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Abstract

Mutation rates and fitness costs of deleterious mutations are difficult to measure in vivo but essential for a quantitative un-
derstanding of evolution. Using whole genome deep sequencing data from longitudinal samples during untreated HIV-1 in-
fection, we estimated mutation rates and fitness costs in HIV-1 from the dynamics of genetic variation. At approximately
neutral sites, mutations accumulate with a rate of 1.2 � 10�5 per site per day, in agreement with the rate measured in cell
cultures. We estimated the rate from G to A to be the largest, followed by the other transitions C to T, T to C, and A to G,
while transversions are less frequent. At other sites, mutations tend to reduce virus replication. We estimated the fitness
cost of mutations at every site in the HIV-1 genome using a model of mutation selection balance. About half of all non-
synonymous mutations have large fitness costs (>10 percent), while most synonymous mutations have costs <1 percent.
The cost of synonymous mutations is especially low in most of pol where we could not detect measurable costs for the ma-
jority of synonymous mutations. In contrast, we find high costs for synonymous mutations in important RNA structures
and regulatory regions. The intra-patient fitness cost estimates are consistent across multiple patients, indicating that the
deleterious part of the fitness landscape is universal and explains a large fraction of global HIV-1 group M diversity.
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1. Introduction

HIV-1 evolves rapidly within individual hosts and accumulates
mutations that allow the virus population to evade immune
recognition. Mutations arise during reverse transcription, dur-
ing forward transcription by the human RNA polymerase II, or
through mutagenesis by host factors (Mansky and Temin 1995;
O’Neil et al. 2002; Malim 2009; Abram et al. 2010; Smyth et al.
2012; Cuevas et al. 2015; ). Characterization of the mutation rate
and the genome wide landscape of fitness effects is a prerequi-
site for a quantitative understanding of the evolutionary dy-
namics of HIV and for rational design of both vaccines and
resistance-proof antiretroviral drugs.

The frequencies of de novo mutations during HIV-1 replica-
tion have been studied in vitro using cell culture systems
(Mansky and Temin 1995; O’Neil et al. 2002; Abram et al. 2010); a
total rate of about 2 � 10�5 mutations per site per replication cy-
cle is reported. Recently, Cuevas et al. (2015) reported a much
higher mutation rate in vivo, but that study focused on inte-
grated provirus and might not reflect the mutational frequency
in the circulating HIV-1 virions. To bridge these conflicting per-
spectives, we estimated the frequency of de novo mutations in
circulating HIV-1 RNA within untreated patients.

Of all mutations that are generated daily within an HIV-1
positive individual, the majority decrease virus replication,
some mutations are neutral and have little or no effect, and a
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minority of mutations are beneficial to virus replication. While
beneficial mutations rapidly spread through the virus popula-
tion within a patient, deleterious mutations stay at low fre-
quency in a balance between mutation and selection. Beneficial
mutations are often patient-specific, for example because they
mediate escape from cytotoxic T-lymphocytes (CTL) and neu-
tralizing antibodies (Goonetilleke et al. 2009; Bar et al. 2012;
Walker and McMichael 2012). Most mutation, including immune
escape mutations, lower intrinsic viral fitness: host-specific ad-
aptation is a trade-off between immune evasion and the intrin-
sic fitness costs of escape mutations.

The cost of individual mutations can be quantified by com-
peting mutant and wild-type viruses in cell culture (Parera et al.
2007; Martinez-Picado and Martinez 2008). Similar measure-
ments of replication capacity are done routinely for drug resis-
tance testing (Petropoulos et al. 2000) and have been used to
infer the fitness landscape of the HIV-1 protease and reverse
transcriptase (Hinkley et al. 2011). Recently, high-throughput
methods have been developed to systematically identify the
amino acid preferences or fitness costs at every position in a
protein (Acevedo et al. 2014; Thyagarajan and Bloom 2014; Rihn
et al. 2015; Haddox et al. 2016). Fitness landscapes have also
been estimated indirectly from large global collections of se-
quences (Dahirel et al. 2011; Ferguson et al. 2013). These meth-
ods assume that high fitness variants are at high frequency in
the global HIV-1 population. Either approach has limitations:
Cell culture experiments are not sensitive to small costs since a
large number of passages are necessary to observe small fitness
costs. Models based on cross-sectional data are confounded by
immune escape because they cannot differentiate between di-
versifying selection by the immune system and the absence of
functional constraints.

In contrast to immune escape mutations, the landscape of
intrinsic fitness costs is expected to be similar across different
HIV-1 isolates. However, the effect of a particular mutation can
depend on other sites in the genome—a phenomenon known as
epistasis—which can result in different fitness costs on differ-
ent genetic backgrounds (de Visser and Krug 2014). Such inter-
actions between mutations have been observed as
compensatory evolution after CTL escape (Schneidewind et al.
2009) or as covariation of amino acids (Carlson et al. 2008;
Dahirel et al. 2011). Since sequences of the same HIV-1 subtype
differ at only about 10 percent of amino acids (Li et al. 2015), the
majority of residues with which a given amino acid interacts
will be conserved and the fitness effects of mutations are ex-
pected to be similar across HIV strains. Similarly, Doud et al.
(2015) have shown that the majority of mutation effects tend to
be conserved in mildly diverged influenza virus proteins.

