj) (5.5)

p(e|e1:j−1, F ) = softmax(S(tj−1, h
e
j , topic cj)) (5.6)

Figure 5.6 is the graphical illustration of the proposed topic-based encoder with 4 source

words and 4 target words. In this architecture, target word e4 is conditioned on target

context vector he4, which is computed by the topic-based source context vector topic c4, the

previous target context vector he3 and the previous target word e3.

5.3.2 Topic-based Decoder

In the proposed topic-based encoder, our aim is to increase the performance of the attention

model, which can consequently improve the translation quality. While in the target topic-

based decoder, we try to maintain the topic consistency between the translating word with

the previously translated words. Thus, translation options can be selected from the same

domain.

Words in the NMT outputs are translated in the sequence from left to right. When

a word is translating, we use three pieces of information: the source context, the target

context of translated words and previously translated word, as seen in Equation (2.26). A

natural choice of introducing topic information to the decoder is to also include the previous

topic histories as an additional information for the proceeding word predictions, such as the

current translation is also conditioned on the topics of previous translations, as in Equation

(5.7):

hej = g(tj−1, h
e
j−1, cj , H

β) (5.7)

where Hβ denotes the target topic information. We propose to model Hβ using an Re-

current Neural Network (RNN) network, e.g. Gated Recurrent Unit (GRU) (Chung et al.
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2014). The motivation is that previously translated words can show strong indications and

influences to the current translation in NMT, if we can provide the (target) topic informa-

tion of previously translated words to the NMT model, then the current translation of being

the similar topic as the previous ones should receive higher chances to be selected.

As seen in Figure 5.5, word “市场” is translated into word “market”. However, it

can also be translated into words “mart” or “bazaar”, which are the wrong translations in

this example. We can provide previous topic distributions as a hint to the current word

choice, e.g. informing the decoder that previous translations are in the Financial topic, the

model can therefore give higher chances to the translations which are also in the same topic.

Accordingly, we compute the previous topic histories as a sequence with the dependency

relationships using GRU, as in Equation (5.8):

ut = sigmoid(Wuβ
e
t + Uuh

βe

t−1 + bu)

rt = sigmoid(Wrβ
e
t + Urh

βe

t−1 + br)

h̃β
e

t = tanh(Wβet + U(rt � hβ
e

t−1) + b)

hβ
e

t = (1− ut)� hβ
e

t−1 + ut � h̃β
e

t

(5.8)

where βet is the topic distribution for target word at time t, which is obtained from the topic

model pre-trained on the target side of the NMT training data. hβ
e

t−1 is the context vector of

this topic RNN, h̃β
e

t is the candidate activation (Chung et al. 2014) and hβ
e

t is the context

vector of this network. Wu, Uu,Wr, Ur,W and U are the weight parameters, and bu, br and

b are the bias values of the corresponding gates. Thus, we can substitute Hβ in Equation

(5.7) to the corresponding topic context vector in Equation (5.8), as in Equation (5.9):

hej = g(tj−1, h
e
j−1, cj , h

βe

t−1) (5.9)

to obtain the topic-based decoder.

Figure 5.7 is the graphical illustration of the proposed topic-based decoder with 4 source

words and 4 target words. In this architecture, target word e4 is conditioned on target
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Notations:
hf1 ,..., hf4 : Source context vectors e1 ,..., e4: Target words
c4: Source context vector he1 ,..., he4: Target context vectors
α1,4,...,α4,4: Soft-alignments βe1 ,..., βe1 : Target word topic distributions
⊕: Attention model hβ

e
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e

4 : Target topic context vectors

Figure 5.7: This figure is the graphical illustration of the topic-based decoder with 4 source words
and 4 target words. In this architecture, target word e4 is conditioned on target context vector he4,
which is computed by source context vector c4, target context vector he3, previous target word e3 and
context vector of target topics hβ

e

3 . Dashed nodes indicate translation histories.
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context vector he4, which is computed by the source context vector c4, the target context

vector he3, the previous target word e3 and the context vector of target topics hβ
e

3 .

5.3.3 Topic-based NMT

We can also combine the topic-based encoder in Equation (5.5) and the topic-based decoder

in Equation (5.9) to obtain the topic-based NMT, as in Equation (5.10):

hej = g(tj−1, h
e
j−1, topic cj , h

βe

t−1) (5.10)

in which we use the previous translation tj−1, the context vector of previous translations

hej−1, the topic-based source context vector topic cj and the target topic context vectors

hβ
e

t−1 to compute a context vector hej for the current translating word. Later, a softmax

function can be applied to hej to output the probability distributions of the target vocabulary

as in Equation (2.20).

