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ABSTRACT 

Wildfires increase erosion in mountainous landscapes. The most catastrophic 

form of post-fire erosion is the debris flow, viscous slurries of water and sediment 

capable of scouring and entraining larger sediment and rafting boulders. Post-fire debris 

flows are particularly hazardous when fire- and debris flow-prone landscapes intersect 

the Wildland Urban Interface (WUI). Homes built into the edge of the flammable WUI 

are at high risk of both wildfire and subsequent debris flows in mountainous landscapes 

of the western US, yet the WUI is expanding at an extraordinary rate. There are 

predictive models that inform citizens, land managers, and local governments of post-fire 

debris flow hazards they face, but they are rarely used at the WUI, where their use may 

be particularly beneficial. 

Wildfire significantly increases the ability of landscapes to erode; post-fire soils 

are damaged, ash-laden and potentially hydrophobic. Damaged hillslopes previously 

protected by vegetation are directly exposed to rainfall where, on steep slopes, soil and 

ash are easily mobilized, channelized and capable of entraining larger and greater 

amounts of sediment as runoff moves downslope, forming a debris flow. Vegetation, 

soils and slopes vary across ecosystems; forested slopes have larger fuels that burn at 

higher severity, deeper, finer soils, and steeper slopes than those of rangeland 

ecosystems. While both ecosystems produce post-fire debris flows, more sparsely 

vegetated rangelands slopes may not be limited by fire to erode. Instead, rangeland 
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systems may erode more continually and at lower magnitudes than forested slopes, 

whereas punctuated disturbance by fire on burned, previously forested slopes more often 

may lead to catastrophic failures, often by debris flows. 

This thesis compares model estimates of post-fire debris flow probability and 

volume between forest and rangeland ecosystems within the fire- and erosion-prone 

rangeland-forest ecotone of the Boise Foothills above the Boise Metropolitan Area, Idaho 

USA. Models developed by the United States Geological Survey estimate post-fire debris 

flow probability and volume using soil, burn severity, topography and rainfall attributes, 

which have distinct characteristics between forest and rangeland ecosystems. This thesis 

also compares post-fire debris flow model estimates to a historic post-fire debris flow 

event that occurred within burnt range-grassland slopes after a summer convective storm 

in the Boise Foothills. We compare modeled volume and probability estimates to 

recorded debris flow locations and volumes of the 1959 “Boise Mudbath” to determine if 

models can accurately predict a real-world event. 

Our findings show that models estimate higher post-fire debris flow probability 

and volume for forested basins vs. rangeland basins. The average modeled sediment yield 

is ~1.4x higher for forested basins than rangeland basins under both the low (2 yr) and 

high (100 yr) precipitation recurrence interval scenarios. The average post-fire debris 

flow probability is ~15% and ~32% greater for forested basins than rangeland basins 

under the 2yr and 100yr recurrence rainfall events, respectively. We also find that models 

over-predict sediment yields and under-predict probability of debris flow occurrence 

compared to the 1959 Mudbath event. We found that the post-fire debris flow model 

volume estimates were ~2-6x greater than those actually produced by the 1959 post-fire 
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debris flow event. True 1959 debris flow yields are similar to those calculated for 

regional depositional records of sparsely vegetated drainage basins. Interestingly, 

modeled 1959 debris flow yields more closely match (~<2x) known debris flow yields 

sourced from forested basins within the region. Additionally, the post-fire debris flow 

probability model underestimates debris flow occurrence under the 1959 debris flow 

scenario; only one drainage was modeled to have >50% probability of debris flow 

occurrence under the 1959 post-fire debris flow scenario, despite the fact that all basins 

did in fact produce debris flows. These findings show that debris flow sediment yields 

appear to be distinct between forest and rangeland basins and conclude that post-fire 

debris flow models are more suited to forested slopes, as sediment yields appear to be 

distinct between burned rangeland and forested drainage basins. 

The science produced in the geology section of this thesis was provided to City, 

County and State land and hazard managers to inform decision making regarding post-

fire debris flow hazards. This transfer of knowledge from science to decision-maker lends 

itself to a seemingly simple question: how will this science be used to make decisions? 

There is a growing supply and demand of science addressing wildfire hazards at the 

Wildland Urban Interface, yet what makes science usable and how it is used to make 

policy decisions is not well understood. In Chapter IV of this thesis, we merge 

quantitative and qualitative social science methods with public policy theory to identify 

how stakeholders at the Boise, Idaho WUI use science to inform wildfire hazard policy. 

We hypothesize that how a manager defines a wildfire problem will determine how that 

manager uses science to inform a policy solution to that problem. To test this hypothesis, 

we performed content analysis on policies of wildfire stakeholders at the Boise WUI, and 
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coded the policies into distinct categories that classify how they address wildfire hazards. 

We then conducted interviews with managers representing local, state and federal 

stakeholders in the Boise WUI to discuss how new, local science may address wildfire 

hazards they identify as needing policy solutions. Our findings show that stakeholders at 

the Boise WUI address the similar wildfire hazards with unique policy solutions. 

Interviews reveal that science is most useful when it is quickly understood, and when it 

can help draw boundaries from which wildfire hazard funding can be allocated and 

prioritized. We recommend the framework used in this study to provide policy context to 

scientists as they discuss their results with interested stakeholders, and to managers 

requiring policy context to the wildfire science they are asked to consider.
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CHAPTER I: LITERATURE REVIEW: POST-FIRE DEBRIS FLOWS ACROSS TWO 

LANDSCAPES 

 

Overview 

The following is a review of the literature regarding post-fire erosion as relevant 

to this thesis. The goal of this chapter is to compare post-fire erosion response by debris 

flow between forest and rangeland landscapes. Differences in slope, rainfall, vegetation, 

burn severity and intensity, and soils contribute to whether or not a debris flow will form 

after a wildfire; the rangeland-forest ecotone offers contrast between these attributes from 

which we can compare their influence on post-fire debris flow occurrence and magnitude. 