Here, we estimate the rates and spectrum of mutations and
the landscape of fitness costs of HIV-1 using whole genome
deep-sequencing data from longitudinal samples (Zanini et al.
2015). We first use the accumulation of natural divergence at a
subset of approximately neutral sites to estimate the in vivo mu-
tation rates between all pairs of nucleotides. We then determine
fitness costs of mutations away from the HIV-1 group M con-
sensus sequence from the in vivo intra-patient balance of muta-
tion and selection against deleterious variants. Our cost
estimates are most sensitive for small and moderate costs (be-
tween 0.1 and 10 percent), not affected by patterns of immune
escape, and not restricted to one single protein: we estimated
fitness costs at almost every position of the HIV-1 genome. We
then investigate signatures of RNA structure elements or bio-
physical properties of HIV-1 proteins in the genome wide

landscape of fitness costs and study fitness costs at sites associ-
ated with CTL selection or drug resistance.

2. Materials and methods
2.1 Study patients and data sources

We analyzed longitudinal whole genome deep sequencing data
from nine HIV-1 patients described in Zanini et al. (2015) and an
additional patient p7 that was described by Brodin et al. (2016).
A summary of patient characteristics is given in Supplementary
Table S1. The first sequenced sample was within 7 months of
infection for all patients other than p7. Genetic diversity within
this first sample suggested that the virus population in all pa-
tients other than p3 and p10 are dominated by a single founding
genotype (Zanini et al. 2015) which we approximate by the con-
sensus sequence of the first sample.

The HIV genome was amplified in six overlapping fragments
of �2 kb. Each of these amplicons was sequenced to high cover-
age on a MiSeq instruments with 2 � 250 bp reads. The median
number of reads per amplicon was 80,000 (quartiles 20,000–
220,000, max 2 millions). For a detailed summary of the se-
quencing statistics, see Zanini et al. (2015). For each patient,
coverage, divergence from the founder virus strain, and diver-
sity are reported in the original publication as well as online at
the web page http://hiv.tuebingen.mpg.de. The sequencing
reads are available in the European Nucleotide Archive under
project accession number PRJEB9618.

The nucleotide and amino acid cross-sectional alignments
of HIV-1 group M were downloaded from the Los Alamos
National Laboratory HIV database and filtered for short or
otherwise problematic sequences and are available as
Supplementary Material.

Disorder and solvent accessibility scores amino acids for dif-
ferent HIV proteins were provided by the authors of Li et al.
(2015) (available at www.virusface.com). These scores were
mapped to homologous positions in the virus populations via
alignments to the reference sequence NL4-3. Positions without
scores were discarded.

2.2 Theoretical background

The basic quantity that we track in this article is the frequency
of single nucleotide variants (SNVs), which we also call ‘alleles’.
Given a certain allele is generated by mutation at a rate l and
bears a logarithmic fitness cost s, its frequency in the viral pop-
ulation x is described by (Haldane 1937; Haigh 1978):

d
dt

xðtÞ ¼ l� sxðtÞ þ nðx; tÞ: (1)

The noise term nðx; tÞ models stochastic evolutionary pro-
cesses, including genetic drift and hitchhiking. If recombination
is rapid and selected SNVs are rare, hitchhiking is negligible and
simple genetic drift is the dominant contribution to n. In this
case, the equilibrium distribution of x can be calculated via
Kimura’s diffusion theory (Kimura 1964). At lower recombina-
tion rates and high density of selected SNVs, as is the case in
intra-patient HIV-1 evolution (Neher and Leitner 2010; Zanini
et al. 2015), the stochastic dynamics of x is much more compli-
cated. However, in this article, we are only concerned with the
mean allele frequency x. In contrast to higher moments of x, the
mean does not depend on properties of n since Eq. 1 is linear. An
intuitive explanation for this behavior is that a positively
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selected allele can be linked to any one of the four nucleotides
at the hitchhiker’s position, without preference.

The average frequency of SNVs with fitness cost s is given
by:

hxi ¼ l
s

1� e�stÞ for s > 0;
�

(2)

hxi ¼ lt for s! 0: (3)

Approximately neutral alleles with s � 0 accumulate linearly
and we will use this behavior to estimate the mutation rates of
HIV-1. The frequency of alleles under purifying selection with
s> 0 saturates at �x ¼ l=s after a time of order s�1 (Haldane 1937).
The fitness cost s can be estimated both from the approach to
saturation and the level of saturation l=s. This approach has
been generalized to complex fitness landscapes (Seifert et al.
2015).

Note, however, that Eq. 2 only holds on average and suitable
ensembles, that is, sets of sites with similar properties, need to
be defined and averaged to leverage (Eq. 2). We define and use
two such ensembles (‘Sat’ and ‘Pooled’) below.

2.3 Data processing

The sequencing reads from the longitudinal samples were ana-
lyzed using the library hivevo_access, available at https://
github.com/neherlab/HIVEVO_access. The analysis scripts used
for this paper, as well as the resulting data for the mutation rate
and fitness cost estimates, are available online at: https://
github.com/iosonofabio/HIV_fitness_landscape.

The counts of each of the four nucleotide at each genomic
position and for each sample were normalized to obtain fre-
quencies and corrected to eliminate spurious diversity caused
by RT-PCR and sequencing errors. In our test experiments with
homogeneous HIV-1 samples (Zanini et al. 2015), we observed
that almost none out of several thousand genomic positions
had an error rate above 0.2 percent and we defined this as a con-
servative threshold for background noise. For every plasma
sample, all frequencies below this threshold were set to 0.