Figure 5.8 is the graphical illustration of the topic-based NMT with 4 source words and

4 target words. In this architecture, target word e4 is conditioned on target context vector

he4, which is computed by topic-based source context vector topic c4, target context vector

he3, previous target word e3 and context vector of target topics hβ
e

3 .

5.4 Experiments

5.4.1 Data and Experiment Models

We report our experimental results on the National Institute of Standards and Technology

(NIST) evaluation data set in the Chinese-to-English translation direction. Our MT training

data are extracted from Linguistic Data Consortium corpora, and NIST 2002 is used as

our development set.3 We use the NIST 2004 and 2005 as our test sets. The English

training data are tokenized and lowercased using scripts in Moses (Koehn et al. 2007) MT
3LDC2002E18, LDC2003E07, LDC2003E14, LDC2004T07, the Hansards portion of LDC2004T08 and

LDC2005T06
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Notations:
f1,...,f4: Source words e1,...,e4: Target words
hf1 ,...,hf4 : Source context vectors he1,..., he4: Target context vectors
βf1 ,...,βf1 : Source word topic distributions βe1 ,...,βe1 : Target word topic distributions
topic c4: Topic-based source context
vector hβ
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4 : Target topic context vectors

α1,4,...,α4,4: Soft-alignments ⊕: Attention model

Figure 5.8: This figure is the graphical illustration of the topic-based NMT with 4 source words and
4 target words. In this architecture, target word e4 is conditioned on target context vector he4, which
is computed by topic-based source context vector topic c4, target context vector he3, previous target
word e3 and target topic context vector hβ

e

3 . Dashed nodes indicate translation histories.
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framework. The Stanford Chinese word segmenter (Tseng et al. 2005) is used to segment

the Chinese training data. In NMT, we limit our vocabularies to be the top 16,000 most

frequent words, which covers 97.57% and 98.77% of the original words in the source and

target training data, respectively. Outside the 16,000, vocabularies are mapped to the UNK

token.

The MT training data is also used to determine the topic distributions. We train the

all topic models with 200 iterations. The numbers of topic are {10, 20, 30, 40, 50, 80,

100, 150} for both languages. The LDA models training takes approximately 40 hours in

average.4 The HTMM models takes approximately 6 hours in average.5 Special words, i.e.

UNK and EOS, are set to have uniform topic distributions.

We compare our approaches with two baselines. The first one is the Statistical Machine

Translation (SMT) baseline, which is trained using Moses (Koehn et al. 2007) machine

translation framework, with a lexicalized reordering model (Koehn et al. 2005, Galley and

Manning 2008) and a 5-gram KenLM (Heafield 2011) Language Model (LM). The LM is

trained using the target side of the parallel training data. We use all default parameters in

Moses. Our second baseline is an NMT system. We use the encoder-decoder framework

with a single layer bidirectional GRU as the encoder and a single layer GRU with attention

model as the decoder. Each word in the training corpora is converted into a 512-dimensional

vector during training. The encoder and decoder contain 1,024 hidden units each. The

bidirectional RNN is also used. We use beam search during translating, with a beam size of

5. We use a mini-batch (with batch size 32) Stochastic Gradient Descent algorithm together

with Adadelta (Zeiler 2012) to train our models. All NMT models are trained up to 320,000

updates and the models are saved at each 1,000 updates. The training takes approximately 4

days on the NVIDIA GeForce GTX TITAN X GM200 GPU machine. We then choose the

final model based on the Bilingual Evaluation Understudy (BLEU) (Papineni et al. 2002)

score of the development data.
4The LDA implementations we used to training the models can be found at https://radimrehurek.

com/gensim/models/ldamulticore.html
5The HTMM implementations we used to training the models can be found at http://www.cs.

toronto.edu/˜amitg/
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5.4.2 Results
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Figure 5.9: LDA topic numbers vs. translation BLEU scores on the NIST 2002 development dataset.

Table 5.1 presents the experiment results on the development and test data, the number

beside each topic-based NMT system indicates the topic number used in the system (source

topic number, target topic number or source and target topic numbers). ‡ and † indicate

statistically significant (Koehn 2004) improvements upon the NMT baseline at the p = 0.01

and p = 0.05 level, respectively (with 1000 iterations).

