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Abstract 

We report aqueous self-assembly of linear amphiphilic triblock copolymers 

poly(ethylene oxide)-block-polycaprolactone-block-poly(2-methyl-2-oxazoline) (PEO-b-

PCL-b-PMOXA) and their PEO-b-PCL precursors with different PCL and PMOXA block 

lengths using three preparation methods: film rehydration, solvent evaporation, and co-

solvent. For PEO-b-PCL, the self-assembled structures were the ordinary spherical particles 

and polymersomes. For PEO-b-PCL-b-PMOXA, we observed polymersomes with 

asymmetric membrane, cloud-like aggregates, elongated particles, Y-shaped elongated 

particles, and 3D networks. All structures were of micrometer size and characterized using 

laser scanning microscopy (LSM). 3D networks were also characterized using z-stack 

confocal LSM, transmission electron microscopy (TEM), and cryogenic TEM. We 

demonstrated that film rehydration method results in pseudoequilibrium structures, whereas 

structures formed using solvent evaporation and co-solvent methods are under kinetic control. 

We showed how kinetically controlled structures can be transformed into pseudoequilibrium 

morphologies. 

Page 1 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 
 

 

  

Page 2 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 
 

Introduction 

Complex structural organization achieved through noncovalent interactions leads to 

unique functions (e.g. DNA, RNA) and very specific catalytic activity (e.g. enzymes) of 

natural macromolecules. Mimicking such complex structural organization by self-assembly 

of synthetic molecules is a promising approach towards the rational design of programmable 

functional (nano)materials. Water is a unique solvent1 for self-assembly based on 

noncovalent interactions, and structures self-assembled in aqueous solution are of particular 

importance for biomedical applications, such as drug delivery and tissue engineering. Low 

molecular weight surfactants and amphiphilic block copolymers are prominent example of 

synthetic molecules that self-assemble into various structures in water. Self-assembly of these 

synthetic molecules is driven by hydrophobic interactions. Amphiphilic block copolymers are 

advantageous over low molecular weight surfactants and natural lipids due to the higher 

stability of the self-assembled structures2 and possibility to tune properties of the aggregates 

by changing composition and length of the blocks. Such a tuning procedure is becoming 

more and more straightforward thanks to the fast development of polymerization techniques 

and vast availability of different monomers.3-5 

Linear AB diblock copolymers, where A and B stand for the hydrophilic and 

hydrophobic blocks, respectively, are the most explored type of amphiphilic block 

copolymers. It has been found that aqueous self-assembled structures of linear AB polymers 

can be described in terms of the packing geometry of an individual polymer molecule, and in 

most cases such structures formed in dilute solutions (few wt %) are limited to micelles, rods, 

and polymersomes.6-13 Introduction of the third, hydrophilic C block, can break this limitation 

and facilitate the access of more complex self-assembled structures that are not accessible 

with conventional linear AB polymers. However, there is lack of experimental data on 

aqueous self-assembly of linear ABC triblock copolymers. Consequently, in contrast to linear 
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AB polymers, in the case of linear ABC polymers it is not known how hydrophilic weight 

fraction and conditions of self-assembly influence morphology of the self-assembled 

structures. 

Only few works report about aqueous self-assembly of linear ABC polymers. Some of 

them do not represent more complex self-assembly behavior of ABC compared to AB 

polymers, since the observed structures are ordinary micelles, rods, and polymersomes.14-15 

The other works do represent more complex self-assembly behavior by reporting 

polymersomes with asymmetric membrane16-24 and structures with domains in the corona and 

stimuli-responsive blocks.25-28 Aqueous self-assembled structures formed by linear ABC 

polymers can be more diverse, as suggested by the recent studies devoted to the self-

assembly of linear triblock copolymers in organic solvents.29-30 The structures possessed 

various morphologies with domains in the core, e.g. spheres on spheres, spheres on rods, rods 

on vesicles, spheres on vesicles, etc. However, these structures were observed for linear ABC 

polymers in organic C-selective solvent, and the established rules are not necessarily 

applicable for (A and C)-selective solvent, i.e. for water in the case of hydrophilic A and C 

blocks. 

In this work, we present the first systematic investigation of self-assembly of linear 

bis-(A, C)-hydrophilic ABC polymers in dilute aqueous solution. Our aim is to gain insight 

into the effect of hydrophilic weight fraction and conditions of self-assembly on the 

morphology of the self-assembled structures. As a first step towards the major aim, we 

explore the latter effects in dilute aqueous solution (0.2 wt %). As a model ABC system, we 

choose recently developed by us narrowly dispersed (ÐM < 1.25) poly(ethylene oxide)-block-

polycaprolactone-block-poly(2-methyl-2-oxazoline) (PEO-b-PCL-b-PMOXA) polymers.16 

Since the synthesis of PEO-b-PCL-b-PMOXA is free of toxic reagents, PEO and PMOXA 

are biocompatible hydrophilic blocks, and PCL is biodegradable hydrophobic block, the 
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reported self-assembled structures might serve as potential candidates for biomedical 

applications. We tune the hydrophilic weight fraction of PEO-b-PCL-b-PMOXA by changing 

PCL and PMOXA block lengths, while keeping PEO block length constant (45 units), and 

explore structures resulting from three self-assembly methods/conditions, namely film 

rehydration, solvent evaporation, and co-solvent. To explain the formation of the observed 

structures assembled from PEO-b-PCL-b-PMOXA, we compare them with self-assembled 

structures formed by their precursors, PEO-b-PCL, under the same self-assembly conditions. 

Finally, to understand whether the observed structures are under thermodynamic or kinetic 

control, we investigate how change of details in self-assembly procedures, such as 

temperature, rate of the co-solvent addition, stirring rate, and self-assembly duration, affects 

the morphology of the self-assembled structures. 
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Experimental part 

Experimental details on methods (NMR, GPC, DSC, TEM, cryoTEM) and synthesis 

of PEO-b-PCL31 and PEO-b-PCL-b-PMOXA16 can be found in related publications and 

Supporting Information. 

Laser scanning microscopy (LSM). LSM images were recorded on an inverted Zeiss 

LSM510 META/ConfoCor 2 FCS microscope using a 100× 1.4 Oil Plan-Apochromat DIC 

objective lens. Bodipy 630/650 and calcein disodium salt were excited by the 633 nm He–Ne 

laser line (10% output) and 488 nm Argon laser line (10% output), respectively. The 

excitation light was passed through a HFT UV 488/543/633 beam splitter. The emission light 

from Bodipy 630/650 was passed through a LP 650, and the signal from calcein through a BP 

474-525. The transmittance signal was recorded simultaneously on a T-PMT detector. 12 bit 

images of 1024 × 1024 pixels were recorded at a scan speed of 51.20 µs per pixel. z-Stack 

confocal LSM (CLSM) was performed on an inverted Zeiss LSM880 using a 63× 1.4 Oil 

Plan-Apochromat DIC M27 objective. Bodipy 630/650 was excited by the 633 nm He–Ne 

laser line. To get z-stacks with identical signal intensity, the laser power was increased from 

0.1% to 3% output over the z-scan range. The excitation light was passed through a HFT UV 

488/543/633 beam splitter. The emission light was passed through a LP 650 and recorded on 

PMT detector. The pinhole was set to 1 airy unit, and the z-slices were recorded with 0.5 µm 

step enabling 50% overlap for efficient 3D reconstruction. 16 bit images of 1280 × 1280 

pixels were recorded at a scan speed of 13.11 µs per pixel. 5 µl of a stained sample were 

placed onto a 22 mm × 50 mm glass cover slip, covered with a round (Ø 13 mm) cover slip, 

and sealed with nail polish. The LSM images were processed with ImageJ and its LSM 

toolbox plug-in. The average diameter of polymersomes was calculated from area (d = 

2(s/π)1/2) determined for each individual particle using “Analyze Particles” option based on at 

least 3 different images (at least 300 objects in total). Length of elongated structures was 
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determined as Feret’s diameter based on at least 3 different images (at least 70 objects in 

total). z-Stack CLSM images were recorded in ZEN software, deconvoluted in Huygens 

software, and z-projection was performed in ImageJ software using Z Projection plug-in. 

