
brought to you by
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by B
oise S

tate U
niversity - S

cholarW
orks

https://core.ac.uk/display/130088677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2017
Akshay Kansal

ALL RIGHTS RESERVED

Dedicated to my parents

iv

ACKNOWLEDGMENTS

The author wishes to express gratitude to Francesca for her valuable advice and

direction with this thesis. The author also wishes to thank Vijay for introducing

the author to the area of research. Finally, thanks to the authors of one-pass algo-

rithm [35] for sharing the implementation of gIndex, FG-Index, and their algorithm.

v

ABSTRACT

Graph is a commonly used data structure for modeling complex data such as

chemical molecules, images, social networks, and XML documents. This complex

data is stored using a set of graphs, known as graph database D. To speed up

query answering on graph databases, indexes are commonly used. State-of-the-art

graph database indexes do not adapt or scale well to dynamic graph database use;

they are static, and their ability to prune possible search responses to meet user

needs worsens over time as databases change and grow. Users can re-mine indexes to

gain some improvement, but it is time consuming. Users must also tune numerous

parameters on an ongoing basis to optimize performance and can inadvertently worsen

the query response time if they do not choose parameters wisely. Recently, a one-pass

algorithm has been developed to enhance the performance of these indexes in part by

using the algorithm to update them regularly. However, there are some drawbacks,

most notably the need to make updates as the query workload changes.

We propose a new index based on graph-coarsening to speed up query answering

time in dynamic graph databases. Our index is parameter-free, query-independent,

scalable, small enough to store in the main memory, and is simpler and less costly to

maintain for database updates.

We conducted an extensive sets of experiments on two types of databases, i.e.,

chemical and social network databases, to compare our graph-coarsening based index

vs. hybrid -indexes as follows. First, we considered no database updates or query work-

load changes (static graph databases) and compared the indexes according to query

vi

answering time and index size for different minSup values. Second, we compared the

indexes in the case of dynamic graph databases, i.e. when graphs are added to or

removed from the database. Third, we compared the indexes with regard to query

workload changes. Fourth, we studied the scalability of our index vs. hybrid -indexes.

Experimental results show that our index outperforms hybrid -indexes (i.e. indexes

updated with one-pass) for query answering time in the case of social network

databases, and is comparable with these indexes for frequent and infrequent queries

on chemical databases. Our graph-coarsening index can be updated up to 60 times

faster in comparison to one-pass on dynamic graph databases. Moreover, our index

is independent of the query workload for index update and is up to 15 times better

after hybrid indexes are attuned to query workload for social network databases.

This work is also published in 26th ACM International Conference on Information

and Knowledge Management (CIKM) held in Singapore[18].

vii

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

LIST OF SYMBOLS . xv

1 Introduction . 1

2 Preliminary Definitions . 5

3 Related Work . 8

3.1 GIndex . 9

3.2 FG-Index . 11

3.3 One-pass Algorithm . 13

3.4 Discussion . 15

4 Graph Database Querying Framework . 17

4.1 Graph Coarsening . 17

4.1.1 Algorithm . 21

4.1.2 Complexity Analysis . 22

viii

4.1.3 Coarsening and Graph Containment . 22

5 Graph-Coarsening based Index . 25

5.1 Query Processing . 27

5.2 Index Update . 29

5.3 Other Indexing Approaches . 30

5.3.1 Graph Reduction Using Query Before Verification 30

5.3.2 Subgraphs And Their Counts . 31

6 Experiments and Results . 34

6.1 Experiment Setup . 34

6.2 Our index vs. hybrid-indexes . 37

6.2.1 Social Network Databases . 38

6.2.2 Chemical Database . 41

6.2.3 Discussion . 44

6.3 Comparison on Dynamic Graph Databases . 45

6.4 Query Workload Changes . 46

6.5 Scalability . 48

6.6 Results Summary . 49

7 Conclusions . 56

7.1 What have we done so far? . 56

7.2 Future directions . 56

REFERENCES . 58

A Reproducing Experiments . 62

ix

A.1 Getting the code . 62

A.2 Data Formats . 62

A.2.1 Generic Graph Format . 62

A.3 Running The Code . 63

A.3.1 Repository Structure . 63

A.3.2 File Naming Convention . 64

A.3.3 Chemical Dataset Conversion . 65

A.3.4 Labelling Graphs for Social Networks . 65

A.3.5 Generating Databases And Queries . 66

A.3.6 Experiments . 66

A.3.7 Compile And Run . 66

x

LIST OF TABLES

5.1 Runtime Comparison with and without Graph Reduction Using Query

on eMolecules for different query types . 31

5.2 Query Processing Time Comparison with and without subgraph Count 33

6.1 Count of index features on Social Network Databases for Standalone

Index comparison . 38

6.2 Count of index features on Chemical Database for Standalone Index

comparison . 44

xi

LIST OF FIGURES

3.1 Sample graph database . 9

4.1 Example showing chemical compounds as labeled graphs 18

4.2 Examples showing coarnening of graphs . 21

5.1 A sample graph database D. 26

5.2 Graph-coarsening based index example . 27

5.3 A sample graph Query Q and its coarsening . 28

6.1 Runtime comparison for Frequent queries on Social Network databases. 39

6.2 Runtime comparison for Infrequent queries on Social Network databases. 39

6.3 Runtime comparison for Random queries on Social Network databases. 40

6.4 Index memory consumption comparison for Social Network databases. . 40

6.5 Runtime comparison for Frequent queries on eMolecules database. 41

6.6 Runtime comparison for Infrequent queries on eMolecules database. . . . 42

6.7 Runtime comparison for Random queries on eMolecules database. 42

6.8 Index memory consumption comparison for eMolecules databases. 43

6.9 Database change comparison . 45

6.10 Runtime comparison for query workload change for DBLP. 50

6.11 Runtime comparison for query workload change for eMolecules. 51

6.12 Runtime comparison for query workload change for BlogCatalog3. . . . 52

6.13 Runtime comparison for query workload change for Slashdot. 53

xii

LIST OF ABBREVIATIONS

minSup – Minimum support of a graph in a graph database

XML – Extensible Markup Language

NP – Non-polynomial

maxL – Maximum length or size of a graph

δ-TCFG – delta-Tolerance Closed Frequent subgraphs

GA – Graph Array

IGI – Inverted Graph Index

GHz – Giga-Hertz

MB – Megabyte

GB – Gigabyte

RAM – Random Access Memory

xiv

LIST OF SYMBOLS

D Graph database

Q Query graph

G Graph

V Set of vertices

E Set of Edges

VL Set of Vertex Labels

EL Set of Edge Labels

σ Support of a graph in a graph database

δ Frequency tolerance factor used in FG-Index

DG Set of graphs that contain G

α Swapping parameter used in one-pass

⊆ Subset or equal to

⊂ Subset

6⊆ Not subset or equal to

⊇ Super-set or equal to

∈ Element of

ν A function to assign labels to vertices

xv

∧ Logical AND

≥ Greater or equal

γ Discriminative ratio

∩ Set intersection

\ Set difference

> Greater than

r(B) Coarsening Ratio of a set of edges B

ω(e) Edge-weighting function to compute edge count of edge e

ρ(e) Edge-weighting function to compute coarsening ratio of edge e

I Coarsening Index

≤ Less than or equal to

CoT Time Complexity of Coarsening

SoT Space Complexity of Coarsening

xvi

1

CHAPTER 1

INTRODUCTION

Scientists and practitioners commonly use graphs to model social networks, financial

transaction networks, chemical compounds, proteins, images, XML documents or

other complex data, and typically store them in graph databases [2, 5, 7, 8, 14, 16, 23,

25, 27, 31, 32, 35]. A graph database D is simply a collection of graphs. A dynamic

graph database is a database that changes over time. However, graph databases do

not always respond quickly to a user, especially when frequently updated.

A graph database query consists of a graph Q, with the answer to Q being the set

of all graphs G in the graph database D such that Q ⊆ G. A näıve user or one using

a graph database that lacked an index would search the database by attempting one

or more queries over the full set of graphs in the database. Of course, this approach

is very inefficient, especially when the database is large. Further, testing whether a

graph is contained in another one, subgraph isomorphism problem, is NP-complete [9].

Therefore, graph databases incorporate a graph database index and answer queries

in two steps. First, filter to narrow down the search to a subset of graphs in D, and

then verify. The filtering step is performed by using a graph database index that maps

a feature (or subgraph) F as a key to the IDs of database graphs that contain the

requested feature as a value. The index enables users to retrieve a candidate answer

set that filters out false positive candidates. After filtering, search results are verified

2

by completing a subgraph isomorphism test on every candidate to ensure the query

is contained. Optimally, index size fits in main memory, improving query response

time.

The research literature identifies many ways to generate features for indexing. The

main approaches rely on frequent subgraphs, paths, or trees, with varying performance

results (see [19] for a survey and performances comparison). However, these indexes

do not adapt or scale well to dynamic graph database use; they are static, and as

databases change and grow, the indexes become large and outdated, and their ability

to reduce the size of a candidate answer set (pruning power) worsens over time [35].

Recently, Yuan et al. [35] proposed a one-pass algorithm to solve this problem by

building a starting index with gIndex or FG-Index and performing updates based on

changes to the graph database and query workload (hybrid -index). More specifically,

this algorithm keeps the initial number of features constant, and uses the query

workload to determine which index features are relevant to the current workload;

features more relevant to the current search swap out those that are less relevant.

However, this approach assumes that the query workload does not change rapidly.

If users do not update the index when query workload starts to change, the query

function may not prune a sufficient number of graphs from the search and therefore

take longer to deliver results. In real-world applications, databases and queries

often change frequently, which would result in the need for frequent index updates.

However, attuning the index to the current query workload ignores possible new

queries in the future. Consequently, the index will be unable to efficiently answer the

full query range. The pruning power for queries not belonging to the query workload

used to tune the index will be reduced.

Another drawback of state-of-the-art indexes is that they require users to tune

3

many parameters. While parameters help to reduce the search scope and improve

index pruning power, they can do the opposite if not chosen wisely. Research results

from several studies illustrate this by showing how their indexes outperform the

competition based on the parameter values chosen [7, 19, 32, 35].

We develop a new graph-coarsening based index for graph databases that scales

far more effectively to dynamic real-world graph database use. Graph coarsening [17]

is used to find a more succinct representation of a graph by grouping its vertices

together. It preserves basic graph information such as nodes, edges, labels, edge

counts, and graph’s sub-structures. Since several nodes and edges in the graph

database are frequent, index size remains small and can be stored in the main memory.