The source and target topic numbers in Table 5.1 are experimentally chosen from {10,
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Topic Model Systems NIST 2002 NIST 2004 NIST 2005
(development) (test) (test)

SMT 33.42 32.36 30.11
NMT 34.33 34.76 31.12
Source Topic-based NMT (40) 35.39 35.17† 31.95‡

LDA Target Topic-based NMT (10) 36.31 35.43‡ 32.50‡
Topic-based NMT (40,10) 34.86 35.91‡ 32.79‡
Source Topic-based NMT (80) 33.98 35.62‡ 31.94‡

HTMM Target Topic-based NMT (80) 34.73 36.02‡ 31.77 †
Topic-based NMT (80,80) 35.47 36.43‡ 32.73‡

Table 5.1: BLEU scores of the trained SMT and NMT models, the topic distributions are learned us-
ing LDA or HTMM. We use ‡ and † to indicate statistically significant (Koehn,2004) improvements
upon the NMT baseline model the p = 0.01 and p = 0.05 level, respectively. The significance testing
uses bootstrapping (Koehn 2004) method with 1,000 iterations.

20, 30, 40, 50, 80, 100, 150} separately according to the development BLEU scores. As an

example, Figure 5.9 presents the development BLEU scores when LDA is employed. We

then combine the optimal topic numbers for each setting. For example, we use 40 source

and 10 target topics in the LDA topic-based NMT (40,10) system, and 80 source and 80

target topics in the HTMM topic-based NMT (80,80) system.

In Table 5.1, significant improvements can be observed on the test data when LDA topic

model is utilized. On NIST 2004, we observe improvements of 0.41 (absolute, 1.2% rela-

tive) and 0.67 (absolute, 1.9% relative) BLEU scores compared to the NMT baseline on the

source/target topic-based NMT models, respectively. On NIST 2005, there is a gain of 0.83

(absolute, 2.7% relative) and 1.38 (absolute, 4.4% relative) BLEU scores compared to the

NMT baseline on the source/target topic-based NMT models, respectively. This suggests

that topic information can be independently used in our proposed models. However, topic-

based NMT using target topics shows better results than using the source topics because

that the target language is more directly involved with generating translation outputs and

can benefit better to the translation qualities than the source language. When topic infor-

mation is used jointly, models can achieve 35.91 and 32.79 BLEU scores on the NIST 2004

and NIST 2005 test data, respectively. These results are 1.15 (absolute, 3.3% relative) and

1.67 (absolute, 5.4% relative) higher in contrast with the NMT baseline model.

In Table 5.1, the similar trend can also be observed in the HTMM experiments. The

107



source topic-based NMT system can outperform the NMT baseline model with 0.86 (ab-

solute, 2.5% relative) and 0.82 (absolute, 2.6% relative) BLEU score improvements on the

NIST 2004 and 2005 test data, respectively. There is a further improvement of 0.4 absolute

BLEU score gained in the target topic-based NMT model on the NIST 2014 test data. We

notice a 0.17 absolute BLEU score decrease in the target topic-based NMT model on the

NIST 2015 test data compared to the source topic-based NMT model. However, it still can

outperform the baseline NMT by 0.65 (absolute, 2.0% relative) BLEU score. The best per-

formed model in the HTMM experiments is the topic-based NMT (80&80) system, where

achieves 36.43 and 32.73 BLEU scores on the two test sets, respectively.

Comparing the experiments of LDA or HTMM in Table 5.1, we think using HTMM is

more congruous with our proposed approaches. The HTMM relaxes the assumption that

words are independent in a sentence, believes that there are dependencies between the topic

of words in a sentence which has the similar assumption with this work, i.e. the“topic

consistent” behaviour in the training data.

5.5 Result Analysis

In this section, we use translation outputs to investigate the experimental results in three

aspects: the attention model, the word choices and the lexical coverage in the proposed

topic-based NMT.

5.5.1 Attention Model

Following the work at Bahdanau et al. (2015), we also use heat map to represent the “soft”

alignments, as seen in Figure 5.10. Large values are presented by lighter colors. We use the

first three source words as our example to compare the two alignments, e.g. “77”, “家” and

“私营”. When the translated words are produced in the baseline system, e.g. “The UNK

private”, relatively large weights are all assigned to the first source word “77”, but “家” and

“私营”. As a result, the scattered alignments can be one of the reasons that causes the wrong

108



77 家 私
营

生
产

企
业

也 申
报

了 外
贸

经
营
权

。 E
O

S

The

UNK

private

production

enterprise

also

declared

the

right

to

trade

.

EOS

77 家 私
营

生
产

企
业

也 申
报

了 外
贸

经
营
权

。 E
O

S

77

private

production

enterprises

also

declared

foreign

trade

rights

.

EOS

Figure 5.10: The comparison of alignments generated by NMT baseline (top) and topic-based NMT
(bottom).
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Source 他 当即 被 送往 医院 抢抢抢救救救 。

Reference He was taken immediately to a hospital for emergency treat-
ment .