Self-assembly. Three methods of self-assembly were employed to obtain microscale 

structures of PEO-b-PCL and PEO-b-PCL-b-PMOXA: film rehydration, solvent evaporation, 

and co-solvent. In all experiments we used 2 × 5 mm PTFE magnetic stir bars, and final 

polymer concentration was 0.2 wt %. Microscale structures (50 µl) were stained with 0.5 µl 

of 0.72 µM Bodipy 630/650 prior to visualization by LSM. Possible effect of Bodipy 630/650 

on self-assembled structures was tested by comparing bright field images of the assemblies 

formed by E45C110M4 and E45C153M11 before and after dye addition. No visible differences in 

self-assembled structures were observed, suggesting no effect of fluorescent dye on the 

morphology of the self-assembled structures, at least on the experimental time scale (data not 

shown). 

Film rehydration. 2 mg of a polymer was dissolved in 200 µl of CH2Cl2 and 

transferred into a 5 ml glass round-bottom flask. CH2Cl2 was slowly removed by rotary 

evaporation (110 rpm, 40 °C, 710 mbar), the polymer film was dried for 30 min (110 rpm, 

40 °C, 5 mbar), and 1 ml of Milli-Q water was added for the rehydration. The samples were 

placed into an oil bath which was quickly heated by a heating plate to 62 °C (3 °C·min-1). 

The samples were stirred at 500 rpm for 24 h at 62 °C. After 24 h the oil bath (62 °C) was 

removed, leading to a rapid decrease of the sample temperature to 22 °C. In the experiments 

where the heating rate was controlled, the temperature was increased by steps of 10 °C 

(1.5 °C·min-1) from 22 °C to 62 °C, and the samples were left equilibrating at each 

temperature for 1 h. After incubation for 24 h (500 rpm, 62 °C), the solutions were cooled to 

22 °C by removing the oil bath. The experiments where the cooling rate was controlled, the 

samples were placed into an oil bath which was quickly heated by a heating plate to 62 °C 
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(3 °C·min-1), incubated for 24 h (500 rpm, 62 °C), and the temperature was decreased by 

steps of 10 °C (0.6 °C·min-1) from 62 °C to 22 °C, and the samples were left equilibrating at 

each temperature for 1 h. 

Solvent evaporation. 2 mg of a polymer was dissolved in 200 µl of CH2Cl2 and 

transferred into a 2.5 ml glass vial, and then 1 ml of Milli-Q water was added in one shot. The 

mixtures were left open for the evaporation of CH2Cl2 (350 rpm, 24 h, 22 °C) and covered 

with a 500 ml beaker to avoid contamination of the samples. To check whether the structures 

formed in solvent evaporation method can undergo a morphological transition to the ones 

formed in film rehydration method, different structures formed by polymers with different 

PCL and PMOXA lengths, i.e. E45C110M4, E45C135M4, and E45C135M20, were incubated at 

62 °C for 24 h at 350 rpm after evaporation of CH2Cl2. 

Co-solvent. 2 mg of a polymer was dissolved in 200 µl of THF and added dropwise 

(~ 200 µl·min-1) into 800 µl of Milli-Q water stirring at 350 rpm in a 2.5 ml glass vial. The 

vials were closed and the mixture was left stirring at 350 rpm for 24 h at 22 °C. To check the 

influence of the co-solvent nature on self-assembly, self-assembly of E45C153M4 was 

performed using DMF / ACN / acetone as a co-solvent, since these solvents are among those 

able to solubilize PEO-b-PCL-b-PMOXA copolymers. For the encapsulation experiments, 

10 mM solution of calcein disodium salt was used instead of water. After the self-assembly 

the solution was placed into a dialysis membrane (RC, MWCO 3.5-5 kDa, SpectraPor) and 

dialyzed against 1 L of Milli-Q water for 3 days (solution was exchanged 9 times). 
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Results and Discussion 

Bis-hydrophilic PEO-b-PCL-b-PMOXA triblock copolymers (Scheme 1) with fixed 

PEO length (45 units / 2 kDa) and various PCL (48 – 153 units / 5.5 – 17.4 kDa) and 

PMOXA (3 – 25 units / 0.2 – 2.1 kDa) lengths were tested for the ability to self-assemble in 

aqueous solution using film rehydration, solvent evaporation, and co-solvent methods. In all 

self-assembly methods final polymer concentration was 0.2 wt %. All polymers self-

assembled into microscale structures which were characterized by LSM. We discuss the 

observed structures in the following subsections devoted to each self-assembly method. 

Further in the text, PEO-b-PCL-b-PMOXA polymers are abbreviated as ExCyMz, where x, y, 

and z denote the number of monomer units of PEO, PCL, and PMOXA, respectively. 

 

Scheme 1. Structure of PEO-b-PCL-b-PMOXA polymers. 

Film rehydration method. In film rehydration method, a polymer was dissolved in 

CH2Cl2 and placed in a round-bottom glass flask. A thin polymer film was formed on the 

wall of the glass flask by removing CH2Cl2 by rotary evaporation. The film was rehydrated 

for 24 h after addition of water. Rehydration was performed at 62 °C due to the 

semicrystalline nature of the PCL block. The melting temperature of PEO-b-PCL-b-PMOXA 

polymers is Tm ≈ 61 °C (DSC Fig. S1). Self-assembly did not occur at 55 °C, and the 

polymers remained as a precipitate. 

Fig. 1A depicts the predominant structures formed by PEO-b-PCL-b-PMOXA and 

their precursors, PEO-b-PCL, where each structure corresponds to the polymer with a certain 

molecular weight Mn (or length) of PCL and hydrophilic weight fraction f: 

� �
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�
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Most of PEO-b-PCL-b-PMOXA polymers formed two or three types of structures 

(e.g. Fig. S2), but for simplicity reasons, only predominant structures are plotted in Fig. 1A. 

More detailed information on morphology of the self-assembled structures can be found in 

Table S1. Here, in Fig. 1A, and in the following morphology diagrams, points of the same 

color represent polymers with similar PMOXA lengths. For simplicity, we combined close 

values of PMOXA lengths in groups indicated by dashed lines, e.g. the lengths of 7-12 units 

belong to the group PMOXA 10. Such combination is reasonable taking into account the 

dispersity of our triblock copolymers (1.10 < ÐM < 1.25, Table S1). Point shapes in 

morphology diagrams indicate certain morphologies. The gray areas point out regions of the 

same morphology. 

 

Figure 1. Self-assembled structures observed in film rehydration method. (A) Morphology 

diagram showing structures formed by PEO-b-PCL and PEO-b-PCL-b-PMOXA in aqueous 
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solution as a function of the molecular composition. Points of each color correspond to 

polymers with a certain PMOXA length. Points of each shape correspond to a certain 

morphology: spherical particles (squares), polymersomes (circles), irregularly shaped 

particles (diamonds), cloud-like aggregates (triangles). The gray areas point out regions of the 

same morphology. Representative LSM images of the structures formed by (B) E45C147 – 

spherical particles, (C) E45C147M18 – irregularly shaped particles, (D) E45C110M4 – 

polymersomes, (E) E45C135M20 – cloud-like aggregates. Structures were stained with Bodipy 

630/650. Scale bars are 5 µm. B inset is a representative TEM image of negatively stained 

spherical particles formed by E45C147; scale bar is 200 nm. 

In the absence of PMOXA block, i.e. in the case of PEO-b-PCL, morphology of the 

self-assembled structures changes from polymersomes to spherical particles (Fig. 1B) with an 

increase in f. These spherical particles with diameters 0.2-2 µm (determined from TEM) are 

composed of distinct domains, and the domain have shapes ranging from spheres to rods (Fig. 

1B inset, S3). Perhaps such domains aggregate into spherical particles while cooling of the 

solution and crystallization of PCL block, but in this case one would expect formation of 

particles with rather irregular shape. In the case of PEO-b-PCL-b-PMOXA with PMOXA 

length of 5 and 10 units, morphology of the structures changes in the row irregularly shaped 

particles (Fig. 1C) – polymersomes (Fig. 1D) – spherical particles with an increase in f. In the 

case of PEO-b-PCL-b-PMOXA with PMOXA length of 20 units, morphology of the self-

assembled structures changes from irregularly shaped particles to cloud-like aggregates (Fig. 

1E) with an increase in f. Revealing trends between morphology of self-assembled structures 

and f is a common practice in studies of self-assembly of diblock copolymers. For PEO-b-

PCL in film rehydration method, the trend is known to be irregularly shaped particles – 

polymersomes – spherical particles with increasing f.32 Our observed trend for PEO-b-PCL 

follows this literature trend for PEO-b-PCL diblock copolymers (Fig. 1A, black). 
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Interestingly, our triblock copolymers, PEO-b-PCL-b-PMOXA, with PMOXA length of 5 

and 10 units (Fig. 1A, red and blue) also follow the literature trend for diblock copolymers. 