Also, a coarsened graph is easier to index as the information contained in it can be

represented by a simple hashmap.

Therefore, we propose a new index that uses a new definition of graph coarsening

to generate an index that is parameter-free, query-independent, scalable and small

enough to be stored in main memory which also performs efficient update operations

without reducing the pruning power of the index.

We conduct a detailed experimental comparison of our index vs. state-of-the-art

solutions for dynamic graph databases on several real-world databases. Experimental

results show that: (1) we outperform hybrid -indexes for dynamic graph databases for

query answering time by up to 3 times in the case of social network databases. (2)

We are scalable with a faster construction time and smaller index size. (3) We can

update our index up to 60 times faster in comparison to one-pass. (4) Our index

is independent of the query workload for index update and is up to 15 times better

after hybrid -indexes are attuned to query workload.

The thesis is organized as follows. Chapter 2 introduces basic notions used in the

4

rest of the document. Related work is discussed in Chapter 3. Chapter 4 describes

the graph database querying framework used for the index. Chapter 5 describes our

graph-coarsening based index. Chapter 6 reports on our experiments comparing our

index with state-or-the-art approaches. Finally, conclusions are drawn in Section 7.

Appendix A is included to enable reproducibility of experimental results by the reader.

5

CHAPTER 2

PRELIMINARY DEFINITIONS

In this chapter, we introduce all the definitions we will use.

Let V L be a set of vertex labels and EL be a set of edge labels. A labeled graph

is a 3-tuple G = (V,E, ν) where

• V is the set of vertices,

• E ⊆ V × V × EL is a set of labeled directed edges, and

• ν : V → V L is a function assigning labels to vertices.

We assume labeled graphs to be directed. Whenever we refer to an undirected

graph, we assume each undirected edge (u, v, `) to be represented by both (u, v, `) and

(v, u, `) directed edges.

We define the size of a graph G = (V,E, ν) as |E|.

A graph database D = {G1, G2, ..., Gn} is a set of labeled graphs. Each graph

Gi ∈ D, i ∈ [1, n], has a unique identifier denoted by id(Gi).

Let G = (V,E, ν) be a labeled graph and let u be a node in V . The degree of node

u w.r.t. edge label `, and destination node v’s label ν(v), denoted by deg(u, `, ν(v)),

is defined as the size of the set {v′|(u, v′, `) ∈ E ∧ ν(v′) = ν(v)}.

Definition 1 (Graph Query). A graph query is defined as a graph that may or may not

exist in a graph database D. A graph query can either be a subgraph or supergraph

6

in a graph database. A subgraph query may be contained by graphs in D while a

supergraph query may contain graphs in D.

We work with subgraph queries only in this thesis. Graph querying requires us to

understand subgraph isomorphism, which is defined as follows.

Definition 2 (Subgraph Isomorphism). Let G = (V, E, ν) and G′ = (V ′, E ′, ν ′) be

two labeled graphs. A subgraph isomorphism is an injective function f : V → V ′ such

that

1. ∀u ∈ V , ν(u) = ν ′(f(u)), and

2. ∀(u, v, `) ∈ E, (f(u), f(v), `) ∈ E ′.

A graph G is a subgraph of another graph G′, denoted by G ⊆ G′, if there exists

a subgraph isomorphism from G to G′. Conversely, G′ is called a supergraph of G.

The problem of deciding whether G ⊆ G′ is called subgraph isomorphism problem

and it is proven to be NP-complete [9].

The following definition defines the answer to a graph query Q in a graph database.

Definition 3 (Subgraph Query Processing).

Given a graph database D = {G1, G2, . . . , Gn} and a graph query Q, the answer to Q

w.r.t. D is the set

ans(Q) = {G ∈ D | Q ⊆ G}

As the subgraph isomorphism problem is NP -complete, usually graph databases

answer subgraph queries in two steps by using the filter+verify approach. First, filter

to narrow down the search to a subset of graphs in D, and then verify. The filtering

step is performed by using a graph database index that maps a feature (or subgraph)

7

F as a key to the IDs of database graphs that contain the requested feature as a

value. The index enables users to retrieve a candidate answer set that filters out false

positive candidates. False positive candidates are filtered out by using the following

sufficient condition, called inclusive logic. Let F be an index feature, let G ∈ D be a

database graph, and let Q be a graph query. If F ⊆ Q ∧ F 6⊆ G, then Q 6⊆ G.

The pruning power of a graph database index is the ability to reduce the size of

a candidate answer set.

Given a graph database D = {G1, G2, . . . , Gn} and a graph G, we denote by DG

the set of graphs in the database that contains G. The size of the set DG is called

the support of G and is denoted by supp(G).

Definition 4 (Frequent subgraphs). Let G be a graph and D = {G1, G2, . . . , Gn} be a

graph database. We say that G is a frequent subgraph if supp(G) ≥ minSup, where

minSup is a given minimum support threshold.

Definition 5 (Infrequent subgraphs). Let G be a graph and D = {G1, G2, . . . , Gn} be

a graph database. We say that G is an infrequent subgraph if supp(G) < minSup,

where minSup is a given minimum support threshold.

8

CHAPTER 3

RELATED WORK

There are various ways of generating features for indexing graph databases. According

to [19], the main approaches rely on (1) simple paths [4, 10, 13, 40], (2) trees [15, 26, 37],

(3) graphs [7, 29, 30, 32, 34, 38], and (4) a combination of trees and graphs/cycles [20].

Among the works that use graphs as features, there are some that rely on frequent

subgraphs [7, 32, 38]. Recently, Katsarou et al. [19] compared the performances

of CT-index [20], GCode [40], gIndex [32], GRAPES [13], GraphGrepSX [4], and

Tree+∆ [38] according to query processing time, index size and index construction

time, and scalability. Their experimental results show that GRAPES and Graph-

GrepSX are the state-of-the-art best performing indexes for graph databases. How-

ever, their comparison is based on static graph databases only and they did not

consider, in their analysis, the case of a database changing over time. When the

graph database has significantly changed over time, the index becomes outdated and

need to be updated. This operation is time consuming and memory intensive [19, 35].

Even if it has been shown that approaches based on frequent graphs such as gIndex

and FG-Index are usually an order of magnitude slower than Grapes and Graph-

GrepSX on static databases [19], they are, currently, the only ones that can work with

dynamic graph databases as they can be updated by using the one-pass algorithm.

Therefore, since the focus of our paper is to design an index suitable for dynamic

9

Figure 3.1: A sample graph database [32].

graph databases, we will compare our approach with hybrid-indexes only.

In the following, we give an overview of the above mentioned indexes gIndex and

FG-Index, and index update algorithm, one-pass.

3.1 GIndex

gIndex [32] introduced the feature-based indexing approach by first mining a set of

features or subgraphs F from graph database D and then, building a map of feature

F ∈ F to the set of graph IDs DF that contain F . To mine frequent subgraphs,

the authors used gSpan [31], a depth-first search (DFS) based algorithm. gSpan

uses minimum DFS code and lexicographic order to traverse the graph database and

reduce isomorphic subgraphs generated from depth-first search traversal up to size

maxL.

The number of fragments, or subgraphs, generated from gSpan varies based on

minimum support, minSup. To ensure all queries can be answered, gIndex indexes

size-0 (nodes) and size-1 (edges) fragments. A size-increasing support function is used

to reduce the number of fragments generated as the size of fragments increases. There

are still many fragments that do not add to the filtering power of the index and are

called redundant fragments.

Example 1. All the graphs in sample graph database from Figure 3.1 contain carbon-

10

chains: C, C—C, C—C—C, and C—C—C—C. Fragments C—C, C—C—C, and

C—C—C—C do not provide more indexing power than fragment c. Thus, they are

redundant for indexing. However, the carbon ring in Figure 3.1 is a discriminative

fragment as only graph (c) contains it while graphs (b) and (c) have all of its sub-

graphs. [32]

Therefore, a feature selection is performed to select discriminative fragments that

add to the filtering power of the index. These features have support that is much

less than the common support between their subgraphs. To identify a discriminative

fragment, γ is introduced as the discriminative ratio for a fragment.

Definition 6 (Discriminative Fragment). A frequent subgraph F is discriminative if

and only if

|
⋂

F ′⊂F,F ′∈F

DF ′ | / |DF | > γ

where γ is the discriminative ratio.

Index is constructed by hashing each discriminative fragment and building a key-

value pair of fragment hash as the key and list of graph IDs as the value. Once the

index is constructed, a query Q can be answered by generating a candidate answer

set from the index features F by intersecting the graph IDs of features F ∈ F which

are subset of Q. More formally, the candidate answer set is defined as

CQ =
⋂

F⊆Q∧F∈F

DF

Verification or subgraph isomorphism tests are performed on graphs in CQ to ensure

Q is contained in each graph. Verification is not required if Q ∈ F .

11

3.2 FG-Index

The approach used by FG-Index [7] eliminates candidate verification for frequent

subgraphs. Let us suppose that an index uses as features the set of all frequent

subgraphs. If a query Q is a frequent subgraph, then verification can be avoided as

all the graphs containing the query are the values corresponding to the index feature

Q. However, the number of all frequent subgraphs may be big and may cause the index

not to fit in the main memory. A way to compress (without loosing any information)

the set of frequent graphs is to use the notion of Closed Frequent subgraphs (CFGs).

Definition 7 (Closed Frequent subgraph). A frequent subgraph G is closed if there

does not exist another frequent subgraph G′ such that G ⊂ G′ and DG = DG′.

If the set of features indexed is the set of all CFGs , the answer set of query Q

corresponds to

ans(Q) =
⋂

Q⊆F∧F∈F

DF

As a result, time required to answer frequent queries is the same as generating

candidate answer set.

The goal of FG-Index is to find a smart way to index all CFGs, as their size may

still be too big. Thus, they rely on a relaxed notion of CFGs, namely δ-Tolerance

Closed Frequent subgraphs (δ-TCFGs).

Definition 8. (δ-Tolerance Closed Frequent subgraph (δ-TCFG)). A

frequent subgraph G is δ-TCFG if and only if G is a frequent subgraph and there does

not exist another frequent subgraph G′ such that G ⊂ G′ and |DG′| ≥ (1 − δ)|DG|,

where δ ∈ [0, 1] is a given frequency tolerance factor.

12

Using δ-TCFGs allows us to cluster frequent graphs and generate indexing features

for FG-Index which fit in the main memory.

