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Abstract

In this paper we model the dynamic adjustment of real house prices using data
at the level of US States. We consider interactions between housing markets by
examining the extent to which real house prices at the State level are driven by
fundamentals such as real income, as well as by common shocks, and determine the
speed of adjustment of house prices to macroeconomic and local disturbances. We
take explicit account of both cross sectional dependence and heterogeneity. This
allows us to �nd a cointegrating relationship between house prices and incomes and
to identify a small role for real interest rates. Using this model we examine the role
of spatial factors, in particular the e¤ect of contiguous states by use of a weighting
matrix. We are able to identify a signi�cant spatial e¤ect, even after controlling
for State speci�c real incomes, and allowing for a number of unobserved common
factors.
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1 Introduction

The long standing interest of geographers and regional scientists in spatial issues has
spelt over into economics and into the development of spatial econometrics (Paelinck and
Klaasen, 1979, Anselin, 1988, Krugman 1998) with a particular emphasis placed on inter-
actions in space (spatial autocorrelation) and spatial structures (spatial heterogeneity).
At the same time there are many economic studies based on panels of economic data
at the city, state, regional and country level that have an implicit spatial structure, but
which e¤ectively ignore possible spatial interactions and interdependencies. This may
not matter if the spatial interactions are captured by common observed factors which
are themselves included in the panel model. However, in practice there may be spatial
interactions that are not adequately captured in this way.
In the literature on spatial econometrics the degree of cross section dependence is

calibrated by means of a weighting matrix. For example the (i; j) elements of a weighting
matrix, wij, could take a value of 1 if the ith and jth areas/regions/countries are contiguous
and zero otherwise1. Of course there are many other forms of contiguity that draw on
the metaphor of a chessboard with the type of connectiveness re�ecting the scope for
movements by the rook, the bishop and the queen. Weights can also be based on distance,
squared distance or the number of nearest neighbours. Often, however, in economic
applications space may not be the appropriate metric (Conley and Dupor, 2003, and
Conley and Topa, 2002 ). In some instances trade �ows might be relevant, whilst in the
case of inter-industry dependencies input-output matrices might provide the appropriate
spatial metric. Alternatively, there may be dependencies between geographical areas that
re�ect cultural similarity, and migration or commuting relationships (E¤, 2004).
Much of these forms of interaction are unobservable, or di¢ cult to measure. We need

a method to test for possible hidden interactions. Recently tests have been proposed
(Pesaran, 2004) for spatial dependence based on the average of pair-wise correlation
coe¢ cients of the OLS residuals from the individual regressions in the panel. Where spa-
tial dependence is detected (perhaps due to an unobservable common factor or factors)
a widely employed way of taking account of this in modelling is to use a �xed, non-
stochastic spatial weights matrix. Another way would be to use (for a su¢ ciently large
number of cross section observations) the common correlated e¤ects estimator of Pesaran
(2006a). This is a new approach to estimation and inference in panel data models with
a multifactor error structure where the unobserved common factors are (possibly) corre-
lated with exogenously given individual-speci�c regressors, and the factor loadings di¤er
over the cross section units. The basic idea behind the proposed estimation procedure is
to �lter the individual-speci�c regressors by means of (weighted) cross-section aggregates
such that asymptotically as the cross-section dimension (N) tends to in�nity the di¤er-
ential e¤ects of unobserved common factors are eliminated. The estimation procedure
has the advantage that it can be computed by OLS applied to an auxiliary regression
where the observed regressors are augmented by (weighted) cross sectional averages of
the dependent variable and the individual speci�c regressors. Two di¤erent but related
problems are addressed: one that concerns the coe¢ cients of the individual-speci�c re-
gressors, and the other that focuses on the mean of the individual coe¢ cients assumed
random. In both cases appropriate estimators, referred to as common correlated e¤ects
(CCE) estimators, are proposed and their asymptotic distribution as N tends to in�nity,
with T (the time-series dimension) �xed or as N and T tend to in�nity (jointly) are de-

1See Moran (1948), Cli¤ and Ord (1973, 1981), Anselin (1988, 2001) and Haining (2003).
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rived under di¤erent regularity conditions. One important feature of the proposed CCE
mean group (CCEMG) estimator is its invariance to the (unknown but �xed) number of
unobserved common factors as N and T tend to in�nity (jointly). In this paper we apply
this methodology to an analysis of house prices at the State level in the USA.
Recently there has been considerable interest in the behaviour of house prices not

only in the US but also internationally (IMF, 2004). The majority of OECD countries
have experienced a considerable rise in real house prices in the last decade. Because of
the role housing wealth plays in household behaviour, fears have been expressed that
there is a �bubble�in house prices, with prices moving well away from their fundamental
drivers (Case and Shiller, 2003, McCarthy and Peach, 2004). Changes in real house
prices relative to household income can also have important consequences for household
budgets, with implications for the design of social policy, and possibly, the behaviour of
the macroeconomy. Maclennan, Muellbauer, and Stephens (1998), for example, argue
that there are huge di¤erences in housing and �nancial market institutions across Europe
and that this has profound e¤ects on the way in which output and in�ation in the di¤erent
countries respond to changes in short-term interest rates, as well as to external shocks
to asset-markets. One important aspect of the interaction between the housing market
and the macroeconomy arises from the link to the labour market. For example, Bover,
Maullbauer and Murphy (1989) argue that di¤erences in the level of house prices between
regions lowers labour mobility. See also Meen (2002).
House prices at the regional level also exhibit much more volatility both over time and

across regions. Pollakowski and Ray (1997) examine the spatial di¤usion process of the
change in the log of US regional house prices, using vector autoregressive (VAR) models.
Their results suggest that at the national level (dividing US into nine regions) evidence
con�rms the signi�cance of some (non spatial) di¤usion patterns, but at the metropolitan
area level there is evidence of contiguous spatial di¤usion.
Recently Cameron et al. (2006) have investigated the evolution of house prices across

nine UK regions between 1972 and 2003. Their model of real house prices is an error
correction panel data model with regional e¤ects and time e¤ects, derived from a system
of inverted housing demand equations, including additional terms to take into account
spatial correlation, as well as supply side e¤ects, credit conditions, etc. Speci�cally,
a seemingly unrelated regression (SUR) estimation approach is adopted to control for
contemporaneous correlation, and lagged dependent variables of contiguous regions and
Greater London are also included to control for the spatial di¤usion process. This esti-
mation strategy, apart from its rather complex structure, can not be applied when the
number of regions is relatively large, as is the case in the present study.
Housing is typically a largely immovable asset. However, as an asset it is reasonable

to assume that at the margin the price of two identical houses located spatially will
di¤er only by a (�xed) factor which re�ects general aspects of physical location. In
this paper the fundamental driver of real house prices is real income. However, there is
considerable di¤erences among US States in both the level and rates of growth of real
incomes.2 This heterogeneity should in turn be re�ected in real house prices. We examine
this possibility in the context of a panel error correction model (Malpezzi, 1999, Capozza
et al.,2002, and Gallin, 2003). The importance of heterogeneity in spatially distributed
housing markets has been highlighted recently by Fratantoni and Schuh (2003). They
quantify the importance of spatial heterogeneity in US housing markets for the e¢ cacy
of monetary policy. Depending on local conditions monetary policy can have di¤ering

2For a recent review of the US housing market see Green and Malpezzi (2003).
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e¤ects on particular US regions (Carlino and DeFina, 1998).
The plan of the paper is as follows. Section 2 discusses the theory underlying house

price determination. Section 3 provides a review of the panel data model and estimation
methods. Section 4 provides a preliminary data analysis. Section 5 reports the estimation
results. Section 6 provides some concluding remarks.