An exception is that PEO-b-PCL-b-PMOXA polymersomes have asymmetric membrane in 

contrast to PEO-b-PCL polymersomes as we have shown previously.16 We observe a part of 

radically different trends for PEO-b-PCL-b-PMOXA with PMOXA length of 20 and 25 units 

(Fig. 1A, green and dark red). They consist of cloud-like aggregates (Fig. 1E, 2) that have not 

been reported previously for any amphiphilic block copolymer. These aggregates have 

loosely packed branched structure without any defined pattern and with dimensions up to few 

hundred µm (Fig. 2A, C). Typically, these structures coexist with polymersomes often found 

on the edges of the cloud-like aggregates (indicated by arrows on Fig. 2B, D). We discuss 

possible reason of the formation of cloud-like aggregates further in the text. 

 

Figure 2. Characterization of cloud-like aggregates formed by E45C135M20 in aqueous 

solution. (A, B) LSM images at different z-focal planes: (A) middle; (B) lower surface. Inset 

in image A represents polymersomes formed by this polymer (E45C135M20) in PBS. Structures 

were stained with Bodipy 630/650. (C, D) TEM images of non-stained cloud-like aggregates. 

Arrows on images B and D point out polymersomes which are often found on the edges of 

cloud-like aggregates. Scale bars are 10 µm. 
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So far, we have looked at morphology trends while increasing f by decreasing PCL 

length and keeping PMOXA length constant. However, for PEO-b-PCL-b-PMOXA, f can 

also be increased by increasing PMOXA length and keeping PCL length constant. Such 

flexibility in increasing f is, obviously, due to an additional degree of freedom brought into 

the system by C (PMOXA) block. Since there is lack of systematic data for ABC polymers in 

literature, morphology trends are not known for the case when f is varied through C block. 

We made a first attempt and revealed such (partial) morphology trends as discussed below. 

In Fig. 1A, we split the tested polymers into 3 groups with common morphology 

trends: polymers with PCL ~50 units, polymers with PCL ~60 – 130 units, and polymers with 

PCL ~150 units. Polymers with the shortest PCL ~50 units formed predominantly spherical 

particles and partially dissolved under the tested conditions. In the case of polymers with 

PCL ~60 – 130 units morphology of the structures changes in the row spherical particles (Fig. 

1B) – polymersomes (Fig. 1D) – cloud-like aggregates (Fig. 1E) with an increase in f. For 

polymers with PCL ~150 units with an increase in f morphology of the structures changes 

from spherical particles/polymersomes to irregularly shaped particles (Fig. 1C). Irregularly 

shaped particles are observed along with macroscopic precipitate, and can be considered as 

smaller pieces of the insoluble polymer. 

To explain formation of the observed self-assembled structures, we refer to packing 

geometry model. For AB diblock copolymers, packing geometry is defined by packing 

parameter p:33 

� �
��

�� � ∙ "�
														�2� 

where aA-B is the optimal area of the hydrophilic block A at the interface A−B, vB and lB are 

the volume and critical length of the hydrophobic block B, respectively. 

PEO-b-PCL polymers with PCL ~150 units form polymersomes, and according to 

packing geometry model, individual molecules of these polymers are packed into cylinders 
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(Scheme 2a). We speculate that addition of PMOXA block does not influence packing 

geometry for PEO−PCL interface, but adds another area aC-B and creates a new packing 

geometry at the C−B (PMOXA−PCL) interface (Scheme 2b). Such assumption is based on 

the immiscibility of PEO and PMOXA polymers in aqueous solution.34-35 The final packing 

geometry of PEO-b-PCL-b-PMOXA molecules can be considered as a result of the 

superposition of two packing geometries for PEO−PCL and PMOXA−PCL interfaces. PEO-

b-PCL-b-PMOXA with PCL ~150 units precipitated in FR method, in contrast to the 

corresponding PEO-b-PCL polymers which formed polymersomes and spherical particles. 

We attribute it to the appearance of PMOXA−PCL packing geometry which corresponds to 

precipitate. The combination of long PCL and relatively short PMOXA results in high 

curvature at PMOXA−PCL interface which prevents triblock copolymers from being 

dispersed, i.e. hydrophobic attractive forces between PCL chains become predominant over 

repulsive forces between PEO and PMOXA chains, and the triblock copolymer remains as a 

precipitate. 
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Scheme 2. Illustration of the packing geometry of polymers with PCL ~150 units: (a) AB and 

(b) ABC resulting into polymersomes and irregularly shaped particles (precipitate), 

respectively. 

Morphology of the self-assembled structures formed by polymers with PCL ~60 – 130 

units changes in the row spherical particles (PMOXA = 0 units) – polymersomes (PMOXA = 

5-10 units, Fig. 1D) – cloud-like aggregates (PMOXA = 20-25 units, Fig. 1E, 2) with an 

increase in f. In this case, change of PCL length (~60 – 130 units) has almost no effect on 

self-assembled morphology presumably due to the ability of PCL chains to compress or 

stretch in the fluid state (for PCL above Tm), which leads to the adjustment of a polymer 

molecule to a certain packing geometry.33 PEO-b-PCL form spherical particles composed of 

distinct domains, and such domains possess shapes ranging from spheres to rods (Fig. 1B 

inset, S3). Despite the mechanism of self-assembly of such particles remains unclear, the 

packing geometry of PEO-b-PCL molecules can be attributed to a cone (spherical micelles) 

and truncated cylinder (rod-like micelles). For simplicity reasons, we generalize packing 

geometry of PEO-b-PCL forming spherical particles as a cone (Scheme 3a). 
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Scheme 3. Illustration of the packing geometry of polymers with fixed A and B (~60 – 130 

units) but different C block lengths: (a) AB, (b) ABC with short C block, and (c) ABC with 

long C block. 

PEO-b-PCL-b-PMOXA polymers with PCL ~60 – 130 and relatively short PMOXA 

(5-10 units) form polymersomes with diameters ~3 µm (Fig. 1D, Table 1). According to the 

Student’s t-test36 with p = 0.05, the values of diameters are not significantly different. As 

discussed above, addition of PMOXA block presumably introduces area aC-B at the C−B 

(PMOXA−PCL) interface. Assuming that hydrophilic blocks are in the stretched 

conformation, the counter length of PEO (162.00 Å) is longer than that of PMOXA (for 5/10 

units the length is 18.30/36.60 Å) (for calculations see Supporting Information). The 
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approximate diameter of PEO chain (~2 Å) is smaller compared to that of PMOXA (~7 Å) 

due to the side chain in PMOXA backbone, and this difference is likely to be larger in the 

hydrated state, since PEO needs 3 water molecules37 and PMOXA 5.2 per repeating unit.35 

Nevertheless, due to much longer PEO length the resulting packing geometry of ABC 

molecules corresponds to a cylinder slightly truncated at the C side (Scheme 3b). Such 

packing geometry results in polymersomes with the inner surface formed by a shorter 

PMOXA block, and the outer surface formed by a longer PEO block (Scheme 3b), which we 

indeed proved by two independent methods.16 

Table 1. Average diameter of polymersomes formed by different polymers in film 

rehydration method. The diameter was determined based on at least 3 different LSM images 

containing at least 300 objects in total. 

Copolymer Polymersome diameter, µm 

E45C66M5 2.4 ± 0.9 

E45C103M4 2.8 ± 1.2 

E45C103M12 3.1 ± 1.2 

E45C110M4 3.1 ± 1.2 

E45C135M4 3.5 ± 1.4 

E45C135M10 3.2 ± 1.3 

E45C153 1.3 ± 0.5 

PEO-b-PCL-b-PMOXA polymers with PCL ~60 – 130 and relatively long PMOXA 

(20-25 units) self-assembled into cloud-like aggregates (Fig. 1E, 2). We explain formation of 

such morphology by the increase of aC-B interfacial area compared to PEO-b-PCL-b-PMOXA 

polymers with a shorter PMOXA (5-10 units) (Scheme 3c). In the case of PMOXA 20/25 

units its larger length (73.20/91.50 Å for 20/25 units) and diameter (~7 Å + 5.2 water 
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molecules per repeating unit35) results in the increase of repulsive forces between hydrophilic 

chains which compete with hydrophobic attractive forces between PCL chains. The packing 

geometry of ABC molecules in this case approaches the double cone shape (Scheme 3c). The 

aggregates have 3D-extended structure of several hundred µm size. Such branched structure 

with large size supposedly helps shielding hydrophobic interactions from aqueous 

environment. To support our assumption that cloud-like aggregates form due to strong 

hydrophilic repulsion between water-soluble chains, we tried to decrease these forces by 

performing self-assembly in the presence of salts. In PBS buffer such polymers form 

predominately polymersomes (Fig. 2A, inset), suggesting that repulsion between hydrophilic 

chains indeed decreases in the presence of salts, and hence the packing geometry changes 

from double cone shape (Scheme 3c) to cylinder (Scheme 3b). 