To construct FG-Index, the set of frequent subgraphs FG is mined from the graph

database for a given support minSup. Each graph in FG is assigned with a unique

ID. Then, given a specific value of δ, the set T of δ-TCFGs is computed from FG. The

graphs in T are then sorted by increasing size, decreasing frequency, and increasing

unique IDs assigned before. These δ-TCFGs are then stored in main memory in a

list called Graph Array (GA) and the list index for each δ-TCFG is used as new ID

for graphs in T .

An Edge Array (EA) stores distinct edges from graphs in T . Each edge e in EA

further groups graphs in T by the size of the graphs and count of e in each graph, and

maps it to id of such graphs in GA. This is called the Inverted-Graph Index (IGI).

The first level of IGI is built on T . The next level of IGI is constructed from the

set of frequent supergraphs corresponding to a δ-TCFG and each IGI stored on the

disk. An Egde-index is included which contains the set of infrequent distinct edges

in graph database to ensure any query can be answered.

To answer a query Q, group the query by its distinct edges and get edge counts.

For each edge e in Q, use frequency of e and find ids from Edge Array that have edge

count greater than or equal to frequency of e. The intersection of such ids for all

edges in Q will give an id. Use this id to get the δ-TCFG G from Graph Array. If

G = Q, the answer is DG. Otherwise, use G’s IGI stored on the disk to search for Q.

No verification is required if an answer is found. If an answer is not found, it means

the query is not frequent. Use Edge-index to generate a candidate answer set and

obtain an answer after verification.

13

3.3 One-pass Algorithm

Index construction is done only once to build gIndex and FG-Index. When the graph

database has significantly changed over time, the index features become outdated and

need to be re-mined. This operation is time consuming and memory intensive [35].

The one-pass algorithm offers a way to maintain these indexes by applying updates

to them. Updates are applied by measuring the goodness of index features known as

pruning power. For a query Q, an index feature F ⊆ Q prunes graphs in D \ DF .

More formally:

Definition 9 (Pruning Power and Cover). The pruning power of a feature F is the

cardinality of F ’s pruning cover defined as C(F,D,Q) = {(G,Q) | G ∈ D is filtered out

by feature F for Q ∈ Q}, where D is the graph database and Q is a set of queries to

be answered and called query workload.

The pruning cover of the set of index features F is defined as C(F ,D,Q) =⋃
F∈F C(F,D,Q).

When D and Q are clear from the context, C(F,D,Q) is abbreviated as C(F).

Given a starting index, e.g. gIndex or FG-Index, one-pass computes the loss

score of each feature in the index and the benefit score of each frequent subgraph

which can be added to the index as a feature. The loss and benefit scores are defined

in the following.

Definition 10 (Loss Score). The loss score L(F,F) of an index feature F in the set

of index features F is the decrease of the pruning power caused by removing F from

F , i.e. L(F,F) = |C(F) \ C(F \ F)|.

14

Definition 11 (Benefit Score). The benefit score B(H,F) of a subgraph H is the

increase of the pruning caused by adding H to the set of index features F and it is

given by B(H,F) = |C(H) \ C(F)|.

When the benefit of adding a frequent subgraph H outweighs the loss of an indexed

feature F , H then replaces F in the index. A swapping criterion, called swapα, helps

in this decision making by using the loss and benefit scores defined as follows.

Definition 12 (Swapping Criterion (swapα)). An index feature F is replaced by

one-pass algorithm with a frequent subgraph H if

B(H,F) > (1 + α)L(F,F) + (1− alpha)|C(F)|/k

where k is the number of index features and α ∈ [0, 1].

In practice, the value of |C(F)|/k is two orders of magnitude larger than L(F,F).

When L(F,F) = 0, a frequent subgraph H with low benefit score will not be swapped

in the index. Therefore, 1− α acts as a normalizing factor and, by setting the value

of α between 0.95 and 0.995, |C(F)|/k does not dominate the swapping criterion.

Query workload plays an important role in determining the pruning power of the

index. When the pruning power drops below a threshold, an update is triggered to

swap features. After the updates have been applied, the pruning power of the index

is restored for the current query workload. The algorithm keeps the index size near

constant since features can only be swapped in and out of the index.

One-pass algorithm can be combined with gIndex and FG-Index into a hybrid

index. More specifically, the index is initially constructed by using either gIndex or

FG-Index and, then, one-pass algorithm decides which features to swap. The hybrid

15

index outperforms the greedy solution defined in [35] to generate an initial index for

one-pass algorithm. Therefore, we focus only on the hybrid index to compare with

one-pass algorithm.

3.4 Discussion

In this section, we discuss possible drawbacks of the work described above.

Tuning the Index. Features are selected and/or updated based on criteria

which utilize different parameters. gIndex uses size-increasing support function and

discriminative ratio. FG-Index uses δ and minimum support. One-pass algorithm

uses minimum support and α used in swapping criterion. While the parameters help

reduce the size and improve pruning power of the index, they can do the opposite

if not chosen wisely. Results from [7, 32, 35] show that their indexes outperform

the competitors for the parameter values chosen. Further analysis showed gIndex

outperformed others for the same parameter values only in the case of sparse graphs

and FG-Index for only dense graphs [14]. More analysis is required case by case to be

able to tune the indexes which enables gIndex to perform optimally for dense graphs

and FG-Index for sparse graphs.

Index Size. In terms of size, one-pass algorithm does well at maintaining the

size of the index as the number of index features remains fixed. On the other hand,

gIndex and FG-Index require a lot of space. The number of features mined increases

exponentially as the size of the graph database increases [35]. These features need

to be stored in memory as both gIndex and FG-Index use them more than once.

Indexed features also increase exponentially increasing space requirements. Also, the

hybrid index roughly maintains its initial size as one-pass algorithm only allows

16

features to be swapped. Since gIndex and FG-Index are not scalable, reconstructing

the index can be very time consuming and the size may not fit in the main memory.

Updating the Index with Current Query Workload. one-pass algorithm

uses the query workload to determine which index features are relevant to the current

workload. The features that are less relevant are swapped out by more relevant

ones. This assumes that the query workload is not changing rapidly. Implying,

index requires updates when query workload starts to change. Until the updates

are applied to the index, it behaves sub-optimally increasing query answer time.

In real-world applications, the database and queries may change frequently. This

will require frequent index updates making it difficult to keep the index attuned to

incoming queries for high pruning power. One of the experiments conducted by Yuan

et al. [35] showed that when index was updated to perform with query set having

minimum support of 0.3%, the pruning power of the index decreased significantly for

query set having minimum support of 0.8%. Moreover, pruning candidates for queries

never appeared before is equally important since in most real-life applications queries

are not known.

17

CHAPTER 4

GRAPH DATABASE QUERYING FRAMEWORK

In this section, we describe our framework to query evolving graph databases. The

framework takes advantage of graph coarsening technique [17] and propose a new

definition of graph coarsening suitable for graph database indexing.

4.1 Graph Coarsening

We consider labeled graphs in our graph database. The following example shows how

a chemical compound is represented by labeled graph.

Example 2. Consider the Ethene compound showed in Figure 4.1 (a). We represent

Ethene with a labeled graph G = (V,E, ν) (see Figure 4.1 (b)), where V L = {C,H},

EL = {s, d}1, V = {1, 2, 3, 4, 5, 6}, E = {(1, 3, s), (2, 3, s), (5, 4, s), (6, 4, s), (3, 4, d)},

ν(1) = ν(2) = ν(5) = ν(6) = H, and ν(3) = ν(4) = C.

Graph-coarsening [17] consists of finding a succinct representation of the graph

that also preserves the original graph structure. Usually, a graph G is coarsened by

merging together similar vertices into a unique super-node and by assigning edges

between super-nodes as follows. If there was an edge between two vertices u and v

in G and u has been merged into a new vertex u′ while v has been merged into a

new vertex v′, then the coarsened graph G′ will contain an edge between u′ and v′.

1Edge label s (resp. d) denotes a single (resp. double) bond.

18

Figure 4.1: (a) Ethene compound G1, (b) Ethene’s representation as a labeled graph,
(c) näıve labeled graph coarsening, (d) and (f) two other compounds G2 and G3, and
(e) G2’s representation as a labeled graph.

Moreover, usually, a weight is added to each edge in the coarsened graph to keep track

of the number of edges in the original graph that collapse in a unique edge in the

coarsened one. Thus, coarsening is mapping labeled graphs to edge-labeled weighted

graphs.

Example 3. Consider the labeled graph representation of the Ethene compound G =

(V,E, ν) from Example 2. Suppose we merge together nodes having the same node

label. A possible coarsening of G is shown in Figure 4.1 (c) and is given by the

edge-labeled weighted graph G′ = (V ′, E ′, ω) where V ′ = {C,H} is the set of nodes,

E ′ = {(H,C, s), (C,C, d)} is the set of labeled edges, and ω is the edge weighting

function. Since edges (1, 3, s), (2, 3, s), (5, 4, s), and (6, 4, s) from G collapse into the

edge (H,C, s) in G′, we have that ω((H, C, s)) = 4, while ω((C,C, d)) = 1.

However, synthesizing a set of edges by just using the number of edges that

collapse, is not so meaningful to express the graph structure. Consider, for instance,

19

the graphs in Figure 4.1 (d) and (f). The coarsening of these two graphs results to

be the same of the one of Ethene in Figure 4.1 (a) as they all have four edges between

nodes C and H.

Therefore, in order to better preserve the structure of the original graph in its

coarsened version, we introduce the concept of coarsening ratio.

Definition 13 (Coarsening ratio). Let G = (V,E, ν) be a labeled graph and let B =

{(u1, v1, `), ..., (un, vn, `)} be the subset of all edges in E such that ν(u1) = ... = ν(un)

and ν(v1) = ... = ν(vn). The coarsening ratio r(B) of the set of edges B is defined as

r(B) =
1

max(deg(u1, `, ν(v1)), ..., deg(un, `, ν(v1)))

The coarsening ratio represents the biggest substructure in the original graph

involving nodes labeled as ν(u1) and ν(v1), and edge label `.