2 Modelling House Prices

It is now standard to see the determination of house prices as the outcome of a market
for the services of the housing stock and as an asset. A standard model of the demand for
housing services includes permanent income, the real price of housing services and a set
of other in�uences a¤ecting changes in household formation such as demographic shifts.
In equilibrium the real price of houses, Ph=Pg, is equal to the real price of household
services from home ownership, s, divided by the user cost of housing, c:

Ph=Pg = s=c;

where Pg is a general price index. Assume that alternative assets are taxed at the rate
� . c is then equal to the expected real, after-tax rate of return on other assets with a
similar degree of risk:

c = (r + �)=(1� �)� �e; (2.1)

where r is the risk-equivalent real interest rate on alternative assets and �e is the expected
rate of price in�ation. Following the approach of Feldstein et al. (1978), Hendershott and
Hu (1981) and Buckley and Ermisch (1982), assume that the alternative asset is some
aggregate capital which can be �nanced by the issue of equity or the sale of bonds. The
bonds are of an equivalent degree of risk to house ownership. Equity is riskier, so there
is a market determined risk premium, �, on the holding of equity. In equilibrium the risk
adjusted return on equity, ", is equal to the return on bonds:

(1� �)"� �� � � = (r + �)=(1� �)� �e. (2.2)

The return to equity is expressed as the dividend payout per unit of equity.
Another way of deriving the user cost of housing is to use the full intertemporal model

of consumption in which in equilibrium the marginal rate of substitution between housing
services and the �ow of utility from consumption is:

uh=uc = (Ph=Pg) f(r + �)=(1� �)� �e ��e(Ph=Pg)g; (2.3)

where�e(Ph=Pg) denotes the expected appreciation in the real price of houses and uh and
uc are the marginal utilities of housing services and consumption, respectively. The price
of houses that satis�es the market for housing services and the asset market arbitrage
condition is then:

Ph=Pg = s=f(r + �)=(1� �)� �e ��e(Ph=Pg)g. (2.4)

The empirical model that can be derived from this form of analysis employs the device
of proxying the unobservable real rental price of the �ow of housing services, s, by the
determinants of the demand for housing services, such as real disposable income.
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3 The Econometric Model and Tests

The long-run relation compatible with the theory can be written most conveniently in
the following log-linear form:

pit = �i + �
0
ixit + uit; i = 1; 2; :::; N ; t = 1; 2; :::; T; (3.1)

where pit = log(Pit;h=Pit;g) is the logarithm of real price of housing in the ith State,
xit = (yit; rlit)

0, yit is real personal disposable income in the ith State, and rlit is the
logarithm of real interest rate. The price dynamics and their adjustments to the long-run
equilibrium across States are captured in the error terms uit. The common unobserved
factors as well as the spatial e¤ects will also be modelled through the error terms. In
particular, we shall assume that uit has the following multi-factor structure

uit = 
0
ift + "it; (3.2)

in which ft is an m� 1 vector of unobserved common e¤ects, and "it are the individual-
speci�c (idiosyncratic) errors assumed to be distributed independently of xit and ft. How-
ever, we allow "0its to be weakly dependent across i. This, for example, allows the idiosyn-
cratic errors to follow the Spatial Autoregressive (SAR), or the Spatial Moving Average
(SMA) processes introduced by Whittle (1954), Cli¤ and Ord (1973, 1981), and Haining
(1978).
Despite its simplicity the above speci�cation is reasonably general and �exible and

allows us to consider a number of di¤erent factors that drive house prices. Some of
the supply factors that are particularly di¢ cult to measure accurately can be captured
through the unobserved common components of uit.3 The speci�cation also allows for
the possible e¤ects of the transmission of monetary policy onto house prices at the aggre-
gate level. We are also able to test for cointegration between real house prices and real
disposable income, whilst allowing for a high degree of dependence across States.

3.1 The Common Correlated E¤ects (CCE) Estimator

We use the Common Correlated E¤ects (CCE) type estimator, which asymptotically
eliminates the cross dependence (Pesaran 2006a). To illustrate, suppose the (k � 1)
vector xit is generated as

xit = ai + �
0
ift + vit; (3.3)

where ai is a k � 1 vector of individual e¤ects, �i is a m � k factor loading matrices
with �xed components, vit are the speci�c components of xit distributed independently
of the common e¤ects and across i; but assumed to follow general covariance stationary
processes. Combining (3.1) and (3.3) we now have

zit
(k+1)�1

=

�
pit
xit

�
= di

(k+1)�1
+ C0

i
(k+1)�m

ft
m�1

+ �it
(k+1)�1

; (3.4)

3The supply elasticity of housing units has recently been identi�ed as an important factor behind
house price movements in some US urban markets. The ease with which regulatory approval for the
construction of new houses can be obtained has been identifed by Glaeser and Gyourno (2005) and
Glaeser, Gyourko and Saks (2005) as a signi�cant element in real house price increases in California,
Massachusetts, New Hampshire, New Jersey and Washington, DC.
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where

�it =

�
"it + �

0
ivit

vit

�
; (3.5)

di =

�
1 �0i
0 Ik

��
�i
ai

�
, Ci =

�
i �i

�� 1 0
�i Ik

�
; (3.6)

Ik is an identity matrix of order k, and the rank of Ci is determined by the rank of the
m� (k + 1) matrix of the unobserved factor loadings

~�i =
�
i �i

�
: (3.7)

Pesaran (2006a) has suggested using cross section averages of pit and xit as proxies for
the unobserved factors in (3.1). To see why such an approach could work, consider simple
cross section averages of the equations in (3.4)4

�zt = �d+ �C
0ft + ��t; (3.8)

where

�zt =
1

N

NX
i=1

zit, ��t =
1

N

NX
i=1

�it;

and

�d =
1

N

NX
i=1

di, �C =
1

N

NX
i=1

Ci. (3.9)

Suppose that
Rank(�C) = m � k + 1, for all N: (3.10)

Then, we have

ft =
�
�C�C

0
��1

�C
�
�zt � �d� ��t

�
: (3.11)

But since
��t

q:m:! 0, as N !1, for each t; (3.12)

and
�C

p! C = ~�

�
1 0
� Ik

�
; as N !1; (3.13)

where
~� = (E (i) ; E (�i)) = (;�): (3.14)

It follows, assuming that Rank(~�) = m, that

ft � (CC0)�1C
�
�zt � �d

� p! 0, as N !1:

This suggests using (1;�z0t)
0 as observable proxies for ft, and is the basic insight that lies

behind the Common Correlated E¤ects (CCE) estimators developed in Pesaran (2006a).
Kapetanios et al. (2006) prove that the CCE estimators are consistent regardless of
whether the common factors, ft, are stationary or nonstationary. It is further shown that
the CCE estimation procedure in fact holds even if ~� turns out to be rank de�cient, thus
the estimator is consistent with any �xed number of m. This contrasts to the principal

4Pesaran (2006a) considers cross section weighted averages that are more general. However, we used
the weights N�1, which is asymptotically (N !1) equivalent to other weights.
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component approach, which requires us to estimate the number of factors (Bai and Ng,
2002, and Bai, 2003).
The CCEMG estimator is a simple average of the individual CCE estimators, b̂i of

�i de�ned by

b̂MG = N�1
NX
i=1

b̂i; (3.15)

b̂i = (X
0
i
�MXi)

�1X0
i
�Mpi; (3.16)

where Xi = (xi1;xi2; :::;xiT )
0, pi = (pi1; pi2; :::; piT )0, and �M is de�ned by

�M = IT � �H
�
�H0 �H

��1 �H0; (3.17)

and �H = (� T ; �Z), � T is a (T �1) vector of unity, �Z is a T �(k+1) matrix of observations
�zt. The (non-parametric) variance estimator for b̂MG is given by

dV ar �b̂MG

�
=

1

N (N � 1)

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
.

