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Abstract In mountains with seasonal snow cover, the effects of climate change on snowpack will be con-
strained by landscape-vegetation interactions with the atmosphere. Airborne lidar surveys used to estimate
snow depth, topography, and vegetation were coupled with reanalysis climate products to quantify these
interactions and to highlight potential snowpack sensitivities to climate and vegetation change across the
western U.S. at Rocky Mountain (RM), Northern Basin and Range (NBR), and Sierra Nevada (SNV) sites. In for-
est and shrub areas, elevation captured the greatest amount of variability in snow depth (16–79%) but
aspect explained more variability (11–40%) in alpine areas. Aspect was most important at RM sites where
incoming shortwave to incoming net radiation (SW:NetR#) was highest (�0.5), capturing 17–37% of snow
depth variability in forests and 32–37% in shrub areas. Forest vegetation height exhibited negative relation-
ships with snow depth and explained 3–6% of its variability at sites with greater longwave inputs (NBR and
SNV). Variability in the importance of physiography suggests differential sensitivities of snowpack to climate
and vegetation change. The high SW:NetR# and importance of aspect suggests RM sites may be more
responsive to decreases in SW:NetR# driven by warming or increases in humidity or cloud cover. Reduced
canopy-cover could increase snow depths at SNV sites, and NBR and SNV sites are currently more sensitive
to shifts from snow to rain. The consistent importance of aspect and elevation indicates that changes in
SW:NetR# and the elevation of the rain/snow transition zone could have widespread and varied effects on
western U.S. snowpacks.

1. Introduction

Understanding the processes controlling snowpack-topography relationships in mountain landscapes is crit-
ical for quantifying the sensitivity of ecosystems [Elsen and Tingley, 2015] and water resources to changes in
climate and vegetation [Goulden and Bales, 2014]. Streamflow amount [Berghuijs et al., 2014], timing [Stewart
et al., 2005; Ryberg et al., 2015], and summer low flows [Godsey et al., 2013] all exhibit strong correlation with
snow water equivalent and/or the fraction of precipitation falling as snow. Forest greenness [Trujillo et al.,
2012] and the amount and timing of carbon sequestration and efflux [Brooks et al., 2011; Monson et al.,
2002; Stielstra et al., 2015] are also strongly regulated by snowpack amount. Given the high certainty of
future warming [Pepin et al., 2015], potential shifts in precipitation amount [Seager et al., 2013] and changes
in the extent, density, and activity of vegetation [Goulden and Bales, 2014], mountain snowpack will likely
undergo changes. An important step in improving predictions of the future effects of climate change on
snowpack and snow-vegetation interactions is quantifying seasonal snowpack patterns across elevation
gradients in mountain regions that vary in their climatic and vegetation characteristics.

Seasonal snowpack is affected by complex interactions between climate, topography, and vegetation. Dif-
ferences in precipitation amount and energy available for ablation (melt and sublimation) change with ele-
vation and season [Anderson et al., 2014; Clark et al., 2011; Roe, 2005]. Variability in slope and aspect affects
the radiation budget and wind loading and leads to heterogeneous patterns of snow cover [Elder et al.,
1991; Winstral et al., 2013]. Vegetation intercepts snowfall, shades snowpack [Musselman et al., 2008; Veatch
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et al., 2009], alters snowpack albedo [Pomeroy and Dion, 1996], affects shortwave radiation scattering and
partitioning of shortwave and longwave radiation [Rinehart et al., 2008; Broxton et al., 2015], and intercepts
wind-blown snow [Hiemstra et al., 2002]. Currently, many of the fine-scale processes that are modified by
vegetation are difficult to accurately parameterize in snowpack energy budget models, with potentially
important consequences for larger-scale water and energy budgets [Broxton et al., 2015], particularly in for-
ested terrain [Essery et al., 2009; Rutter et al., 2009]. Because of spatial variability in mass and energy inputs
and relatively sparse climate and snowpack observations, we still lack a complete understanding of how
topography and vegetation affect snowpack dynamics, how these effects differ by elevation, and the vary-
ing sensitivities of this system to projected changes in climate and vegetation.

The increasing availability of snow depth products from airborne light detection and ranging (lidar) surveys
[e.g., Cline et al., 2009; Gr€unewald et al., 2014; Harpold et al., 2014a; Hedrick et al., 2015; Kirchner et al. 2014;
Painter et al., 2016; Zheng et al., 2016] is particularly exciting because they offer a high-resolution, spatially
extensive view of how regional-scale climate characteristics interact with local topography and vegetation
to produce patterns of seasonal snow accumulation. For example, Kirchner et al. [2014] used airborne lidar
surveys of snow depth and topography in the Southern Sierra Nevada Mountains, CA, USA, to document
rates of snow depth increase with elevation that were not revealed by local meteorological stations. Also in
the Southern Sierra, Zheng et al. [2016] demonstrated the importance of pixel resolution when estimating
snow accumulation in forested and open terrain. Gr€unewald et al. [2014] used airborne lidar and photo-
grammetry surveys from the Swiss Alps and Spanish Pyrenees to demonstrate consistent declines in snow
depth at high elevations that contrasted the spatial trend of increasing snow depth found at lower and mid
elevations. They attributed these declines to land cover being dominated by steep, rocky exposures [Gr€une-
wald et al., 2014]. Kirchner et al. [2014] also found declines in snow depth at high elevations that contrasted
increases in lower-elevations and midelevations but suggested that these declines were caused by deple-
tion of orographic precipitation.

Here we build on a long tradition of linking snow distribution to physiography and climate [e.g., Adams,
1976; Balk and Elder, 2000; Elder et al., 1991; Steppuhn and Dyck, 1974], but leverage the increased availabil-
ity of airborne lidar-derived products to evaluate these interactions at higher resolutions and across greater
elevation ranges than before. Regional-scale airborne lidar surveys (18–294 km2) of snow depth, topogra-
phy, and vegetation from five sites distributed between the Rocky Mountains, Northern Basin and Range,
and Sierra Nevada mountains of the western U.S. were used to test four hypotheses that are based on a rich
history of snow distribution studies. (H1) Elevation will be an important predictor of snow depth variability
across all sites. (H2) Mean snow depths on different aspects and different vegetation classes (i.e., alpine, for-
est, and shrub areas) will exhibit significant differences because of variability in ablation. (H3) Slope and
aspect will capture more snow depth variability at sites with greater shortwave inputs (high SW:NetR#,
defined in section 3.3) and high wind speeds. (H4) We also expect shading by tall vegetation to be more
important in places that receive greater shortwave radiation (high SW:NetR#).

Building on our evaluation of these hypotheses, we propose potential sensitivities of snowpack to shifts in
SW:NetR# and vegetation and discuss how the impacts of these changes could vary between sites. We also
propose a simple temperature-based metric to estimate watershed-scale sensitivity of snowpack to warm-
ing and shifts from snow to rain.