Baseline NMT He was sent to the hospital for rescue .

Topic-based NMT He was sent to hospital for emergency treatment .

Source 过半 英国人 不 赞同 政府 支持 美 打 伊拉克 。

Reference Over half of all British voters disapprove British support for
an American attack on Iraq .

Baseline NMT The British people does not agree to support United States to
fight Iraq .

Topic-based NMT The British people disagree with the government ’s support
for US war against Iraq .

Figure 5.11: The examples shows our observations that better word choices can be made in the
topic-based NMT.

translation. In contrast, we include the topic information to the alignments calculations in

the topic-based NMT. The operation of current translation selecting the most appropriate

source words to translate is influenced also by the source topic distributions. As we can

see, a better translation “77 private” is produced. Another example can also be observed for

source words “外贸经营权”.

5.5.2 Topic Consistent

Figure 5.11 shows examples that the topic consistent is maintained in the translations pro-

duced in the topic-based NMT model. For example in the baseline NMT translations, source

words “抢救” is translated into “rescue” and “打” is translated into “fight”, which are not

the best word choices. In the topic-based NMT, models are trained with additional topic

information, as seen in Equation (5.10), we can maintain the topic consistent in the transla-

tion outputs. In this way, the current word can be predicted with the influence of the topic

distributions from previous words and better translation can be produced. For example, in

the translation examples produced by the topic-based NMT in Figure 5.11, word “抢救” is

translated into “emergency treatment”, and “打” is translated into “war against”, which are
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Figure 5.12: The average topic distribution for words between NIST 2004, baseline NMT model
translations and target topic-informed NMT model translations.
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Figure 5.13: The average topic distribution for words between NIST 2005, baseline NMT model
translations and target topic-informed NMT model translations.
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the better translations in the given the context.

Figure 5.12 and 5.13 illustrate the average word topic distribution HT between the

reference, baseline NMT and target topic-based NMT (Target Topic-based NMT (10) in

Table 5.1) model translations. HT is computed as in Equation (5.11):

HT (E) =
1

N

∑
w∈E

βew
(5.11)

where E is the translation, w is a word in E, N is the word count in E and βew is topic

distribution of w obtained from the topic model. We can observe that the distributions

between the translations produced by the topic-based NMT model and the reference data

are more similar, such as in topic 3, 4, 6, 7, 8 and 9.

5.5.3 Lexical Coverage

While another drawback of NMT systems is that the lexical coverage in translation outputs

is low. This is due to the trade off between efficiency and quality. Observing the transla-

tion outputs, we find that some of the source words are translated into the UNK token even

though the correct translations can be found in the target vocabulary list in both the baseline

and topic-based NMT systems. However, comparing the UNK token numbers produced

between the two systems, we think the topic-based NMT can handle the UNK token better.

As presented in Table 5.2, there are 2.3% and 2.7% words are UNK token in the transla-

tions of NIST 2014 and NIST 2015 produced by the baseline model, respectively. On the

contrary, the percentages are reduced to 1.9% and 2.3% in the topic-based NMT system in

the translations of NIST 2014 and NIST 2015, respectively.

We think the reason is that lower frequency words (Frequency <k, where k is a pre-

defined threshold) are grouped into a special UNK token in NMT, as seen in Figure 5.14.

As a consequences, the UNK token is not in lower frequency any more (as seen in Figure

5.15) as its frequency is the sum of all the lower frequency words before grouping in Figure

5.14. Recall that the UNK token is set to have an uniform distribution in our topic models,
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Figure 5.14: We map lower frequency words to the special UNK word in NMT, e.g. Frequency <k,
where k is a pre-defined threshold.
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Figure 5.15: The frequency of word UNK is increased. For example, UNK is ranked as the third
and eighth highest frequency word in the Chinese and English training corpus, respectively. This is
because the frequency of word UNK is the sum of all the lower frequency words in Figure 5.12.
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Figure 5.16: An example of UNK vs. non-UNK word topic distribution. The UNK word has an
uniform distribution, whereas non-UNK words have their favoring topics. In this example, the non-
UNK word is the word “speaker” and the topic distribution is extracted from our English topic model
(the number of topics is 10). Other words which can be found in the same topic as word “speaker”
are “committe”, “economic”, “international”, etc.