Post-fire erosion between sparsely vegetated slopes and forested slopes has been studied 

extensively through both experiment and observation. As such, this chapter provides 1) 

an overview of debris flow formation, 2) an overview of landscape controls on erosion 3) 

the impacts that fire has on erosion 4) a comparison of post-fire erosion response between 

forested and rangeland ecosystems and 5) a comparison of post-fire debris flow response 

between forested and rangeland ecosystems. 

An overview of debris flows 

A debris flow is a rapid water-driven mass movement of soil, sediment, debris 

and liquid that initiate in mountainous landscapes; debris flows move as a viscous fluid, 

distinguishing them from both landslide and streamflow processes (Johnson, 1970). 
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Debris flows initiate on steep hillslopes where there is abundant mobile soil and regolith 

for transport and moisture to initiate sediment transport (Costa, 1984). Debris flows may 

initiate as discrete shallow landslides of unconsolidated sediment that mobilize into a 

flow upon mixing with runoff (Johnson, 1970; Costa, 1984), or as sediment-laden rills 

coalesce, thereby increasing their ability to scour and entrain more sediment in a 

sediment bulking process (Johnson, 1970, Meyer and Wells, 1997; Ritter et al., 2011). 

Regardless of initiation process, debris flows have increased viscosity and pore fluid 

pressure compared to water that cause debris flows to scour channels and entrain large 

clasts as they flow downslope (Iverson, 1997). As such, debris flows behave as a non-

Newtonian fluid; they possess high shear strength and high bulk density compared to 

water due to abundant sediment entrained in the flow. Debris flows are deposited when 

slope decreases, often atop alluvial fans debris flow deposits, are often lobate, and have 

an abrupt terminus (Iverson, 1997; Ritter et al., 2011). 

Debris flows transform along their flow paths; contributions of water from 

tributaries can change the flow type from debris flow to hyperconcentrated flow and 

eventually normal streamflow as debris flows move downslope and down-gradient (Ritter 

et al., 2011). Debris flows have been observed to move in pulses; coarse fronts containing 

rafted boulders and debris are followed by viscous, muddy slurries capable of scouring 

and entraining coarse sediment and tailed by concentrated streamflow (Figure 1) 

(Pierson, 1986). As slope decreases along the flow path, debris flows lose momentum 

and, due to their high viscosity, deposit abruptly (Johnson, 1970), while the 

hypercontentrated flow debris flow tail may continue to flow downslope. Though their 

form may change from viscous debris flow to hypercontentrated flow as they move 
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downslope, debris flow deposits have a bulk density between 1.8 – 2.6 g/cm3 and contain 

~50-80% sediment by volume.  

  
Figure 1.1 Longitudinal cross-section of a debris flow (Modified from Pierson, 

1986).  

Factors Driving Erosion and Debris Flows 

Several attributes contribute to the initiation of a debris flow. Slope controls the 

ability of gravity to move soil and sediment; the infinite slope equation (Equation 1) 

explains that shear stress acts upon a mobile material. Each column of material has an 

inherent shear strength that varies with soil and bedrock type. When shear stress 

overcomes shear strength, slope failure occurs. As slope increases, the shear stress being 

placed on a column of mobile material increases. Therefore, sediment is more likely to be 

mobilized at higher slopes. However, shear stress may be too high for soils to develop on 

steep slopes, thereby limiting landslide occurrence, including debris flows, due to a 

limited sediment source. For example, a study within the Idaho Batholith of central Idaho 

found that landslides were rare above 41⁰ (Megahan et al., 1978). 
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τ = (ρ)(g)(z)(cosθ)(sinθ)      Equation 1 

where τ=shear stress, ρ = density, g = gravity, z = soil thickness, θ = slope angle 

 

Precipitation acts on the angle at which slope failure may occur by increasing the 

density of soil as soil absorbs water. Water absorption increases the density of the column 

of mobile material and lowers the slope at which a column of soil will fail. Studies 

indicate that debris flows commonly occur on slopes greater than 28.7-36.3% (15-20⁰) 

(Costa, 1984), though the slope at which debris flows initiate is dependent on many 

factors intrinsic to the hillslopes on which they occur (i.e. bedrock, vegetation, soil type) 

as well as external factors (i.e. precipitation intensity and duration). 

Precipitation alters slope stability both at the slope surface and subsurface by 

runoff and infiltration. At the surface, precipitation that is not intercepted by vegetation 

hits the ground surface and initiates erosion through rainsplash. When rainfall rates 

exceed infiltration rates, surface runoff will initiate on hillslopes. Sediment mobilized by 

rainsplash may become entrained in surface runoff. The Coulomb Equation (Equation 2) 

describes the controls on slope stability at the subsurface.  

S = c + σ’ tan φ                                  

 Equation 2 

where S = shear strength, c = cohesion, σ’ = effective normal stress and  

φ = angle of internal friction 

 

Where σ’ = σ - u  

and σ= total stress and u = pore pressure 

 

Slopes which experience either saturation-excess or infiltration-excess failure can 

produce debris flows (Wondzell and King, 2003; Meyer and Pierce, 2003). Both rainfall 
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intensity and duration are primary factors responsible for debris flow initiation (Cannon 

et al., 2011), but the rainfall intensity-duration thresholds that produce debris flows will 

vary between locations due to bedrock type, vegetation and slope (Caine, 1980). Dry and 

partially saturated soils can stay stable at higher angles than once completely saturated. 