Solvent evaporation method. In solvent evaporation method, a polymer was 

dissolved in CH2Cl2 in a glass vial. After addition of water the solution was stirred at 22 °C in 

the open vial until CH2Cl2 evaporated. Fig. 3A summarizes the predominant structures 

formed by PEO-b-PCL-b-PMOXA and their precursors, PEO-b-PCL, in solvent evaporation 

method. Similar to film rehydration method, most of polymers formed two or three types of 

structures, but to simplify the morphology diagram in Fig. 3A, only predominant structures 

are plotted. More detailed information on morphology of the self-assembled structures can be 

found in Table S1. 
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Figure 3. Self-assembled structures observed in solvent evaporation method. (A) 

Morphology diagram showing structures formed by PEO-b-PCL and PEO-b-PCL-b-PMOXA 

in aqueous solution as a function of the molecular composition. Points of each color 

correspond to polymers with a certain PMOXA length. Points of each shape correspond to a 

certain morphology: spherical particles (squares), elongated structures (hexagons), elongated 

structures with Y-junctions (pentagons), 3D networks (star), irregularly shaped particles 

(diamonds). The gray areas point out regions of the same morphology. Representative LSM 

images of the structures formed by (B) E45C153 – spherical particles, (C) E45C103M12 – 

elongated particles. z-projection of z-stack CLSM of the structures formed by (D) E45C135M10 

– elongated particles with Y-junctions and (E) E45C135M20 – 3D networks. Structures were 

stained with Bodipy 630/650. Scale bars are 5 µm. 
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In the absence of PMOXA block, i.e. in the case of PEO-b-PCL, self-assembled 

structures are predominantly spherical particles with diameters 0.2-2 µm (Fig. 3B; the range 

of diameters was determined from TEM). In the case of PEO-b-PCL-b-PMOXA with 

PMOXA 5, morphology of the structures changes in the row irregularly shaped particles – 

elongated particles – spherical particles with an increase in f. Morphology of the structures 

formed by PEO-b-PCL-b-PMOXA with PMOXA 10 undergoes transition irregularly shaped 

particles – elongated particles with Y-junctions (Fig. 3D) – elongated particles (Fig. 3C) – 

spherical particles with an increase in f. In the case of PEO-b-PCL-b-PMOXA with PMOXA 

length of 20 units, morphology of the self-assembled structures changes in the row irregularly 

shaped particles – 3D networks (Fig. 3E) – elongated particles with an increase in f. Typical 

literature trend for PEO-b-PCL assembled under similar solvent evaporation conditions is 

irregularly shaped particles – polymersomes – spherical particles with increasing f.38 Our 

morphology trends for PEO-b-PCL and PEO-b-PCL-b-PMOXA differ dramatically: we did 

not observe polymersomes as a predominant morphology. Interestingly, few PEO-b-PCL38 

polymers were reported to self-assemble into elongated structures, whereas our PEO-b-PCL 

with comparable molecular composition formed spherical particles. 

To reveal morphology trends while f is varied through C block, we divide the tested 

polymers into 4 groups in Fig. 3A: polymers with PCL ~50 – 70 units, polymers with PCL 

~100 units, polymers with PCL ~130 units, and polymers with PCL ~150 units. Polymers 

with the shortest PCL ~50 – 70 units formed predominantly spherical particles. Morphology 

of the self-assembled structures formed by polymers with PCL ~100 units changes from 

spherical particles to elongated particles (Fig. 3C) while increasing f. In the case of polymers 

with PCL ~130 units morphology of the structures changes in the row spherical particles – 

elongated particles – elongated particles with Y-junctions (Fig. 3D) – 3D networks (Fig. 3E) 

– elongated particles with Y-junctions with an increase in f. Morphology of the self-
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assembled structures formed by polymers with PCL ~150 units changes from spherical 

particles to irregularly shaped particles. 

From the trends discussed above one can observe some similarities between film 

rehydration and solvent evaporation methods: PEO-b-PCL form predominantly spherical 

particles; PEO-b-PCL-b-PMOXA with PCL ~50 units and ~150 units form spherical particles 

and irregularly shaped particles, respectively. These findings suggest little effect of the 

preparation method on the self-assembly of these particular polymers. On the other hand, 

PEO-b-PCL-b-PMOXA polymers with PCL ~60 – 130 units self-assemble into elongated 

rod-like structures in solvent evaporation method, while forming polymersomes and cloud-

like aggregates in film rehydration method. 

PEO-b-PCL-b-PMOXA polymers with PCL ~130 units form rods with Y-junctions 

and 3D microscale networks. Formation of such structures by amphiphilic block copolymers 

is rarely observed and so far was reported only for few AB systems.8, 39 It is believed that 

such networks are formed above a critical molecular weight of the polymer.8 Similarly to 

poly(ethylene oxide)-block-polybutadiene (PEO-b-PB) 3D nanoscale networks,8 we also 

observed macroscopic phase separation in the case of PEO-b-PCL-b-PMOXA 3D microscale 

networks. To gain insight into the microscale structure of these networks, we characterized 

them using z-stack CLSM (Fig. 4A). Interestingly, the polymer forming these networks, 

E45C135M20, assembles into 3D cloud-like aggregates in film rehydration method (Fig. 4A 

inset, 1E, 2), suggesting the inherent tendency of this polymer to form branched 3D 

structures. 3D networks are composed of rods typically with a length of 5−50 µm and 

thickness up to 10 µm. To gain a better understanding of the structure of the networks at the 

nanoscale, we performed TEM (Fig. 4B-E) and cryoTEM (Fig. 4F-J) imaging. Since these 

techniques require a special sample preparation procedure, most of the microscale parts of 3D 

networks were blotted off. We found only one piece of networks in the negatively stained 
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TEM sample (Fig. 4B). The thickest rods of the networks might have porous structure (Fig. 

4B, inset). Some of the thinner rods with diameters ~20–200 nm possibly exhibit hollow 

structure (pointed out by arrows on Fig. 4C, D, G, H), but this cannot be undoubtedly 

concluded. In some TEM and cryoTEM images we observed rods which have a helical 

structure or are composed of the disks stacked together (Fig. 4E, I, J), and diameter of these 

rods ranges from ~20 up to ~500 nm. 

 

Figure 4. Characterization of 3D networks formed by E45C135M20 in solvent evaporation 

method: (A) z-projection of z-stack CLSM, inset: cloud-like aggregates formed by the same 

polymer in film rehydration method (LSM); structures were stained with Bodipy 630/650. 
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(B-E) negatively stained TEM; (F-J) cryoTEM. Scale bars: A, A inset, B 10 µm; B inset, C-E 

1 µm; F-J 50 nm. The arrows on C, D, G, and H point out possibly hollow rods. 

Formation of the self-assembled structures observed in solvent evaporation method 

can be explained in the following way. Amphiphilic polymers dissolved in CH2Cl2 upon 

addition of water and stirring start to orient with their hydrophilic tails towards aqueous 

solution (Scheme 4). Diblock copolymers have only one hydrophilic tail, and therefore they 

form mainly I-shaped monolayers at the CH2Cl2−H2O interface. Upon evaporation of the 

organic solvent, these monolayers transfer into aqueous solution in the form of spherical 

particles (Scheme 4a). Triblock copolymers have two water-soluble blocks, A and C, and 

both of them tend to transfer into water phase, thus resulting in U-shaped loops at the 

CH2Cl2−H2O interface. When C block is relatively short, its attraction into water phase is 

weaker than that of PEO (i.e. 5.2 × 5 = 26 water molecules for PMOXA35 5 units vs. 3 × 45 = 

135 water molecules for PEO37). Triblock copolymers form a mixture of I-shaped 

monolayers and U-shaped loops, which upon evaporation of CH2Cl2 transfer into spherical 

particles and short rods (Scheme 4b). In the case of relatively long C block, its attraction into 

water phase becomes stronger (i.e. 52 water molecules for PMOXA 10 units vs. 135 for 

PEO), and ABC molecules predominantly form loops at the CH2Cl2−H2O interface. Upon 

evaporation of the organic solvent, these loops transfer into aqueous solution in the form of 

long rods (Scheme 4c). The microscale rods with thickness > 140 nm (2 × length of triblock 

copolymer in U-shaped confirmation, see Supporting Information) might possess hollow 

morphology, but as has been shown for 3D networks (Fig. 4), this cannot be undoubtedly 

concluded from LSM images due to limited resolution and from TEM or cryoTEM analysis 

due to sample preparation procedure leading to removal of thick rods. 