2.4 Mutation rate estimation

We estimate mutation rates from the linearly increasing diver-
gence at approximately neutral sites in patients where the ini-
tial sample was almost homogeneous with no evidence of
infection by multiple virions. For each patient, we selected a set
of approximately neutral positions in the HIV-1 genome at
which (i) the entropy in a group M alignment is higher than
0.3 bits and (ii) the consensus nucleotide of the earliest sample
is equal to the HIV-1 group M consensus at this position.
Derived variants at those sites are considered if (i) they are
translated in a single reading frame, (ii) they are synonymous
changes, (iii) they are outside of known RNA structures or over-
lapping reading frames. The protein gp120 has been shown to
be sensitive to synonymous mutations and recoding (Zanini
and Neher 2013; Vabret et al. 2014), but inclusion or exclusion of
gp120 did not make a difference.

The frequencies of these synonymous changes are grouped
by mutation (e.g., A! G) and averaged across the genome. We
further bin samples by their time since the Estimated Date of
Infection (EDI) in the bins of [0, 500, 1000, 1750, 3000] days. The
time-binned average frequencies are modeled by a linear fit
with zero intercept, so the inferred rate l̂ is:

l̂ ¼
P

iti � xiP
it

2
i

; (4)

where (ti, xi) are the center and average divergence of bin i (see
Fig. 1A and B). The rates of mutations between all pairs of nucle-
otides are estimated independently to obtain the complete ma-
trix of mutation rates. The whole procedure is repeated for
100 bootstraps over patients to estimate the uncertainty of the
rates, shown as errors in Fig. 1C. Variations of the inclusion cri-
teria have been tested and yielded similar results, see
Supplementary Fig. S2.

2.5 Estimation of selection coefficients

We used Eq. 2 in two complementary ways to estimate fitness
costs. The ‘Sat’ method groups sites in the genome by cross-
sectional conservation and estimates the harmonic average of s
at those sites from the accumulation of intra-patient diversity.
The ‘Pooled’ method estimates fitness costs of non-consensus
alleles at individuals positions in the HIV genome by combining
all measurements from all samples into a single estimate.

2.6 Average fitness costs from divergence saturation

For seven out of the ten patients, early samples are available
and there is no evidence of multiple founding viruses. In these
patients, we expect divergence to increase on average according
to Eq. 2.

Since individual frequency trajectories x(t) are noisy, we
need to average xiðtÞ over many sites i with similar s before com-
paring Eq. 2 to data. To identify a set of sites with similar s, we
used conservation as a proxy for fitness cost and grouped all po-
sitions in the genome by their conservation in a representative
group M alignment and fit (Eq. 2). Furthermore, we considered
only sites at which (i) the majority nucleotide at the earliest
time point equals the global HIV-1 group M consensus and (ii)
the majority amino acid does not change during the infection.
The latter criterion is necessary to exclude sites under positive
selection, for example, because they mediate immune escape of
revert previous immune escape mutations. Instead of modeling
the mutations and fitness costs of all four nucleotides, we used
a simplified 2-state model: the group M consensus state and the
sum of the derived mutations.

To fit Eq. 2 to the data, we bin all samples by EDI and mini-
mize the squared deviation between Eq. 2 and the average di-
vergence in these bins with respect to s while keeping
l ¼ 1:2� 10�5 /day constant. By fitting Eq. 2 to average diversity,
one estimates harmonic averages of fitness costs of non-
consensus nucleotides in the different entropy categories.

In the Supplementary material, we present another method
to estimate fitness costs from average SNV frequency data that
exploits correlations between SNV frequencies at successive
times points. We found the results to be comparable to the sim-
pler method discussed above.

2.7 Site-specific fitness cost estimates

For t� s�1, Eq. 2 tends to �x ¼ l=s. After 2 years, frequencies at
sites with fitness costs as low as si ¼ 0:002 are expected to be
close to equilibration and the frequencies of these mutations
fluctuate around �xi. If the saturation frequency �xi at position i
can be accurately measured, site-specific fitness costs can be
estimated via si ¼ l=�xi. To obtain accurate estimates of �xi, we
averaged SNV frequencies at individual sites over all plasma
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samples that were taken more than 2 years after infection from
all patients.

As before, we exclude sites at which the initial consensus
does not agree with the global HIV-1 consensus and sites that
sweep (i.e., where the majority state changes during infection).
These exclusions are particularly important, since sites from
different patients are combined and minor frequencies are only
meaningful when measured relative to the same reference nu-
cleotide or amino acid.

In each sample, the accuracy at which we can measure xi is
limited by sequencing errors, and more importantly by the often
small number of HIV-1 RNA molecules that contribute to each
sample (Zanini et al. 2015). Hence, a rare SNV will only be ob-
served in a fraction of samples. However, the average SNV fre-
quency across samples reflects the true frequency and by
combining many samples the accuracy of our estimate of �xi can
be pushed below the error threshold in a single sample. If, for
example, an SNV is observed in 10 percent of samples at fre-
quency 0.5 percent (possibly a single template) and not ob-
served in 90 percent of samples, the average frequency of this
mutation would be estimated to be �0.05 percent. Because
more template molecules were captured in some plasma sam-
ples than in others—we estimated the number of templates by
limiting dilution, see Zanini et al. (2015)—we perform a

weighted average: for each patient, the average frequency of nu-
cleotide or amino acid a at position i is then given by

x̂i;a ¼
1P
kwk

Xn

k¼1

wkxk;i;a; (5)

where xk;i;a is the frequency in sample k and the sum runs over
all samples k ¼ 1; . . . ;n that are at least 2 years after infection.
The weight wk is calculated from the estimated number of tem-
plate molecules Tk as wk ¼ ð0:002þ 1=TkÞ�1, where 0.002 is the
combined error rate of RT-PCR and sequencing (see above).
After this weighing, samples contribute proportionally to the
number of RNA templates when Tk is small, while for large Tk

the sequencing error rate is limiting and the per sample contri-
bution is capped at 500. After averaging samples within pa-
tients, we average x̂i;a over patients and sum all non-consensus
nucleotides or amino acids to obtain the average non-
consensus frequency x̂i for each position i in the HIV-1 genome.
The fitness cost at position i is then estimated by li=x̂i where mi

is the mutation rate away from the consensus nucleotide at po-
sition i. To determine the uncertainty of fitness cost estimates,
we picked sites within small slices of the distribution of selec-
tion coefficients and constructed distributions of fitness cost es-
timates at these sites through bootstrapping over patients.