Example 4. Consider the labeled graph G1 representing Ethene compound in Fig-

ure 4.1 (b). Edges in the set Eb = {(3, 1, s), (3, 2, s), (4, 5, s), (4, 6, s)} are all edges

representing a single bond between Carbon C and Hydrogen H. We have that deg(3, s,H) =

2 and deg(4, s,H) = 2, then, the coarsening ratio for Eb, representing the directed

edge (C,H, s), is r(Eb) = 1
max(2,2)

= 0.5. On the other hand, E ′b = {(1, 3, s), (2, 3, s),

(5, 4, s), (6, 4, s)} is the set of all the edges having a single bond between Hydrogen H

and Carbon C. As deg(1, s, C)) = deg(2, s, C) = deg(5, s, C) = deg(6, s, C) = 1,

the coarsening ratio for E ′b, representing the directed edge (H,C, s), is r(E ′b) =

1
max(1,1,1,1)

= 1.

The set of all edges representing a double bond from C to C is E ′′b = {(3, 4, d), (4, 3, d)}

and has a coarsening ratio of r(E ′′b) = 1 as both nodes 3 and 4 have a degree of 1.

20

Consider now the compound G2 in Figure 4.1 (d). It can be represented as

the labeled graph in Figure 4.1 (e). In this case, the set of edges Ee = {(2, 1, s),

(3, 1, s), (3, 4, s), (3, 5, 6, s)}, representing a single bond from C to H, has coarsening

ratio r(Ee) = 1
max(1,3)

= 0.33 as deg(2, s,H) = 1 and deg(3, s,H) = 3. For the set of

edges representing the single bond from H to C, the coarsening ration is 0.5 in G2.

For the compound in Figure 4.1 (f), the coarsening for the set of edges representing

the single bond from C to H is 0.25, while from H to C it is 1.

As we can see, the coarsening ratio allows to distinguish among different graph

structures.

It is worth noting that the coarsening ratio is always a value in the interval (0, 1]∪

{∞}.

In our framework, we coarsen labeled graphs to edge-labeled double-weighted2

graphs. Specifically, the edge weighting function ω keeps track of the number of

collapsing edges, while the edge weighting function ρ assigns the coarsening ratio to

each edge in the coarsened graph.

Definition 14 (Coarsening). Let G = (V,E, ν) be a labeled graph. A coarsening of

G is an edge-labeled double-weighted graph G′ = (V ′, E ′, ω, ρ) such that:

• V ′ = {ν(u)|u ∈ V }, i.e. we merge in a unique vertex all vertices in G having

the same vertex label (as a consequence, we have |V ′| ≤ |V |),

• E ′ = {(ν(u), ν(v), ep)|(u, v, ep) ∈ E},

• ω : E ′ → Z≥0 is an edge weighting function s.t. for each edge e = (u′, v′, ep) ∈

E ′, ω(e) = |A(u′, v′, ep)|, where A(u′, v′, ep) = {(u, v, ep) ∈ E|u ∈ ν−1(u′) ∧ v ∈

ν−1(v′)}, and

2We have two weighting functions for the edges.

21

Figure 4.2: (a) (resp. (b), (c)) coarsening of graph G1 (resp. G2, G3) from Figure 4.1
according to Definition 14.

• ρ : E ′ → (0, 1] is an edge weighting function s.t. for each edge e = (u′, v′, ep) ∈

E ′, ρ(e) = r(A(u′, v′, ep)).

Example 5. Consider graphs G1, G2, and G3 from Figure 4.1. The coarsening of

labeled graphs representing G1, G2, and G3 is shown in Figure 4.2 (a),(b), and (c),

respectively.

The main differences between Definition 14 and the graph coarsening proposed

in [17] are the introduction of the coarsening ratio and the absence of a contraction

factor regulating the number of nodes in the coarsening (hence we are parameter-free).

4.1.1 Algorithm

Algorithm 1 shows how to coarsen graphs. The algorithm takes a graphG as input and

returns the coarsening C of G. We use a hashmap to store coarsening for efficiency.

For each node in G, lines 6-9 compute the degree of outgoing edges of a node w.r.t

edge label and destination node label. Coarsening ratio and edge counts are computed

on line 17 and 18 respectively. For completeness, line 19 adds coarsening of nodes.

22

Algorithm 1 Graph Coarsening

Input: Graph G = (V,E, ν)
Output: Coarsening C

1: Let C be a hashmap
2: Let deg be a hashmap
3: for u ∈ V do
4: if ν(u) 6∈ C then
5: Let C[ν(u)] be a hashmap
6: for e = (u, v, `) ∈ {e′ ∈ E|e′ = (u,w, `′)} do
7: if (u, `, ν(v)) 6∈ deg then
8: deg[(u, `, ν(v))]← 0
9: Increment deg[(u, `, ν(v))] by 1

10: C[ν(u)][][]← (0,∞) (for completeness)
11: for key = (u, `, ν(v)) ∈ deg do
12: if ν(v) 6∈ C[ν(u)] then
13: Let C[ν(u)][ν(v)] be a hashmap
14: if ` 6∈ C[ν(u)][ν(v)] then
15: C[ν(u)][ν(v)][`]← (0,∞)
16: r = 1/deg[key]
17: if r < C[ν(u)][ν(v)][`][1] then
18: C[ν(u)][ν(v)][`][1]← r (coarsening ratio)
19: Increment C[ν(u)][ν(v)][`][0] by deg[key] (edge count)

4.1.2 Complexity Analysis

The time complexity CoT of coarsening is O(|V | + |E|). The coarsening algorithm

iterates through each node and edge only once. The space complexity SoT of coars-

ening is O(|V |+ |E|) as most space will be utilized when a graph contains edges with

distinct labels for nodes and edges.

4.1.3 Coarsening and Graph Containment

Graph coarsening can be used to prune database graphs that do not contain a query.

The following proposition states that we can use coarsening ratio (function ρ) and

23

edge count (function ω) to give sufficient conditions to determine if a labeled graph

is not contained in another one.

Proposition 1 (Graph containment). Let G1 and G2 be two labeled graphs and let

G′1 = (V1, E1, ω1, ρ1) (resp. G′2 = (V2, E2, ω2, ρ2)) be the coarsening of G1 (resp.

G2). Let e1 = (u, v, `) ∈ E1 and e2 = (u, v, `) ∈ E2 be two coarsened edges. If

ω1(e1) > ω2(e2) or ρ1(e1) < ρ2(e2) then G1 6⊆ G2.

Proof by contradiction. Let us assume that G1 ⊆ G2 and let H1 ⊆ G1 (resp. H2 ⊆

G2) be the subgraph of G1 (resp. G2) such that the coarsening of H1 (resp. H2) is

equal to e1 (resp. e2). Since G1 ⊆ G2, then, by definition of coarsening, also H1 ⊆ H2.

It follows that, as H1 ⊆ H2, we must have that ω1(e1) ≤ ω2(e2) and ρ1(e1) ≥ ρ2(e2),

which contradicts the hypothesis.

Example 6. Consider graphs G1, G2, and G3 from Figure 4.1 whose coarsening is

shown in Figure 4.2. According to Proposition 1 we can say that G2 6⊆ G1, G2 6⊆ G3,

G3 6⊆ G1, and G3 6⊆ G2.

Consider, for instance, the case G2 6⊆? G1. Let e1 = (C,H, s) be the edge from

C to H in the coarsening G′1 = (V ′1 , E
′
1, ω1, ρ1) of G1 (shown in Figure 4.2 (a)) and

let e2 = (C,H, s) be the same edge but in the coarsening G′2 = (V ′2 , E
′
2, ω2, ρ2) of

G2 (shown in Figure 4.2 (b)). We have that ρ2(e2) > ρ1(e1) and then, G2 cannot

be contained in G1. The motivation is that G2 contains the features C − H3, i.e. a

Carbon atom connected with three Hydrogen atoms, that in not present in G1 where

the biggest substructure involving C and H is C −H2, i.e. a Carbon atom connected

with two Hydrogen atoms.

Proposition 1 just provides sufficient conditions. We need, in fact, the subgraph

isomorphism test to say that G1 6⊆ G2 and G1 6⊆ G3. However, we can simply say

24

that G1 6⊆ G2 because G1 has four different nodes labeled as H, while G2 contains

only three of them. Therefore, we introduce this additional candidate pruning step

in candidate set generation (see Section 5.1).

25

CHAPTER 5

GRAPH-COARSENING BASED INDEX

The index we propose uses coarsened edges as features instead of frequent subgraphs.

A coarsened graph is easier to index as the information contained in it can

be represented using a hashmap. Graphs in a coarsened graph database can be

grouped by distinct edges, edge weights, and coarsening ratio as the key while graph

IDs are stored as the value. Given a coarsened graph G = (V,E, ω, ρ) and an

edge e = (u, v, `) ∈ E, the index key for the edge e is defined as the 5-tuple

key(e) = 〈u, v, `, ω(e), ρ(e)〉. For a graph database D, the value, denoted by value(e),

for the key key(e) is given by the set of IDs of graphs in D whose coarsening

contains the edge e. As we are dealing with edge labeled double-weighted graphs,

we refer to the following definition of subgraph isomorphism. Let G = (V,E, ω, ρ)

and G′ = (V ′, E ′, ω′, ρ′) be two edge labeled double-weighted graphs. A subgraph

isomorphism is an injective function f : V → V ′ such that (1) ∀e = (u, v, `) ∈ E,

e′ = (f(u), f(v), `) ∈ E ′, (2) ω(e) = ω′(e′), and ρ(e) = ρ′(e′).

In addition, we also index each single vertex v appearing in a coarsened graph

with key key(v) equal to the 5-tuple (v, , , 0,∞) and value value(v) equal to the set

of IDs of graphs in D whose coarsening contains the vertex v.

Our graph-coarsening based index I is then constructed in three steps.

For each graph G ∈ graph database D,

26

Figure 5.1: A sample graph database D.

1. coarsen G to G′ = (V ′, E ′, ω, ρ),

2. for all edges e ∈ E ′, compute key(e);

if I contains key(e), then add id(G) to value(key(e))

otherwise, insert key(e) in index I with value value(key(e)) = {id(G)};

3. for all vertices v ∈ V ′, compute key(v);

if I contains key(v), then add id(G) to value(key(v))

otherwise, insert key(v) in index I with value value(key(v)) = {id(G)};

The cost to build our index is CoT .|D| or, O((|V |+ |E|)× |D|). And, the cost to

store our index is SoT .|D| or, O((|V |+ |E|)× |D|).

Example 7. Consider the graph database in Figure 5.1. The corresponding graph-

coarsening based index I is shown in Figure 5.2.

It is worth noting that our proposed index is parameter-free, as we are not using

any parameter to coarsen a graph. Moreover, the size of the index is linear in the size

of the graph database, whereas hybrid -indexes index frequent fragments whose size

is exponential in the one of the database.