For unsaturated soils, negative pore pressure increases effective normal stress; when soils 

become saturated, positive pore pressure reduces the normal stress holding soils on 

hillslopes (Equation 2). The amount and intensity of rainfall dictates the initiation of a 

debris flow. Under low intensity rainfall, infiltration inhibits surface runoff. However, if 

low intensity precipitation persists for long periods of time, soils reach saturation-excess 

failure as shear strength reaches zero, especially in hillslope concavities where flow paths 

converge. In contrast, under high intensity rainfall, precipitation input may exceed 

infiltration rates and initiate surface runoff. 

While the duration and magnitude of precipitation events are a primary control on 

debris flow initiation, characteristics of source material also is of primary importance. 

Soils which contain abundant fine materials (i.e. clay) contribute viscosity to fluid flows 

required to initiate debris flows (Iverson, 1997). On hillslopes, rain may either saturate 

soil or may mobilize soil at the surface by rainsplash action. Progressive addition of 

sediment via surface runoff, formation of rills, and addition of diffuse hillslope sediments 

to main channels may initiate debris flows. Runoff lacking fines material lacks the yield 

strength and viscosity required to produce debris flows, scour channels, and entrain larger 

sediment (Pierson and Costa, 1987). Flows lacking a continual source of fines will not 

persist owing to the lack of pore fluid pressure to propel the debris flow forward (Iverson, 

1997). In contrast, an overabundance of fines may reduce the production of debris flows; 
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an upper threshold viscosity creates laminar flow conditions at the flow-bed boundary, 

preventing scouring and entrainment of more sediment (Costa, 1984; Iverson, 1997). 

Vegetation stabilizes slopes by intercepting rainfall that may erode the soil 

surface, by transpiring water that would otherwise saturate soil, and by providing root 

cohesion below the soil surface. Rainsplash is a potential source of surface erosion 

initiation in on hillslopes (Morgan, 1978; Pierson et al., 2007). Hillslopes with high 

canopy cover receive less direct rainsplash at the surface because of interception by tree 

and shrub canopy; intercepted water evaporates off of vegetation or drips to the ground 

with less energy, providing less rainsplash action to do geomorphic work (McNabb and 

Swanson, 1990). Water that falls past the canopy and reaches the soil surface permeates 

into the soil where it either saturates the soil or is taken up by roots and does not 

contribute to soil moisture. In this way, vegetation acts to stabilize soil by taking up water 

that would otherwise decrease the shear strength of soil or add positive pore pressure to 

the soil column, decreasing the normal pressure keeping the soil in place. In addition, 

roots below the surface add cohesion to soil by binding to the soil matrix, further 

stabilizing soil from erosion. 

Impact of Fire on Hillslope Erosion 

Wildfire changes vegetation, rainfall and soils; therefore, wildfire also changes 

rates and processes of slope erosion. It is well known that wildfire increases erosion on 

hillslopes (Swanson et al., 1981, Neary et al., 2003; Roering and Gerber, 2005; Shakesby 

and Doerr, 2006; Pierson et al., 2011), and that post-fire erosion is greater than long-term 

erosion rates (Roering and Gerber, 2005; Riley, 2012) Wildfire is considered a primary 

driver of erosion in fire-prone landscapes (Shakesby and Doerr, 2006) and it is 
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anticipated that erosion may double in some western US states because of the predicted 

increase in wildfire activity in the western US (Sankey et al., 2015). 

Fire alters the soil by damaging soil structure and killing roots, adding or 

enhancing repellency, and by contributing fine mobile ash at the soil surface (Giovannini 

and Lucchesi, 1983; DeBano, 1981). Soil heating dehydrates soil, reducing soil cohesion, 

making it more readily available for mobilization (DeBano, 2000; Neary and Gottfried 

2003). Fire may create or enhance water repellency (DeBano, 2000). Hydrophobicity of 

soil at shallow depths have been reported in shrublands, forest and chaparral ecosystems 

in the absence of fire, but may also be induced by fire (DeBano, 1981). Fire volatilizes 

organic compounds that either rise above the soil surface as smoke or are expelled below 

the soil surface where they cool and recondense along a steep temperature gradient 

(DeBano, 2000). The resolidified organic compounds bond to soil and sediment grains in 

the shallow (<5 cm) subsurface, sealing pore space within the soil to create a 

hydrophobic layer. This barrier layer prevents precipitation from infiltrating past this 

depth, and may induce shallow soil failures and surface runoff (DeBano, 1981; DeBano, 

2000). Gabet (2003) found that hydrophobicity at the shallow subsurface may lead to 

discrete failures at the near-surface (~1-2 cm) because it acts like a perched water table. 

Because rainfall cannot permeate past the hydrophobic layer, rainfall is able to quickly 

saturate soil above the hydrophobic surface, thereby lowering the amount of precipitation 

needed to produce a shallow discrete failure that may induce sediment bulking and 

subsequent debris flow. As such, in post-fire landscapes with hydrophobic soils, severe 

storm events are not required to produce debris flows. 
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Fire contributes fine ashen materials to the soil surface. A surface ash layer may 

block soil pores, reducing infiltration rates and inducing surface runoff (Lavee et al., 

1995). Ash may also hinder post-fire erosion. Ebel et al., (2012) found that ash delays 

surface runoff; ash is able to absorb all rainfall if rainfall intensity does not exceed 

infiltration rates, and limits surface runoff (Cerdà 1998; Cerdà and Doerr, 2008). 