2. Data

2.1. Elevation, Snow Depth, and Vegetation Height
Recent studies have validated the use of airborne lidar for measuring snow depth in open and forested ter-
rain with vertical accuracies typically in the decimeter range [Deems et al., 2013; Harpold et al., 2014a; Hop-
kinson et al., 2004; Kirchner et al., 2014; Tinkham et al., 2014]. The snow depth, bare earth, and canopy height
models used in this study were published and verified using field-based surveys reported in Harpold et al.
[2014a] and Tinkham et al. [2014] and are from U.S. National Science Foundation Critical Zone Observatories
(CZOs) in mountainous regions of the western U.S. (Figure 1): Boulder Creek Watershed (BCW) and Jemez
River Basin (JRB) in the Rocky Mountains, the Reynolds Creek Experimental Watershed (RCEW) in the North-
ern Basin and Range, and the Kings River Experimental Watershed (KREW) and Wolverton Basin (WOLV) in
the Sierra Nevada mountains.
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All snow-depth surveys were taken at or near peak accumulation [Harpold et al., 2014a; Tinkham et al.,
2014]. However, given the high relief of the sites and the different flight dates, melt likely occurred at lower
elevations but not at higher elevations and the magnitude of these effects probably varied between the
sites. It is also important to note that our study focuses on the characterization of snow depth and not
snow water equivalent. Detailed observations capturing the spatial variability in snow density from the day
of the snow-covered flights were not available. Because snow depth varies over a much greater range than
snow density [Sturm et al., 2010] we do not expect that converting depth to water equivalent would result
in significant changes to the interpretations presented here. Because forest-cover at the sites was com-
posed of relatively homogenous vegetation types (catalogued in section 4) we used vegetation height as a
proxy for interception and solar shading, instead of computing additional canopy metrics. The effects of dif-
ferences in tree species on snow interception and shading were likely most pronounced at RCEW where for-
est stands were either homogenous aspen or Douglas fir [Tinkham et al., 2014]; the other sites are
dominated by mixed conifer forests [Harpold et al., 2014a; also see sections 4.2–4.5].

The National Center for Airborne Laser Mapping (NCALM), along with the cooperation of the CZOs, con-
ducted the snow-covered surveys for all of the sites in 2010, except for RCEW, which was surveyed by
Watershed Sciences, Inc. in 2009. The accuracy of the LiDAR-derived snow depths at BCW, JRB, KREW, and
WOLV were evaluated using ultrasonic snow depth sensors installed perpendicular to the snow surface in
both forested and open terrain [Harpold et al., 2014a] and at RCEW, lidar snow depth accuracies were

Figure 1. Map of western U.S. showing elevation, topography, and the locations of the snow-on-off airborne lidar surveys: Boulder Creek
Watershed (BCW) and Jemez River Basin (JRB) in the Rocky Mountains, Reynolds Creek Experimental Watershed (RCEW) in the Northern
Basin and Range, and Kings River Experimental Watershed (KREW) and Wolverton Basin (WOLV) in the Sierra Nevada. The study sites are
part of the Boulder Creek, Jemez River Basin-Santa Catalina, Reynolds Creek, and Sierra Nevada Critical Zone Observatories, respectively.
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quantified via manual snow survey measurements [Tinkham et al., 2014]. The lidar snow depth root mean
squared errors are reported in the site descriptions (sections 4.2–4.5).

The 1 m resolution gridded products of snow depth and bare-earth elevations produced by NCALM and the
Boise Center Aerospace Laboratory (BCAL) [Shrestha, 2016] were aggregated to 3 m resolution to reduce
the bias of DEM derivative products (e.g., slope and curvature; Kienzle [2004]). All snow depths on slopes
greater than 508 (<2% of snow-covered area at all sites) were removed because of vertical bias of lidar on
steep slope angles [Deems et al., 2013]. All open water bodies, buildings, roads or any other erroneous data
points produced during gridding and interpolation of snow depth (e.g., edge effects) were identified by
hand, masked, and removed to reduce the error of our analyses. All lidar mapped areas that met the criteria
above, including those that were snow-free, were used for analysis. For further details on the lidar snow
depth accuracies and methods used to generate the gridded products, see Harpold et al. [2014a], Kirchner
et al. [2014], and Tinkham et al. [2014].

2.2. Climate Data
Gridded outputs of hourly air temperature (at 2 m above surface), potential evapotranspiration, total precip-
itation, surface incident longwave radiation, surface incident shortwave radiation, and wind speed (at 10 m
above surface) from the National Land Data Assimilation System 2 (NLDAS) were used to characterize the
meteorological conditions of the sites from 1 November until the respective flight date for each CZO.
NLDAS uses four land surface models (NOAH, SAC-SMA, VIC, and Mosaic) to generate 1/88 (32 km resolution)
gridded estimates of the water and energy balance for the conterminous U.S. and other portions of North
America at an hourly time step [Xia et al., 2012]. NLDAS outputs were accessed using NASA’s GIOVANNI
data portal (http://giovanni.sci.gsfc.nasa.gov/giovanni/). We used these coarser-resolution products because
they provided a consistent methodology and covered a larger spatial extent than could be accurately
inferred from using the sites’ instrumented stations alone. At all sites, the ‘‘footprints’’ of the LiDAR and
NLDAS grids matched closely except at KREW where the lateral extents of the NLDAS cells extend slightly
(�3 km on average) beyond that of the lidar snow-covered extent.

3. Methods

To evaluate our hypotheses (H1–H4), we used a combination of multivariate regression, ANOVA, and corre-
lation statistics. In the following sections, we describe the details of the data analyses, statistical tests, and
the computation of a proposed metric to estimate watershed-scale snow sensitivity to shifts from snow to
rain.

3.1. Snow Depth and Elevation
To determine regional changes in snow depth with elevation, we binned the snow depth values by eleva-
tion and reported the mean snow depth for each elevation bin. The Freedman and Diaconis rule [Freedman
and Diaconis, 1981] was used to provide an unbiased method for selecting bin sizes. To compute the first
derivative of snow depth and elevation (dS/dE) in a consistent manner across the sites, we fit a shape pre-
serving interpolant to the relationship between mean snow depth and elevation and computed the deriva-
tive at 10 m elevation spacing using a fourth-order central difference.
3.1.1. Snow Depth Residuals
Factors associated with elevation (e.g., air temperature and orographic precipitation effects) tend to influ-
ence snow patterns over larger spatial scales than factors associated with aspect, slope, and vegetation
(e.g., drifting and differential ablation). For example, Clark et al. [2011] reported that the dominant processes
that generate snow depth variability at hillslope scales (1–1000 m) are preferential deposition of wind-
blown snow, sloughing and avalanching, and interception and sublimation from forest canopy. At water-
shed scales (100–10,000 m), Clark et al. [2011] found that hillslope scale variability averaged out and snow
depth formed a strong relationship with elevation. These results generally agree with those presented in
McKay and Gray [1981] and Tarboton et al. [2001] who also discussed the importance of orographic precipi-
tation effects for setting large-scale snow patterns. Because all of the lidar flights covered a large area (18–
294 km2) it was important to remove the effects of elevation on snow depth before testing for effects
related to aspect and vegetation. We fit polynomial equations (up to order 13) to the mean snow depth-
elevation relationships and used Akaike Information Criterion (AIC) to select the best fit. These snow depth
trends with elevation were then differenced from the snow depth values to obtain snow depth residuals. To
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ensure independence and avoid issues associated with spatial autocorrelation in the ANOVA and multivari-
ate regressions (sections 3.2.2 and 3.2.3), we used random samples of snow depth residuals and physio-
graphic predictors. The random samples were generated from a pseudorandom number generator and
were drawn from a uniform distribution.