UNK Percentage
Baseline Topic-based

NIST 2004 2.3% 1.9%
NIST 2005 2.7% 2.3%

Table 5.2: The percentage of UNK produced in translation outputs comparing between the baseline
NMT and the topic-based NMT

Word Number and Brevity Penalty (BP) in Translations

Reference Baseline Baseline
BP Topic-based Topic-based

BP
NIST 2004 51,967 50,020 0.988 50,333 0.994
NIST 2005 34,563 34,441 1.000 34,610 1.000

Table 5.3: The number of words produced and brevity penalty (BP) calculated in translation outputs
comparing between the baseline NMT and the topic-based NMT.

and other words (non-UNK words) are learned to have a topic distribution with a preferred

topic, as seen in Figure 5.16. Therefore, when a translation is being chosen between the

UNK token and a non-UNK word, the topic distributions of previously translated words

can influence that a non-UNK word will have a higher chance to be selected since the UNK

token is not favouring to any topic.
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Source 印尼 国会 议议议长长长 出庭 受审 。

Reference Indonesia congress speaker on trial .

Baseline NMT UNK of Indonesia‘s congress in court .

Topic-based NMT Indonesia parliament speaker is trial .

Source 卡伊达 组织 领导层 也 开始 活跃 起来 。

Reference The leadership of Qaida group began to be active .

Baseline NMT The leadership of the UNK city began to UNK .

Topic-based NMT The leadership of the UNK organization has begun to be active .

Figure 5.17: The examples shows our observations that less number of UNK can be produced in the
topic-based NMT.

In NMT, the translation process is terminated if an EOS token is produced. The EOS

is also set to have an uniform distribution in the topic models. Accordingly, to confirm

our conclusion about the UNK token, EOS token should also have a lower probability to be

selected than the other words. Essentially, this means that our topic-based model is expected

to produce longer translations than the baseline system. Table 5.3 shows the number of

words in the translations produced by the baseline NMT and topic-based NMT models. We

find that the topic-based NMT model produces more words in translations than the baseline

model, e.g. 50,333 words and 34,610 words in NIST 2004 and NIST 2005, respectively. In

contrast, the baseline system produces 50,020 and 34,441 words in NIST 2004 and NIST

2005, respectively. As a conclusion, topic-based NMT can reduce the UNK token number

even with more words are produced in the translation outputs.

Inspecting the translation examples in Figure 5.17, “议长” and “活跃” fail to be trans-

lated by the baseline NMT. However, topic-based NMT is able to use the topic information

to produce correct translations. For example, source words “议长” and “活跃” are trans-

lated into “speaker” and “active”, respectively. The source word “卡伊达” does not appear

in the parallel training data, thus both systems produce a UNK token in this case.

The optimal number of topics used in the source topic-based NMT and target topic-

based NMT is not necessarily the same. For example, the best performed source topic-
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Systems NIST 2002 NIST 2004 NIST 2005
(development) (test) (test)

LDA Topic-based NMT (40,10) 34.86 35.91 32.79
Random Topic-based NMT (40,10) 33.84 34.12 30.68
HTMM Topic-based NMT (80,80) 35.47 36.43 32.73

Table 5.4: BLEU score comparison between NMT models trained using LDA, HTMM and the
random topic models, where results of LDA Topic-based NMT (40,10) and HTMM Topic-based
NMT (80,80) models are the same as Table 5.1.

based NMT and target topic-based NMT are configured with topic number 40 and 10 in

the LDA experiments, respectively. We suggest two possible reasons that can cause such

outcomes. Firstly, the topic information is employed differently in these two systems. As

we presented in Section 5.3.1 and Section 5.3.2, the source topic information is appended

to each source word as extra elements to the source context vector in the encoding phase,

whereas the target topic distributions are fed into an RNN in the decoder. Another reason

is that the motivation of the two systems are different. The source topic-based NMT tries

to improve the efficiency of the attention model, and the target topic-based NMT aims to

maintain the “topic-consistency” in the translation outputs.

An interesting way to confirm that the topic information is effective in the proposed

topic-based NMT models is to train a NMT model using a “low-quality” (random) topic

model. For this experiment, we used the same configurations as reported for the LDA topic

model experiment but assigning a dirichlet distribution for each word in the training data.

Table 5.4 shows the experimental result when a random topic model is used in the topic-

based NMT model.

5.6 Summary

NMT has a lot of potential as a new approach to MT. We present in this chapter, a novel

approach of integrating topic knowledge into the existing NMT architecture to answer our

RQ3:

RQ3 How word topic distributions can be used to improve translation qual-

ity for NMT models in a domain-unawareness scenario?
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We relied on topic model algorithms to discovery word topic distributions in the train-

ing data in a domain-unawareness scenario. Following previous work assumptions that

words in the same sentences sharing the same (or similar) topic, we propose three different

integration approaches to avail the topic information in an NMT system.