However, if rainfall intensity does exceed infiltration rates, surface runoff may initiate the 

sediment bulking process. Ash may also prevent precipitation from flowing past the ash-

soil interface. When this occurs, the ashen layer becomes saturated, leading to shallow, 

saturation failure of the ash layer (Cerdà and Doerr, 2008; Ebel et al., 2012). 

Fire alters vegetation through combustion, reducing canopy cover and killing 

vegetation, thereby reducing or eliminating root cohesion, and reducing the removal of 

soil water by roots. Decreased canopy cover results increases rainsplash action over a 

burn area (Stoof et al., 2012), and mobilizes material at the damaged soil surface. The 

combustion of subcanopy vegetation during wildfire removes low-lying vegetation that 

acted as sediment traps (Roering and Gerber, 2005). Vegetation death resulting from fire 

has immediate effects on soil moisture. Vegetation loss from fire shuts off transpiration 

processes that remove water from soil through roots to vegetation (Silva et al., 2006; 

Stoof et al., 2012). The excess water that remains in the soil creates slope instability by 

decreasing shear strength by creating positive pore pressure in the soil matrix (Ebel, 

2013). Additionally, roots from dead vegetation will decay over time (6-10 yr), and their 

absence reduces cohesion of soil provided by root systems (Swanson et al., 1981). 

 

 



9 

 

 

 

Comparing erosion response between forested and rangeland ecosystems 

Slope, vegetation and soil as well as fire continuity, severity and intensity are 

dissimilar between rangeland and forest ecosystems, creating disparity in their erosion 

response in both the absence and presence of fire. Research from Dry Creek 

Experimental Watershed in southwestern Idaho identified that forested slopes have 

steeper slopes than sparse, rangeland slopes (Poulos, 2016). Poulos found that forested, 

north-facing forested drainage basins have a mean slope of ~31⁰, while south-facing, 

sparsely vegetated drainages have a mean slope of ~25⁰; similar disparity between 

forested and sparsely vegetated slopes have been noted by Riley (2012) and Nelson 

(2009) within the same study region. Shear stress will be higher within soils of steeper, 

forested slopes than rangeland slopes. However, canopy cover and root cohesion 

counteract the effects of slope prior to fire; while forested drainage basins are often 

steeper than sparsely vegetated slopes, lower canopy cover and shallow root systems on 

sparsely vegetated slopes result in more continual exposure to rainfall and subsequent 

erosion than more densely vegetated forest slopes. After fire, however, reduced canopy 

cover and root cohesion may cause more erosion on steeper, forested slopes than on 

shallower, sparsely vegetated rangeland slopes that erode regardless of fire. Continuous 

erosion in the absence of fire is described for rangelands of the Great Basin region, USA; 

the interspace between shrubs and bunchgrasses experience greater runoff and erode 

more sediment (15- to 25-fold) than underneath shrub canopies because of limited ground 

cover and soil stability (Pierson et al., 1994; Pierson et al., Smith, 2013). However, after 

fire, erosion may be even greater. Pierson et al., (2009) found that, after fire, erosion 

within sagebrush steppe increased between 7- and 125-fold on 30 m2 plots. 
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Burn severity is driven by fuel type, wildfire intensity and fire duration. Large 

fuels (i.e. mature trees) associated with forests burn intensely and for prolonged periods 

of time due to their size (1000 hr fuels) compared to those of rangelands (1-100 hr fuels) 

containing grasses and shrubs. High severity fires in forests damage soil, introduce large 

volumes of ash and can induce hydrophobicity. In contrast, rangeland ecosystems often 

burn most intensely in patches of sagebrush and in riparian areas, where larger fuel is 

concentrated, but burns quickly and incompletely through shrub interspace grasses and 

forbs. The resulting runoff is often discontinuous and hindered by erosion barriers of 

unburned patches of vegetation (Lavee et al., 1995). 

Soil thickness and texture vary with vegetation type. Aspect-induced differences 

in vegetation within the foothills of Boise, Idaho influence soil thickness;  soils on 

forested, north-facing slopes are 1.1-2.3 times thicker soils than those found on south-

facing, sparsely vegetated slopes (Smith, 2010). Additionally, coarser-textured soils on 

south-facing, sparsely vegetated slopes in the Boise Foothills drain more quickly than 

north-facing forested soils (Tesfa et al., 2009). However, wildfire over rangeland soils 

introduce fine ash that may reduce infiltration and initiate surface runoff. In contrast, 

forest soils have abundant fine soils in the absence of fire, and water infiltrates more 

slowly, and the onset of infiltration-excess induced failure may occur more readily. 

Post-fire Debris Flow Response between Forest and Rangeland Landscapes 

Fire-induced debris flows occur on both sparsely vegetated rangeland slopes 

(Thomas, 1963; Riley, 2012; Poulos, 2016; Friedman and Santi, 2013) and forested 

slopes (Riley, 2012; Poulos, 2016, Meyer et al., 2001; Cannon et al., 2003). Generally, 

post-fire debris flows are not observed within basins ~>10 km2, but are instead frequently 
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sourced from low-order drainage basins, often <1 km2 (Cannon et al., 2010). Fire changes 

the type of slope failure that induce debris flows. Reduced infiltration and subsequent 

sediment bulking initiates widespread debris flow in post-fire landscapes, as opposed to 

discrete debris flow failures induced by soil saturation that commonly occur in unburned 

landscapes. (Cannon, et al. 2010). Additionally, post-fire debris flows commonly occur 

within two years of fire (Cannon et al., 2010), before vegetation has begun to recover. 

Landslides and debris flows are also common ~6-10 year post-fire, when root systems of 

vegetation killed by fire begins to decay, causing deep-seated slope instability. 