E¢ ciency gains from pooling of observations over the cross section units can be
achieved when the individual slope coe¢ cients, �i, are the same. Such a pooled esti-
mator of �, denoted by CCEP, has been developed by Pesaran (2006a) and is given
by

b̂P =

 
NX
i=1

X0
i
�MXi

!�1 NX
i=1

X0
i
�Mpi: (3.18)

The variance estimator for b̂P is given by

dV ar �b̂P� = N�1	̂��1R̂�	̂��1; (3.19)

where

	̂� = N�1
NX
i=1

�
X0
i
�MXi

T

�
; (3.20)

R̂� =
1

N � 1

NX
i=1

�
X0
i
�MXi

T

��
b̂i � b̂MG

��
b̂i � b̂MG

�0�X0
i
�MXi

T

�
: (3.21)

3.2 A Cross-Section Dependence Test

In this paper we use a CD (Cross-section Dependence) test of error cross dependence,
which does not require an a priori speci�cation of a connection (weighting) matrix and is
applicable to a variety of panel data models, including stationary and unit root dynamic
heterogeneous panels with structural breaks, with short T and large N (Pesaran, 2004).
The CD test is based on an average of the pair-wise correlations of the OLS residuals
from the individual regressions in the panel, and tends to a standard normal distribution
as N !1. The CD test statistic is de�ned as

CD =

s
2T

N(N � 1)

 
N�1X
i=1

NX
j=i+1

�̂ij

!
as N(0; 1); (3.22)
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where �̂ij is the sample estimate of the pair-wise correlation of the residuals. Speci�cally,

�̂ij = �̂ji =

PT
t=1 ûitûjt�PT

t=1 û
2
it

�1=2 �PT
t=1 û

2
jt

�1=2 ; (3.23)

where ûit is the OLS estimate of uit de�ned by

ûit = pit � �̂i � �̂
0
ixit; (3.24)

with �̂i and �̂i being the estimates of �i and �i computed using the OLS regression of
pit on an intercept and the regressors, xit; for each i; separately.

3.3 Panel Unit Root Tests

One of the most commonly used tests for unit roots in panels is that of Im, Pesaran and
Shin (2003), called the IPS test. Consider a pth order Augmented Dickey-Fuller (ADF)
regression for the ith cross section unit:

�!it = ai + �it+ bi!i;t�1 +

pX
j=1

�ij�!i;t�j + �it; i = 1; 2; :::; N , t = 1; 2; :::; T: (3.25)

The unit root hypothesis of interest can be expressed as

H0 : bi = 0 for all i,

against the possibly heterogeneous stationary alternatives,

H1 : bi < 0, i = 1; 2; :::; N1, bi = 0, i = N1 + 1; N1 + 2; :::; N .

It is assumed that N1=N is non-zero and tends to a �xed constant � such that 0 < � � 1
as N ! 1, which is necessary for the consistency of the panel unit root test. The
individual pth order ADF statistic, ADF(p), is obtained as the OLS t-ratio of bi, t̂i, and
the IPS statistic is de�ned as5

IPS =

p
N
�
t-bar � E

�
t̂ijbi = 0; p

�	q
V ar

�
t̂ijbi = 0; p

� ; (3.26)

where

t-bar = N�1
NX
i=1

t̂i. (3.27)

The values of E
�
t̂ijbi = 0; p

�
and V ar

�
t̂ijbi = 0; p

�
with various combinations of T and

p are tabulated in Im, Pesaran and Shin (2003). Under the null hypothesis, the distrib-
ution of the IPS statistic is well approximated by the standard normal distribution for
su¢ ciently large N and T .
However, the IPS test procedure is not valid when the errors, �it, are dependent

across i, and its use in the case of the house price data can lead to spurious inference. A
number of panel unit root tests that allow for possible cross section dependence in panels

5The dependence of the statistics on N and/or T are suppressed for ease of notation.
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have been recently proposed in the literature.6 Here we consider two of these that are
particularly relevant to our application. One is the test proposed by Moon and Perron
(2004) which is based on the t-ratio of a modi�ed pooled OLS estimator using the de-
factored panel data. For de-factoring, they make use of principal components estimator of
m common factors, where the number of factors m is estimated using the model selection
criteria proposed in Bai and Ng (2002). In their paper two test statistics, t�a and t

�
b , are

proposed. Here only the latter is considered, which was reported to have better �nite
sample performance in Moon and Perron (2004). Following Moon and Perron (2004) the
long-run variances are estimated using Andrews and Monahan (1992) estimator based on
a quadratic spectral kernel and prewhitening. Under the null, the statistic t�b tends to a
standard normal variate as both N and T go to in�nity so long as N=T ! 0.
The second panel unit root test considered in our application is the test proposed

by Pesaran (2006b), which follows the CCE approach and �lters out the cross section
dependence by augmenting the ADF regressions with cross section averages. The cross
section augmented ADF (CADF) regressions, carried out separately for each State, are
given by

�!it = ai + �it+ bi!i;t�1 + ci�!t�1 +

pX
j=0

dij��!t�j +

pX
j=1

�ij�!i;t�j + vit; (3.28)

where �!t denotes the cross section mean of !it. The CIPS statistic is a simple cross
section average of ~ti de�ned by

CIPS = N�1
NX
i=1

~ti; (3.29)

where ~ti is the OLS t-ratio of bi in the above CADF regression. Pesaran (2006b) also
considers a truncated version of ~ti so that these statistics have �nite moments even for
relatively small N and/or T . The truncated version of the CIPS statistic is de�ned as
CIPS� = N�1PN

i=1
~t�i , where ~t

�
i are truncated CADF statistics such that8<:
~t�i = ~ti; if �K1 < ~ti < K2;
~t�i = �K1; if ~ti � �K1,
~t�i = K2; if ~ti � K2,

K1 and K2 are positive constants that are su¢ ciently large so that Pr
�
�K1 < ~ti < K2

�
is su¢ ciently large. The choice of the value of K1 and K2 depends on the speci�cation of
CADF 0s. For models with an intercept only, K1 = 6:19 and K2 = 2:61, and for models
with an intercept and a linear trend, K1 = 6:42 and K2 = 1:70, are used. The critical
values for the CIPS tests are given in Tables 2a-2c in Pesaran (2006b).7

3.4 Cointegration between Real House Prices and Real Incomes

Recently there has been a debate in the literature about whether there is cointegration
between real house prices and real per capita disposable incomes. In the absence of
cointegration there is no fundamentals driving real house prices so the possibility of
bubbles is increased (Case and Shiller, 2003). So far the evidence is mixed.