3.2. Effects of Aspect and Vegetation on Snow Depth
3.2.1. Aspect and Vegetation Cover
We computed a number of categorical and numerical variables for use in the ANOVA and regression analy-
ses to assess the effects of aspect and vegetation on snow depth. The canopy height models generated by
NCALM and BCAL from the snow-off flights were used to delineate three vegetation classes—alpine, forest,
and shrub—that were used as hierarchical variables in the ANOVA and multivariate regressions. The alpine
zone references areas above the tree line, where the tree line was defined as a threshold elevation above
which vegetation heights were continuously <2 m. Forest and shrub were designated as areas below the
tree line elevation where vegetation heights were >2 m and <2 m, respectively. The snow-off bare-earth
elevation models were used to compute grids of slope and aspect using the Spatial Analyst toolbox in Arc-
Map 10.2 (Environmental Systems Research Institute, Redlands, CA) and were used in the ANOVA and multi-
variate regressions.
3.2.2. Effects of Vegetation Cover on Mean Snow Depth
To evaluate if groupings based on aspect and vegetation class resulted in statistically different snow depths,
we performed analysis of variance (ANOVA) and Tukey-Kramer Honestly Significant Differences (HSD) post
hoc tests to evaluate pairwise comparisons. For each site, the random samples of snow depth residuals
were grouped into alpine, forest, and shrub (n 5 120 for each vegetation class) and were subdivided into
northeast (NE; 0–908), southeast (SE; 90–1808), southwest (SW; 180–2708), and northwest (NW; 270–3608)
aspects. We tested the main effects (aspect and vegetation class) and their interaction (aspect 3 vegetation
class). Testing the interaction term was important because it revealed whether or not the effects of aspect
depended on vegetation class or vice versa. Because the design was unbalanced, we tested both model
orderings to confirm the main effects. The ANOVA and post hoc Tukey-Kramer HSD test were performed
using base utilities in the R statistical computing environment [R Core Team, 2013].
3.2.3. Multivariate Regressions on Snow Depth
To evaluate the effects/relative importance of physiography on snow depth, we used multivariate regres-
sion [e.g., Chang and Li, 2000; Gr€unewald et al., 2013; Jost et al., 2007; Lopez-Moreno and Nogues-Bravo,
2006]. Again, we employed a simple hierarchical approach by dividing a random sample of a site’s snow
depth values into its respective vegetation classes (forest, shrub, and alpine, if present; n 5 120 for each
vegetation class). For each of these samples, we computed the coefficient of determination (R2 value)
between the polynomial-based snow depth trend with elevation (section 3.1) and the random sample of
snow depth and attributed this coefficient as the variability in snow depth explained by elevation.

Snow depth residuals for each vegetation class were regressed against eastness (sine(aspect) 3 slope),
northness (cosine(aspect) 3 slope), slope, and vegetation height (treated as continuous within a given veg-
etation class). These covariates were used as proxies for processes that influence patterns of snow depth
(e.g., solar radiation, wind loading, preferential deposition, and interception). All two-way interaction terms
for the variables above (e.g., eastness 3 vegetation height, northness 3 vegetation height, etc.) were
included in the model structure to capture potential nonlinear effects and dependencies between variables
(e.g., differences in vegetation height associated with different aspects).

To quantify the amount of variation explained by each physiographic predictor, we used the ‘‘relaimpo’’
package and the option ‘‘lmg’’ [Gromping, 2006] in the R statistical computing environment [R Core Team,
2013]. This method determines the proportion of variability explained (R2) by the physiographic variables
using sequential R2 values and accounts for the dependence of the order that predictors were entered into
the model by averaging over all possible model orderings. Because we used the same random samples to
remove the elevation-based snow depth trend and to perform the multivariate regressions the full variabil-
ity captured for a site/vegetation class is the sum of the elevation-based R2 value and the R2 values of the
individual physiographic predictors. We checked for collinearity between covariates by calculating the vari-
ance inflation factors which were equal to or slightly above 1 for all regressions, indicating independence
between predictors. The residuals for the regressions were normally distributed.
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3.3. Interaction of Climate and Physiographic Effects
To evaluate if regional climate characteristics between the sites could explain variability in the effects of
physiography on snow depth, we evaluated correlations between the R2 values of individual physiographic
predictors and selected climate metrics. Because of their demonstrated importance on controlling
spatial patterns of snow depth we focused on radiation, wind speed, and potential evaporation (a proxy for
sublimation). We computed a dimensionless ratio, incoming shortwave to incoming net radiation
(SW:NetR#5 shortwave#/(longwave#1 shortwave#)), to evaluate whether the proportioning of incoming
radiation between shortwave and longwave was correlated to the relative importance (R2 values) of aspect
(northness). We focused on this metric because radiation is the primary driver of snowpack ablation and
therefore is of potential utility for anticipating how climate changes could influence snow distributions.
There are a number of climate changes that could affect SW:NetR# including changes in air temperature,
cloudiness, and humidity, and changes to the timing of peak SWE and duration of melt. Changes in air tem-
perature, cloudiness, and specific humidity are all expected/possible with synoptic-scale climate change
[Pepin et al., 2015]. Furthermore, earlier initiation of melt [e.g., Musselman et al., 2017] could reduce
SW:NetR# because sun angles are lower earlier in the year. The SW:NetR# ratio thus, encapsulates a wide
variety of energy effects that are directly relevant to several of our research hypotheses. We computed the
ratio (SW:NetR#) for dates before and after the lidar-flights and found that intersite differences in SW:NetR#
were generally consistent, indicating that this ratio helps explain different energy environments among the
sites independent of lidar flight timing.

To obtain the meteorological metrics for each site, we used a spatial mask defined by the lidar snow-
covered area to extract matching NLDAS pixels and computed a spatial mean for potential evapotranspira-
tion, incoming longwave and shortwave radiation (to compute SW:NetR#), and wind speed. These climate
characteristics were tested for correlation (Pearson’s r) against the variability in snow depth explained by
physiographic predictors (i.e., R2 values) to evaluate how landscape-vegetation interactions with the atmo-
sphere influenced snow depth patterns across the sites.

Ideally interactions between physiography and climate (e.g., eastness 3 wind speed, northness 3

SW:NetR#, etc.) and their effects on snow depth would be evaluated in a multivariate regression. The small
sample size (n 5 5) with respect to these interactions obviates a robust regression. Given this limitation, we
chose to compute correlation coefficients. Though correlations alone limit inferential power, they could still
highlight important atmosphere-landscape-vegetation interactions and their influences on snow depth
between sites.

3.4. Distance Between Average Winter Freezing Levels and Snow Volume Percentiles
To gain insights into the potential sensitivity of watershed-scale snow volume to temperature-induced
changes in precipitation phase, we computed the distance between the mean winter freezing level
(1 November—flight date) and the elevation at which the 25th, 50th, and 75th percentiles of the cumula-
tive snow volume occurred. The freezing levels for each site were determined by solving a linear function,
fit to grid cell values of elevation and mean air temperature (1 November—flight date) for a 50 km buffer
(i.e., 3 3 3 grid cell neighborhood) around each site’s snow-covered area, for the 08C elevation. Note that
any melt on or near the flight date could reduce the accuracy of this metric. This metric may be improved
by refined estimates such as only using temperatures on storm-days to compute average winter tempera-
ture [e.g., Klos et al., 2014], or by tracking changes in dew point temperature with elevation during storms
to compute rain-snow transitions [Marks et al., 2013]. Evaluating how spatial variability in snow density
[e.g., Wetlaufer et al., 2017] affects the utility of this metric is also an important consideration that is not
tested here.