The abundance of debris flow records from forested basins used to build post-fire 

debris flow models (Cannon et al., 2010) indicate that that fire-induced debris flows are 

more prevalent on forest slopes than rangelands. A lack of debris flow response in 

rangeland slopes is further indicated by a lack of reports and studies of debris flows 

exclusively within rangeland study areas. A 2016 synthesis of the ecohydrologic impacts 

of rangeland fire on erosion only briefly discusses debris flow activity, and cited debris 

flow locations are not explicitly with rangeland ecosystems (Pierson and Williams, 

2016). It has been posited that because rangeland slopes are typified by lower vegetation 

density, sediment delivery by fire-induced debris flows is less likely. Sparser vegetation 

leads to more frequent, lower magnitude erosion that is not always induced by fire 

(Pierce et al., 2011; Riley, 2012). Conversely, dense vegetation produces high canopy 

cover and creates stable slopes that are more dramatically disrupted by wildfire. The 

sudden loss of dense vegetation protecting steeper slopes expose less-frequently disturbed 

slopes to erosional processes (Riley, 2012). 
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Contrasting erosion between forest and rangeland slopes prior to fire “primes” 

these ecosystems for debris flows differently when a fire does occur. Within the Boise 

Foothills, soils are courser-textured on south-facing, sparsely vegetated slopes than those 

of north-facing forested soils (Tesfa et al., 2009). Importantly, ash produced from fire 

contributes fine material that is required to initiate and maintain a debris flow, in areas 

where fine hillslope material was previously absent or lacking (Cannon et al., 2001). The 

importance of ash in the initiation of debris flows is noted by Cannon et al. (2001). 

Debris flows following the Cerro Grande Fire in New Mexico were only initiated after 

the first precipitation event, when ash was present. However, subsequent storms lacked 

the previously mobilized ash, and debris flow activity was notably absent. 

Soil thickness may also vary with vegetation. Aspect-induced differences in soil 

depth are seen within the Boise Foothills; forested, north-facing drainages of the Boise 

foothills have 1.1-2.3 times thicker soils than those found on south-facing, sparsely 

vegetated slopes (Smith, 2010). Soil depth limits the maximum amount of material that 

can be mobilized by a debris flow, and may ultimately control debris flow volume. 

Because large fuels associated with forests burn more intensely and for prolonged 

periods of time compared to smaller, less dense fuels of rangelands, wildfire severity is 

commonly higher in forests than in rangeland. High severity fires in forests damage soil, 

introduce large volumes of ash and can induce hydrophobicity. In contrast, rangeland 

ecosystems often burn most intensely in patches of sagebrush and in riparian areas, where 

larger fuel is concentrated, but burns quickly and incompletely through shrub interspace 

grasses and forbs. The resulting runoff is often discontinuous and hindered by erosion 

barriers of unburned patches of vegetation (Lavee et al., 1995). Burn severity is thought 
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to play a role in post-fire deposition type seen in alluvial fan records along the Middle 

Fork Salmon River and South Fork Payette River. Fire-related debris flows are inferred to 

result from high severity wildfires whereas low severity fires reflect sparsely vegetated 

hillslopes, and limits sediment deposition in post-fire erosion events (Pierce et al., 2004; 

Riley, 2012). 

Rangeland slopes erode more continuously than forested slopes and in the 

absence of fire. Conversely, forest slopes may be dependent on fire for significant erosion 

(Pierce et al., 2011). This disparity is exemplified by a study comparing post-fire erosion 

within a burnt forested basin to an unburnt sparsely vegetated basin along the South Fork 

Payette River within the Idaho Batholith of west-central Idaho (Meyer et al., 2001). Both 

basins deposited similar sediment yields, despite only the forested basin having been 

disturbed by fire. The unburnt, sparsely vegetated basin deposited episodic sheetfloods, 

while the burnt, forested basin produced a single debris flow induced by a single large 

colluvial failure (Meyer et al., 2001). Fire did not limit abundant erosion within the 

undisturbed, rangeland-type basin. The foothills of Boise, Idaho also provide a recent 

example of rangeland slope erosion not limited by fire. A prolonged rainfall event in 

March, 2017 caused several small, saturation-induced failures within unburnt rangeland 

slopes atypical to the coarse soils. 
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CHAPTER II: COMPARING PREDICTED POST-FIRE DEBRIS FLOW 

PROBABILITY AND VOLUME BETWEEN RANGELAND AND FORESTED 

BASINS OF THE BOISE FOOTHILLS 

 

Abstract 

The objective of the modelling component of this thesis is to identify post-fire 

debris flow hazards within drainage basins of the foothills above Boise, Idaho. 

Additionally, we compare modeled post-fire debris flow hazards between forested and 

rangeland drainage basins. Debris flows are thought to be common after fire within 

forested basins, where sediment storage is high prior to fire. In contrast, wildfire is not a 

prerequisite for erosion events in rangeland drainage basins, where sediment storage is 

low and runoff is frequent between wildfire. We modelled debris flow hazards for 856 

drainage basins within the Boise Foothills using empirically derived models produced by 

the USGS (Cannon et al., 2010). The models estimate the probability and volume of a 

debris flow occurring in a given basin after fire in response to rainfall. We ran the models 

through four burn severity scenarios and two precipitation scenarios to obtain a range of 

possible post-fire debris flow hazard outcomes within the Boise Foothills. We found that 

the average modeled sediment yield was ~1.4x higher for forested basins than rangeland 

basins under both the low (2 yr) and high (100 yr) precipitation recurrence interval 

scenarios. The average post-fire debris flow probability was ~15% and ~32% greater for 
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forested basins than rangeland basins under the 2yr and 100yr recurrence rainfall events, 

respectively. The maps resulting from this study are currently in use by the City of Boise, 

and are included in the 2016 Ada County Enhanced Wildfire Riskmap to identify 

potential post-wildfire debris flow risk to Boise citizens. Identifying and understanding 

contrasting debris flow potential between rangeland and forested hillslopes are an 

important consideration when planning for post-fire erosion hazards, especially in urban 

areas. 