6For a recent surevy of the literature see Breitung and Pesaran (2006).
7As Pesaran (2006b) notes, the CADF(p) approach is valid when there is single common factor.
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Malpezzi (1999) uses panel data on 133 metropolitan areas in the US over 18 years
from 1979 to 1996 and applies the panel unit root test of Levin, Lin and Chu (2002, LLC)
to house price-to-income ratios, and �nds that he can not reject the presence of a unit
root in these series. But he is able to reject the null of a unit root in the residuals of the
regressions of real house prices on real per capita incomes, again using the LLC panel
unit root test.8 However, the testing procedure adopted by Malpezzi su¤ers from two
main shortcomings. The LLC�s critical values are not appropriate when the panel unit
root test is applied to residuals from �rst step regressions, and perhaps more importantly,
the LLC test does not take account of possible cross section dependence of house prices
and this could seriously bias the test results.
Capozza, et al. (2002) recognize this problem and try to control for cross section

dependence by adding time dummies to their error correction speci�cations. However, as
Gallin (2003) points out, local housing market shocks are likely to be correlated in ways
that are not captured by simple time e¤ects. To allow for more general error cross section
dependence, Gallin (2003) adopts a bootstrap version of Pedroni�s (1999) residual-based
cointegration test procedure, and concludes that ".. even these more powerful tests do not
reject the hypothesis of no cointegration." However, the bootstrap approach, originally
advanced in Maddala and Wu (1999), is likely to be seriously biased. The bootstrap
test statistic is not pivotal, and the bootstrap test has a �nite sample error of the same
order as the asymptotic test. Secondly, as Maddala and Wu (1999) show, the bootstrap
procedure cannot eliminate size distortions in �nite samples, particularly in cases where
N is small relative to T . Also see Smith, Leybourne, Kim and Newbold (2004, p.161-
168) where they �nd that the bootstrap panel unit root test tends to under-reject when
N = T = 25. They do not consider any experiments where N > T . Furthermore, their
Monte Carlo set up does not deal with common factor error structures, since it ensures
that the maximum eigenvalue of the error variance-covariance matrix remains bounded
in N , by design.9 In Gallin�s application N (= 95) is much larger than T (= 23), and
due to the presence of common factors the N � N error variance-covariance matrix is
likely to be near singular. The bootstrap panel unit root tests reported by Gallin can be
subject to large size distortions.
Over the past few years a number of panel cointegration tests have been proposed

in the literature that attempt to take account of error cross section dependence in their
test procedures. These include the tests proposed by Groen and Kleibergen (2003),
Nelson, Ogaki, and Sul (2005),Westerlund (2005), Pedroni and Vogelsang, (2005), Chang
(2005), and Bai and Kao (2006). The tests by Groen and Kleibergen, Nelson, Ogaki,
and Sul, and Westerlund are applicable when N is small and T large. For example,
in their Monte Carlo experiments Groen and Kleibergen and Nelson, Ogaki, and Sul
consider panels with N � 8 and T � 100. Westerlund considers panels where N = 10
or at most 20 and T = 50 or 100. The tests by Pedroni and Vogelsang and Chang, in
principle, can deal with panels where N is reasonably large, but their models do not
allow for unobserved common factors, ft, that could be correlated with the observed
regressors, xit, which is an important consideration in our application. When ft and

8It is not clear if the panel unit root tests reported in Malpezzi are applied to the levels of price-to-
income ratios or to their logarithms. See equation (2) and the discussions on pages 42 and 48 in Malpezzi
(1999).

9See, for example, Chamberlain and Rothschild (1983) who show that in the case of factor models
in N variables and a �xed number of factors m, the largest eigenvalue of the covariance matrix of the
variables must rise with N .
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xit are correlated the �rst stage residuals used in the tests by Chang and Pedroni and
Vogelsang will be inconsistent which invalidates their residual-based testing procedures.
Bai and Kao model cross section dependence using the factor approach as in (3.2), but
assume that the innovations to the factors and the observed regressors are independently
distributed. (see their Assumption 2). However, as Bai and Kao note in their Remark 1, it
is possible to relax their Assumption 2 by allowing the innovations in xit to be correlated
with ft. For a more detailed review of this emerging literature see, for example, Breitung
and Pesaran (2006).
We follow Chang, Pedroni and Vogelsang, and Bai and Kao and adopt a two-stage

procedure to assess the possibility of cointegration between the log of real house price (pit)
and the log of real per capita disposable income (yit). But unlike these studies, in both
stages we allow for unobserved common factors that could be potentially correlated with
the observed regressors. Using the pooled CCE estimator we �rst estimate the residuals,
ûit = pit � �̂CCEyit � �̂i. As noted earlier, the pooled estimate, �̂CCE is consistent for
�, under fairly general assumptions about the unobserved common factors, ft. We then
apply panel unit root tests to these residuals. If the presence of a unit root in ûit�s can be
rejected we shall conclude that the log of real house prices and the log of real per capita
disposable incomes are cointegrated with the cointegrating vector given by (1;��̂CCE)0.

4 Preliminary Data Analysis

We begin our empirical investigation with a preliminary analysis of spatial dependence
at the US State level, using data on the growth of real house prices and incomes. Table 1
de�nes the variables used. A more detailed description is provided in the Data Appendix.
We use annual data on US States, excluding Alaska and Hawaii, from 1975 to 2003. One of
the features of the data in which we are interested, is the extent to which real house prices
are driven by fundamentals such as income. To explore spatial interactions we calculate
simple correlation coe¢ cients between each State, within and between correlations for the
Bureau of Economic Analysis (BEA) eight regions and �nally the within and between
correlation coe¢ cients for three geographical regions dividing the USA into broadly the
West, the Middle and the East. The results are shown in Tables 3 and 4.
In Table 3 we tabulate within and between correlation coe¢ cients for the 8 BEA

regions. The diagonal elements show the within region average correlation coe¢ cient.
The o¤ diagonal elements give the between region correlation coe¢ cients. For many
regions the within region correlation is larger than the between region correlation. But
for some regions this is not so. For example, the States of the Mideast region are more
correlated on average with the States of New England than among themselves. The
States of the Great Lakes are more correlated with those of the South East than they
are among themselves. If we look at the correlations at the level of 3 geographical areas,
the within correlations are always larger than the between, though the East tends to be
�closer�in some sense to the Middle than the Middle is to the West. Overall, real income
growth is correlated across the USA.
In Tables 4 we tabulate the spatial correlations for real house prices. A similar picture

to that for real incomes emerges. Within region correlations are generally larger than the
between correlations, with the exception of New England and the Middle East and the
South West and the Rocky Mountains. In contrast to the results for real incomes there
is a more noticeable spatial pattern. The growth of real house prices in New England is
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hardly correlated at all with States in the Rocky Mountains and the Far West, with the
correlations on average declining with distance. This pattern is also clear when we look
at the three broad geographical areas (The West, the Middle and the East).
The regional groupings also disguise some interesting correlations at the underlying

State level. To save space, the State level correlation coe¢ cients for real income growth
and real house price growth are not included in this paper, but are available upon re-
quest. Real income growth in California is more closely correlated with many States
that are geographically very distant. This re�ects the common factors driving economic
development in di¤erent parts of the USA, such as the growth of aerospace, information
technology etc. that stimulate growth in di¤erent States. For real house prices the av-
erage correlation coe¢ cient between States is 0.39 compared to 0.51 for real incomes.
There are also some unusual correlations at the individual State level. Real house price
growth in California, for example, is more closely correlated with Washington DC and
Maryland (0.86 and 0.73 respectively) than with New York (0.16) or Oregon (0.25).
Overall, there is more evidence in the raw data of a possible spatial pattern in real

house prices than in real incomes, but there are also a number of between State correla-
tions that appear to be independent of spatial patterns.

5 Econometric Evidence

In this section we turn to the test and estimation results.