Snow volume distributions were calculated by taking the product of snow depth and the area of
each pixel (9 m2) and computing the mean snow volume for each elevation bin. We also used the
snow volume and area-elevation distributions (i.e., hypsometric distributions) to evaluate ‘‘geometric-
based’’ arguments that the temperature sensitivity of snowpack is related to catchment hypsometry
and rates of freezing level increase [Casola et al., 2009; Klos et al., 2014; Tennant el al., 2015a]. To
test how well the hypsometry (i.e., elevation distributions) of the snow-covered areas at each of the
sites reflected the elevations of greatest snow storage, we computed a similarity index (SI) [Agresti,
1996]:
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where Ai is the fractional amount of area and Si is the fractional amount of snow volume at the ith elevation
bin and N is the total number of elevation bins. The SI score measures the similarity between distributions,
0% indicates no overlap and 100% identical area (Ai) and snow volume (Si) distributions. Area and snow vol-
ume were normalized by their respective ranges before computing the SI scores.

4. Critical Zone Observatory Study Sites

4.1. Overview
The CZO study sites differ in their vegetation characteristics, topography, and regional climate and provide
a unique opportunity to evaluate how physiography and climate influence regional-scale snow depth pat-
terns across a range of conditions (Table 1). Winter precipitation from 1 November until the respective
snow-on flight dates ranged from 58 cm (JRB) to 243 cm (KREW) and mean winter temperatures were as
low as 25.48C (BCW) to as warm as 2.28C (KREW). Most of the sites cover a relatively large range of eleva-
tions; therefore, precipitation and SWE within a given site can be quite variable between low and high ele-
vations. For example, RCEW has the longest meteorological records, which show that average annual
precipitation has ranged from 24 cm (1188 m) up to 112 cm (2170 m) [Hanson, 2001] and average annual
peak SWE from 22 cm (1743 m) to 72 cm (2167 m) [Marks et al., 2001]. Because of the sites’ relief and vary-
ing climatic characteristics, vegetation cover is also variable. For example, WOLV has an extensive alpine
zone comprising 53% of its area whereas 89% of RCEW is shrub-covered. The site characteristics and lidar
snow depth errors are described in detail in the following sections 4.2–4.5.

4.2. Boulder Creek CZO
The Boulder Creek CZO is located within the Boulder Creek Watershed (BCW) in the Rocky Mountains of Col-
orado, USA (Figure 1). Lidar snow-covered surveys for BCW were conducted on 5 May 2010 and 25 May
2010. Because melt occurred between 5 and 25 May, we only used snow depths from the 5 May flight as
these values better represented snow depths near peak accumulation. The average RMSE (n 5 21) of lidar-
derived snow depths for BCW was 16 cm. Average winter temperature and total precipitation were 25.48C
and 85 cm, respectively, and the average wind speed was 6.5 m/s (Table 1). Vegetation cover in BCW
included forest (35%), shrub (38%), and alpine (27%) areas (Table 1). Forest were dominated by evergreen

Table 1. Meteorological, Topographic, and Vegetation Characteristics of the Study Sitesa

Site BCW JRB RCEW KREW WOLV

Snow-covered area (km2) 261 294 75 18 59
Snow-off flight date 21–26 Aug 2010 29 Jun to 8 Jul 2010 10–18 Nov 2007 5–15 Aug 2010 5–15 Aug 2010
Snow-on flight date 5 May 2010 1 Apr 2010 19 Mar 2009 20 Mar 2010 21–22 Mar 2010
Mean lidar snow depth (cm) 34 71 114 146 276
Lidar snow depth RMSE (cm) 16 22 27 24.5 23
% pixels with no snow cover 11 8 14 2 0.35
Average winter temperature (8C) 25.4 6 2.6 23.3 6 0.3 0.1 6 1.5 2.2 21.6 6 3.5
Average winter potential ET (mm/d) 1.7 6 0.37 1.6 6 0.03 1.9 6 0.05 1.5 1.4 6 0.13
Average winter SW:NetR# 0.43 0.44 0.33 0.36 0.39
Average winter wind speed (m/s) 6.5 6 0.4 3.9 6 0.1 3.9 6 0.2 1.6 2.7 6 0.9
Total winter precipitation (cm) 85 6 25 58 6 4 64 6 26 243 174 6 34
Mean elevation (m) 3043 2702 1843 1846 2844
Relief (m) 1730 1187 906 829 1704
Tree line elevation (m) 3298 2081 2916
Alpine (%) 27 1 53
Forest (%) 35 51 11 60 19
Shrub (%) 38 49 89 39 28
Mean vegetation height forest (m) 6.2 10.4 6.2 13.3 14.5
COV vegetation height (%) 49 53 77 65 69

aThe flight dates, lidar mean snow depth and RMSE for BCW, JRB, KREW, and WOLV are from Harpold et al. [2014a] and for RCEW are
from Tinkham et al. [2014]. The lidar mean snow depth is the mean for the field surveys not the full snow-covered area. COV is the coef-
ficient of variation. Winter refers to the period 1 November until each sites respective flight date. The climate metrics report the spatial
mean 6 one standard deviation except KREW which was covered by one NLDAS pixel.
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species and were composed of ponderosa pine (Pinus ponderosa), subalpine fir (Abies lasiocarpa), Engelman
spruce (Picea engelmannii), and lodgepole pine (Pinus contorta) [Harpold et al., 2014a].

4.3. Jemez River Basin-Santa Catalina Mountain CZO
The Jemez River Basin (JRB), part of the Jemez River Basin-Santa Catalina Mountain CZO, is located in north-
ern New Mexico at the southern end of the Rocky Mountains New Mexico, USA (Figure 1). The snow-
covered LiDAR flight occurred on 1 April 2010 and had a RMSE (n 5 9) of 22 cm. The average winter temper-
ature and precipitation at JRB were 23.38C and 58 cm, respectively, and average wind speeds were 3.9 m/s
(Table 1). Vegetation cover at JRB included forest (51%) and shrub (49%; Table 1). Like BCW, forest-cover
was composed of evergreen species, Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor), blue
spruce (Picea pungens), southwestern white pine (Pinus strobiformis), limber pine (Pinus flexilis), and ponder-
osa pine but also included a limited number of aspen groves (Populus tremuloides) [Harpold et al., 2014a].

4.4. Reynolds Creek CZO
The Reynolds Creek CZO is located in the Reynolds Creek Experimental Watershed (RCEW) at the northern
edge of the Northern Basin and Range in southwestern Idaho, USA (Figure 1). The snow-covered flight
occurred on 19 March 2009 [Shrestha, 2016], with an average RMSE (n 5 544) of 27 cm [Tinkham et al.,
2014]. The average winter temperature and precipitation at RCEW were 0.18C and 64 cm, respectively, and
the average wind speed was 3.9 m/s (Table 1). Vegetation at RCEW was dominated by shrub (89%) with
small areas of isolated forest (11%) that occurred in topographically sheltered areas (Table 1). The forest
stands were mostly homogenous and composed of either aspen, subalpine fir, or Douglas fir [Tinkham et al.,
2014; Slaughter et al., 2001].