Through our experiments, we demonstrated that translation quality can be improved,

which our topic-based NMT can achieve 1.15 and 1.67 absolute improvement in terms of

BLEU score on two different test data sets compared to the baseline NMT system. The

experiment results not only demonstrate the effectiveness of the proposed model, but also

show an approach to enrich the representation of the context vector produced by encoder

and decoder. We showed that introducing topic information in the NMT can produce trans-

lations with better word choices, and less number of UNK. We provided concrete examples

to support our observations. Also, better word alignments can also be observed which

consequently benefits translation quality in the proposed model. Furthermore, we made

comparisons between the two topic-modelling algorithms and found that the HTMM is

congruous with our proposed approaches.
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Chapter 6

Conclusion

In this chapter, we provide conclusions for the previous chapters and revisit the research

questions with the answers we have provided to them. We then summarise the contributions

of our work in this thesis. Later in this chapter, we explore the various possibilities for

further research.

6.1 Conclusion and Research Questions Answered

In Chapter 1, we provided the motivations underpinning our study of domain adaptation in

Machine Translation (MT). We noted that domains depend on several factors, e.g. prove-

nance, genres, topics, dialects or styles, and even the combination of all those factors. More-

over, because the training data of an MT system could be collected from various resources,

i.e. it could come from different domains with or without domain labels, or in separate files

or in a large file where all data are concatenated, we assumed two scenarios in this thesis:

Domain-awareness: The domain information is given explicitly in the training data.

Domain-unawareness: The domain information is not given explicitly in the training

data.

We then presented our specific research questions, as follows:

118



RQ1 In a domain-awareness scenario, how can we further improve the cur-

rent domain adaptation method of an Statistical Machine Translation (SMT)

by availing of the domain-likeness of the context in which a word or a phrase

appears?

RQ2 Whether the vector model trained using General-Domain (GD) data

can be used in domain adaptation in a domain-awareness scenario?

RQ3 How word topic distributions can be used to improve translation qual-

ity for Neural Machine Translation (NMT) models in a domain-unawareness

scenario?

In Chapter 2, we first provide an overview of the MT models and algorithms related

to this thesis, including Phrase-based Statistical Machine Translation (PBSMT) and NMT.

We then reviewed the word vector models, Recurrent Neural Network (RNN) models and

Gated Recurrent Unit. We also highlighted previous domain-adaptation approaches in three

categories: data selection, domain adaptation for SMT, and domain adaptation for NMT.

In Chapter 3, we addressed RQ1 by presenting an efficient translation model combina-

tion approach which extends the previous domain adaptation work of Bisazza et al. (2011) in

a domain-awareness scenario. In Bisazza et al. (2011), a binary feature indicating the prove-

nance of the phrase pairs was used in the fill-up model combination approach. However,

we think that a GD translation model is often trained using a large corpus which comprises

different domains. Some GD data may be very similar/dissimilar with the In-Domain (ID)

data. The provenance feature may cause potential ID phrase pairs to be unfairly penalised.

Motivated by the distributional hypothesis that word meanings are implied by the con-

text rather than by the words themselves (Banchs 2014), contextual information can be

used to measure the closeness of bilingual phrase pairs from ID to GD. We first proposed

a domain-likeness model that can be used to estimate the domain-likeness values for bilin-

gual sentence pairs in three simple heuristics. The estimated values are probabilistic in

nature which can be interpreted as the distance of a phrase pair from ID to GD. We then
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applied these probabilistic values as an additional feature in the fill-up model combination

approach to gave more attention to the phrase pairs which are in the GD translation model

but are close to ID.

We designed two experimental setups: (i) the GD dataset being significantly larger than

the ID data, and (ii) the two datasets being similar in size. We demonstrated that our fill-up

approach can significantly improve translation quality in both experiments compared to the

previous fill-up method. We provided analysis of the probabilistic feature values on the GD

translation model. We also compared our approach with a data selection approach (Axelrod

et al. 2011) and found that our method can outperform or produce comparable translation

results.

Recent studies have shown remarkable results in applying neural networks in Natural

Language Processing (NLP), especially using RNN. In the field of MT, significant im-

provements have also been observed (Bahdanau et al. 2015, Luong et al. 2015b, He et al.

2016, Tu et al. 2016) when applying neural network training. However, there is very little

work to be found in the neural Language Model (LM) or NMT literature to address the

domain-adaptation challenge. Thus, we moved our attention to proposing domain adapta-

tion techniques to the most recently proposed neural network training approach in RQ2 and

RQ3.