5.1 Panel Unit Root Tests Results

The extent of cross section dependence of the residuals from ADF(p) regressions of real
house prices, real incomes and interest rates across the 49 States over the period 1975 to
2003 are summarized in Table 5. For each p = 1; 2; 3 and 4 we computed average sample
estimates of the pair-wise correlations of the residuals, which we denote by �̂. To capture
the trended nature of real incomes and real house prices we run the ADF regressions with
linear trends, but included an intercept only in the regressions for real interest rates. The
results are reasonably robust to the choice of the augmentation order, p. For real incomes
and real interest rates, �̂ is estimated to be around 40% and 50%, respectively, whilst for
real house prices it is much lower and the estimate stands at 20%. This largely re�ects
the national character of changes in incomes and interest rates as compared to real house
prices that are likely to be a¤ected by State speci�c e¤ects as well. The results are also
in line with the pair-wise correlations of the raw data discussed above and con�rm the
existence of a greater degree of cross State correlations in the case of real incomes as
compared to real house prices.
The CD test statistics, also reported in Table 5, clearly show that the cross correlations

are statistically highly signi�cant, and thus invalidate the use of panel unit root tests,
such the IPS test, that do not allow for error cross section dependence. Therefore, in
what follows we shall focus on the Moon-Perron�s t�b and Pesaran�s CIPS tests.
The results for Moon and Perrons�s t�b test are summarized in Table 6. The application

of the t�b test requires an estimate of m, the number of common factors. We tried the
various selection criteria proposed in Bai and Ng (2002), all of which require starting from
an assumed maximum value of m; denoted by mmax. But the outcomes did not prove
to be satisfactory, in the sense that the choice of m often coincided with the assumed
maximum number of factors, mmax. In view of this in Table 6 we present the t�b test
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results for various values of m in the range of 1 to 4. For changes in real incomes and
real house prices the t�b test rejects the unit root hypothesis, but for the levels of these
variables the test results depend on whether linear trends are included or not. In the case
of house prices the test outcomes also depend on the assumed number of factors. Only
for real interest rates do the test results convincingly reject the unit root hypothesis.
The CIPS test results, summarized in Table 7, show a similar outcome for the real

interest rates. But for pit and yit the unit root hypothesis can not be rejected if the
trended nature of these variables are taken into account. This conclusion seems robust to
the choice of the augmentation order of the underlying CADF regressions. As the Moon
and Perron test is valid only when T is much larger than N , we believe the CIPS test
results are more reliable for our data. We proceed taking yit and pit as I(1), and rlit as
I(0) variables.

5.2 The Income Elasticity of Real House Prices

To test for a possible cointegration between pit and yit, we �rst estimate the following
fairly general model

pit = �i + �iyit + uit, i = 1; 2; :::; N ; t = 1; 2; :::; T , (5.1)

where

uit =
mX
`=1

i`f`t + "it. (5.2)

In view of discussion in Section 3, the common correlated e¤ects (CCE) estimators are
consistent regardless of f`t being stationary or non-stationary, so long as "it is stationary
and m is a �nite �xed number (See Pesaran, 2006a, Kapetanios et al., 2006). To show
the importance of allowing for the unobserved common factors in this relationship we
also provide naive estimates of �i, i = 1; 2; :::; N (and their mean) that do not allow for
cross section dependence by simply running OLS regressions of pit on yit. The common
correlated e¤ects (CCE) estimators are based on the cross section augmented regressions

pit = �i + �iyit + gi0yt + gi1pt + eit, (5.3)

where yt and pt denote the cross section averages of yit and pit in year t. The results are
reported in Table 8. The �rst column gives the naive mean group estimates. These suggest
a small coe¢ cient on income of only 0.30, and considerable cross sectional dependence.
The other two columns report the common correlated e¤ects mean group (CCEMG) and
the common correlated e¤ects pooled (CCEP) estimates. The coe¢ cient on income is
now signi�cantly larger and the residual cross sectional dependence has been purged with
the average correlation coe¢ cient, �̂, reduced from 0.38 for the MG estimates to 0.024
and 0.003 respectively for the CCEMG and CCEP estimates.
The CCEMG and CCEP estimates and their standard errors also support the hypoth-

esis of a unit elasticity between changes in house prices and real incomes. The t-ratios
of both �CCE estimates in Table 8 are less than unity for the null hypothesis of interest.
Therefore, the long-run relation to be tested for cointegration is given by

ûit = pit � yit � �̂i,

where �̂i = T�1
PT

t=1(pit � yit).
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5.3 Panel Cointegration Test Results

The residuals ûit can now be used to test for cointegration between pit and yit. Note
that the CCE estimates are consistent irrespective of whether ft are I(0), I(1) and/or
cointegrated. The presence of ft also requires that the panel unit root tests applied to ûit
should allow for the cross section dependence of the residuals. The extent to which these
residuals are cross-sectionally dependent can be seen from the average cross correlation
coe¢ cients of ûit, within and between the eight BEA regions, which are reported in Table
9.
We computed CIPS(p) panel unit root test statistics for pit�yit, including an intercept,

for di¤erent augmentation and lag orders, p = 1; 2; 3 and 4, and obtained the results,
�2:16;�2:39;�2:45; and �2:29, respectively. The 5% and 1% critical values of the CIPS
statistic for the intercept case and panels with N = 50 and T = 30 are �2:11 and �2:23,
respectively. The results suggest rejection of a unit root in pit�yit for all the augmentation
orders at 5% level and rejection at 1% level in the case of the augmentation orders 2 and
more.

5.4 Panel Error Correction Speci�cations

Having established panel cointegration between pit and yit, we now turn our attention
to the dynamics of the adjustment of real house prices to real incomes and estimate the
panel error correction model:

�pit = �i + �i(pi;t�1 � yi;t�1) + �1i�pi;t�1 + �2i�yit + �it: (5.4)

The coe¢ cient �i provides a measure of the speed of adjustment of house prices to a
shock. The half life of a shock to pit is approximately �ln(2)=ln(1 + �i).
To allow for possible cross section dependence in the errors, �it, we computed CCEMG

and CCEP estimators of the parameters, as well as the mean group (MG) estimators that
do not take account of cross section dependence. The former estimates as computed by
OLS regressions of�pit on 1; (pi;t�1�yi;t�1), �pi;t�1, �yit, and the associated cross section
averages, (�pt�1��yt�1), �yt, �pt, and�pt�1. The results are summarized in Table 10. The
coe¢ cients are all correctly signed. The CCEMG and CCEP estimators are very close
and yields error correction coe¢ cients (�0:183 and �0:171) that are reasonably large
and statistically highly signi�cant. The average half life estimates are around 3.5 years,
much smaller than the half life estimates of 6.3 years obtained using the MG estimators.
But the MG estimators are likely to be biased, since the residuals from these estimates
show a high degree of cross sectional dependence. The same is not true of the CCE type
estimators.
To check for the e¤ect of real interest rates on real house prices we also estimated

the above ECM with rli;t�1 included. (see Table 11).10 We found a small negative e¤ect
from real interest rates on real house prices, but the e¤ect was not statistically signi�cant
at the conventional levels. This could partly be due to the fact that rli;t�1 is de�ned in
terms of a common nominal rate of interest and the cross section variations of rli;t�1 is
limited to the di¤erences of the lagged in�ation rates across the States.11 A cross country
analysis of house prices might be needed for a more reliable estimate of the e¤ects of real

10Since the cross section variations of rli;t�1 is due solely to the cross section variations of �pi;t�1,
cross section averages of rli;t�1 are not included in the panel regressions.
11We also tried contemporaneous values of rlit in the panel regressions and found even weaker results.
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interest rates on real house prices, as such a study is likely to yield a much higher degree
of cross section variations in real interest rates.