4.5. Southern Sierra CZO
4.5.1. Kings River Experimental Watershed
The Kings River Experimental Watershed (KREW) is part of the Southern Sierra CZO and is located in the
Sierra Nevada, California, USA (Figure 1). The snow-covered lidar flight [Guo and Bales, 2012] occurred on 20
March 2010 with an average snow depth RMSE (n 5 18) of 24.5 cm. The average winter temperature and
precipitation were 2.28C and 243 cm, respectively, and wind speeds averaged 1.6 m/s (Table 1). Land cover
at KREW was dominated by forest (60%), with shrubs covering the majority (39%) of the remaining area
(Table 1). The highest elevations of the KREW were primarily rock outcrops with limited vegetation cover,
thus the upper 1% of snow-covered area of KREW was classified as alpine (Table 1). Forest-cover was a mix
of conifer forests of white fir, Jeffrey pine (Pinus jeffreyi), ponderosa pine, sugar pine (Pinus lambertiana),
incense-cedar (Calocedrus decurrens), and a minor component of lodgepole pine with isolated California
black oak (Quercus kelloggii) interspersed in a limited number of locations [Harpold et al., 2014a].
4.5.2. Wolverton Basin
The Wolverton (WOLV) basin is also part of the Southern Sierra Critical Zone Observatory (Figure 1). The
snow-covered lidar flights occurred on 21 and 22 March 2010 [Anderson et al., 2012; Guo and Bales, 2012],
with an overall RMSE (n 5 12) of 23 cm. The average winter temperature and precipitation were 21.68C and
174 cm, respectively and wind speeds averaged 2.7 m/s (Table 1). WOLV had the largest alpine area (53%)
and slightly more shrub cover (28%) than forest (19%; Table 1). Forests at WOLV consisted of red fir (Abies
magnifica), lodgepole pine, western white pine (Pinus monticola), incense-cedar, Jeffrey pine, red fir, western
white pine, and lodgepole pine [Harpold et al., 2014a].

5. Results

5.1. Snow Depth-Elevation Relationships
Mean snow depths generally increased with elevation despite differences in topography, vegetation, and
regional climate between the sites (Figure 2a). Though the overall trends were positive (see median dS/dE
values Table 2), the relationships were notably nonlinear and snow depths exhibited localized declines, zero
increase, or rapid rates of increase (Figure 2b). At the highest elevations of three of the sites, frequent or
continuous declines in snow depth were observed (BCW, RCEW, and WOLV, Figure 2a). Median rates of
snow depth increase with elevation ranged from 0.64 cm/100 m up to 1.03 cm/100 m (Table 2) and the site
to site variability in dS/dE with elevation (black lines Figure 2b) was reflected in the variance and kurtosis of
the dS/dE distributions (Figure 3).
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5.2. Effects of Vegetation and Aspect on Snow Depth
The ANOVA tests demonstrate that aspect, vegetation class, and their interaction (aspect 3 vegetation
class) resulted in significant differences in mean snow depth (Figure 4). The effect of aspect was significant
at all sites and grouping by vegetation class was also significant except at BCW and RCEW (Table 3). The sta-
tistical significance of the interaction term (aspect 3 vegetation class; Table 3) at all sites indicates that the
influence of vegetation on snow depth varied as a function of aspect. Pairwise comparisons based on
Tukey’s HSD test show that mean snow depths for open (alpine and shrub) northern aspects were greater
than mean values for all aspects in forested areas and southern aspects in alpine and shrub areas (Figure 4).
BCW and RCEW were an exception to this pattern where southeast aspects had mean values that were
higher than expected (Figure 4); these sites also had the highest westerly wind speeds (Table 1). At RCEW
this result may be affected by a high RMSE of LiDAR derived snow depths in shrub areas [Tinkham et al.,
2014], but also may reflect greater accumulations on small patches of southeast-facing land that occur near
slope breaks where flow separation of westerly winds is likely to occur [e.g., Prasad et al., 2001]. Greater
accumulations on BCW’s southeast aspects may also reflect avalanching [e.g., Erickson et al., 2005].

5.3. Snow Depth Variability Explained by Elevation, Aspect, and Vegetation
The total variability (R2) in snow depth captured by the multivariate regression models was generally high
in forest (22–99%) and shrub areas (36–97%) but declined in alpine zones (16–70%; Table 4). The elevation-

Figure 2. (a) Mean snow depths plotted against elevation and (b) the first derivative of mean snow depth and elevation (dS/dE) with smoothing splines (black lines) to reveal the general
trends. The x axes are site specific to better reveal the snow depth-elevation relationships and their derivatives. The y axes in Figure 2b are truncated for BCW, KREW, and WOLV, and
exclude 4%, <1%, and 1%, respectively, of dS/dE values. Maximum and minimum dS/dE values are summarized in Table 2.

Table 2. The Minimum, Median (With 95% Confidence Interval), and Maximum Values for the First Derivative of Snow Depth and
Elevation (dS/dE) Expressed as cm/100 m

dS/dE (cm/100 m) BCW JRB RCEW KREW WOLV

Min 233 25 210 217 225
Median 0.73 6 0.2 0.71 6 0.05 0.64 6 0.1 0.70 6 0.2 1.03 6 0.4
Max 49 10 13 40 16

Water Resources Research 10.1002/2016WR019374

TENNANT ET AL. CLIMATE-PHYSIOGRAPHY EFFECTS ON SNOWPACK 6916



based snow depth trends were generally
the best predictors in forests and shrub
areas where they, respectively, captured
16–79% and 21–57% of the variability in
snow depth (Table 4). In alpine areas, the
relationships between elevation and snow
depth were less consistent (Figure 2a) and
the elevation-based snow depth trends
captured <0.1–6% of the total variability
(Table 4). These findings generally agree
with previous efforts that report depen-
dencies of snow depth on elevation [e.g.,
Gr€unewald et al., 2013; Kirchner et al., 2014;
Walters et al., 2014; Zheng et al., 2016].

The aspect-based metrics (northness and eastness), were the most important predictors of snow
depths in alpine zones where northness captured between 1% and 35% of the variability and
eastness 3% to 10% (Table 4). Northness was also an important predictor of snow depth in forest and
shrub areas, explaining 1–35% of the variability in forests and 4–37% in shrub areas. Eastness was
important in RCEW’s shrub area and BCW’s alpine area where westerly wind speeds were
predominant.