In addition, since several nodes and edges in a graph database are frequent

(consider, for instance, the case of chemical compounds databases or social networks

where nodes having the same property can be merged together), the size of our

27

Figure 5.2: Graph-coarsening based index I for graph database D in Figure 5.1. The
pair (c, r) denotes the collapsing edge count c and the coarsening ratio r.

graph-coarsening index remains smaller than the database size and can be stored in

the main memory. This also enhances the scalability of our index.

5.1 Query Processing

After the graph-coarsening based index I is constructed for graph database D, query

processing comprises of (1) generating candidate answer set and (2) candidate verifi-

cation.

Candidate answer set CQ for query Q = (V,E, ν) is generated as follows:

1. Coarsen the graph query Q to Q′ = (V ′, E ′, ω, ρ);

2. Let CQ = D. For each edge e(u, v, `) ∈ Q′, intersect CQ with all value sets re-

trieved from the index and corresponding to the set of keys K = {(u, v, `, p, q) ∈

28

Figure 5.3: A sample graph query Q (left) and its coarsening Q′ (right).

I | p ≥ ω(e) ∧ q ≤ ρ(e)}:1

CQ = CQ
⋂

e(u,v,`)∈E′

(⋂
k∈K

value(k)
)

3. Remove from CQ all graphs G = (VG, EG, νG) such that there exists a node

v ∈ VG such that

|{u ∈ VG|νG(u) = νG(v)}| < |{u′ ∈ V |ν(u′) = νG(v)}|

i.e. the graph G does not have enough nodes with label νG(v) to contain the

query Q.

Example 8. Consider the graph database D from Figure 5.1, the corresponding graph-

coarsening based index I shown in Figure 5.2, and the query Q and its coarsening

Q′ = (V ′, E ′, ω, ρ) from Figure 5.3. E ′ contains two edges: e1 = (C,H, s) and e2 =

(H,C, s). By considering edge e1, we have to retrieve from the index I and intersect

all value sets corresponding to the set of keys K1 = {(C,H, s, p, q) ∈ I | p ≥ 2∧q ≤ 1}.

Then, we have

1In case Q′ is a graph containing a single vertex v and no edges, CQ = CQ∩value((v, , , , 0,∞)).

29

C ′Q =
⋂
k∈K1

value(k) = {G1, G2, G3, G4, G5}

The set of database graphs that may contain edge e2 is given, instead, by the

intersection of all value sets corresponding to the set of keys K2 = {(H,C, s, p, q) ∈

I | p ≥ 2 ∧ q ≤ 0.5}, i.e.

C ′′Q =
⋂
k∈K2

value(k) = {G2, G5}

Finally, the candidate answer set CQ for query Q is

CQ = C ′Q ∩ C ′′Q = {G2, G5}

The cost of query answering is,

CoQueryAnswering = CoCoarsening + CoCandidateGeneration + CQ ∗ Tsub

= CoT +O(|VQ|+ |EQ|) + CQ ∗ Tsub

= O(|VQ|+ |EQ|) + CQ ∗ Tsub

where, Tsub is the time for subgraph isomorphism test. When no graph is pruned by

the index (worst case), CQ = |D|.

5.2 Index Update

The index we are proposing is easy to update as graph database changes. Updates

are required only when graphs are added to or removed from the database since the

30

index is query-independent. Conversely, one-pass algorithm needs to update the

index even when the query workload is changed.

Adding. When a new graph G is added to graph database, we follow the steps

of index construction to add the new graph ID to the graph-coarsening based index

I. More specifically, we coarsen G to G′ and, for each edge e in G′, we add the pair

〈key(e), {ID(G)}〉 to index I if key(e) is not present in I, otherwise we add ID(G)

to value(key(e)). A similar index update is done for index entries corresponding to

vertices in G′.

Removing. When a graph G is removed from graph database, its graph ID is

removed from all sets value(key(e)) where e is an edge in coarsened version G′ of G.

Similarly for entries corresponding to vertices in G′. The entry for an edge (and/or

vertex) is removed from the index if only graph G contained it.

It is worth noting that the cost of updating our index is constant in the size of

the graph database, while in the case of hybrid -indexes is inversely correlated to the

“quality” of the index before the update [35].

5.3 Other Indexing Approaches

In this section, we describe the additional approaches we had tried. We compared per-

formance of the approach described previously with these approaches before deciding

to keep it.

5.3.1 Graph Reduction Using Query Before Verification

Once we have a candidate answer set CQ we have to verify whether each graph G ∈ CQ

actually contains the query or not via subgraph isomorphism test. In order to reduce

31

the size of subgraph isomorphism test Q ⊆? G, we reduce the size of graph G by

removing from it all nodes v (and edges involving those nodes) such that there does

not exist a node v′ in Q whose label is the same of v’s label.

We ran an experiment on eMolecules chemical database to assess improvements

of our new approach on different query types, i.e., frequent, infrequent and random

(see Section 6.1 for definition). Table 5.1 shows the verification time results for the

experiment conducted on chemical database. This approach improved the verification

time from 171 ms to 138 ms, for frequent queries, but the reduction time was large

enough (38 ms) that there was no noticeable gain in total time taken. Therefore, we

decided to keep our original approach.

Table 5.1: Runtime Comparison with and without Graph Reduction Using Query on
eMolecules for different query types. Rows with Yes for Graph Reduction in the
table use the new approach.

Query Type Graph Reduction Reduction Time (ms) Verify Time (ms) Total Time (ms)

Frequent
Yes 38 131 169

No 0 170 170

Infrequent
Yes 22 89 111

No 0 109 109

Random
Yes 1 5 6

No 0 5 5

5.3.2 Subgraphs And Their Counts

Consider Figure 4.1, the original index cannot answer that G1 6⊆ G2 and G1 6⊆ G3.

The reason is that there is no information in G1 that is not contained in G2. Let us

consider coarsened edge C−H in Figure 4.2 (a), (b) that represents coarsening of G1

and G2 respectively. The edge count is the same between coarsened G1 and G2 and

32

the coarsening ratio is also greater for C −H in coarsened G1, when G1 is the query,

causing G2 to not be eliminated.

When we reconsider graphs G1 and G2, there is only one subgraph with one C−H2

in G2 but two of such subgraphs in G1. If we add the count of these subgraphs along

with the coarsening ratio of each subgraph, there is only one subgraph C −H2 in G2

which allows for possibility of only one graph that is one C − H2 in G1. G2 can be

eliminated with this approach. Same applies for G3 as there is only one substructure

with one C and four H.

The above approach adds more time to candidate generation as we now need to

count substructures and reduce the count when a substructure matches. It is easy

to reduce the count in the above example, but it becomes difficult when there is

more than one substructure connecting source label to destination label. We need to

eliminate the largest substructures before smaller substructures can be eliminated due

to graph containment problem. Table 5.2 shows run time comparison for experiment

conducted on BlogCatalog3 social network database. The verification time improves

by about 20% for frequent queries but there is no gain for infrequent or random

queries. However, the candidate generation time or filter time increases by 5 times

making the index less desirable. The space usage for the new approach nearly doubled

from 4.8 MB to 8.3 MB as well. Therefore, we decided to keep the original index.

33

Table 5.2: Query Processing Time Comparison with and without subgraph Count.
Rows with Yes for subgraph Count use the new approach.

Query Type subgraph Count Filter (ms) Verify (ms) Total Time (ms)

Frequent
Yes 27 4 31

No 5 5 9

Infrequent
Yes 27 2 29

No 5 2 7

Random
Yes 27 3 30

No 5 3 8

34

CHAPTER 6

EXPERIMENTS AND RESULTS

As reported in Chapter 3, there are many indexes defined for graph databases.

However, the majority of them do not adapt in case of database changes.

As the main goal of our work is to provide a solution for dynamic graph databases,

in this section we compare our graph-coarsening index and the state-of-the-art indexes

working for dynamic graph databases, i.e. hybrid-indexes.

6.1 Experiment Setup

We used the implementation of hybrid -indexes developed for the paper [35] and kindly

provided by the authors. Since their implementation was in Java, we used the same

language to implement our index. The verification algorithm used is VF2 [24].

We ran all the experiments on a 2.8 GHz Intel Xeon E5-1410 processor with 16

GB of RAM and CentOS 7.2.1511. We used two types of datasets in our experiments.

First, to be consistent with previous work [7, 19, 32, 35], we used a chemical database

for index comparison. We chose eMolecules [11] database, which contains 458,835

graphs with mean graph density (MGD) of 0.13. Second, we tested these graph

database indexes on the domain of social networks for the first time. Social networks

are relevant because they are dynamic graphs and can be used to study social re-

lations. Crawling an entire online social network (OSN) is hard these days because

35

of the huge size of the network and restrictions on the API. Often, information is

gathered for individual nodes, together with their neighbors and neighbors’ neighbors,

i.e. ego networks, or with all neighbors up to a fixed distance. It is clear that, in

this case, the retrieved data is in the form of a graph database. Also, OSNs are

dynamic as they continuously chance over time. Since a social network is a single

graph, we computed ego networks from nodes in the social network to generate a

graph database. We use three social networks for comparison, namely DBLP [21],

BlogCatalog3 [36], and Slashdot [21]. Slashdot is a signed network (i.e. it contains

two types of relationships, namely friend and foe relationship) while BlogCatalog3

and DBLP are unsigned. The three social networks have 317,080 (MGD=0.77), 10,312

(MGD=0.89) and 77,357 egos (MGD=0.61) respectively. We labeled nodes in the

social networks as follows. First, we computed the page-rank of nodes in a network

by using the SNAP library [22]; second, we assigned 10 node labels, 0-9, to the nodes

of each social network (there are 7 node labels in eMolecules). To assign a label, we

computed the page rank of each node, and uniformly distributed the page ranks into

10 buckets between the upper and lower bound of the computed page ranks.

The chemical database is indexed with minimum supports of 10%, 20%, 30% and

40% of the database size. For a fair comparison, we use 2%, 3% and 4% for social

networks as there were not many subgraphs at minimum support of 10% or higher.

We set the δ = 0.1 to compute δ-TCFGs for FG-Index.