A

C

B

Figure 1. Mutation rate estimates. (A, B) Accumulation of divergence at approximately neutral sites for transitions and transversions, respectively (EDI: estimated date of in-

fection). The slope of the individual regression lines in panels A and B provide estimates of the in vivo mutation rates. (C) Schematic representation and quantification of

the mutation rates. Error bars for the estimates, indicated in parenthesis as uncertainties over the last significant digit, are standard deviations over 100 patient bootstraps.
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Estimates of fitness costs for nucleotide and amino acid mu-
tations were done in analogous ways but amino acid mutation
rates are calculated specifically for each patient on the bases of
the triplet encoding for the amino acid in the founder sequence
of that patient (amino acid changes requiring two nucleotide
changes were ignored).

3. Results
3.1 The rate and spectrum of mutations in HIV

To estimate mutation rates from longitudinal and deep whole
genome sequencing data, we identified a set of positions at
which mutations are approximately neutral and exploited the
fact that the rate of divergence at neutral sites is precisely the
in vivo mutation rate (see Methods and Kimura 1968). Figure 1A
and B shows the average divergence from the approximate virus
founder sequence in this approximately neutral set, for all
twelve nucleotide substitutions. We pooled data from patients
p1, p2, p5, p6, p8, p9, p11 (those with early samples and without
suspected dual infection); the error bars indicate standard devi-
ations over patient bootstraps. The data confirm that diver-
gence increased linearly, suggesting that positions under weak
purifying selection did not dominate the set of sites selected by
the above criteria. We estimated the mutation rates between
each pair of nucleotides by linear regression—indicated by
straight lines. Transition rates are 5-fold higher than transver-
sions, while the total mutation rate per site is about 1.2 � 10�5

per site and day. The highest rate is G!A, while the lowest rates
are transversions between Watson–Crick binding partners. The
smallest rates cannot be measured accurately because the cor-
responding mutations are hardly observed. If the approximately
neutral set contained a fraction of constrained sites, our
method would slightly underestimate the rates without affect-
ing our general conclusions. Positive selection at synonymous
sites is unlikely to be common and a small number of such sites
would not change our estimates substantially.

3.2 Landscape of fitness costs in the HIV-1 genome

While divergence at neutral sites increases linearly with time,
purifying selection results in slower divergence and saturation
of minor SNV frequencies (Eq. 2). We exploit this saturation of
divergence to estimate fitness costs.

3.3 Relationship of global sequence conservation and
fitness costs

To a first approximation, conservation of a site across many
HIV-1 isolates is expected to be a proxy for high fitness cost of
mutations, while mutations at a site that is observed in many
different states probably have little or no fitness cost. To quan-
tify the relationship between conservation and fitness cost s,
we sorted sites in the HIV-1 genome into six groups of equal
size and increasing global diversity (measured by Shannon en-
tropy of columns in an alignment of group M sequences, see
“Materials and methods”). Instead of estimating fitness costs for
all three possible mutations at a given site, we estimated one
fitness cost parameter for each site as the cost of the typical
mutation away from the global consensus sequence (a more
elaborate model that includes the twelve different mutation
rates is described in Supplementary Fig. S3). For each conserva-
tion group, we average the frequencies of non-consensus nucle-
otides over all sites and patient samples in seven time bins.
These average divergences are indicated by dots in Fig. 2A along
with a nonlinear least square fit of Eq. (2) to the data of each
group (each color indicates a conservation group, blue to red by
increasing diversity). We set l ¼ 1.2 � 10�5 per site per day ac-
cording to our estimate of the neutral mutation rate and fit a
single parameter, the fitness cost s, for each group. The least
conserved group accumulates divergence linearly at a rate that
is consistent with the mutation rate estimate, while divergence
saturates more rapidly and at lower levels with increasing
conservation.

The estimated average costs and their error bars from 100
bootstraps over patients are shown in Fig. 2B as a blue line

A B

Figure 2. Average intra-patient fitness cost across quantiles of global HIV-1 group M diversity. (A) Divergence (measured as 1 � frequency of the ancestral state) satu-

rates fast in the conserved parts of the genome (dark blue to cyan), more slowly in regions of intermediate conservation (green and yellow) and keeps increasing at the

least conserved sites (red dots). The solid lines show fits of Eq. (2) to the binned data with fitness cost s as free parameter while the mutation rate is fixed at 1.2 � 10�5

per site per day (black line). (B) The “Sat” line shows fitness cost estimated for the blue, cyan, green, yellow, and red curves of panel A (indicated by arrows of the same

colors). The most conserved quantile (dashed dark blue line in panel A) is not shown because saturation happens too rapidly to obtain an accurate fit. The “Pooled” line

refers to harmonic averages of site-specific cost estimates. The ranges of entropy values contributing to each data point are indicated by horizontal lines, while the ver-

tical error bars refer to the standard deviation of 100 bootstraps over patients: note that while error bars are small, there is substantial variation of fitness costs across

sites within each diversity group.
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(“Sat”). The fitness cost of mutations in the least conserved 1/6
of the genome is undetectably small, consistent with neutrality.
More conserved sites have higher costs, up to �1 percent for
sites where the group M alignment entropy is �0.03 bits. For
even more conserved sites (dashed line in Fig. 2A), saturation is
very fast and we estimated the fitness cost using a different av-
eraging procedure (see below).