In Chapter 4, we answered RQ2 by proposing a domain-adaptation approach which

avails of large pre-trained word vector models, e.g. the Google word2vec model (Mikolov

et al. 2013a) and the Global Vectors for Word Representation (Pennington et al. 2014)

model, in a domain-awareness scenario.

The word vector representations (Mikolov et al. 2013a) have a very good generalization

ability (Mikolov et al. 2013c) and are used to represent words for almost all NLP tasks when

neural network is applied. These models are trained with a large amount of data and can

be used in the situation when the relevant data is limited in NLP tasks. We think the pre-

trained and the task-specific-trained word vector models are complementary to one another

in neural network training. The pre-trained word vector models can be a useful supplement
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when the ID training data is too small.

However, if the task-specific-trained word vector models are substituted for the pre-

trained one directly, LM performance will decrease since the word vectors are trained on

different domains (as seen in Table 4.3). We therefore designed three domain-adaptation

methods, namely adaptation on word vectors, adaptation on context vectors, and Gated

Domain Adaptation (GDA). We found that the GDA approach outperforms the baseline

models and the other two domain-adaptation methods in the LM experiments. Furthermore,

we also employed the GDA method on the SMT re-ranking task and NMT framework to

demonstrate its effectiveness.

In Chapter 5, we addressed RQ3 by investigating a novel approach to integrate topic

knowledge into the existing NMT architecture. We were confronted with a different chal-

lenge in RQ3; the domain information is not given explicitly in the training data in a

domain-unawareness scenario. The training data may come from tens or even hundreds of

different resources without well-defined domain labels to distinguish them, which is com-

mon in MT training. We rely on the well-established topic-learning algorithms, e.g. Latent

Dirichlet Allocation (LDA) (Blei et al. 2003) or Hidden Topic Markov Model (HTMM)

(Gruber et al. 2007), to discover the domain information.

Motivated by the previous study of Su et al. (2015) and our observation regarding “topic

consistent” behaviour (where words in the training data often belong to the same or simi-

lar topic), we hypothesized that this can be a strong indication to influence NMT models.

Intuitively, if we can identify the topic information of previously translated words, we then

can provide such information to a translation system and train it to maintain the consistency

of topics in the translation output. In other words, we can regard topics as domains in this

scenario to guide the translation process. In our experiments, we demonstrated that trans-

lation quality can be improved. By introducing topic information in NMT, we observed

better word choices, and fewer Unknown (UNK) words were produced. Furthermore, we

also observed that better word alignments can be learned which are beneficial to translation

quality. We provided a comparison between LDA and HTMM topic modelling algorithms
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in the proposed approach and found that the HTMM can achieve better results.

6.2 Contributions

In this thesis, we have investigated novel approaches of domain adaptation for MT. The

contributions of our work can be summarized as follows:

• Domain-likeness model. We presented an approach to measure the closeness of

bilingual phrases from ID and GD. Furthermore, we extended the previous binary

feature to a probabilistic feature in the fill-up combination approach. We compared

the effectiveness of our approach with previous related work and found that our ap-

proach can improve the translation quality significantly. In our experiments, we also

confirmed several previous research findings, including that (i) data selection is a

heavy-handed approach, (ii) the unselected GD data can still make a good contribu-

tion to the MT system, and (iii) it is harmful to translation quality if a large proportion

of GD data is concatenated with ID data for SMT training.

• GDA. We designed a network specifically for the domain-adaptation challenge in the

sequence prediction task when an RNN is used. Our work is the first to propose

model adaptation by adapting large pre-trained word vector models (as the GD data)

to the task of ID model training in the domain-adaptation literature. The proposed

approach is fast and does not require additional task-oriented data. In addition, the

GDA technique can be used in many sequential neural network applications when an

RNN is used. We have shown that using the GDA technique in training can outper-

form the baseline models on two datasets in the neural LM experiments. Moreover,

we also demonstrated that the translation quality can be significantly improved when

the proposed GDA technique is used in the state-of-the-art NMT model.

• Topic-based NMT. We proposed a novel approach to perform domain adaptation

when the domain information is not explicitly given in the training data. We in-

tegrated topic knowledge into an existing state-of-the-art NMT model and achieved
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significant improvements in translation quality compared to the baseline models. Our

findings include the discovery that applying topic information in NMT can not only

influence correction words to be produced, but also lower the number of UNK tokens

appearing in the translations.

6.3 Future Work

There are several possible extensions to the models presented in this thesis. We summarize

them in the following sections.