We considered three types of queries: frequent, infrequent, and random. Frequent

and infrequent queries are defined in Chapter 2. Random queries are graphs or

subgraphs randomly chosen from the graph database. Previous work compared graph

database indexes by using frequent queries only. We give a better picture of how

indexes behave in the case of infrequent and random queries, also. To generate these

36

three types of queries we proceeded as follows. We first mined frequent subgraphs with

a low minimum support of 1%. To generate frequent queries, we then selected mined

subgraphs that have minimum support greater than or equal to the minimum support

used to build the index. To generate infrequent queries, we selected subgraphs that

have a minimum support less than the one of the index (and greater than 1%). To

generate query sets, we randomly sampled a subset of frequent and infrequent queries

respectively. We used database graphs to select random queries and generate query

sets. Each query set contained 1,000 queries. The size of each graph database used

in the experiments is 30,000 graphs. If the number of graphs in the database was

less than 30,000 graphs, we randomly chose graphs from the database till we reached

30,000 graphs.

The index construction time for other indexes on ego networks was daunting

due to the size of the ego networks. Therefore, we used a maximum graph size of

15 for DBLP and BlogCatalog3 ego networks. The two databases contained sparse

graphs. However, ego networks in Slashdot were dense and to construct indexes in

a reasonable amount of time we changed the maximum size constraint to 10 edges.

The graph database for Slashdot was still dense.

We tested the indexes for 10 sets of 1,000 queries for each query type and averaged

the results for each query set and computed the mean of all query sets. If the number

of queries was less than 1,000, queries were randomly repeated to reach desired size.

The frequent and infrequent queries were mined with gSpan [31] using maxL=10.

The index features were also mined with maxL=10.

We compared query answering time, index size and/or index construction time

for different minSup values in each experiment. When considering index size, we

also considered the portion of index that was stored on disk as in case of hybrid -

37

FG-Index. Since a majority of time is spent on candidate answer set verification

during query processing, the size of the candidate answer set is important to speed-up

query answering. Therefore, a faster query answering time suggests a candidate set is

closer to the actual answer. We define this closeness as goodness of candidate answer

set.

We conducted four sets of experiments to compare our graph-coarsening based

index vs. hybrid -indexes. First, we considered no database updates or query work-

load changes (static graph databases) and compared the indexes according to query

answering time and index size for different minSup values. Results are reported in

Section 6.2. Second, we compared the indexes in the case of dynamic graph databases,

i.e. when graphs are added to or removed from the database. Results are reported in

Section 6.3. Third, we compared the indexes with regard to query workload changes.

Results are shown in Section 6.4. Finally, we studied the scalability of our index vs.

hybrid -indexes. Results are shown in Section 6.5.

6.2 Our index vs. hybrid-indexes

We compare our graph-coarsening index with hybrid -indexes. We built hybrid -indexes

for different minSup values. Our index was constructed only once as we are not

dependent on minimum support. The common trend we observe across all databases

is that the run time for query answering of our graph-coarsening index is, by definition

of the index, independent of the minimum support chosen to build other indexes or

to generate the query sets, and therefore near constant, while hybrid -indexes start to

perform worse as the minSup increases because a lesser number of features is indexed.

Results are reported in the following subsections.

38

Table 6.1: Count of index features on Social Network Databases for Standalone Index
comparison

Social Network Database Index
minSup

2% 3% 4%

BlogCatalog3

hybrid -gIndex 9638 9162 9038

hybrid -FG-Index 8246 2746 1118

coarsening 907 907 907

DBLP

hybrid -gIndex 1583 1487 1453

hybrid -FG-Index 936 497 308

coarsening 446 446 446

Slashdot

hybrid -gIndex 1439 1436 1435

hybrid -FG-Index 64 44 33

coarsening 263 263 263

6.2.1 Social Network Databases

The run time on social network databases of our graph-coarsening index vs. hybrid -

indexes for different minimum supports is shown in Figures 6.1, 6.2 and 6.3 for

answering frequent, infrequent, and random queries, respectively. Table 6.1 shows

the number of features indexed for different minSup values by database. The number

of features for FG-Index are reported for what was stored in main memory and on

disk.

In the case of BlogCatalog3 and DBLP databases, our index outperforms other

indexes for frequent and random queries, while, for infrequent queries, the results

are comparable with hybrid -gIndex, but better than hybrid -FG-Index. The indexes

perform better overall in case of BlogCatalog3 than DBLP because the number of

features is higher providing more chances to eliminate candidates, the pruning power

39

Figure 6.1: Runtime comparison for Frequent queries on Social Network databases.

Figure 6.2: Runtime comparison for Infrequent queries on Social Network databases.

per feature is lower however.

Our index contains only 907 features while performing better compared to hybrid -

gIndex and hybrid -FG-Index that contain 9,638 and 8,246 features, respectively for

minSup=2%, in case of BlogCatalog3. For DBLP, our index contains 446 features

while hybrid -gIndex and hybrid -FG-Index contain 1,583 and 986 features respectively

for minSup=2%. Better performance with lesser number of features shows that our

40

Figure 6.3: Runtime comparison for Random queries on Social Network databases.

Figure 6.4: Index memory consumption comparison for Social Network databases.

index has a higher quality of features.

For Slashdot database, we observe a different pattern. Our index performs

comparably to both hybrid -gIndex and hybrid -FG-Index for frequent queries, but

outperforms them for infrequent and random queries. This shows our index performs

well for dense databases as well.

In general, we observe our index to be independent of the database and query

41

type (and min support as well) and we are always able to answer any query in less

than 20 ms for social network databases.

The comparison of memory consumption between our graph-coarsening index

and hybrid -indexes for different minimum supports is shown in Figure 6.4 for social

network databases. We require up to 4 times less space compared to hybrid -gIndex

while up to 10 time less space compared to hybrid -FG-Index (see BlogCatalog3 min-

Sup=2%). Lesser number of index features in Table 6.1 also supports that our index

requires less memory. Higher memory consumption in case of hybrid -FG-Index with

less features is due to index stored on disk compared to our index or hybrid -gIndex

which are stored in main memory only.

Figure 6.5: Runtime comparison for Frequent queries on eMolecules database.

6.2.2 Chemical Database

Figures 6.5, 6.6 and 6.7 show the running time comparison on chemical database for

answering frequent, infrequent, and random queries, respectively. Table 6.2 shows the

number of features indexed for different minSup values by database. The number of

42

Figure 6.6: Runtime comparison for Infrequent queries on eMolecules database.

Figure 6.7: Runtime comparison for Random queries on eMolecules database.

features for hybrid -FG-Index are reported for what was stored in main memory and

on disk.

For frequent queries, our index is comparable for 10% and starts to beat com-

petitors from a minimum support of 20%. The hybrid -indexes benefit from structure

information contained in the index when the minSup is low requiring less subgraph

isomorphism tests because more queries are answered by the index directly, without

43

Figure 6.8: Index memory consumption comparison for eMolecules databases.

verification. But as minSup increases, lesser number of queries is answered directly

that requires index feature joins to generate candidate answer sets. Therefore, more

subgraph isomorphism tests need to be performed to get the answer. The number

of features in our index is less than hybrid -indexes for minSup ≤ 30% but better or

comparable performance which shows our index has a higher quality of features.

We beat hybrid -FG-Index at minSup=40% for infrequent queries. And, we are

comparable with hybrid -FG-Index for random queries on testing with the same min-

imum support.

The size of the candidate set for queries against graph-coarsening index grows as

support of the queries decreases. A less frequent coarsened query is contained in a

larger set of graphs because the coarsening is more common in the graphs than the

structure of the query itself and requires more time for verification. This is why the

query answering time is nearly constant across different minimum supports for our

index.

The comparison of memory consumption between our graph-coarsening index and

44

Table 6.2: Count of index features on Chemical Database for Standalone Index
comparison

Chemical Database Index
minSup

10% 20% 30% 40%

eMolecules

hybrid -gIndex 799 596 532 512

hybrid -FG-Index 2619 769 361 229

coarsening 329 329 329 329

hybrid -indexes for different minimum supports is shown in Figure 6.8 for the chemical

database. In general, our index uses far less memory than competitors.

We require 4 to 6 times less space compared to hybrid -gIndex while 6 times to

17 times less space compared to hybrid -FG-Index to store the index when going from

40% minimum support to 10% minimum support. Lesser number of index features

in Table 6.2 also supports that our index requires less memory.

6.2.3 Discussion

The main difference between chemical and social network databases is that a chemical

database is rich in frequent subgraphs as the number of atoms (node labels) is fixed

and they follow precise rules to form bonds among themselves making a higher

number of subgraphs redundant. Ego networks present more variety than chemical

compounds. In numbers, for a minSup equal to 4% of database size, we have 1,270

discriminative fragments in hybrid -gIndex for eMolecules. But we have 1,453 and

9,038 discriminative fragments in case of DBLP and BlogCatalog3. Higher number of

discriminative fragments suggests that the pruning power of hybrid -gIndex for social

network databases is lesser because fewer index features aid in pruning out graphs

for a frequent query.

45

(a) Query time.

(b) Update time.

Figure 6.9: (a) Runtime comparison for graph DB change between different datasets
for frequent queries. (b) Index update time comparison.

6.3 Comparison on Dynamic Graph Databases

To simulate a dynamic graph database, we replace 40% of the graphs in each of our

four databases with new graphs. We use only frequent queries for comparison as the

change affects them the most. We first built the index with the original database and

ran a set of frequent queries. We used the same set of queries as the query workload

for index update. Then, we used one-pass to update hybrid -indexes for the changed

database. To construct the hybrid -index, we used minSup equal to 10% of database

size for eMolecules and minSup=2% for social network databases.The α parameter

46

in the swapping criterion for updating the hybrid -indexes with one-pass algorithm

was set to 0.99.

Figure 6.9 (a) shows the query answering time before and after the index update.

We observe that hybrid -indexes benefit from the update made by one-pass algorithm,

especially in the case of chemical database. Our index, instead, is up to date at any

time and maintains a constant pruning power, independently of the database update.

Our index is comparable for social network databases in terms of query processing

before and after the update. Regarding the time for updating the index, as shown in

Figure 6.9 (b), we are up to 60 times faster than one-pass algorithm.

6.4 Query Workload Changes

In this section, we compare the querying time when the query workload type changes

over time. The one-pass uses query workload changes to detect and update the

index. It uses ADWIN [3] for change detection and if the query workload has changed

significantly, update is applied to the index. Our index does not depend on query

workload and remains current with regards to it. Moreover, we do not have any cost

in updating the index as we are query independent.

We set the size of each query workload type to 10,000 queries and ran queries

in batches of 100. We changed the workload from frequent queries to random or

infrequent queries, and back to frequent queries. Since the index performs differently

with different workloads, we started with frequent queries for optimal index perfor-

mance. To increase feature swaps, we tried four approaches before reverting back

to frequent queries. We either changed the query workload to contain infrequent or

random queries only, or we changed the query workload to be infrequent then random

47

or random then infrequent. For ease of understanding, the query workload changes

we used are as follows.