Notice that for Eq. (2) to hold, it is essential that the infection
is dominated by a single founder sequence. For this reason, pa-
tients p3 and p10 were excluded from this part of the analysis
since our data indicate that they were infected by more than
one viral variant. Furthermore, it is important to exclude sites
subject to immune selection and sites where the initial nucleo-
tide differs from the global consensus. Otherwise, rapid rise of
beneficial mutations driven by CTL escape or reversion increase
divergence and result in underestimation of the fitness costs.

3.4 Site-specific fitness costs in the HIV-1 genome

In addition to averaging mutation trajectories across multiple
sites, we also estimated site-specific fitness costs by averaging
data from multiple plasma samples during late infection.
Average frequencies at sites where mutations carry large costs
saturate rapidly after a time 1/s. Frequencies of minor variants
in different samples are therefore uncorrelated and can be aver-
aged to increase the accuracy of frequency estimates which
then allows direct estimation of site specific costs si from the re-
lation �xi ¼ l=si, see “Materials and methods”.

Figure 3A shows fitness costs of mutations at most positions
along the HIV-1 genome (including env) separately for synony-
mous and non-synonymous mutations: the numerical esti-
mates for all sites are available in the Supplementary Materials.
The costs of synonymous and non-synonymous mutations are
clearly different. Before analyzing these patterns in details (see
below), as a consistency check we compared in Fig. 2B the aver-
age estimates (“Pooled” line) to our previous estimates “Sat”,
which take into account the explicit time information of the
samples. We found good agreement between the two
approaches. We determined the uncertainty of fitness cost esti-
mate by bootstrapping over patients in all major genes of HIV-1,
see Supplementary Fig. S5. The variation is approximately two-
fold in each direction, so fitness costs above 5 percent are
clearly separated from costs of 1 percent or less.

Fitness costs at single sites estimated from within patient di-
versity data anti-correlate strongly with global HIV-1 group M
diversity (rank correlation q � �0:7 for per site diversity mea-
sured by entropy, see Supplementary Fig. S4). Importantly, a
particular site contributes to the estimate only if the founder
and majority nucleotide in that sample equals the consensus
variant. This condition removes any direct signal of cross-
sectional diversity. The correlation increases as intra-patient
variation is estimated using more patients (see Supplementary
Fig. S4), suggesting that fitness costs at individual sites is largely
conserved between patients. Supplementary Fig. S4 also shows
scatter plots of global diversity vs fitness costs.

3.5 Distributions of fitness costs

We observe marked differences between the distributions of fit-
ness costs of synonymous and non-synonymous mutations
(see Fig. 4): about half of all non-synonymous mutations have
estimated fitness costs in excess of 10 percent, while the major-
ity of synonymous mutations have fitness costs below 1 per-
cent. The distribution of fitness costs of mutations that are

synonymous in one gene but that affect another gene in a dif-
ferent reading frame resembles that of non-synonymous muta-
tions (see Fig. 4B). We estimate �10 percent of synonymous
mutations outside env to be highly deleterious; we discuss the
specific costs of synonymous mutations in more detail below.

Supplementary Fig. S6 shows the distribution of fitness costs
for different genes. In gag and pol, the contrast between
synonymous and non-synonymous mutations is greatest.
Synonymous mutations are costly in several isolated regions
discussed below but have low fitness effects in much of pol
and gag.

3.6 Fitness costs at functional RNA elements

The HIV-1 genome contains a number of well-characterized
RNA elements that regulate different stages of the replication
cycle. Many of these elements are embedded in protein-coding
sequence and have been shown to reduce synonymous diver-
sity (Ngandu et al. 2008; Mayrose et al. 2013). Indeed, in Fig. 3B
important regulatory elements are clearly visible as well-de-
fined peaks in the running averages of fitness costs along the
genome.

In the 50 LTR the largest fitness costs overlap with the hair-
pin containing the poly-A signal, the U5 sequence (Lu et al.
2011), the base of the following hairpin, the primer binding site
(PBS) and stems 1–4 of the PSI element (LANL HIV sequence data
base 2016). The frameshift region (slippery sequences plus hair-
pin), the splice acceptor site A1, and the polypurine tracts (PPT)
in integrase and at the 30 LTR show similarly high fitness costs
(the TAR element is only partially covered by the sequencing
data set and hence not shown here).

Mutations within the fourth stem loop of PSI at the begin-
ning of gag are almost never observed, while synonymous sites
are almost free to vary beyond the end of the stem.
Synonymous mutations in the RRE are costly, but not as delete-
rious as those in PPT, the splice acceptor site A1, or the PSI ele-
ment, indicating a higher evolutionary plasticity. Beyond these
known elements, the correlation of fitness costs at synonymous
mutations with cross-sectional diversity (Supplementary Fig.
S9) suggests that there are a number of additional regions
that might have important function on the nucleotide level, for
example a few narrow peaks in pol. While well-characterized
RNA elements correspond to clear patterns in the estimated fit-
ness costs, RNA secondary structure predictions correlate
poorly with fitness costs (see Supplementary Fig. S9 and discus-
sion below).