5.5 Factor Loading Estimates across States

We have shown that the common correlated e¤ects estimators are quite successful in
taking out the cross sectional dependence by the use of a multifactor error structure where
the unobserved common factors are proxied by �ltering the individual-speci�c regressors
with cross-section aggregates. However, the sensitivity of the ith unit, in this case a
State, to the factors will vary so the factor loadings di¤er over the cross section units.
We can obtain an idea of these di¤erential factor loadings if we regress the cointegrating
relationship (pit � yit) on (pt � yt) and a constant. These regressions are reminiscent of
the Capital Asset Pricing Models (CAPM) in �nance where individual asset returns are
regressed on market (or average) returns.
The results, summarized in Table 12, show an interesting pattern in the loadings on the

factor (pt � yt). The States are ordered by the BEA�s regions. By construction, the cross
section average of the estimated coe¢ cients on (pt � yt) is unity, and the cross section
average of the intercepts is zero. New England and the Mid-East States all have loadings
of less than one, while all of the South East States, with the exception of Virginia, have
loadings greater than one on the common factor. This is also true for the States in the
Plains region and the South West region. The Far West region States all have loadings
less than 1 also. But strikingly, there are a number of States that have a zero, or even a
negative loading - Massachusetts, Rhode Island, Connecticut, Rhode Island, New Jersey,
New York, California, Oregon and Washington. In the case of Massachusetts, New York,
and California the loadings are negative, sizeable and statistically signi�cant. These are
all States that in the last 25 years have been particular bene�ciaries of new technologies.
These innovations interacting with restrictions on new building, have resulted in real
house prices deviating from the average across US States.

5.6 Testing for Spatial Autocorrelation

The previous analysis provided consistent estimates of the cointegrating relationship be-
tween real house prices and real incomes. In this section we turn to the estimation of
spatial patterns based on the estimation of a spatial weighting matrix that is commonly
used in the literature. We investigate the error structure (5.2), based on ûit = pit�yit��̂i.
We want to distinguish between a common dependence which is captured by the common
factors in (5.2) and idiosyncratic components in "it. These idiosyncratic factors re�ect
forms of local dependence that are spatial in nature. Initially we applied all six infor-
mation criteria (IC) for the estimation of the number of factors proposed by Bai and Ng
(2002), with the maximum number of factors varied between 1 to 8. Similar to the results
in Table 7, all the criteria suggested the same maximum number of factors. In view of
this, we analysed ûit, instead, by principal components for m = 1; 2 and 3 (following Bai
(2003, p.140), for example) so that

ûit =

mX
`=1

~i`
~f`t + ~"it, (5.5)

where ~f`t, ` = 1; 2; ::;m are the extracted factors and ~i` are the associated factor load-
ings. The idiosyncratic components, ~"it; are then computed as residuals from the OLS
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regressions of ûit on the estimated factors over the period 1975 to 2003 for each i.
To investigate the strength of spatial dependence in the idiosyncratic components, for

each m we estimated the following standard spatial lag model in ~"it (Cli¤ and Ord, 1973)

~"it =  
NX
j=1

wij~"jt + �it, (5.6)

where  is a spatial autoregressive parameter, and wij is the generic element of the N�N
spatial weight matrixW, and �it � iidN(0; �2�). The log-likelihood function of this model
is given by

L _ �(NT
2
) ln(�2�) + T ln jIN �  Wj � 1

2�2�

TX
t=1

(~"t �  W~"t)
0 (~"t �  W~"t) ;

where ~"t = (~"1t; ~"2t; :::; ~"Nt)
0, and in our application N = 49 and T = 29.12 For W,

following the approach of Anselin, we used a contiguity criterion and assigned wij = 1
when State i and j share a common border or vertex, and wij = 0 otherwise.13 The
ML estimates of  together with their standard errors given in brackets for m = 1; 2
and 3 are 0.653 (0.022), 0.487 (0.027) and 0.298 (0.033), respectively.14 All the estimates
are highly signi�cant and as is to be expected, the magnitude of the spatial parameter
declines markedly with the number of factors. Nevertheless, even with 3 factors there
is strong evidence that local dependence in the form of a spatial dependence between
contiguous states in the US is present in the data.
We also checked the spatial estimates to see if they are robust to possible di¤erences

in the error variances across the States, by estimating the spatial model using standard
residuals de�ned by "�it = ~"it=si, where si =

p
�Tt=1~"

2
it=T . We obtained slightly larger

estimates for  , namely 0.673 (0.021), 0.513 (0.027) and 0.393 (0.030), for m = 1; 2; and
3, respectively. These estimates con�rm a highly signi�cant and economically important
spatial dependence in real house prices in the US, even after controlling for State speci�c
real incomes, and allowing for a number of unobserved common factors.

6 Concluding Remarks

This paper has considered the determination of real house prices in a panel made up
of 49 US States over 29 years, where there is a signi�cant spatial dimension. An error
correction model with a cointegrating relationship between real house prices and real
incomes is found once we take proper account of both heterogeneity and cross sectional
dependence. We do this using recently proposed estimators that use a multifactor error
structure. This approach has proved useful for modelling spatial interactions that re�ect
both geographical proximity and unobservable common factors. We also provide estimates
of spatial autocorrelation conditional on up to 3 common factors and �nd signi�cant
evidence of spatial dependence associated with contiguity.
12For computation details of maximum likelihood estimation, see Anselin et al. (2006) and references

therein.
13The data on contiguity are obtained from Luc Anselin�s web site at:

http://sal.uiuc.edu/weights/index.html.
14We also computed generalised method of moments estimates proposed by Kelejian and Prucha (1999).

These yielded very similar results to the maximum likelihood estimates. We are grateful to Elisa Tosetti
for carrying out the computations of the spatial estimates.
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Overall, our results support the hypothesis that real house prices have been rising
in line with fundamentals (real incomes), and there seems little evidence of house price
bubbles at the national level. But we also �nd a number of outlier States: California,
New York, Massachusetts, and to a lesser extent Connecticut, Rhode Island, Oregon
and Washington State, with their log house price income ratios either unrelated to the
national average or even moving in the opposite direction. It is interesting that these
are the States that over the past 25 years have been pioneer and major bene�ciaries of
technological innovations in media, entertainment, �nance, and computers.
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Table 1: List of Variables and their Descriptions

Pit;g US State general price index (1980=1)
Pit;h US State house price index (1980=1)
PDit US State disposable income
POPit US State population
RBt US nominal long term interest rate, RBt
pit Natural logarithm of the US State real house price index, pit = log(Pit;h=Pit;g)
yit Natural logarithm of the US State real per capita disposable income, yit = log[PDit=(POPit � Pit;g)]
rlit US State real long term interest rate, rlit = RBt � ln (Pit;g=Pit�1;g)� 100;

Notes: Annual data between 1975 and 2003 (T = 29) for 48 States and the District of Columbia. (N = 49). See the Data
Appendix for the data sources and a detailed description of the construction of the US State general price index.

Table 2: Regions and Abbreviations

East Middle West
Regions/States Abbrev. Regions/States Abbrev. Regions/States Abbrev.
New England Region NENG Great Lakes Region GLAK Southwest Region SWST

Connecticut CT Illinois IL Arizona AZ
Maine ME Indiana IN New Mexico NM
Massachusetts MA Michigan MI Oklahoma OK
New Hampshire NH Ohio OH Texas TX
Rhode Island RI Wisconsin WI
Vermont VT Rocky Mountain Region RKMT

Plains Region PLNS Colorado CO
Mideast Region MEST Iowa IA Idaho ID

Delaware DE Kansas KS Montana MT
District of Columbia DC Minnesota MN Utah UT
Maryland MD Missouri MO Wyoming WY
New Jersey NJ Nebraska NE
New York NY North Dakota ND Far West Region FWST
Pennsylvania PA South Dakota SD Alaska AK

California CA
Southeast Region SEST Hawaii HI

Alabama AL Nevada NV
Arkansas AR Oregon OR
Florida FL Washington WA
Georgia GA
Kentucky KY
Louisiana LA
Mississippi MS
North Carolina NC
South Carolina SC
Tennessee TN
Virginia VA
West Virginia WV
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Table 3: Average of Correlation Coe¢ cients Within and Between Regions
First Di¤erence of Log of Real Per Capita Real Disposable Income

(i) Three Geographical Regions
East Middle West

East 0:55 � �
Middle 0:51 0:64 �
West 0:46 0:49 0:48

(ii) Eight BEA Regions
NENG MEST SEST GLAK PLNS SWST RKMT FWST

NENG 0:74 � � � � � � �
MEST 0:58 0:57 � � � � � �
SEST 0:48 0:50 0:61 � � � � �
GLAK 0:54 0:56 0:70 0:85 � � � �
PLNS 0:33 0:34 0:50 0:59 0:61 � � �
SWST 0:38 0:46 0:54 0:60 0:46 0:45 � �
RKMT 0:24 0:38 0:44 0:51 0:39 0:49 0:48 �
FWST 0:51 0:51 0:56 0:66 0:44 0:50 0:41 0:68

Notes: See Table 2 for the regions and abbreviations. The �gures are average of sample pair-wise correlation coe¢ cients.