1. Frequent → Infrequent → Frequent queries

2. Frequent → Random → Frequent queries

3. Frequent → Infrequent → Random → Frequent queries

4. Frequent → Random → Infrequent → Frequent queries

Change in query workload was detected by ADWIN which triggered index update

and features were swapped. While the index was updating, we used the current index

until the updated index was available for use. We ran hybrid -indexes with minSup =

2% (resp. 10%) in case of social networks (resp. eMolecules).

Figure 6.10 and 6.11 show the query answering time for this experiment on

DBLP and eMolecules, and Figure 6.12 and 6.13 show the query answering time

on BlogCatalog3 and Slashdot. The results are plotted using a line graph for each

batch of 100 queries and workload change can be noticed as querying time changes for

every 10,000 queries. While running the code for hybrid -indexes, the code to update

the index threw exception. The runtime after exception is reported as dropping to

zero. It is unclear why the code threw exception. Since we were using previous

implementation, we did not modify it.

The hybrid -indexes benefit from update when query workload changes from fre-

quent to infrequent. There is no improvement in overall performance otherwise.

hybrid -FG-Index benefits from update when the query workload changes back to

frequent queries from infrequent or random queries while hybrid -gIndex performs

about the same regardless of the update. Our index outperforms hybrid -indexes

48

on social network databases and results independent of the query workload. For

frequent queries, we are up to 15 times better than hybrid -FG-Index and up to 7 times

better than hybrid -gIndex. In the case of chemical database, we are comparable, and

sometimes better, than competitors on frequent queries.

6.5 Scalability

In this section, we compare the scalability of our graph-coarsening index with hybrid -

indexes. For this experiment, we followed the same approach as one-pass paper [35],

i.e., we randomly sample five graph databases from eMolecules database. These

databases have a size from 216 to 220 graphs.

Figures 6.14 (a) and (b) show the index construction time and memory usage, re-

spectively, for different database sizes. hybrid -indexes were built with minSup=10%.

Our graph-coarsening based index is always faster to construct and requires up to

6 (resp. 5) times less space than hybrid -FG-Index (resp. hybrid -gIndex). Results

show our index grows linearly space-wise, while other indexes grow exponentially,

with increase in database size, making our index desirable for larger databases.

Moreover, we also compare the construction time and memory usage with different

minimum supports in the case of a database containing 216 graphs. Results are shown

in Figures 6.14 (c) and (d), respectively. The running time to build the index and the

memory usage are represented by a flat line in the case of our graph-coarsening index

as we are independent of the minimum support. As expected, both construction time

and memory usage decrease for hybrid -indexes as the value of minSup increases.

49

6.6 Results Summary

In summary, our index outperforms competitors on denser graph databases (e.g. so-

cial networks) and performs comparably for sparse ones (e.g. chemical databases).

Experimental results show that:

(1) We outperform state-of-the-art indexes for query answering time by up to 3

times in the case of social network databases. In the case of chemical database, we

are comparable with hybrid -indexes for frequent and infrequent queries.

(2) We are scalable with a faster construction time and smaller index size.

(3) We can update our index up to 60 times faster in comparison to one-pass

algorithm for dynamic graph databases.

(4) Our index is independent of the query workload for index update and is up to

15 times better after hybrid indexes are attuned to query workload.

50

(a
)

Q
u

er
y

w
or

k
lo

ad
ch

an
g
e

fr
o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
D
B
L
P
.

(b
)

Q
u
er

y
w

or
k
lo

ad
ch

an
g
e

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
D
B
L
P
.

(c
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
D
B
L
P
.

(d
)

Q
u
er

y
w

or
k
lo

ad
ch

an
g
e

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
D
B
L
P
.

F
ig

u
re

6.
10

:
R

u
n
ti

m
e

co
m

p
ar

is
on

fo
r

q
u
er

y
w

or
k
lo

ad
ch

an
ge

fo
r
D
B
L
P
.

51

(a
)

Q
u

er
y

w
o
rk

lo
a
d

ch
an

ge
fr

o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
e
M
o
l
e
c
u
l
e
s
.

(b
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
o
m

fr
eq

u
en

t
to

ra
n

d
o
m

q
u

er
ie

s
fo

r
e
M
o
l
e
c
u
l
e
s
.

(c
)

Q
u

er
y

w
o
rk

lo
a
d

ch
a
n

ge
fr

o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
e
M
o
l
e
c
u
l
e
s
.

(d
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
o
m

fr
eq

u
en

t
to

ra
n

d
o
m

q
u

er
ie

s
fo

r
e
M
o
l
e
c
u
l
e
s
.

F
ig

u
re

6.
11

:
R

u
n
ti

m
e

co
m

p
ar

is
on

fo
r

q
u
er

y
w

or
k
lo

ad
ch

an
ge

fo
r
e
M
o
l
e
c
u
l
e
s
.

52

(a
)

Q
u

er
y

w
or

k
lo

ad
ch

an
g
e

fr
o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
B
l
o
g
C
a
t
a
l
o
g
3
.

(b
)

Q
u
er

y
w

or
k
lo

ad
ch

an
g
e

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
B
l
o
g
C
a
t
a
l
o
g
3
.

(c
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
B
l
o
g
C
a
t
a
l
o
g
3
.

(d
)

Q
u
er

y
w

or
k
lo

ad
ch

an
g
e

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
B
l
o
g
C
a
t
a
l
o
g
3
.

F
ig

u
re

6.
12

:
R

u
n
ti

m
e

co
m

p
ar

is
on

fo
r

q
u
er

y
w

or
k
lo

ad
ch

an
ge

fo
r
B
l
o
g
C
a
t
a
l
o
g
3
.

53

(a
)

Q
u

er
y

w
o
rk

lo
a
d

ch
an

ge
fr

o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
S
l
a
s
h
d
o
t
.

(b
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
S
l
a
s
h
d
o
t
.

(c
)

Q
u

er
y

w
o
rk

lo
a
d

ch
a
n

ge
fr

o
m

fr
eq

u
en

t
to

in
fr

eq
u

en
t

q
u

er
ie

s
fo

r
S
l
a
s
h
d
o
t
.

(d
)

Q
u

er
y

w
or

k
lo

ad
ch

an
ge

fr
om

fr
eq

u
en

t
to

ra
n

d
om

q
u

er
ie

s
fo

r
S
l
a
s
h
d
o
t
.

F
ig

u
re

6.
13

:
R

u
n
ti

m
e

co
m

p
ar

is
on

fo
r

q
u
er

y
w

or
k
lo

ad
ch

an
ge

fo
r
S
l
a
s
h
d
o
t
.

54

(a) Index construction time for different database sizes.

(b) Memory consumption for different database sizes.

Figure 6.14: Scalability comparison: Index construction time and memory consump-
tion.

56

CHAPTER 7

CONCLUSIONS

7.1 What have we done so far?

We proposed a new index based on graph-coarsening for speeding up the query

answering time in dynamic graph databases. The index is parameter-free, query-

independent, scalable, small enough to store in the main memory, and is simpler and

less costly to maintain in case of database updates.

Experimental results showed that we outperform hybrid -indexes for query answer-

ing time in the case of social network databases. In the case of chemical database,

we are comparable with competitors for frequent and infrequent queries. We can

update our index up to 60 times faster in comparison to one-pass for dynamic graph

databases. Moreover, our index is independent of the query workload for index update

and is up to 15 times better after hybrid -indexes are attuned to query workload.

7.2 Future directions

We have tested our index for several real datasets. As future work, we would like to

measure performance of our index on synthetic datasets. It will help us understand

how the index behaves with different types of data. To generate graph databases, we

will vary parameters such as

57

• Number of nodes

• Density

• Number of distinct node labels

• Number of graphs in the database

Queries will be generated for each parameter after the database has been created.

We will compare the results with state-of-the-art static indexes such as GRAPES [19]

and GraphGrepSX [4]. We will use GraphGen [1] algorithm to generate synthetic

data.

In future, we also plan to use our index to study the following.

• Test our graph-coarsening based index for supergraph search, i.e. when the

answer to a query Q is the set of all graph databases G s.t. Q ⊇ G, and compare

our performances with cIndex [6], the state-of-the-art index for supergraph

query and cIndex updated by one-pass.

• Compare performance of our index on a cluster for very large graph databases

by exploring ways a database can be distributed over a cluster.

• Study substructure similarity search in graph databases, i.e. finding similar

structures in a graph database by edge relaxations on a query graph [33]. Basi-

cally, edge relaxation allows node and edge labels to be ignored in a query graph

while preserving total edge counts. Our index can adapt to these relaxations

and can be used to generate a candidate set.

• Adapt our index to solve the top-k problem, i.e. finding top-k graphs in a graph

database that are most similar to a query graph [39].

58

REFERENCES

[1] Graphgen — a synthetic graph data generator. http://www.cse.ust.hk/

graphgen/.

[2] Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Efficient matching
and indexing of graph models in content-based retrieval. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(10):1089–1105, 2001.

[3] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, and Ricard Gavaldà. Mining
frequent closed graphs on evolving data streams. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’11, pages 591–599, 2011.

[4] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and Den-
nis Shasha. Enhancing graph database indexing by suffix tree structure. In
Proceedings of the 5th IAPR International Conference on Pattern Recognition in
Bioinformatics, PRIB’10, pages 195–203, 2010.

[5] Christian Borgelt and Michael R Berthold. Mining molecular fragments: Finding
relevant substructures of molecules. In Proceedings of the 2002 IEEE Interna-
tional Conference on Data Mining, ICDM’02, pages 51–58. IEEE, 2002.

[6] Chen Chen, Xifeng Yan, Philip S Yu, Jiawei Han, Dong-Qing Zhang, and Xiaohui
Gu. Towards graph containment search and indexing. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB’07, pages 926–937,
2007.

[7] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: Towards
verification-free query processing on graph databases. In Proceedings of the 2007
International Conference on Management of Data, SIGMOD’07, pages 857–872,
2007.

[8] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: An adaptive path
index for xml data. In Proceedings of the 2002 International Conference on
Management of Data, SIGMOD’02, pages 121–132, 2002.

59

[9] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC’71, pages
151–158, 1971.