3.7 Fitness costs and immune selection

Among sites that are globally variable (Shannon entropy above
0.1 bits), non-synonymous mutations are much more likely to
have a high fitness cost (> 0.03 per day, odds ratio 15). This en-
richment is most pronounced in pol, gag, and nef with little
enrichment in env. This observation is consistent with host-
specific selection pressures (CTL selection) at sites with large
fitness costs. The resulting adaptations contribute to global di-
versity but revert quickly when transmitted to a new host
(Friedrich et al. 2004; Leslie et al. 2004; Li et al. 2007; Zanini et al.
2015).

Such patient-specific selection has the potential to blur the
relationship between fitness cost and diversity, as shown in
Fig. 5A for nef (see Supplementary Fig. S4 for other genes). The
majority of sites with high fitness costs and high cross-
sectional diversity (upper right corner of Fig. 5A) have been
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reported to be associated with host HLA type (Carlson et al.
2012, shown in red) or with low viral load (Bartha et al. 2013, an-
notated dots). HLA-associated sites that fall into the top right
corner of Fig. 5A are of particular interest since they are ex-
pected to result in virus control if targeted by strong CTL re-
sponses (Pereyra et al. 2014).

To quantify the overrepresentation of HLA-associated sites
among diverse positions where mutations incur large fitness
costs, we plotted the fraction of HLA-associated sites in bins in-
dicated by diagonal straight lines in Fig. 5A for the genes gag,
pol, vif, env, and nef. Bin boundaries are defined by a log ðfitnessÞ
þ log ðdiversityÞ ¼ const: with a ¼ 2. For all genes other than env,
the fraction of HLA-associated sites increases strongly in bins
corresponding to high diversity and fitness cost indicating that
CTL selection pressure is responsible for global diversity that is
deleterious to virus replication.

Notice that HLA-associations can only be detected for sites
with some global variation. Hence, there is a strong ascertain-
ment bias and almost all HLA-associated sites are found in the
top half of Fig. 5A. Without independent characterization of this
bias, a statistical assessment of the relation between CTL
selection pressure, fitness cost, and global diversity remains
challenging.

3.8 Fitness costs are weakly correlated with protein
disorder and solvent accessibility

Perturbations to protein structure are expected to reduce virus
fitness. Hence, mutations that decrease protein stability, occur
in tightly packed regions, or are deeply buried in the protein are
expected to incur the greatest fitness costs. Disorder scores and
solvent accessibility have been compared with cross-sectional

A

B

Figure 3. Fitness costs along the HIV-1 genome. (A) Fitness costs of synonymous and non-synonymous mutations in gag, pol, vif, vpu, env, and nef as a geometric sliding

average with a window size of 30 bases. Estimates in gp120 are expected to be less accurate due to consistent difficulties amplifying this part of the genome. (B) Fitness

costs in selected regions of the genome that contain important regulatory elements. Blue dots show estimates for individual bases, blue lines indicate running aver-

ages with a window size of eight bases and red lines are running averages excluding bases where mutations cause amino acid changes. PBS: tRNA primer binding site.

U5: unique 50 region. SL 1–4 PSI: stem loops of the PSI packaging signal. (c) PPT: (central) poly purine tract. A1, D2: splice sites.
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diversity by Li et al. (2015). We correlated these in silico derived
scores with intra-patient diversity, finding rank correlation co-
efficients of about 0.2–0.4 for disorder scores and solvent acces-
sibility. While highly statistically significant, the fraction of
variation in diversity explained by these scores is low, which is
consistent with previous observations by Meyer and Wilke
(2015). By far the best correlate of fitness cost is a cross-sec-
tional conservation, see Table 1.

The distribution of fitness costs depends strongly on the
consensus amino acid. Mutations of cysteins (C), histidines (H),
prolines (P), tryptophans (W), and tyrosines (Y) tend to be very
costly, while mutations of glutamic acid (E), lysine (K), aspartic
acid (D) and arginine (R) are in average less deleterious. These

patterns are consistent in gag, pol, and env, see Supplementary
Fig. S7.

3.9 Most drug resistance mutations have a large
fitness cost

Of particular interest are the fitness costs of mutations that
confer resistance against antiretroviral drugs. The most com-
monly administered drugs are nucleoside analog reverse tran-
scriptase inhibitors (NRTIs), non-nucleoside analog reverse
transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and
integrase inhibitors (INIs). Resistance mutations against these
drugs are well known (Johnson et al. 2011).

A B C

Figure 4. Distributions of fitness costs within coding regions. (A) Synonymous mutations, (B) mutations that are synonymous in one gene but affect another protein in

a different reading frame, and (C) non-synonymous mutations (includes codons in gag, pol, vif, vpu, vpr). Half of non-synonymous mutations are very costly (>10 per-

cent), while most synonymous mutations have a relatively small cost (<1 percent). The extremal bins include all points beyond the axis boundary. Fitness costs are

measured in 1/day.