Introduction 

The previous chapter discussed the mechanisms by which debris flows occur in 

mountainous landscapes after wildfire and identified different post-fire erosion 

mechanisms and thresholds in forested and rangeland systems. Slopes in post-fire 

landscapes erode as a function of fire severity and intensity. In addition, topography, and 

precipitation intensity and duration, and decreased vegetation influence erosion after 

wildfire. Fire may reduce soil cohesion, and heat may break apart soil aggregates, making 

them more susceptible to erosion (McNabb and Swanson, 1990). The breakup of 

aggregates and the introduction of ash to the soil surface may reduce pore space by filling 

former voids, decreasing infiltration rates, leading to erosive surface runoff (McNabb and 

Swanson, 1990). Ash smooths the slope surface, promoting a continuous runoff surface 

(Lavee et al., 1995; Woods and Balfour, 2010). Conversely, ash may store precipitation 

and reduce runoff overall (Cerda and Doerr, 2008). Burnt vegetation may volatilize and 

be expelled into the topmost portion of the soil profile where it cools and solidifies within 

pore spaces, and induce hydrophocity from which near-surface runoff may be initiated 

(DeBano, 2000). Vegetation loss also increases the exposure and susceptibility of the 
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burned surface to rainfall as the result of a reduced canopy (Shakesby and Doerr, 2006; 

Pierson et al., 2008; Miller et al., 2013). Reduced cohesion, decreased pore space, 

hydrophobicity and the introduction of an ashen surface leads to decreased infiltration 

and an increase in overland flow, which is exacerbated by a reduction in canopy cover. 

Generally, debris flow response within the first ~2 years of fire is dominated by 

runoff-initiated debris flows, rather than infiltration-initiated debris flows that often occur 

in unburned landscapes (Cannon et al., 2010). In the post-fire landscape, runoff-initiated 

debris flows form when rainfall over burn areas leads to overland flow, merging to form 

rills and gullies that entrain susceptible soils (Meyer and Wells, 1997; Cannon et al., 

2003). Entrainment of fine soils and ash increase the fluid density of runoff, which allow 

flows to entrain larger sediment and debris as the flow moves downslope in a sediment 

bulking process (Gabet and Sternberg, 2008; Pierson et al., 2009). Because debris flows 

<2 yrs after fire frequently form by sediment bulking rather than by deep-seated 

saturation failures, traditional infiltration-based slope stability analyses (Carson and 

Kirkby, 1972; Montgomery and Deitrich, 1994) that are appropriate for burn areas >10 

yrs after fire or on unburned slopes are not sufficient, and other mechanisms such as 

hydrophobicity, fire severity and precipitation-intensity thresholds must be considered to 

determine whether or not a fire-induced debris flows may occur. 

As discussed in the previous chapter, there is disparity in erosion between burnt 

rangeland and forest slopes that may ultimately dictate whether a debris flow may occur. 

Rangelands, with lower slopes, less vegetation cover and coarser soils, erode more 

continually. Fires are not a prerequisite for mass-wasting events on sparsely vegetated 

slopes (Pierce et al., 2011). In contrast, forests often have steep slopes protected from 
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erosion by high canopy cover, deep root support, and thick, cohesive soils that do not 

erode continuously, but may do so under disturbance by wildfire. 

Given the disparity of these attributes between rangeland and forest slopes, we 

anticipate that the post-fire debris flow probability and volume models will predict higher 

probability and higher sediment volumes for debris flows occurring in forested basin than 

within rangeland basins. To test this hypothesis, we run the post-fire debris flow 

predictive models over the Boise Foothills above the Boise Metropolitan Area in 

southwest Idaho, USA. The foothills of Boise encompass the rangeland-forest ecotone 

that separates the Great Basin region from the Rocky Mountains. Steep (~30%) foothills 

are comprised of sagebrush-steppe and grassland slopes at lower elevations (~850-1550 

m) and open Ponderosa Pine and Douglas Fir forest at higher elevations (~1550-2000 m). 

We run the post-fire debris flow predictive models though four burn severity and two 

precipitation scenarios over 856 small drainage basins (~0.1-1.5 km2) within the Boise 

Foothills study area and compare the resulting debris flow probability and volume 

predictions between rangeland and forested basins. Importantly, the models we use in this 

study were designed to predict post-fire debris flows in the western US, and were built 

using debris flow occurrence data from primarily forested drainage basins. 

Fire-related debris flow risks in the Wildland Urban Interface 

Mountainous regions of the western US, particularly the Great Basin region, 

contain many cities built adjacent to or within rangeland-forest ecotones. Metropolitan 

areas like Reno, Salt Lake City, the Colorado Front Range and Boise have been built 

adjacent to lower elevation, rangeland-dominated ecosystems that transition to coniferous 

forest ecosystems at higher elevations. These areas are particularly prone to wildfire. Dry 
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grasses ignite and spread rapidly, carrying fire upslope into forested areas. Human 

ignitions exacerbate the wildfire frequency in the region that were lower prior to human 

settlement. These cities are growing rapidly (Bramwell, 2015), and the hazard posed by 

wildfire will increase as more developments are built in the mountainous portions of 

these cities. 