Thus, spherical particles are observed for PEO-b-PCL polymers (Fig. 2B), spherical 

and short elongated (< 5 µm) particles are common for PEO-b-PCL-b-PMOXA polymers 
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with short PMOXA (~5 units), and mostly long (> 5 µm) elongated structures are observed 

for PEO-b-PCL-b-PMOXA with longer PMOXA (> 5 units) (Fig. 3C-E, 4, Table 2). Size 

values of the elongated structures scattered too much and could not be fitted with 

conventional functions for statistical analysis, therefore only the range of the lengths is 

provided in Table 2. 

 

Scheme 4. Proposed mechanism of self-assembly in solvent evaporation method for: (a) AB 

polymers, (b) ABC with short C, (c) ABC with long C. 

Table 2. Length of elongated structures formed by different PEO-b-PCL-b-PMOXA 

polymers in solvent evaporation method. The length was determined based on at least 3 

different images containing at least 70 objects in total. 

Copolymer Range of the lengths of elongated structures, µm 

E45C48M3 1.5 – 4.5 

E45C66M5 1.5 – 5 
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E45C110M4 1 – 6 

E45C103M12 5 – 40 

E45C135M10 5 – 30 

E45C135M25 2 – 40 

For PEO-b-PCL38 and PEO-b-PCL-b-PMOXA elongated structures are uniquely 

accessible only via solvent evaporation method. As discussed above, we attribute formation 

of elongated structures to the presence of two terminal hydrophilic blocks. To prove the latter 

assumption, we compared self-assembly of diblock copolymer E45C153 (PEO(2.0K)-b-

PCL(17.4K), ÐM = 1.08) and its analogue PEO(2.0K)-b-PCL(16.0K) (ÐM = 1.23) containing 

26% of PEO-b-PCL-b-PEO species.31 E45C153 assembled mainly into spherical particles, 

whereas polymer PEO(2.0K)-b-PCL(16.0K) formed mostly elongated and irregularly shaped 

structures in solvent evaporation method (Fig. S4). These findings support the proposed 

mechanism of self-assembly of di- and triblock copolymers in solvent evaporation method 

and also possibly explain how PEO-b-PCL38 formed elongated structures under similar 

conditions, since those polymers most likely contained some PEO-b-PCL-b-PEO species.31 

Co-solvent method. In co-solvent method, a polymer was dissolved in THF, and the 

resulting solution was added dropwise into a glass vial with stirred aqueous solution. The 

mixture was stirred at 22 °C in the closed vial. In this method, we tested only polymers with 

PCL 110 – 153 units, because polymers already with PCL 110 units dissolved under these 

conditions. 

Fig. 5A depicts the predominant structures formed by PEO-b-PCL-b-PMOXA and 

their precursors, PEO-b-PCL, in co-solvent method. Similar to film rehydration and solvent 

evaporation methods, most of the polymers formed two or three types of structures, but to 

simplify the morphology diagram in Fig. 5A, only predominant structures are plotted. More 
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detailed information on morphology of the self-assembled structures can be found in Table 

S1. 

 

Figure 5. Self-assembled structures observed in co-solvent method. (A) Morphology diagram 

showing structures formed by PEO-b-PCL and PEO-b-PCL-b-PMOXA in aqueous solution 

as a function of the molecular composition. Points of each color correspond to polymers with 

a certain PMOXA length. Points of each shape correspond to a certain morphological state: 

dissolution (triangles), spherical particles (squares), polymersomes (circles). The gray areas 

point out regions of the same morphology. Representative LSM images of the structures 

formed by (B) E45C135M10 – spherical particles, (C) E45C153M11 – polymersomes. Structures 

were stained with Bodipy 630/650. Scale bars are 5 µm. Inset in the image (C) represents 

polymersomes with encapsulated hydrophilic dye calcein; scale bar is 2 µm. 

PEO-b-PCL, i.e. where PMOXA length is 0, self-assembled predominantly into 

spherical particles with diameters 0.2-1.5 µm. In the case of PEO-b-PCL-b-PMOXA with 

PMOXA 5 and 10 units, morphology of the self-assembled structures changes from 

polymersomes to spherical particles (Fig. 5B), and the polymers then dissolve with an 
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increase in f. PEO-b-PCL-b-PMOXA with PMOXA 20 and 25 units self-assembled into 

spherical particles. 

Morphology trends when f is varied through C block are the following. Polymers with 

PCL 110 units predominantly dissolved in co-solvent method. The diblock copolymer formed 

some spherical particles, whereas the triblock copolymer dissolved completely and resulted in 

optically transparent solution. Such self-assembly behavior of the triblock copolymer can be 

attributed to the weakening of hydrophobic interactions between PCL chains in the presence 

of THF which are not able to compensate hydrophilic repulsive forces in the corona. 

Polymers with PCL 135 units self-assembled into spherical particles (Fig. 5B), which is 

analogous to the case of PCL ~50 units in FR method. Morphology of the structures formed 

by polymers with PCL 147 changes in the row spherical particles – polymersomes – spherical 

particles while increasing f. For polymers with PCL 153 units, with an increase in f 

morphology undergoes transition from spherical particles to polymersomes (Fig. 5C), which 

is analogous to the trend observed for PCL ~60 – 130 units in FR method. The average 

diameter of polymersomes formed in co-solvent method is ~3 µm (Table 3) which is similar 

to the ones formed in film rehydration method (Table 1). 

Table 3. Average diameter of polymersomes formed by PEO-b-PCL-b-PMOXA polymers in 

co-solvent method. The diameter was determined based on at least 3 different LSM images 

containing at least 300 objects in total. 

Copolymer Polymersome diameter, µm 

E45C147M4 2.4 ± 0.6 

E45C153M4 2.5 ± 0.8 

E45C153M11 3.3 ± 0.9 

To the best of our knowledge, there are no studies reporting about systematic 

investigation of self-assembly of PEO-b-PCL in co-solvent method. In the case of our 
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polymers, co-solvent method allowed us to expand the range of the self-assembled structures 

for polymers which precipitated in film rehydration and solvent evaporation methods. The 

key difference of co-solvent method is the presence of 20% THF in the self-assembly 

mixture. Considering packing geometry model, we assume that this solvent composition does 

not change interactions between PEO chains, because this block is soluble in both water and 

THF. THF is a good solvent for PCL block, and therefore THF−H2O mixture is able to 

solubilize partially PCL block. Thus, the effective vB and lB occupied by the PCL block 

changes leading to different self-assembly behavior of PEO-b-PCL polymers compared to 

film rehydration and solvent evaporation methods (Scheme 5a). For example, while forming 

predominantly polymersomes in film rehydration method, E45C153 self-assembled into 

spherical particles and partially dissolved in co-solvent method. The presence of 20% THF 

has similar effect in the case of PEO-b-PCL-b-PMOXA insoluble in film rehydration and 

solvent evaporation methods, but the self-assembled morphology changes from precipitate to 

polymersomes (Scheme 5b). 
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Scheme 5. Illustration how packing geometry of (a) AB and (b) ABC polymers changes in 

the presence of 20% THF. 

The morphological trend observed for polymers with PCL 147 (spherical particles – 

polymersomes – spherical particles) is not completely clear, but it might deal with partial 

solubility of PMOXA in THF−H2O mixture. PMOXA homopolymer precipitates in THF. In 

the case of E45C147M4 formation of polymersomes can be explained as described above 

(Scheme 5b). With further increase of PMOXA length its insolubility in THF−H2O mixture 

becomes more pronounced, and probably PMOXA block tends to collapse resulting in 

structures with only one completely soluble block – PEO. 