5.4. Relationships Between Physiographic Effects and Regional Climate
5.4.1. Alpine Areas
In the alpine areas (only present in BCW, KREW, and WOLV), the percent of variability in snow depth
explained by northness and eastness exhibited significant correlations with wind speed and potential
ET, respectively. The variability in snow depth explained by northness exhibited an inverse relation-
ship with wind speed (r 5 20.99, n 5 3; Figure 5a). At KREW and WOLV, wind speeds were lower, and
northness was positively related to snow depth and captured 24% and 34% of its variability, respec-
tively. At BCW wind speeds were higher and northness only explained 1% of the variability in snow
depth. The other significant correlation in alpine areas was a positive relationship between potential
ET and the variability in snow depth captured by eastness (r 5 0.99, n 5 3; Figure 5b). Eastness
explained 10% of snow depth variability in BCW’s alpine zone where wind speeds and potential ET
were highest.
5.4.2. Forest Areas
In forests, the variation in snow depth explained by northness was positively correlated with the ratio of
incoming shortwave to incoming radiation (SW:NetR#; r 5 0.86, n 5 5; Figure 5c). The importance of north-
ness as a snow depth predictor in forests peaked at BCW and JRB, where SW:NetR# approached 0.5. A nega-
tive correlation was observed between the variability in snow depth explained by vegetation height and
SW:NetR# (r 5 20.85, n 5 5; Figure 5d). Vegetation height was correlated more strongly with snow depth at
RCEW, KREW, and WOLV where SW:NetR# values were lower.

Figure 3. Distributions of the derivative of mean snow depth and eleva-
tion (dS/dE) for the study sites. The median dS/dE are displayed (black
crosses) and the width and color-shading on the violin plots show the
relative density of dS/dE values; wider regions/darker colors indicate a
greater number of observations. Values >20 cm/100 m and <220 cm/
100 m were omitted for BCW, KREW, and WOLV to better display the dis-
tributions, and exclude 4%, <1%, and 1%, respectively, of the dS/dE val-
ues. See Table 2 for confidence intervals on medians and summary
statistics.

Figure 4. Comparison of mean values for snow depth residuals (section 3.1.1). (a–e) Residuals are grouped by 908 aspect quadrants (see legend) for alpine (white background), forest
(dark green), and shrub (light green) vegetation classes for the study sites. The symbols show aspect-dependent means for each vegetation class. The vertical lines on the symbols show
95% comparison intervals from a Tukey’s HSD test. If intervals do not overlap, the means are statistically different. Mean values that are greater or less than expected, based on a site’s
elevation-based snow depth trend (section 3.1.1), plot above and below the dashed zero lines, respectively.
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5.4.3. Shrub Areas
In shrub areas, significant correlations between the percent of snow depth variability explained by north-
ness and the ratio of SW:NetR# were again identified (r 5 0.88, n 5 5; Figure 5e). Northness explained a
greater amount of snow depth variability (11–37%) in shrub areas than in forests, and the correlations
between northness and snow depth were significant at all sites. The importance of northness as a snow
depth predictor for shrub areas also peaked at BCW and JRB where SW:NetR# was highest.

The maximum correlation (r) between the climate metrics (potential evapotranspiration, SW:NetR#, and
wind speed) across the sites was 0.53 (n 5 5), thus we expect that each of these factors represents at least
some unique information regarding climate-landscape-vegetation interactions. Longer-term feedbacks
between geology, soils, and climate also likely influence the correlations presented here, however, teasing
apart these effects is beyond the scope of this work.

5.5. Distances Between Average Winter Freezing Levels and Catchment Snow-Volume Percentiles
The sites with the smallest vertical distances between their mean winter freezing levels and their elevations
of 50% of cumulative snow volume were KREW and RCEW (Table 5). These sites had the lowest mean eleva-
tions of all the surveyed areas (Table 1). We also found that the range over which the 25th to 50th % of
cumulative snow volume was stored was quite variable, ranging from 152 m at KREW up to 568 m at WOLV
and that the snow-covered hypsometries were generally good predictors of snow volume except at BCW
and RCEW (See SI scores Figure 6).

6. Discussion

6.1. Watershed Snowpack Controls
6.1.1. Evaluation of Study Hypotheses (H1–H4)
Decades of field observations and modeling work have shown landscape structure, expressed by the joint
distribution of elevation, topography, and vegetation, to be a major control on energy and water partition-
ing and spatial patterns of snowpack [e.g., Adams, 1976; Bl€oschl et al., 1991a, 1991b; Elder et al., 1991; U.S.

Table 3. p Values for F Test in ANOVA Revealed That Grouping by Aspect (NE, 0–908, SE, 90–1808, SW 180–2708, NW 270–3608) Resulted
in Significant Differences (p value< 0.05) in Mean Snow Depth at all Sitesa

BCW JRB RCEW KREW WOLV

Aspect p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Vegetation p value 0.07n/s <0.0001 0.37n/s <0.0001 0.001
Aspect 3 vegetation p value <0.0001 0.005 <0.0001 <0.0001 0.02

aGrouping by vegetation class (forest, shrub, and if present alpine) resulted in significant differences at all sites except BCW and
RCEW (p values marked with n/s superscript to indicate nonsignificance). The interaction of aspect and vegetation class was significant
at all sites.

Table 4. Variability in Snow Depth Explained (R2) by the Elevation-Based Snow Depth Trends, the Physiographic Predictors, and the
Sum of the Elevation-Based Snow Depth Trends and the Physiographic Predictors (total R2) in Alpine, Forest, and Shrub Areas for Each
Study Site

CZO

Elevation-Based
Snow Depth
Trend R2 (%)

Physiographic Predictors R2 (%)

Total
R2 (%)Eastness Northness Slope

Vegetation
Height

Physiographic
Total

BCW Alpine <0.1 10 1 5 0 16 16
Forest 79 2 15 3 <0.1 20 99
Shrub 57 5 27 2 1 35 92

JRB Forest 34 2 35 3 0 40 74
Shrub 24 <0.1 37 6 3 46 70

RCEW Forest 16 <0.1 1 <0.1 5 6 22
Shrub 21 4 4 1 6 15 36
Alpine 6 6 34 22 2 64 70

KREW Forest 41 1 4 2 6 13 54
Shrub 54 1 21 18 3 43 97
Alpine <0.1 3 24 2 0 29 29

WOLV Forest 64 2 12 7 3 24 88
Shrub 34 <0.1 33 9 0 42 76
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Figure 5. Correlations between the variability in snow depth explained (R2) by the physiographic predictors and selected climate metrics
for (a and b) alpine, (c and d) forest, and (e) shrub areas for the study sites (legend in Figure 5b applies to all panels). The Pearson correla-
tion coefficients (r) and their p values (p) for the relationships between the climate metrics (x axes) and the physiographic predictors (y
axes) are displayed in each plot. The sign (1 or 2) next to the symbols shows the direction of the relationship between the physiographic
predictor (y axis) and snow depth at each site. The sign is only plotted when the relationship between the physiographic predictor and
snow depth is significant (i.e., p value< 0.05).

Table 5. Mean Winter Freezing Levels (From November to Respective Flight Dates; See Table 1), Vertical Distances Between Freezing
Levels and the 25th, 50th, and 75th Percentile of Cumulative Snow Volume, and the Elevation Range Between the 25th and 75th
Percentiles of Cumulative Snow Volume for the Study Sites

BCW JRB RCEW KREW WOLV

Freezing level elevation (m) 2027 1919 1685 2050 2050
Vertical distance between freezing level and

elevation of cumulative snow volume
25% 1159 748 177 2214 627

50% 1314 842 313 2105 1006
(SV) percentiles: 75% 1474 978 400 262 1195
SV75–SV25 (m) 314 230 222 152 568
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Army Corps of Engineers, 1956]. The analyses presented here offer new insights because they were based on
high-resolution (3 m) airborne lidar surveys that extended observations beyond existing meteorological sta-
tions within each region (e.g., Figure 7). Furthermore, this study provides a novel synthesis of the effects of
aspect and vegetation on snow depth at regional scales (up to 290 km2) across diverse physiographic and
climatic settings (Figure 1). We use our results to evaluate H1–H4 and compare our findings to previous field
and modeling-based studies.