Dense populations within cities create conditions by which debris flows threaten 

the most human life and infrastructure. Debris flows in urban settings frequently damage 

infrastructure, are costly to mitigate for and clean up after and, in extreme cases, lead to 

loss of life. Mountainous western U.S. cities are disproportionately impacted by fire-

induced debris flows. For example, after the ~150,000 Grand Prix Fire of 2003 burned 

steep slopes in the San Bernardino Mountains outside of San Bernardino, California, 

intense rains triggered debris flows in several drainage basins. The debris flows killed 

sixteen people and reported to cost over a billion dollars in damages and clean up costs 

(Sassa and Canuti, 2008). 

Identifying where debris flows may initiate after fire is especially important in 

areas that may experience a loss of life and property. Such knowledge can be used to 

prevent and mitigate for losses. Hazard assessments often identify landslide hazards for a 

given area, including debris flows, especially if the area has experienced landslides in the 

past. Commonly, what is known about debris flow hazards in an area is limited to historic 

accounts of previous events. Recently, however, new predictive models were developed 

to predict where debris flows may occur after a wildfire. The development of these 

models is timely, as erosive, fire-prone areas become more populated and as fires have 

become more abundant throughout the West (Cannon and DeGraff, 2009). 
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Models produced by the USGS Landslide Hazards Program empirically isolate 

the variables most responsible for post-fire debris flow activation using 388 post post-fire 

debris flow recorded in the Intermountain western US (Cannon et al., 2010). Currently, 

post-fire debris flow models are applied almost exclusively over post-fire areas within 

Forest Service land, after a wildfire has occurred. However, by simulating fire and 

precipitation scenarios, the models can be applied over areas of interest prior to fire. The 

data inputs required to run the predictive models are publically and easily accessible, 

making them easy to run with access to ArcGIS. Pre-fire application of post-fire debris 

flow models increases the amount of time land and hazards managers have to decide how 

to prepare and manage for debris flow hazards in fire-prone landscapes. In 2015, Ada 

County, Idaho sought to identify post-fire debris flow prone slopes in their hazard 

assessment, providing an opportunity to apply post-fire debris flows models in pre-fire 

setting. 

Study area 

The Boise Foothills study area extends west from Lucky Peak Reservoir to 

Interstate 55, and from the Boise Metropolitan area up to the foothills ridgeline. The 

drainages of this study area flow into the Boise Metropolitan area. The Boise Foothills 

study area (Figure 1) is located at the boundary between the Snake River Plain and the 

Idaho Batholith. Bedrock in the foothills study area is comprised of medium to coarse 

grained Idaho Batholith granite and Tertiary sand and mudstone lake sediments (Othberg 

& Stanford, 1992). The 325 km2 study area contains steep foothills with a mean slope of 

27% (15.1⁰). Eight main ephemeral and perennial drainages flow through Ponderosa Pine 

(Pinus ponderosa) and Douglas Fir (Pseudotsuga menziesii) forests at high elevations 
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(~2400 m) and north facing slopes. At lower elevations and south-facing slopes, 

hillslopes are comprised of shrubs and grasslands when extend into the Boise River 

valley (800 m). Cool, wet winters provide spring snowmelt runoff-dominated flow 

through foothills streams into the Boise River. In contrast, summers are dry and hot, and 

only occasional thunderstorms providing moisture (Watershed Description). 

 
Figure 2.1 Map of Boise Foothills study area, delineated in bold red. The area 

encompasses the greater Boise metropolitan area north of the Boise River, rangeland 

and forested foothills extending from Lucky Peak Reservoir in the East to Interstate 

55 to the west and northward to the foothills ridgeline. 

Fire season within the Boise Foothills study area extends through the summer 

months, from May to September. Summer convective storms provide lightning-caused 

fire ignitions. However, humans exacerbate wildfire, and are the dominant cause of 

ignitions in the Boise area, starting ~86% of fires in the Boise WUI (Figure 2). 
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Historically within the study area, Ponderosa forests burned at moderate to low 

severity at 20-30 year intervals, with infrequent, stand replacing high severity fires 

(Barret et al., 1997). A dendrochronological study in the Boise National Forest, north of 

the study area, found that fires burned though old growth Ponderosa Pines at a frequency 

between fifteen and fifty years. However, that return interval ends in tree ring records, 

with no fires occurring since 1889, likely indicating in initiation of fire suppression 

policy in the region. (Cutter, 2013). At lower elevation slopes, sage-steppe ecosystems 

have a relatively unknown fire return interval, due to the difficulty in acquiring tree ring 

records or depositional records from within the ecosystems. However, it is estimated that 

these fuel limited systems historically have fire return intervals of approximately a 

century in Artemisia tridentate var. wyomingensis (Mensing et al., 2006), though studies 

have also identified return intervals in Big Mountain sage between 12-30 years (Miller 

and Rose, 1999). However, wildfire return intervals shorten in sage-steppe ecosystems 

invaded by non-native grass species that outcompete native species after wildfire. The 

grass species, Bromus tectorum, commonly known as cheatgrass, fills interspace, 

allowing fire to spread where it would have otherwise not. Cheatgrass also cures early in 

the summer season, extending the season during which fuels are flammable, and are 

adapted to grow well after fire, thereby replacing and outcompeting species that would 

otherwise maintain a higher fire return interval. This process, known as the cheatgrass 

fire cycle, increases the potential for frequent wildfires in locations including the Boise 

Foothills study area, where human activities including grazing, recreation and 

development aid in the spread of the flammable grass. 
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Figure 2.2 Human- and lightning-caused wildfire ignitions in the Boise, Idaho 

USA area. 