As has been shown for some amphiphilic diblock copolymers,11, 40-41 nature of a co-

solvent (i.e. a common solvent for both blocks) has a dramatic effect on the observed 

morphology. To check whether a nature of the co-solvent affects self-assembly of PEO-b-

PCL-b-PMOXA polymers, we tested the self-assembly of E45C153M4 using different co-
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solvents: DMF, ACN, and acetone. These solvents are among very few ones able to dissolve 

our triblock copolymers. The change of the co-solvent led to the formation of completely 

different aggregates which were not observed when THF was used as a co-solvent (Fig. 6, 

S5). On the other hand, the assemblies obtained in the presence of DMF or ACN or acetone 

possessed quite similar structures with three-dimensionality. These observations can be 

explained by only partial solubility of PCL block in these solvents, whereas THF dissolves 

PCL completely,42 suggesting its unique role in the self-assembly behavior of PEO-b-PCL-b-

PMOXA polymers. 

 

Figure 6. From left to right: LSM, bright field, and their overlay images of the aggregates 

formed by E45C153M4 obtained using acetone as a co-solvent. Structure was stained with 

Bodipy 630/650. Scale bar is 10 µm. 

Equilibrium or kinetically frozen morphologies? Formation of diverse structures 

by PEO-b-PCL-b-PMOXA in different self-assembly methods suggests that one or all 

methods result in morphologies which are under kinetic control. Thermodynamically 

controlled structures should be insensitive to details in preparation procedure, whereas 

kinetically controlled morphologies are highly path dependent.6-7 Therefore, to gain a better 

understanding about self-assembly equilibrium, we studied how change of details in film 

rehydration, solvent evaporation, and co-solvent methods influences self-assembly. For the 

latter purpose, we chose polymers E45C110M4, E45C135M4, E45C135M20 as they have different 

PCL and PMOXA lengths and self-assemble into different microscale structures. In film 
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rehydration method stirring rate (300-800 rpm), duration of self-assembly (6-48 h), and 

conditions of polymer film formation did not influence the self-assembled morphology of the 

selected polymers. Employment of different heating and cooling conditions for self-assembly 

also did not affect the type and size of the structures (Fig. 7, S6). These findings suggest that 

the structures formed in film rehydration method are energetically favorable and the system is 

on the way to approach thermodynamic equilibrium. The diameter values of polymersomes 

possessed high deviation (~40%) from the mean diameter value (Table 1). This deviation can 

be partially attributed to the dispersity of the polymers and the presence of ~15% of high 

molecular weight impurities.16 We assume, however, that the main reason for this high 

deviation, as well as for the co-existence of multiple morphologies (Table S1, Fig. S2), is the 

fact that the system does not fully achieve global equilibrium on the experimental timescale 

(24 h), which is associated with hindered structural evolution due to slow kinetics of high 

molecular weight polymers.7, 43 Longer experimental times (> 24 h) are problematic because 

of high temperature (62 ºC): water evaporates from the solution containing self-assembled 

structures and condenses on the walls of the flask above the solution. Further in the text, we 

refer to the structures formed in film rehydration method as pseudoequilibrium morphologies, 

because the system might be on the way in achieving global equilibrium in this method. 

 

Figure 7. LSM images of the polymersomes formed by E45C110M4 obtained using film 

rehydration method under different cooling/heating conditions: (A) standard procedure; (B) 
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slow heating; (C) slow cooling. Structures were stained with Bodipy 630/650. Scale bars are 

5 µm. 

As has been shown for most of AB8, 44-46 and ABC30 systems in A-selective solvent, 

the type of morphology usually changes in the row polymersomes – elongated micelles – 

spherical micelles with the increase of f. Assemblies formed by PEO-b-PCL32 and PEO-b-

PCL-b-PMOXA are exceptions from this rule. These polymers do not form elongated 

micelles in film rehydration method and self-assemble into microscale structures, whereas 

most of the systems result in nanoscale assemblies. These observations are associated with 

the semicrystalline nature of PCL block and can be possibly attributed to the formation of 

PCL spherulites in the bulk phase,47 which might affect formation of the core of the self-

assembled structures. 

The type of the resulting morphology in the case of SE method is strongly influenced 

by self-assembly conditions, such as stirring speed and position of a magnetic stir bar. For 

example, while forming mostly 3D networks under standard solvent evaporation conditions 

(350 rpm), E45C135M20 assembled mostly into spherical and some elongated particles at 

500 rpm, whereas 100 rpm did not result in self-assembly, but the polymer aggregated into 

one big piece. Also, when the vial was placed on the side of a stirring plate, and therefore the 

magnetic stir bar inside located at the side of the vial, 3D networks appeared to be much 

longer and more branched compared when the vial was at the central position. Some other 

polymers (E45C110M4, E45C135M10, E45C135M25) also formed extended parts of networks under 

such conditions. Thus, the data indicate that the structures formed in solvent evaporation 

method are under kinetic control. 

In co-solvent method, the type of the resulting morphology is sensitive to the 

preparation procedure. For instance, when THF solution of E45C153M4 was added slower 

(~ 40 µl·min-1) into the aqueous stirring solution, the polymer self-assembled into spherical 
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particles, but not into polymersomes as under standard conditions (~ 200 µl·min-1). On the 

basis of these observations, we concluded that the structures obtained in co-solvent method 

are under kinetic control. 

Transition from kinetically frozen to pseudoequilibrium morphologies. 

Kinetically controlled morphologies may undergo transition towards equilibrium structures, 

as for example has been demonstrated for poly(acrylic acid)-block-polystyrene (PAA-b-PS) 

system in organic solvent–water mixtures by Eisenberg and co-workers.48-49 In the case of 

PEO-b-PCL-b-PMOXA polymers the transition from kinetically trapped morphologies 

obtained in solvent evaporation technique to pseudoequilibrium structures observed in film 

rehydration method is highly unlikely to happen under ambient temperatures due to the 

semicrystalline nature of the PCL block: the structures obtained in solvent evaporation 

method were stable for at least 6 months at room temperature. Therefore, to test such 

transformation, we incubated at 62 °C for 24 h the structures formed by E45C110M4, 

E45C135M4, E45C135M20 in solvent evaporation method after their self-assembly. After 

incubation at 62 °C, the assemblies formed by these polymers partially transferred to the ones 

formed in film rehydration method (Fig. 8, S7). These findings confirm that (i) the 

morphologies formed in solvent evaporation method are under kinetic control; (ii) the 

transition from kinetically trapped to pseudoequilibrium structures is possible above the 

melting temperature of the PCL block, which allows for its structural rearrangements. 
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Figure 8. LSM images of the self-assembled structures formed by E45C110M4 in different 

self-assembly methods: (A) solvent evaporation; (B) solvent evaporation followed by 

incubation at 62 °C for 24 h; (C) film rehydration. Structures were stained with Bodipy 

630/650. Scale bars are 5 µm. 

In solvent evaporation method, elongated structures are the result of the formation of 

ABC loops at the CH2Cl2−H2O interface and their further aggregation in aqueous solution 

upon evaporation of CH2Cl2 (Scheme 4). Such structures might be not energetically favorable 

due to a tension at the bending site of the PCL loop and repulsive forces between PEO and 

PMOXA corona. This could explain why above Tm of PCL structures obtained in SE method 

transform into structures observed in film rehydration method, which are energetically more 

favorable. Solvent evaporation method performed at 62 °C should also lead to 

pseudoequilibrium morphologies, but fast evaporation of the organic solvent (CH2Cl2 or 

CHCl3) led to the formation of the polymer layer on top of the aqueous solution preventing it 

from self-assembly. 

In co-solvent method, THF is present during self-assembly and modifies packing 

geometry of the polymer molecules compared to film rehydration method (Scheme 5). The 

latter suggests that THF is involved in stabilization of the assembled morphologies. 

Nevertheless, polymersomes formed by E45C153M11 in co-solvent method were stable after a 

week of the dialysis against water (Fig. 5C, inset). However, after a year of storage at room 

temperature, these polymersomes collapsed into spherical particles. Such transition was 

possible presumably due to the presence of residual THF trapped in the hydrophobic core that 

enabled structural rearrangements of the PCL block. On the contrary to co-solvent method, 

structures formed in film rehydration method, where organic solvent was removed before 

self-assembly, were stable for at least a year of storage at room temperature. The true 
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equilibrium morphologies for co-solvent method cannot be determined due to the uncertain 

amount of THF present in the system during storage. 
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Conclusions 

We reported new aqueous self-assembled structures of micrometer size for 

amphiphilic triblock copolymers in the example of PEO-b-PCL-b-PMOXA: cloud-like 

aggregates and 3D networks. 