Table 4: Average of Correlation Coe¢ cients Within and Between Regions
First Di¤erence of Log of Real House Prices

(i) Three Geographical Regions
East Middle West

East 0:48 � �
Middle 0:42 0:65 �
West 0:19 0:45 0:50

(ii) Eight BEA Regions
NENG MEST SEST GLAK PLNS SWST RKMT FWST

NENG 0:80 � � � � � � �
MEST 0:68 0:66 � � � � � �
SEST 0:40 0:32 0:52 � � � � �
GLAK 0:40 0:35 0:57 0:81 � � � �
PLNS 0:27 0:20 0:53 0:62 0:61 � � �
SWST 0:07 �0:05 0:35 0:28 0:39 0:52 � �
RKMT �0:03 �0:11 0:40 0:52 0:53 0:57 0:70 �
FWST 0:13 0:17 0:29 0:52 0:42 0:31 0:46 0:57

Notes: See Table 2 and the notes to Table 3.
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Table 5: Residual Cross Correlation of ADF(p) Regressions

Average Cross Correlation Coe¢ cients (�̂)
ADF(1) ADF(2) ADF(3) ADF(4)

yit 0:411 0:379 0:337 0:317
pit 0:206 0:200 0:208 0:194
rlit 0:509 0:509 0:469 0:485

CD Test Statistics
ADF(1) ADF(2) ADF(3) ADF(4)

yit 68:98 63:73 56:61 53:21
pit 34:62 33:55 35:00 32:52
rlit 85:46 85:50 78:71 81:44

Notes: pth-order Augmented Dickey-Fuller test statistics, ADF(p), for yit, pit and rlit are computed for each cross section
unit separately. For yit and pit, an intercept and a linear time trend are included in the ADF(p) regressions, but for
rlit only an intercept is included. The values in �Average Cross Correlation Coe¢ cients� are the simple average of the
pair-wise cross section correlation coe¢ cients of the ADF(p) regression residuals. �̂ = [2=N(N � 1)]

PN�1
i=1

PN
j=i+1 �̂ij

with �̂ij being the correlation coe¢ cient of the ADF(p) regression residuals between i
th and jth cross section units.

CD =
p
2T=N(N � 1)

PN�1
i=1

PN
j=i+1 �̂ij , which tends to N(0; 1) under the null hypothesis of no error cross section

dependence.

Table 6: Moon and Perron t�b Panel Unit Root Test Results

m 1 2 3 4
With an intercept only

�yit �21:90� �24:27� �29:67� �27:85�
�pit �14:51� �15:34� �15:03� �14:13�
yit 6:85 3:29 4:57 3:73
pit �1:06 �0:15 0:73 0:03
rlit �10:22� �9:39� �9:56� �8:39�

With a Linear Trend
yit �2:49� �1:92� �5:39� �8:35�
pit �0:48 �2:17� �4:28� �5:00�

Notes: The t�b test is the Moon and Perron (2004) panel unit root test statistic. The t
�
b statistic is computed for a given

number of factors, m = 1; 2; 3; 4. The long-run variances are estimated using the Andrews and Monahan (1992) estimator,
using a quadratic spectral kernel and prewhitening. Under the null, the t�b statistic tends to a standard normal distribution
as both N and T go to in�nity such that N=T ! 0. The 5% critical value (one-sided) is -1.645. The superscript �*�
signi�es the test is signi�cant at the �ve per cent level.

Table 7: Pesaran�s CIPS Panel Unit Root Test Results

With an Intercept
CADF(1) CADF(2) CADF(3) CADF(4)

�yit �2:61� �2:39� �2:42� �2:34�
�pit �2:28� �1:86 �1:76 �1:81
yit �2:52� �2:44� �2:39� �2:49�
pit �2:56� �2:44� �2:83� �2:84�
rlit �3:53� �2:69� �2:05 �1:87

With an Intercept and a Linear Trend
CADF(1) CADF(2) CADF(3) CADF(4)

yit �2:51 �2:22 �2:24 �2:09
pit �2:18 �2:02 �2:27 �2:30

Notes: The reported values are CIPS(p) statistics, which are cross section averages of Cross-sectionally Augmented Dickey-
Fuller (CADF(p)) test statistics (Pesaran 2006b); see Section 3 for more details. The relevant lower 5 per cent critical
values for the CIPS statistics are -2.11 with an intercept case, and -2.62 with an intercept and a linear trend case. The
superscript �*� signi�es the test is signi�cant at the �ve per cent level.
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Table 8: Estimation Result: Income Elasticity of Real House Price

MG CCEMG CCEP
�̂ 3:85

(0:20)
�0:11
(0:26)

0:00
(0:24)

�̂ 0:30
(0:09)

1:14
(0:20)

1:20
(0:21)

Average Cross Correlation

Coe¢ cient
�
�̂
� 0:38 0:024 0:003

CD Test Statistic 71:03 4:45 0:62

Notes: Estimated model is pit = �i + �iyit + uit. MG stands for Mean Group estimates. CCEMG and CCEP signify
the Cross Correlated E¤ects Mean Group and Pooled estimates, respectively. �̂ = N�1PN

i=1 �̂i for all estimates, and
�̂ = N�1PN

i=1 �̂i for MG and CCEMG estimates. Standard errors are given in parenthesis; see Section 3 for more details.
The �Average Cross Correlation Coe¢ cient� is computed as the simple average of the pair-wise cross section correlation
coe¢ cients of the regression residuals, namely �̂ = [2=N(N�1)]

PN�1
i=1

PN
j=i+1 �̂ij ; with �̂ij being the correlation coe¢ cient

of the regression residuals of the i and j cross section units. The CD test statistic is [TN(N � 1)=2]1=2 �̂, which tends to
N(0; 1) under the null hypothesis of no error cross section dependence.

Table 9: Average Residual Cross Correlation Coe¢ cients Within and Between Eight BEA
Geographical Regions - ûit = pit � yit � �̂i,

NENG MEST SEST GLAK PLNS SWST RKMT FWST
NENG 0:62 � � � � � � �
MEST 0:56 0:45 � � � � � �
SEST 0:18 0:29 0:95 � � � � �
GLAK 0:04 0:21 0:75 0:82 � � � �
PLNS 0:10 0:24 0:92 0:80 0:93 � � �
SWST 0:07 0:17 0:90 0:63 0:87 0:94 � �
RKMT �0:23 �0:08 0:70 0:70 0:77 0:75 0:86 �
FWST �0:12 �0:01 0:03 0:25 0:13 0:06 0:24 0:21

Notes: �̂i = T�1
PT
t=1(pit � yit). See also Table 2 for the abbreviations of the regions and notes to Table 3.