Our first hypothesis (H1) was that elevation-driven effects would be an important control on snow depth
variability across all the sites, which we found to be true (Table 4). This agrees with fundamental expecta-
tions that ‘‘orographic effects on precipitating clouds’’ [Houze, 2012] often result in greater precipitation at
higher elevations where temperatures are cooler and more snowpack can accumulate. Field and modeling
work at or nearby the study sites used here (Figure 1) have demonstrated strong orographic precipitation
gradients [Dettinger et al., 2004; Girotto et al., 2014; Hanson, 2001; Hay and McCabe, 1998; Kirchner et al.,
2014; Knowles et al., 2015; Lundquist et al., 2008, 2010; Marks et al., 2001; Rhea, 1977; Tarboton et al., 2001]
and in particular, studies from the Sierra Nevada have demonstrated the importance of wind direction,

Figure 6. (a–e) Distributions of normalized snow volume (primary y axes), area (secondary y axes), and vegetation class (inset legends) as a
function of normalized elevation for the study sites. The mean winter freezing level (stars), elevation of the 50th percentile of cumulative
snow volume (thick vertical line), and the similarity indices (SI) are also plotted for each site. See Table 5 for nonnormalized distances
between freezing levels and the elevations of snow volume percentiles.
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wind speed, and the height of mountain-
parallel barrier jets on controlling increases
in precipitation with elevation [Dettinger
et al., 2004; Lundquist et al., 2010].

We also found (H2) that snow depths in dif-
ferent vegetation classes (i.e., alpine, forest,
and shrub) exhibited statistically significant
differences (Figure 4 and Table 3). Because
we removed the elevation-based snow
depth trends before performing ANOVA,
these results likely reflect effects related to
differences in ablation, interception, redistri-
bution, and shading between the vegetation
classes. The general finding that open areas
(alpine and shrub in this study) accumulated
greater snow depths because of reduced
interception is supported by numerous field
and modeling studies [Broxton et al., 2015;
Gelfan et al., 2004; Golding and Swanson,
1978; Hubbart et al., 2015; Knowles et al., 2015;
Tinkham et al., 2014]. Furthermore, compila-

tion of field observations from 65 sites across North America demonstrated a strong relationship showing
decreased snow depths with increased forest-cover [Varhola et al., 2010], pointing to the role of canopy inter-
ception in reducing snow depths in forests. The results presented here demonstrate that these same patterns
of greater snow depths in open vs. forested areas are evident at the watershed-scale (Figure 4).

(H3) Numerous studies have demonstrated that in the absence of tall vegetation the importance of aspect
and slope (proxies for solar radiation and wind-shelter) are dominant controls on snow accumulation and
redistribution. Here, we contribute further by evaluating how wind speed and the partitioning of incoming
radiation between shortwave and longwave (SW:NetR#) affected the variability in snow depth captured by
northness and eastness. We hypothesized (H3) that slope and aspect (northness and eastness) would cap-
ture more snow depth variability at sites with greater shortwave inputs (high SW:NetR#) and high wind
speeds. We found the importance of northness peaked in forest and shrub areas at RM sites (Table 4) where
the ratio of incoming shortwave to incoming total radiation (SW:NetR#) was highest (Table 1), which sup-
ports H3. We also found that eastness captured the greatest amount of variability in snow depth in open
areas in BCW’s alpine and RCEW’s shrub areas, which were the sites with the highest westerly wind speeds
(Tables 1 and 4). The importance of sheltered aspects for controlling patterns of wind-blown snow deposi-
tion have been demonstrated by several field and modeling studies conducted in BCW’s alpine and RCEW’s
shrub area [Erickson et al., 2005; Knowles et al., 2015; Luce et al. 1998; Marks et al., 2003; Tarboton et al. 2001;
Winstral and Marks, 2002; Winstral et al., 2013].

We also hypothesized (H4) that shading by tall vegetation in forests would be more important at sites with
greater shortwave inputs (i.e., higher SW:NetR#). Interestingly, the variability in snow depth captured by
vegetation height was greatest at sites with greater longwave inputs (Figure 5d; Tables 1 and 4), which con-
trasted our expectation. We posit that at sites with greater longwave inputs (RCEW, KREW, and WOLV), the
negative relationships between snow depth and vegetation height were caused by interception losses and
longwave-driven ablation beneath the canopy. This idea agrees with the results of Lundquist et al. [2013]
who demonstrated that longwave-driven ablation was an important control on snow losses in forest sites
where average winter temperature was >�18C. At sites with greater shortwave inputs (BCW and JRB), tall
vegetation in forests likely acted to intercept snowfall but also to shade snowpack and reduce ablation;
thus the effects counteracted and little variability in snow depth was captured by vegetation height in for-
est areas at RM sites (BCW, JRB, Table 4). The findings at BCW and JRB agree with field results from nearby
areas that showed greater accumulation in open versus under canopy areas at the tree-scale, but no overall
increases in forest snowpack following fire and pine beetle-caused stand-scale canopy loss [Bierdman et al.,
2014; Harpold et al., 2014b].

Figure 7. Comparison of the range of elevations measured during the
lidar flights (vertical lines) and the elevations of SNOTEL stations in Rocky
Mountain (Colorado and New Mexico stations, diamonds), northern Basin
and Range (Idaho< 448 latitude and Nevada> 408 latitude stations,
circles), and Sierra Nevada (California stations, squares). At all locations,
the lidar snow-on flights extend the range of snow depth measurement
to higher (except RCEW) and/or lower elevations.
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Using high-resolution observations of snow depth, topography, and vegetation combined with reanalysis
climate products, we were able to evaluate a number of hypotheses (H1–H4). We have high confidence in
our evaluations of H1 and H2, as they were based on robust analyses of lidar-derived snow depth, vegeta-
tion, and topography where sample sizes were large and all statistical assumptions were met. Because H3
and H4 were not evaluated in the context of a formal statistical test (see section 3.3), further corroboration
is needed to support our interpretations.

6.2. Potential Snowpack Sensitivities
6.2.1. A Proposed Measure of Watershed Snowpack Sensitivity to Shifts From Snow to Rain
Estimating watershed snowpack sensitivity to temperature-driven shifts from snow to rain [e.g., Luce et al.,
2014] is necessary for predicting potential responses of streamflow to changes in snowpack amount and
melt timing [Barnhart et al., 2016; Berghuijs et al., 2014; Ryberg et al., 2015; Tennant et al., 2015b; Wang et al.,
2016]. We leveraged the unprecedented ability of airborne lidar surveys to estimate watershed snow vol-
ume distributions to develop a simple metric—the distance between the average winter freezing level and
the elevation of the 50th% of cumulative snow volume (section 3.4)—as a proposed measure of the sensi-
tivity of watershed snow volume to shifts from snow to rain (Figure 6).