[10] Raffaele Di Natale, Alfredo Ferro, Rosalba Giugno, Misael Mongiov̀ı, Alfredo
Pulvirenti, and Dennis Shasha. Sing: Subgraph search in non-homogeneous
graphs. BMC bioinformatics, 11(1):96, 2010.

[11] eMolecules Database. http://www.emolecules.com.

[12] GitLab. http://www.gitlab.com.

[13] Rosalba Giugno, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti, Alfredo
Ferro, and Dennis Shasha. Grapes: A software for parallel searching on biological
graphs targeting multi-core architectures. PloS one, 8(10):e76911, 2013.

[14] Wook-Shin Han, Jinsoo Lee, Minh-Duc Pham, and Jeffrey Xu Yu. igraph: A
framework for comparisons of disk-based graph indexing techniques. Proceedings
of the VLDB Endowment, 3(1):449–459, 2010.

[15] Huahai He and Ambuj K Singh. Closure-tree: An index structure for graph
queries. In Proceedings of the 22nd International Conference on Data Engineer-
ing, ICDE’06, pages 38–38, 2006.

[16] CA James, D Weininger, and J Delany. Daylight theory manual daylight version
4.82. daylight chemical information systems, 2003.

[17] Chanhyun Kang, Sarit Kraus, Cristian Molinaro, Francesca Spezzano, and V. S.
Subrahmanian. Diffusion centrality: A paradigm to maximize spread in social
networks. Artificial Intelligence, 239:70–96, 2016.

[18] Akshay Kansal and Francesca Spezzano. A scalable graph-coarsening based
index for dynamic graph databases. In 26th ACM International Conference on
Information and Knowledge Management (CIKM), CIKM’17, 2017.

[19] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. Performance and
scalability of indexed subgraph query processing methods. Proceedings of the
VLDB Endowment, 8(12):1566–1577, 2015.

[20] Karsten Klein, Nils Kriege, and Petra Mutzel. Ct-index: Fingerprint-based graph
indexing combining cycles and trees. In Proceedings of the 27th International
Conference on Data Engineering, ICDE’11, pages 1115–1126, 2011.

[21] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, 2014.

60

[22] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST), 8(1):1, 2016.

[23] Thomas Madej, Jean-François Gibrat, and Stephen H Bryant. Threading a
database of protein cores. Proteins: Structure, Function, and Bioinformatics,
23(3):356–369, 1995.

[24] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub)graph isomorphism algorithm for matching large graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(10), 2004.

[25] Euripides G. M. Petrakis and A Faloutsos. Similarity searching in medical image
databases. IEEE Transactions on Knowledge and Data Engineering, 9(3):435–
447, 1997.

[26] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming ver-
ification hardness: An efficient algorithm for testing subgraph isomorphism.
Proceedings of the VLDB Endowment, 1(1):364–375, 2008.

[27] Ali Shokoufandeh, Sven J Dickinson, Kaleem Siddiqi, and Steven W Zucker.
Indexing using a spectral encoding of topological structure. In Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 2 of CVPR’99, 1999.

[28] SMILES. https://en.wikipedia.org/wiki/Simplified molecular-input line-
entry system.

[29] David W Williams, Jun Huan, and Wei Wang. Graph database indexing
using structured graph decomposition. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE’07, pages 976–985, 2007.

[30] Yan Xie and Philip S Yu. Cp-index: on the efficient indexing of large graphs.
In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, CIKM’11, pages 1795–1804, 2011.

[31] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining.
In Proceedings of the 2002 IEEE International Conference on Data Mining,
ICDM’02, pages 721–724, 2002.

[32] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent
structure-based approach. In Proceedings of the 2004 International Conference
on Management of Data, SIGMOD’04, pages 335–346, 2004.

61

[33] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph
databases. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’05, pages 766–777, 2005.

[34] Dayu Yuan and Prasenjit Mitra. Lindex: a lattice-based index for graph
databases. The VLDB Journal, 22(2):229–252, 2013.

[35] Dayu Yuan, Prasenjit Mitra, Huiwen Yu, and C. Lee Giles. Updating graph
indices with a one-pass algorithm. In Proceedings of the 2015 International
Conference on Management of Data, SIGMOD’15, pages 1903–1916, 2015.

[36] Reza Zafarani and Huan Liu. Social computing data repository at ASU.
http://socialcomputing.asu.edu, 2009.

[37] Shijie Zhang, Meng Hu, and Jiong Yang. Treepi: A novel graph indexing
method. In Proceedings of the 23rd International Conference on Data Engi-
neering, ICDE’07, pages 966–975, 2007.

[38] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graph indexing: Tree + delta
>= graph. In Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, pages 938–949, 2007.

[39] Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, and Hong Cheng. Finding top-k similar
graphs in graph databases. In Proceedings of the 15th International Conference
on Extending Database Technology, EDBT’12, pages 456–467, 2012.

[40] Lei Zou, Lei Chen, Jeffrey Xu Yu, and Yansheng Lu. A novel spectral coding
in a large graph database. In Proceedings of the 11th international conference
on Extending database technology: Advances in database technology, EDBT’08,
pages 181–192, 2008.

62

APPENDIX A

REPRODUCING EXPERIMENTS

A.1 Getting the code

The code can be downloaded from GitLab [12] at the URL below. The repository

will be made public after publication of this thesis.

URL: https://akshaykansal1@gitlab.com/akshaykansal1/graph-index.git

The repository can be cloned and opened in Eclipse. We used Mars to write the

code. The code was written in and is compatible with Java SE 7.

A.2 Data Formats

The implementation mainly deals with two formats of graph data.

1. SMILES [28] - Mainly for chemical data from eMolecules.

2. Generic Graph Format

A.2.1 Generic Graph Format

This format was introduced with gSpan [31]. The graph in the example below are

undirected.

Example:

t represents the beginning of graph, v represents a node with node id i and label l

63

and e represents an edge that connects source node id i to destination node id j with

label el.

t # 0 (graph id)

v 0 0 (v i l)

v 1 0

v 2 0

e 0 1 1 (e i j el)

e 1 2 1

e 0 2 1

A.3 Running The Code

This section covers the basic structure of the code base, file naming conventions used,

data formatting for social networks and running experiments.

Please Note: All code written in this repository has file names hard coded

A.3.1 Repository Structure

The repository is structured as follows.

1. ./dblp, ./slashdot, ./blogcatalog, ./gindex contain the data used for the

experiments.

2. ./lib contains jar needed to run the code.

3. ./src/graphindex contains all of our implementations. Other folders under

./src contain the implementation from one-pass [35].

64

A.3.2 File Naming Convention

To make it easier to find the code, we used simple file naming conventions.

• UniformGraphPicker* to generate graph database using uniform distribution.

• UniformGraphQueries* to generate queries from graph database chosen from

respective UniformGraphPicker* class.

• ScalabilityGraphPicker class generates five databases used for scalability

experiment.

• CoarseningIndex for our graph-coarsening index.

• CoarseningComparison* for code that is used to run the comparison against

competition.

• CoarseningIndexDBUpdate* for code that is used to run changing graph database

comparison against competition.

• StandaloneExp* contains code to run experiment on our competition for stan-

dalone indexes.

• ScalabilityExp contains code to run scalability experiment on our competi-

tion.

• IndexUpdateForDB* contains code to run experiment on our competition for

changing graph databases.

• ADWINAutoUpdate* contains code to run query workload change experiment

with ADWIN change detection.

65

A.3.3 Chemical Dataset Conversion

Since the data from eMolecules was in SMILES format, and our index could primarily

work with the other format, we converted each graph parsed accordingly. Therefore,

when working with chemical dataset, appropriate files were automatically selected.

The difference can be observed by looking at file extension. For SMILES, an extension

of “.smiles” will be present and no extension for generic graph format.

A.3.4 Labelling Graphs for Social Networks

When working with social networks from SNAP [21], the edges were undirected,

represented as source-dest. This format did not match the two formats in the previous

section. Therefore, we used the SNAP library to parse the data and convert to the

generic graph format. The problem was that the nodes and edges were not labeled.

We used page rank to label the nodes. The edges were assumed to have the same

label of 1. In case of signed networks, edge labels were 1 and 2 as negative edge labels

did not work with previous implementation. The nodes were labeled by computing

page rank, provided in the API, and uniformly distributing minimum page rank to

maximum page rank into 10 labels from 0-9. Then, ego networks were generated for

each node in the network.

To convert the dataset and label graphs, run PR.py first and then reset nodes.py

in ./dblp, ./blogcatalog and ./slashdot folders. The raw files may not be present

and may need to be downloaded from SNAP [21] or BlogCatalog [36] site. The code

was written in Python 2.6. reset nodes.py was needed because each ego network

needed to start from node 0 regardless of its label.

66

A.3.5 Generating Databases And Queries

1. UniformGraphPicker* helps generate the graph database and write to appro-

priate directories.

2. UniformGraphQueries* helps generate the queries and write to appropriate

directories. It first mines queries using gSpan and then writes them to the file

system.

A.3.6 Experiments

• CoarseningComparison* is used to run the comparison against competition.

• CoarseningIndexDBUpdate* is used to run changing graph database compari-

son against competition.

• StandaloneExp* is used to run experiment on our competition for standalone

indexes.

• ScalabilityExp is used to run scalability experiment on our competition.

• IndexUpdateForDB* is used to run experiment on our competition for changing

graph databases.

• ADWINAutoUpdate* is used to run query workload change experiment with

ADWIN change detection.

A.3.7 Compile And Run

The section shows how to compile and run the code using command line. Using Eclipse

is straight forward. Some classes require command line arguments which can be setup

67

by going to Run→Run Configurations→Arguments and adding the arguments under

Program Arguments textbox.

Command line:

cd ./src

javac -d ../bin -cp .:../lib/*:../lib/moa-release-2012.08.31/* <filename>.java

• For UniformGraphPicker*, UniformGraphQueries*, Coarsening-

ComparisonScalability*, CoarseningComparisonStandalone*,

CoarseningIndexDBUpdate*:

java -cp bin:lib/*:lib/moa-release-2012.08.31/* <filename>

• For CoarseningComparisonADWIN*:

java -cp bin:lib/*:lib/moa-release-2012.08.31/* <filename>

<workload_selector>

• For ScalabilityExp, StandaloneExp*:

java -cp bin:lib/*:lib/moa-release-2012.08.31/* <filename> <index_selector>

• For ADWINAutoUpdate*:

java -cp bin:lib/*:lib/moa-release-2012.08.31/* <filename> <index_selector>

<workload_selector>