[T.4]



Table 10: Panel Error Correction Estimates
without Long-Term Interest Rate

�pit MG CCEMG CCEP
pi;t�1 � yi;t�1 �0:105

(0:008)
�0:183
(0:016)

�0:171
(0:015)

�pi;t�1 0:524
(0:030)

0:449
(0:038)

0:518
(0:065)

�yit 0:500
(0:040)

0:277
(0:059)

0:227
(0:063)

Half life 6:248 3:429 3:696

Average R2 0:54 0:70 0:66
Average Cross Correlation

Coe¢ cients ( �̂ )
0:284 �0:005 �0:016

CD Test Statistics 50:60 �0:84 �2:80

Notes: The State speci�c intercepts are estimated but not reported. MG stands for Mean Group estimates. CCEMG and
CCEP signify the Cross Correlated E¤ects Mean Group and Pooled estimates, respectively. Standard errors are given in
parenthesis. The Average R2 is computed as 1 �

PN
i=1 �̂

2
i =
PN
i=1 �̂

2
�pi, where �̂

2
i are estimated error variances and �̂

2
�pi

are sample variances of �pit, for each State i. The half life of a shock to pit is approximated by �ln(2)=ln(1 + �̂) where �̂
is the pooled estimates for the coe¢ cient on pi;t�1 � yi;t�1. Also see the notes to Table 8.

Table 11: Panel Error Correction Estimates
with Long-Term Interest Rate

�pit MG CCEMG CCEP
pi;t�1 � yi;t�1 �0:114

(0:009)
�0:212
(0:016)

�0:174
(0:017)

�pi;t�1 0:494
(0:031)

0:390
(0:041)

0:518
(0:069)

�yit 0:536
(0:046)

0:244
(0:063)

0:236
(0:057)

rli;t�1 �0:0004
(0:0006)

�0:0014
(0:0008)

�0:0012
(0:0007)

Half Life 5:727 3:072 3:626

Average R2 0:54 0:72 0:66
Average Cross Correlation

Coe¢ cients ( �̂ )
0:291 0:005 �0:011

CD Test Statistics 51:94 0:87 �1:93

See the notes to Table 10. Since the cross section variations of rli;t�1 is due solely to the cross section variations of �pi;t�1
(already included in the model), cross section averages of rli;t�1 were not included in the regressions for the CCE type
estimates.
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Table 12: Factor Loading Estimates

(pit � yit) (pt � yt) Constant
Connecticut 0:35 (0:23) 1:42
Maine 0:29� (0:15) 1:90
Massachusetts �0:63� (0:24) 3:99
New Hampshire 0:81� (0:22) 0:51
Rhode Island �0:11 (0:24) 2:76
Vermont 0:78� (0:15) 0:67
Delaware 0:32� (0:11) 1:63
District of Columbia 0:54� (0:18) 0:82
Maryland 0:62� (0:10) 0:81
New Jersey �0:04 (0:20) 2:37
New York �0:39� (0:20) 3:35
Pennsylvania 0:65� (0:13) 0:88
Alabama 1:72� (0:09) �1:54
Arkansas 1:77� (0:10) �1:70
Florida 1:44� (0:08) �1:09
Georgia 1:43� (0:08) �0:89
Kentucky 1:21� (0:06) �0:35
Louisiana 2:03� (0:15) �2:45
Mississippi 2:09� (0:13) �2:33
North Carolina 1:28� (0:05) �0:50
South Carolina 1:39� (0:06) �0:73
Tennessee 1:53� (0:08) �1:14
Virginia 0:91� (0:09) 0:22
West Virginia 2:08� (0:11) �2:47
Illinois 0:71� (0:11) 0:61
Indiana 1:14� (0:05) �0:33
Michigan 0:54� (0:17) 1:01
Ohio 1:01� (0:09) �0:08
Wisconsin 0:98� (0:12) 0:01
Iowa 1:55� (0:11) �1:38
Kansas 1:76� (0:06) �1:90
Minnesota 1:20� (0:09) �0:59
Missouri 1:37� (0:04) �0:90
Nebraska 1:57� (0:10) �1:41
North Dakota 2:00� (0:15) �2:44
South Dakota 1:39� (0:08) �0:90
Arizona 1:02� (0:07) �0:08
New Mexico 0:95� (0:12) 0:23
Oklahoma 2:10� (0:17) �2:70
Texas 2:12� (0:18) �2:77
Colorado 0:80� (0:17) 0:34
Idaho 1:19� (0:11) �0:39
Montana 0:75� (0:16) 0:63
Utah 0:68� (0:19) 0:85
Wyoming 1:62� (0:18) �1:73
California �0:64� (0:23) 3:70
Nevada 0:84� (0:11) 0:16
Oregon 0:37 (0:25) 1:40
Washington �0:12 (0:17) 2:51

Notes: Standard errors are given in parentheses. By construction, the cross section average of the estimated coe¢ cients
on (pt � yt) is unity, and the cross section average of the intercepts is zero. The negative slope estimates are in bold, and
statistically signi�cant slopes are denoted by �.
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A Data Appendix
The data set are annual data 1975-2003 and cover 48 States (excluding Alaska and Hawaii), plus the
District of Columbia. The US State level house price index (Pit;h) are obtained from the O¢ ce of
Federal Housing Enterprise Oversight. The US State level data of disposable income (PDit) and the
State population (POPit) are obtained from the Bureau of Economic Analysis. When only the quarterly
data are available, annual simple averages of the four quarters are used.

As there is no US State level consumer price index (CPI), we constructed State level general price
index, Pit;g, based on the CPIs of the cities/areas. The reasoning is summarized in Table A1. Brie�y,
we choose the large cities/area of the State or next to the State which have their own CPIs, which are
available from the Bureau of Labor Statistics (BLS). Note that this procedure allows multiple States to
share a common price index. When the State price index have missing data, they are replaced with the
US CPI average or the average of Washington-Baltimore, according to their locations.

The long term interest rate, RBt, which are simple annual averages of quarterly data, are taken from
the Fair Model database.
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Table A1: Description of the Construction of State level Price Indices

State/Region Name of City/Region Used Missing Data Base of Projection

District of Columbia
Washington,
Washington-Baltimore

1998-2003
Merge of
Washington-Baltimore

Alabama Atlanta � �
Arkansas Dallas � �
Arizona San Diego � �
California Los Angeles � �
Colorado Denver � �
Connecticut New York � �
Delaware Philadelphia � �
Florida Miami 1975-1977 US average
Georgia Atlanta � �
Iowa Minneapolis � �
Idaho Seattle � �
Illinois Chicago � �
Indiana Chicago � �
Kansas Kansas City � �
Kentucky Kansas City � �
Louisiana New Orleans 1975-1986, 1998-2003 US average

Massachusetts Boston � �

Maryland
Baltimore,
Washington-Baltimore

1998-2003
Merge of
Washington-Baltimore

Maine Boston � �
Michigan Detroit � �
Minnesota Minneapolis � �
Missouri ST Louise � �
Mississippi New Orleans 1975-1986, 1998-2003 US average
Montana Seattle � �

North Carolina
Washington,
Washington-Baltimore

1998-2003
merge of
Washington-Baltimore

North Dakota Minneapolis � �
Nebraska Kansas City � �

New Hampshire Boston � �
New Jersey New York � �
New Mexico Denver � �
Nevada San Francisco � �
New York New York � �
Ohio Cleveland � �

Oklahoma Dallas � �
Oregon Portland � �

Pennsylvania Pittsburgh � �
Rhode Island Boston � �
South Carolina Atlanta � �
South Dakota Minneapolis � �
Tennessee Cincinnati � �
Texas Houston � �
Utah Denver � �

Virginia
Washington,
Washington-Baltimore

1998-2003
Merge of
Washington-Baltimore

Vermont Boston � �
Washington Seattle � �
Wisconsin Milwaukee � �

West Virginia
Washington,
Washington-Baltimore

1998-2003
Merge of
Washington-Baltimore

Wyoming Denver � �
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