A B

Figure 5. CTL selection blurs the relationship between fitness costs and diversity. (A) Each dot represents a site in nef: red (blue) dots are associated (not associated) with

HLA types (Carlson et al. 2012). Dots surrounded by a green circle are associated with low viral load (Bartha et al. 2013). Intrapatient fitness costs are anticorrelated with sub-

type diversity (Spearman q ¼ �0:59). The majority of sites in nef with high diversity despite high fitness costs—top right corner—are associated with either HLA types or

with low viral load, while few sites in the lower left corner are associated with HLA variation. Panel B quantifies this trend by plotting the fraction of HLA associated sites in

bins of increasing diversity and fitness costs (bin boundaries are denoted by straight grey lines in panel A, a ¼2). This figure uses data from subtype B patients only.
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Pre-existing low-frequency drug-resistance mutations have
been associated with failing therapy (Johnson et al. 2008; Li
et al. 2011). Some deep-sequencing studies have characterized
such pre-existing variation in treatment-naive patients and
found that drug-resistance mutations are usually below the de-
tection limit, suggesting relatively high fitness costs (Hedskog
et al. 2010; Gianella et al. 2011; Li et al. 2011). Figure 6 shows av-
erage frequencies of several drug resistance mutations in our
ten patients. The majority of mutations are not seen at all,
while most of the remainder is observed in only one or two pa-
tients. Only the protease mutation M46I is observed consis-
tently across several patients. Note that the costs of very
deleterious mutations might be poorly estimated if the muta-
tions are only observed in a small number of patients. For in-
stance, G48VM in the protease and K101PEH in the reverse
transcriptase are attributed a low cost but are only observed in
one patient, so their actual cost might be larger.

4. Discussion

Sequence evolution of HIV-1 is determined by the rate and spec-
trum of mutations as well as their phenotypic effects. Many
studies have focused on beneficial mutations that sweep across
the intra-patient HIV-1 population usually as a result of im-
mune selection or development of drug resistance (Asquith
et al. 2006; Neher and Leitner 2010; Ganusov et al. 2011;
Kessinger et al. 2013). Here, we focus on neutral and deleterious
mutations (the majority of all mutations). Deleterious muta-
tions stay at low frequencies within hosts because selection
constantly prunes them from the population to maintain func-
tion. Nevertheless, deleterious mutations contribute substan-
tially to sequence evolution due to their large number: if 5,000
sites accumulate deleterious variation at frequencies of 1 per-
cent, the typical HIV-1 genome will contain fifty such
mutations.

Our estimates of HIV-1 mutation rates (Fig. 1C) are consis-
tent with the mutation rates of HIV-1 measured in cell culture
using lacZ assays (Mansky and Temin 1995; Abram et al. 2010),
see Supplementary Fig. S1. This agreement suggests that the
mutation rate of HIV-1, which is the joint rate of the HIV-1 RT,
mutagenesis by the innate immune system, and the human
DNA-dependent RNA polymerase II, is largely independent of
cell type, despite minor differences (Holtz and Mansky 2013). To
obtain sufficient statistics, we had to average the mutation rate
across many sites; it will be interesting to extend these methods
to individual sites and study the dependence of mutation rates

on the local sequence context (Abbotts et al. 1993; Lewis et al.
1999).

While consistent with cell culture estimates, the rates that
we estimate are incompatible with those reported by Cuevas
et al. (2015). Whereas we measure mutations in the population
of RNA virions, Cuevas et al. (2015) counted nonsense mutations
in proviral DNA integrated into host cell genomes and esti-
mated a rate of 4 � 10�3 per site and replication—more than 100
times higher than our estimate. Unlike in circulating viral RNA,
a large fraction of proviral HIV DNA is hypermutated by en-
zymes of the APOBEC family (Malim 2009). Although APOBEC
might partially explain the high G!A rate we found, hypermu-
tation is approximately an all-or-nothing phenomenon in
which either a sequence contains dozens of stop codons or
none (Armitage et al. 2012; Cuevas et al. 2015; Delviks-
Frankenberry et al. 2016). Because of this bimodal nature, hyper-
mutation and reverse transcriptase mutation cannot be mean-
ingfully described by a single mutation rate matrix. In the
former case, a sequence with dozens of stops integrates into the
host genome as an intert defective provirus, in the latter case
rare independent mutations (about 0.2 per genome) can lead to
gradual evolution and adaptation. Sporadic deamination by
APOBEG enzymes might still contribute to the G!A mutation
rate and is included in our estimate, but most hypermutated se-
quences are likely defective and make a minor contribution to
genetic diversity, as also argued by others (Armitage et al. 2012;
Delviks-Frankenberry et al. 2016).

Furthermore, proviral HIV DNA is enriched for hypermutated
sequences. While productive infection rapidly leads to death of
the infected cell, hypermutated proviruses tend to accumulate
in HIV-1 target cells and are only removed as a result of normal
cell turnover. This accumulation likely results in a multi-fold
overrepresentation of hypermutated sequences compared with
the probability at which hypermutation happens in a single rep-
lication cycle. Our estimates based on plasma HIV-1 RNA se-
quences are not affected by the accumulation of hypermutated
sequences. Similarly, latently integrated sequences are unlikely
to make a substantial contribution to the mutation rate esti-
mate, since the fraction of virus that derives from the latent res-
ervoir is small during untreated infection and these viruses
tend to be similar to the replicating virus population (Wei et al.
1995; Brodin et al. 2016).

Using our time-calibrated mutation rate estimates, we then
estimated absolute fitness costs from mutation selection bal-
ance. The distribution of fitness costs is consistent with those
found in other viruses, where typically about 20–40 percent of
mutations are lethal and another approximately 30 percent are
strongly deleterious (Sanju�an 2010). We also quantified the rela-
tionship between global group M diversity (measured as en-
tropy) and logarithmic fitness cost and found it to be
approximately linear. Overall, fitness costs explain about half of
the diversity in global alignments of HIV-1 sequences, while a
fraction of the remainder might be linked to patient-specific
processes such as immune escape or difference between viral
fitness within and between patients. In addition, variation of
the mutation rate along the genome and noise in our estimates
surely contribute to the unexplained variation.