Morphology trends of diblock copolymers PEO-b-PCL are maintained globally the 

same for all used self-assembly methods: polymersomes – spherical particles with increasing 

f. In contrast, morphology trends of triblock copolymers PEO-b-PCL-b-PMOXA depend on 

the self-assembly method and how f is varied – through PCL or PMOXA block. 

In film rehydration method system is on the way in achieving global equilibrium, and 

we refer to the structures formed in this method as pseudoequilibrium morphologies. Solvent 

evaporation and co-solvent techniques led to the kinetically controlled structures. The 

kinetically controlled morphologies formed in solvent evaporation method can be 

transformed, at least partially, to the pseudoequilibrium morphologies above Tm of PCL. In 

co-solvent method, the type of morphology strongly depended on the co-solvent nature. 

The presented family of PEO-b-PCL-b-PMOXA polymers and their self-assembled 

structures can be relevant for biomedical applications due to biocompatible and protein-

repellent nature of PEO50 and PMOXA51 corona, and biodegradability of PCL core.52-53 

Elongated structures and 3D networks formed by PEO-b-PCL-b-PMOXA are uniquely 

accessible via solvent evaporation technique. These structures are promising candidates for 

drug delivery purposes, since anisotropic morphologies possess longer blood circulation time 

compared to the spherical analogues,54 and 3D networks based on biodegradable polymers 

are of special interest for tissue engineering purposes.55-56 In addition, self-assembled 

structures formed by PEO-b-PCL-b-PMOXA possess enormous stability due to the 

semicrystalline nature of the PCL block: the assemblies formed in film rehydration and 

solvent evaporation methods were stable after at least 6 months of storage at room 
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temperature, and the structures stayed intact after shaking and centrifugation at 13000 g for 1-

2 h. 

Polymersomes formed by ABC triblock copolymers with immiscible A and C blocks 

should be thermodynamically stable due to different curvature at A−B and C−B interfaces. 

To definitely proof this, one needs to investigate additionally formation of polymersomes by 

other narrowly dispersed ABC polymers with amorphous B block with low glass transition 

temperature (< 20 ºC). 

The conclusions drawn from self-assembly of PEO-b-PCL-b-PMOXA may not 

necessarily fully apply to other ABC systems in (A, C)-selective solvent. Semicrystalline 

nature of PCL block is responsible for micrometer sizes of the obtained structures and may 

dictate the trends in the self-assembly of the tested polymers. Therefore, to establish general 

rules for ABC self-assembly in (A, C)-selective solvents, similar studies should be performed 

for other ABC systems where B is an amorphous block and the self-assembled structures 

possess nanometer sizes. In addition, to acquire the full advantage of the complex 

composition of self-assembled morphologies of PEO-b-PCL-b-PMOXA, presence of patches 

and/or Janus corona due to the phase separation of PEO and PMOXA blocks34-35 should be 

investigated. 

  

Page 37 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



38 
 

Acknowledgments 

SNSF, NCCR Molecular Systems Engineering, and the University of Basel are 

acknowledged for financial support. We thank Carola Alampi (C-CINA, University of Basel) 

for cryoTEM, Samuel Lörcher (University of Basel) for TEM, and Dr. Alexia Loynton-

Ferrand (IMCF, University of Basel) for help with z-stack CLSM experiments. E.K. 

acknowledges Dr. Alina Sekretaryova and Dr. Onur Parlak (Stanford University) for fruitful 

discussions and useful comments. 

  

Page 38 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



39 
 

References 

1. Ball, P., H2O. A Biography of Water. Phoenix. Orion Books Ltd, London: 2000. 
2. Discher, D. E.; Ahmed, F., POLYMERSOMES. Annual Review of Biomedical 
Engineering 2006, 8 (1), 323-341. 
3. Penczek, S.; Cypryk, M.; Duda, A.; Kubisa, P.; Słomkowski, S., Living ring-opening 
polymerizations of heterocyclic monomers. Progress in Polymer Science 2007, 32 (2), 247-
282. 
4. Sedlacek, O.; Monnery, B. D.; Filippov, S. K.; Hoogenboom, R.; Hruby, M., Poly(2-
Oxazoline)s – Are They More Advantageous for Biomedical Applications Than Other 
Polymers? Macromolecular Rapid Communications 2012, 33 (19), 1648-1662. 
5. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: 
Features, developments, and perspectives. Progress in Polymer Science 2007, 32 (1), 93-146. 
6. Mai, Y.; Eisenberg, A., Self-assembly of block copolymers. Chemical Society 
Reviews 2012, 41 (18), 5969-5985. 
7. Jain, S.; Bates, F. S., Consequences of Nonergodicity in Aqueous Binary PEO−PB 
Micellar Dispersions. Macromolecules 2004, 37 (4), 1511-1523. 
8. Jain, S.; Bates, F. S., On the Origins of Morphological Complexity in Block 
Copolymer Surfactants. Science 2003, 300 (5618), 460-464. 
9. Zhang, L.; Eisenberg, A., Multiple Morphologies of "Crew-Cut" Aggregates of 
Polystyrene-<em>b</em>-poly(acrylic acid) Block Copolymers. Science 1995, 268 (5218), 
1728-1731. 
10. Zhang, L.; Eisenberg, A., Formation of crew‐cut aggregates of various morphologies 
from amphiphilic block copolymers in solution. Polymers for Advanced Technologies 1998, 9 
(10‐11), 677-699. 
11. Dionzou, M.; Morere, A.; Roux, C.; Lonetti, B.; Marty, J. D.; Mingotaud, C.; Joseph, 
P.; Goudouneche, D.; Payre, B.; Leonetti, M.; Mingotaud, A. F., Comparison of methods for 
the fabrication and the characterization of polymer self-assemblies: what are the important 
parameters? Soft Matter 2016, 12 (7), 2166-2176. 
12. Terreau, O.; Bartels, C.; Eisenberg, A., Effect of Poly(acrylic acid) Block Length 
Distribution on Polystyrene-b-poly(acrylic acid) Block Copolymer Aggregates in Solution. 2. 
A Partial Phase Diagram. Langmuir 2004, 20 (3), 637-645. 
13. Braun, J.; Bruns, N.; Pfohl, T.; Meier, W., Phase Behavior of Vesicle-Forming Block 
Copolymers in Aqueous Solutions. Macromolecular Chemistry and Physics 2011, 212 (12), 
1245-1254. 
14. Walther, A.; Millard, P.-E.; Goldmann, A. S.; Lovestead, T. M.; Schacher, F.; Barner-
Kowollik, C.; Müller, A. H. E., Bis-Hydrophilic Block Terpolymers via RAFT 
Polymerization: Toward Dynamic Micelles with Tunable Corona Properties. Macromolecules 
2008, 41 (22), 8608-8619. 
15. Zhu, W.; Li, Y.; Liu, L.; Zhang, W.; Chen, Y.; Xi, F., Biamphiphilic triblock 
copolymer micelles as a multifunctional platform for anticancer drug delivery. Journal of 
Biomedical Materials Research Part A 2011, 96A (2), 330-340. 
16. Konishcheva, E. V.; Zhumaev, U. E.; Meier, W. P., PEO-b-PCL-b-PMOXA Triblock 
Copolymers: From Synthesis to Microscale Polymersomes with Asymmetric Membrane. 
Macromolecules 2017, 50 (4), 1512-1520. 
17. Stoenescu, R.; Meier, W., Vesicles with asymmetric membranes from amphiphilic 
ABC triblock copolymers. Chemical communications (Cambridge, England) 2002,  (24), 
3016-7. 