Small vertical distances between freezing levels and the elevations with significant snow volume at
KREW and RCEW indicate that these sites currently have the highest sensitivity to shifts from snow to rain
(Table 5). KREW had a negative distance between its freezing level and zone(s) of significant snow volume
which suggests that its snowpack may experience frequent rainfall and melt throughout winter months.
Indeed, wet, unfrozen subnivean soil and soil moisture increases during winter months have been docu-
mented at Southern Sierra sites located in or near KREW [Bales et al., 2011; Harpold et al., 2014c].

Also, the similarity between the snow volume and elevation distributions was generally high (60–91%;
mean 5 78%; Figure 6) indicating that the hypsometry of the sites’ snow-covered areas were good predic-
tors of where snow volume was greatest. These findings support ‘‘geometry-based’’ arguments that knowl-
edge of snow volume—elevation distributions and freezing levels can help predict potential responses of
mountain snowpack to warming over regional extents [Casola et al., 2009; Klos et al., 2014; Minder, 2010;
Tennant et al., 2015a; Wayand et al., 2015]. The utility of the hypsometric approach, expanded on here, is
also supported by 45 years of temperature, rainfall, and snowfall measurements from RCEW demonstrating
elevation-dependent warming and shifts from snow to rain [Nayak et al., 2010].

Differences between the sites in the vertical distances between freezing levels and snow volume percen-
tiles (Table 5) and the spatial variability in snow volume as related to catchment hypsometry (Figure 6)
suggest the potential for differential responses to regional warming and shifts from snow to rain. The
results (Table 5 and Figure 6) presented here suggest that airborne lidar estimates of snow volume and
regional temperatures can help identify watersheds that are sensitive or more resistant to shifts from
snow to rain.
6.2.2. Potential Sensitivities of Snowpack to Climate and Vegetation Changes
In the following sections, we highlight a series of hypotheses that help inform potential watershed-scale
snowpack sensitivities to shifts in climate or vegetation in alpine, forest, and shrub areas across these
western U.S. sites. While the hypotheses below are supported by our results and existing work, further
validation is needed given the small sample size (n 5 5) and uncertainty regarding the relationships
between climate characteristics and the importance of physiographic proxies as snow depth controls
(Figure 5).
6.2.2.1. Potential Sensitivities of Snow Depth to Changes in Wind Speed
In alpine settings where westerlies dominate, global wind stilling [McVicar et al., 2012; Luce et al., 2013]
could impact snow depth patterns by reducing snow redistribution from western to eastern slopes and
could increase the importance of storage on northern aspects. This hypothesis is supported by the observa-
tion that eastness captured the greatest variability in snow depth in BCW’s alpine zone (Table 4) where
wind speeds were the highest (Table 1) and by the fact that northness explained much more variability in
snow depth at KREW and WOLV where wind speeds were lower (Figure 5a). The low variability of snow
depth captured by northness in BCW’s alpine zone is especially surprising given its high SW:NetR# (Table 1).
This observation, coupled with the ANOVA and regression results, emphasize the importance of snow stor-
age on eastern slopes. These results also agree with findings from a study conducted in BCW’s alpine zone
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[Erickson et al., 2005] that demonstrated that wind sheltering had the largest effect on spatial snow depth
patterns.

Wind stilling may also increase the importance of alpine snowpack storage by reducing wind-blown subli-
mation, which has been shown to be a major driver of alpine water losses [Hood et al., 1999; MacDonald
et al., 2010; Marks and Dozier, 1992; Knowles et al. 2015]. Because the influence of wind falls precipitously
with increases in forest-cover, tree line shifts [Goulden and Bales, 2014; Salzer et al., 2009] could also be
important by limiting zones with significant redistribution and high rates of wind-blown sublimation to
higher elevations. Furthermore, reduced wind speeds could have even larger-scale effects by decreasing
orographic precipitation enhancement. For example, Luce et al. [2013] demonstrated that declines in winter
precipitation (November–March) at high elevation meteorological stations were likely caused by decreases
in lower troposphere wind speeds and suggested that reduced orographic precipitation enhancement was
the primary driver of observed streamflow declines in the Pacific Northwest.
6.2.2.2. Potential Sensitivities of Snow Depth to Shifts in SW:NetR# in Forest and Shrub Areas
Increases in downwelling longwave radiation and shifts to lower SW:NetR# are likely to occur with increases
in air temperature, cloudiness, specific humidity, and earlier peak SWE (section 3.3). While aspect was gener-
ally important at all of the sites, the higher SW:NetR# (Table 1), and greater importance of aspect (Table 4)
at RM sites suggest that they may be more responsive to potential decreases in SW:NetR# caused by
warming or changes in atmospheric water vapor. If SW:NetR# lowers then the importance of aspect could
decrease because of more spatially uniform ablation. However, this effect could be limited by a positive
feedback where earlier melt on south-facing slopes (due to less cold content and greater energy inputs)
enhances the effects of aspect and offset more spatially uniform ablation.
6.2.2.3. Potential Sensitivities of Snow Depth to Vegetation Changes in Forest Areas
Differential sensitivity of snowpack to vegetation change is likely due to the varying importance of vegeta-
tion as a snow depth predictor across the sites (Table 4). Vegetation height captured the greatest amount
of snow depth variability (up to 6%) at RCEW, KREW, and WOLV where it was negatively correlated with
snow depth which we assume primarily reflects canopy interception losses. Given the large amounts of for-
ested area and the importance of vegetation height as a predictor at KREW (Tables 1 and 4), Sierra sites
could be the most responsive to canopy thinning.

7. Conclusion

In this study, we utilized regional-scale airborne lidar surveys (18–294 km2) of snow depth, topography, and
vegetation to evaluate how differences in climate and physiography influenced watershed-level snow
depth distributions at five mountainous sites in western North America. The variability in snow depth
explained by aspect, elevation, and vegetation height varied between vegetation class (alpine, forest, and
shrub) and with regional climate. Snow depth increase with elevation was the dominant trend at all sites,
however, these relationships were notably nonlinear and snow depth exhibited continuous declines at the
highest elevations of three of the five sites. Elevation and aspect captured the greatest amount of variability
in snow depth in forest and shrub areas, however, in alpine areas only aspect (northness and eastness) was
important. In forest and shrub areas, the importance of aspect and vegetation height varied with changes
in the ratio of incoming shortwave to incoming net radiation (SW:NetR#). Aspect peaked in importance at
sites with high SW:NetR# and forest vegetation height explained more snow depth variability at warmer
sites with lower SW:NetR#.

The importance of elevation and aspect at all sites suggest that warming and changes in SW:NetR#
could have widespread and varied effects on western U.S snowpacks. Given the importance of eleva-
tion and the high certainty of future warming we proposed a new metric, the distance between the
average winter freezing level and the elevation of the 50th% of cumulative snow volume to highlight
potential watershed-scale snowpack sensitivity to warming and shifts from snow to rain. Changes in
the importance of aspect with SW:NetR# suggest that decreases in SW:NetR# caused by regional warm-
ing, changes in humidity or cloud cover, as well as shifts to earlier peak SWE, will likely produce differ-
ential effects on mountain snowpacks. This study demonstrates the utility of airborne lidar surveys for
evaluating how physiography and regional climate interact to determine watershed-level snow distri-
butions and helps better inform how climate will affect vital western U.S. snowpack and water
resources.
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