Several features of the HIV-1 genome, including regulatory
elements at the RNA level, leave clear signatures in the fitness
landscape. Constraints on synonymous mutations appear to be
stronger and more prevalent in env than in gag or pol, consistent
with earlier results that many synonymous mutations in gp120
tend to be weakly deleterious (Zanini and Neher 2013) and that
env recoding results in non-infectious virus (Vabret et al. 2014).

Table 1. Correlates of fitness cost.

gene group M subtype B disorder accessibility RNA

gag �0.51 �0.59 �0.23 �0.26 0.13
pol �0.56 �0.59 �0.13 �0.31 0.09
nef �0.54 �0.59 �0.30 �0.19 0.11
env �0.47 �0.46 0.00 0.07 0.09
vif �0.57 �0.69 �0.08 �0.16 0.06

Spearman’s rank correlation coefficients of fitness cost estimates with cross-

sectional diversity (measured as entropy in group M and subtype B alignments),

disorder scores, and solvent accessibility values obtained from Li et al. (2015).

The column “RNA” contains rank correlation coefficients of fitness at synony-

mous mutations with the pairing probability predicted by Siegfried et al. (2014).

Supplementary Fig. S4 shows how intra-patient/global diversity correlations im-

prove when basing intra-patient estimates on larger numbers of patients
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However, comparison of our fitness cost estimates with genome
wide RNA structure predictions by Siegfried et al. (2014) and
Sükösd et al. (2015) show little correlation outside of known
conserved structures (see Supplementary Fig. S9 and Table 1).
This absence of correlation with RNA structure is consistent
with the observation that (predicted) pairing patterns evolve
rapidly in most of the genome (Pollom et al. 2013) or might re-
flect inaccuracies in RNA structure prediction: only a minority
of pairings agree between the predictions by Siegfried et al.
(2014) and Sükösd et al. (2015).

Several groups have estimated fitness costs within HIV-1
proteins using experimental approaches (Martinez-Picado and
Martinez 2008; Thyagarajan and Bloom 2014; Rihn et al. 2015).
Our estimates presented here are complementary to those stud-
ies in two ways (see Supplementary Fig. S8). First, because of
the short but dense temporal sampling, cell culture experiments
are sensitive to large fitness costs, typically above 5 percent,
while estimates from natural variation are most accurate for ef-
fects below a few percent. Second, in vivo estimates are not af-
fected by the specific conditions of cell culture systems. Deep
mutational scanning of HIV-1 proteins might overcome many of
the limitations of the current experimental approaches (Haddox
et al. 2016).

Computational methods to estimate fitness landscapes from
cross-sectional data have also been proposed (Dahirel et al.
2011; Ferguson et al. 2013), including a recent effort to include
intra-patient diversity via shallow sequencing (Hartl et al. 2016).
The relationship between fitness cost and diversity, however,
might be blurred since a site that is costly to mutate might still
be globally diverse due to escape from CTL pressure exerted by
a high-prevalence HLA allele. Indeed, we have shown in Fig. 5
that globally polymorphic sites that we estimate to have high
fitness costs are overrepresented among sites known to be HLA-
associated (Carlson et al. 2012). Barton et al. (2016) have shown
that the rate of CTL escape depends on fitness costs. More
generally, the cross-sectional inferences and our intra-patient

inferences reinforce the notion that HIV-1 evolution is governed
by a fitness landscape that consists of a universal component
determining the replicative capacity of the virus plus a host-
specific component responsible for escape mutations (Shekhar
et al. 2013). Our approach based on longitudinal deep intra-
patient data allows to explicitly disentangle these two contribu-
tions, since we can condition on the founder sequence and the
absence of host-specific selective sweeps. Purely cross-sectional
inferences of the fitness landscape likely underestimate the fit-
ness cost of mutations at HLA-associated positions.

The frequency of drug resistance mutations is expected to
be inversely proportional to their fitness cost in absence of
treatment; some of these costs have been measured in cell cul-
tures (see e.g. Chow et al. 1993; Cong et al. 2007; Martinez-
Picado and Martinez 2008). Many resistance mutations quickly
revert upon treatment interruption suggesting high fitness
costs (Deeks 2003; Joos et al. 2008; Hedskog et al. 2010). Indeed,
for most drug-resistance mutations, we estimate fitness costs
in excess of 5 percent (sites where minor variation is not or only
sporadically observed), see top panel in Fig. 6.

In the future, as whole genome deep sequencing becomes
more common, estimates of mutation rates and the fitness
landscape could be extended to a higher number of samples
and other viruses. In particular, because the dataset used in
this article is mostly from subtype B, deeper sampling of other
HIV clades could help define the degree of universality of the
HIV-1 fitness landscape. A much larger sample pool might al-
low site-specific inference of the mutation rates. Furthermore,
by providing more accurate minor SNV frequencies, estimates
of their associated fitness costs will improve, leading to a
deeper understanding of the selective forces that shape viral
evolution.

Supplementary data

Supplementary data are available at Virus Evolution online.

Figure 6. Pre-existing drug resistance mutations carry a high cost. Each point shows the average frequency of minor amino acids in individual patients. The bottom

row indicates in how many out of ten patients each mutation is not observed, the top panel shows the estimated fitness costs associated with the mutations. The fol-

lowing mutations were never found at frequencies above 0.1 percent in any patient, indicating a large fitness cost: PI: L24I, V32I, I154VTAM, L76V, N88S, L90M; NRTI:

M41L, K70ER, L74VI, Y115F, T215YF, K219QE; NNRTI: L100I, K103N, V106AM, E138K, V179DEF, Y188LCH, M230L; INI: E92Q, N155H. Most mutations are observed in no pa-

tient or only in a few patients, indicating high fitness costs.
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