Page 39 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



40 
 

18. Liu, F.; Eisenberg, A., Preparation and pH Triggered Inversion of Vesicles from 
Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine). Journal of the American 
Chemical Society 2003, 125 (49), 15059-15064. 
19. Mason, A. F.; Thordarson, P., Polymersomes with Asymmetric Membranes Based on 
Readily Accessible Di- and Triblock Copolymers Synthesized via SET-LRP. ACS Macro 
Letters 2016, 5 (10), 1172-1175. 
20. Wittemann, A.; Azzam, T.; Eisenberg, A., Biocompatible Polymer Vesicles from 
Biamphiphilic Triblock Copolymers and Their Interaction with Bovine Serum Albumin. 
Langmuir 2007, 23 (4), 2224-2230. 
21. Liu, Q.; Chen, J.; Du, J., Asymmetrical Polymer Vesicles with a “Stealthy” Outer 
Corona and an Endosomal-Escape-Accelerating Inner Corona for Efficient Intracellular 
Anticancer Drug Delivery. Biomacromolecules 2014, 15 (8), 3072-3082. 
22. Stoenescu, R.; Graff, A.; Meier, W., Asymmetric ABC-triblock copolymer 
membranes induce a directed insertion of membrane proteins. Macromolecular bioscience 
2004, 4 (10), 930-5. 
23. Stoenescu, R.; Meier, W., Asymmetric Membranes from Amphiphilic ABC Triblock 
Copolymers. Molecular Crystals and Liquid Crystals 2004, 417 (1), 185-191. 
24. Liu, G.; Ma, S.; Li, S.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z., The highly efficient 
delivery of exogenous proteins into cells mediated by biodegradable chimaeric 
polymersomes. Biomaterials 2010, 31 (29), 7575-7585. 
25. Schmalz, H.; Schmelz, J.; Drechsler, M.; Yuan, J.; Walther, A.; Schweimer, K.; 
Mihut, A. M., Thermo-Reversible Formation of Wormlike Micelles with a Microphase-
Separated Corona from a Semicrystalline Triblock Terpolymer. Macromolecules 2008, 41 
(9), 3235-3242. 
26. Walther, A.; Barner-Kowollik, C.; Müller, A. H. E., Mixed, Multicompartment, or 
Janus Micelles? A Systematic Study of Thermoresponsive Bis-Hydrophilic Block 
Terpolymers. Langmuir 2010, 26 (14), 12237-12246. 
27. Dag, A.; Zhao, J.; Stenzel, M. H., Origami with ABC Triblock Terpolymers Based on 
Glycopolymers: Creation of Virus-Like Morphologies. ACS Macro Letters 2015, 4 (5), 579-
583. 
28. Barthel, M. J.; Schacher, F. H.; Schubert, U. S., Poly(ethylene oxide) (PEO)-based 
ABC triblock terpolymers - synthetic complexity vs. application benefits. Polymer Chemistry 
2014, 5 (8), 2647-2662. 
29. Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; 
Walther, A.; Müller, A. H. E., Precise hierarchical self-assembly of multicompartment 
micelles. Nature Communications 2012, 3, 710. 
30. Löbling, T. I.; Borisov, O.; Haataja, J. S.; Ikkala, O.; Gröschel, A. H.; Müller, A. H. 
E., Rational design of ABC triblock terpolymer solution nanostructures with controlled patch 
morphology. Nature Communications 2016, 7, 12097. 
31. Konishcheva, E.; Häussinger, D.; Lörcher, S.; Meier, W., Key aspects to yield low 
dispersity of PEO-b-PCL diblock copolymers and their mesoscale self-assembly. European 
Polymer Journal 2016, 83, 300-310. 
32. Qi, W.; Ghoroghchian, P. P.; Li, G.; Hammer, D. A.; Therien, M. J., Aqueous self-
assembly of poly(ethylene oxide)-block-poly(?-caprolactone) (PEO-b-PCL) copolymers: 
disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered 
vesicles. Nanoscale 2013, 5 (22), 10908-10915. 
33. Israelachvili, J. N., Intermolecular and surface forces. Academic press: 2011. 
34. Taubert, A.; Furrer, E.; Meier, W., Water-in-water mesophases for templating 
inorganics. Chemical Communications 2004,  (19), 2170-2171. 

Page 40 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



41 
 

35. Casse, O.; Shkilnyy, A.; Linders, J.; Mayer, C.; Häussinger, D.; Völkel, A.; 
Thünemann, A. F.; Dimova, R.; Cölfen, H.; Meier, W.; Schlaad, H.; Taubert, A., Solution 
Behavior of Double-Hydrophilic Block Copolymers in Dilute Aqueous Solution. 
Macromolecules 2012, 45 (11), 4772-4777. 
36. Student, The probable error of a mean. Biometrika 1908, 1-25. 
37. Smart, T. P.; Mykhaylyk, O. O.; Ryan, A. J.; Battaglia, G., Polymersomes hydrophilic 
brush scaling relations. Soft Matter 2009, 5 (19), 3607-3610. 
38. Rajagopal, K.; Mahmud, A.; Christian, D. A.; Pajerowski, J. D.; Brown, A. E. X.; 
Loverde, S. M.; Discher, D. E., Curvature-Coupled Hydration of Semicrystalline Polymer 
Amphiphiles Yields flexible Worm Micelles but Favors Rigid Vesicles: Polycaprolactone-
Based Block Copolymers. Macromolecules 2010, 43 (23), 9736-9746. 
39. Cameron, N. S.; Corbierre, M. K.; Eisenberg, A., 1998 EWR Steacie Award Lecture 
Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. 
Canadian journal of chemistry 1999, 77 (8), 1311-1326. 
40. Yu, Y.; Zhang, L.; Eisenberg, A., Morphogenic Effect of Solvent on Crew-Cut 
Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules 1998, 31 (4), 1144-1154. 
41. Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. D., Self-
Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution. 
Macromolecules 2006, 39 (14), 4880-4888. 
42. Bordes, C.; Fréville, V.; Ruffin, E.; Marote, P.; Gauvrit, J. Y.; Briançon, S.; Lantéri, 
P., Determination of poly(ɛ-caprolactone) solubility parameters: Application to solvent 
substitution in a microencapsulation process. International Journal of Pharmaceutics 2010, 
383 (1–2), 236-243. 
43. Won, Y.-Y.; Brannan, A. K.; Davis, H. T.; Bates, F. S., Cryogenic Transmission 
Electron Microscopy (Cryo-TEM) of Micelles and Vesicles Formed in Water by 
Poly(ethylene oxide)-Based Block Copolymers. The Journal of Physical Chemistry B 2002, 
106 (13), 3354-3364. 
44. Zupancich, J. A.; Bates, F. S.; Hillmyer, M. A., Aqueous Dispersions of Poly(ethylene 
oxide)-b-poly(γ-methyl-ε-caprolactone) Block Copolymers. Macromolecules 2006, 39 (13), 
4286-4288. 
45. Adams, D. J.; Butler, M. F.; Weaver, A. C., Effect of Block Length, Polydispersity, 
and Salt Concentration on PEO−PDEAMA Block Copolymer Structures in Dilute Solution. 
Langmuir 2006, 22 (10), 4534-4540. 
46. Wu, D.; Spulber, M.; Itel, F.; Chami, M.; Pfohl, T.; Palivan, C. G.; Meier, W., Effect 
of Molecular Parameters on the Architecture and Membrane Properties of 3D Assemblies of 
Amphiphilic Copolymers. Macromolecules 2014, 47 (15), 5060-5069. 
47. He, C.; Sun, J.; Deng, C.; Zhao, T.; Deng, M.; Chen, X.; Jing, X., Study of the 
Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)−Poly(ε-caprolactone) 
Diblock Copolymers. Biomacromolecules 2004, 5 (5), 2042-2047. 
48. Shen, H.; Eisenberg, A., Morphological Phase Diagram for a Ternary System of 
Block Copolymer PS310-b-PAA52/Dioxane/H2O. The Journal of Physical Chemistry B 
1999, 103 (44), 9473-9487. 
49. Zhang, L.; Eisenberg, A., Thermodynamic vs Kinetic Aspects in the Formation and 
Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of 
Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution. Macromolecules 
1999, 32 (7), 2239-2249. 
50. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S., Poly(ethylene glycol) in 
Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie 
International Edition 2010, 49 (36), 6288-6308. 

Page 41 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



42 
 

51. Hoogenboom, R., Poly(2-oxazoline)s: A Polymer Class with Numerous Potential 
Applications. Angewandte Chemie International Edition 2009, 48 (43), 7978-7994. 
52. Goldberg, D., A review of the biodegradability and utility of poly(caprolactone). 
Journal of environmental polymer degradation 1995, 3 (2), 61-67. 
53. Tokiwa, Y.; Calabia, B. P., Biodegradability and Biodegradation of Polyesters. 
Journal of Polymers and the Environment 2007, 15 (4), 259-267. 
54. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E., 
Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano 
2007, 2 (4), 249-255. 
55. Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M., Synthetic polymer 
scaffolds for tissue engineering. Chemical Society Reviews 2009, 38 (4), 1139-1151. 
56. Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H.-S.; Oh, J.-S.; 
Akaike, T.; Cho, C.-S., A novel degradable polycaprolactone networks for tissue engineering. 
Biomaterials 2003, 24 (5), 801-808. 

 

Page 42 of 42

ACS Paragon Plus Environment

Submitted to Macromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