6.3.1 Limitations on the Domain-likeness Model

The proposed domain-likeness model in Chapter 3 has several limitations. Firstly, the train-

ing data of the domain-likeness model needs to be bilingual as the training features are

based on previous bilingual data selection approach (Axelrod et al. 2011). However, it is

possible to use other features which do not require bilingual training data but rather mono-

lingual data which is much cheaper to obtain. Secondly, the training of the domain-likeness

model can be addressed as a classification task. Therefore, a deeper investigation into the

effect of different classification algorithms with translation quality is necessary to further

improve the solution, in particular with the recent neural network data selection approaches

(Chen and Huang 2016, Peris et al. 2016). Furthermore, linguistic knowledge can provide

an indication of how to distinguish sentence pairs between domains (Toral 2013). There-

fore, a possible extension of the domain-likeness model is to also incorporate linguistic

knowledge in the training phase.

6.3.2 Deeper Analysis on the GDA Technique

In Section 4.3.4, we demonstrated the effectiveness of the GDA technique, showing that the

improvement of GDA over the baseline model is obtained in the early training iterations.

However, it is also interesting to see how often gates are completely open or closed in
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the GDA technique in the related tasks. In an extreme scenario, the gates may be always

open in some situations, which means ID word vectors are completely ignored. In contrast,

the gates may be always closed, which means pre-trained word vectors are completely

ignored. Moreover, we believe there is a strong relationship between the status (open/close)

of the gates and word frequencies in the training data, as lower frequency words have less

opportunity to be seen in training, and so the proposed approach may be beneficial to them.

Further work is required to analyse these aspects. Moreover, we experimental demonstrated

that the GDA technique can be used in Gated Recurrent Unit (GRU) (Chung et al. 2014)

network. However, it is also possible to apply GDA on a Long Short-Term Memory (LSTM)

(Hochreiter and Schmidhuber 1997) network. One further work is to make comparison on

the performance between the GDA technique is applying on GRU and LSTM networks.

Other future work on the GDA technique includes experiments on other sequence prediction

tasks, such as Part-of-Speech Tagging, and translation of low-resource languages.

6.3.3 Joint Training for a Topic-based NMT

The topic-based NMT model we proposed in Chapter 5 needs topic models to be trained in

both source and target languages in advance. Recent researches (Dong et al. 2015, Luong

et al. 2015a) show that multiple tasks can be trained jointly with NMT training to achieve

significantly higher translation quality over an individually trained NMT model. Therefore,

an interesting extension of the topic-based NMT is to combine topic modelling training

(Cao et al. 2015) with NMT model training. Moreover, we can also combine or extend the

current monolingual topic model to multilingual topic models (Mimno et al. 2009, Ni et al.

2011) which would allow us to discover the topic information across the source and target

languages. For example, the prediction of the current word also depends on the bilingual

topic information discovered from the source sentence and previously translated words.
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Appendix A

Open Source Tools

Instead of reimplementing the software used to train baseline systems reported in this thesis,

we adapt the existing tested open source tools into our work. We list all the software used

in our work as follows:

• Word Alignment

The alignment tool we use is MGIZA (Gao and Vogel 2008), which can be down-

loaded from https://github.com/moses-smt/mgiza.git. MGIZA ex-

tends GIZA++ (Och and Ney 2003) alignment tool with the support of multi-threading.

• Phrase-based Statistical Machine Translation (PBSMT)

We use the PBSMT implementation in the Moses 3.0 framework (Koehn et al. 2007)

for our PBSMT baselines. The software can be downloaded from https://github.

com/moses-smt/mosesdecoder/tree/RELEASE-3.0.

• n-gram Language Model (LM)

The n-gram LMs in this thesis are trained using KenLM LM toolkit (Heafield 2011).

It can be downloaded from https://kheafield.com/code/kenlm/.

• Neural Machine Translation (NMT)
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Our NMT baseline implementation is from the dl4mt-tutorial.1 The implementation

can be downloaded from https://github.com/nyu-dl/dl4mt-tutorial.

• Recurrent Neural Network (RNN)LM

The RNNLM baseline is implemented using Tensorflow (version 6.0) (Abadi et al.

2015). The code can be downloaded from https://github.com/tensorflow/

tensorflow/blob/0.6.0/tensorflow/models/rnn/ptb/ptb_word_

lm.py.

• Machine Translation (MT) Evaluation Metrics

We use the Bilingual Evaluation Understudy (BLEU) implementation in the Moses

3.0 framework, it can be found at https://github.com/moses-smt/mosesdecoder/

tree/RELEASE-3.0/scripts/generic/multi-bleu.perl.

1http://dl4mt.computing.dcu.ie
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