The Boise Foothills have written and geologic records of post-fire erosion. Poulos 

(2016), identified several post-fire deposits within the Dry Creek Experimental 



28 

 

 

 

Watershed, which is encompassed by the Boise Foothills study area. Alluvial fans of 

first-order channels with small contributing basins (<0.3 km2) were interpreted to be 

comprised of both sheetflood and debris flow deposits, some of which contained charcoal 

(Figure 3A), indicating that fire created conditions by which erosion could occur. These 

records indicate that post-fire erosion activity in the Boise Foothills extend beyond 8000 

BCE. Evidence of post-fire erosion is also evident in ~1-10 km2 alluvial fans of 3rd order 

channels that extend from confined foothills drainages onto the Boise River floodplain. 

Deposits found closer to the Boise Foothills, at Squaw Creek, contain poorly sorted, 

matrix supported cobble and boulder-sized clasts and charcoal, indicating that debris 

flows have been generated after fire in this area (Figure 3B). Similar deposits can be 

found in Cottonwood Creek drainage, whose outlet is near Boise city center; exposed 

sheetflood deposits located ~0.5 km from foothills contain charcoal, indicating that post-

fire deposition can be extensive. Together, these deposits indicate that post-fire erosion 

occurs at a range of magnitudes, in multiple modes, and that at least a portion of erosion 

occurring in the foothills is carried out by mass wasting events. Interestingly, as 

neighborhoods continue to be developed atop alluvial fans of the Boise Foothills, 

deposits like those described will become lost; the debris flow deposit photographed in 

Figure 3B has since been graded and paved into a road leading to a development. 
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Figure 2.3 Fire-related deposits and their location in the Boise Foothills Study 

area. 3A: Sheetfloods containing charcoal are interpreted as being fire-induced, and 

overlay an interpreted debris flow deposit where charcoal is absent. 3B: A ~0.5 m 

boulder within a matrix-supported deposit containing charcoal indicates a debris flow 

deposit at the outlet of Squaw Creek, and is likely a 1959 debris flow deposit. 

More recent records indicate the fire-induced flooding and mudslides have caused 

extensive damage to Boise residents. Flooding and mudslides in 1959 followed three fires 

in the foothills (1957 Rocky Canyon Fire, 1958 Toll Gate Fire, and 1959 Lucky Peak 

Fire). Sediment and debris from the mudslides covered 50 city blocks as well as hundreds 

of acres of agricultural land that have since been developed into neighborhoods (Thomas, 

1963). Sediment was likely sourced from both thick, forest soils of higher elevation 

slopes and from rills and gullies that formed on lower elevation rangeland slopes, as 

evinced by photos and footage of the aftermath of the event (Thomas, 1963; When the 
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Pot Boiled Over). The damage and clean-up cost and estimated $4,000,000 (Ada 

County). To prevent future erosion from causing damage to homes downslope, the Soil 

Conservation Service, Forest Service and Bureau of Land Management terraced hundreds 

of acres of foothills.. Other historic and recent records of post-fire erosion in the Boise 

Foothills study area include sedimentation and flooding on September 11, 1997 after 0.4 

inches of rain fell in nine minutes over the 1996 8th Street Fire. Flooding took place 

around Crane Creek and Hulls Gulch, but was contained by retention ponds and did not 

produced debris flows. The flooding response was likely significantly reduced due to 

rehabilitation efforts including terracing, contour fell logging, reseeding, straw wattles 

and check dam construction that took place shortly after the fire to protect foothills soils 

and watersheds (Fend et al., 1999). 

Methods  

We modeled post-fire debris flow hazards of drainage basins in the Boise 

Foothills (Figure 4) using the post-fire debris flow probability and volume models 

developed by the USGS (Cannon et al., 2010). The models require topographic, soils, fire 

and precipitation data, described more thoroughly in Table 1. The following section 

describes the steps taken to acquire the model input data. 
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Figure 2.4 Drainage basins of the Boise Foothills study area (delineated in gray) 

assessed for post-fire debris flow hazards. 

 

Table 2.1 Post-fire debris flow model (Cannon et al., 2010) inputs, their 

descriptions and sources. 
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Post-fire debris flow models 

USGS post-fire debris flow models were developed using logistic regression of 

388 basins that burned within 15 fire perimeters throughout the Intermountain West 

(Cannon et al., 2010). Debris flow probability (equation 1) is estimated using soil, 

topographic, burn severity and precipitation data in the probabilistic model (Equation 1):  

 

P=ex/(1+ex)         Equation 1a 

 

and 

x =0.03(%A)-1.6(R)+0.06(%B)+0.07(I)+0.2(%C)-0.4(L)-0.7 Equation 1b 

 

where %A is the percent of basin area having slopes greater than or equal to 30%, R is 

basin ruggedness using the Melton Ruggedness Number (basin relief divided by the 

square root of the basin area), %B is the percent of the drainage basin burned at moderate 

and high severity, I is the average stormfall intensity (mm/hr), C is the clay content in 

percent, and L is the liquid limit. 

Debris flow volume (m3) is estimated using topographic, burn severity and 

precipitation data using the multivariate regression model (Equation 2):  

 

ln(V) = 7.5+0.6(ln(A))+0.7(B)1/2+0.2(T)1/2    Equation 2 

where A (km2) is the area of the drainage basin having slopes greater than or equal to 

30%, B is the area (km2) of the drainage basin burned at moderate and high severity, and 

T is the total storm rainfall amount in millimeters. 
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The post-fire debris flow models are capable of predicting debris flow probably 

and volume within the range of area of drainage basins used to develop the model. 

Therefore the maximum basin size that can be assessed with the models is ~10 km2. Post-

fire debris flow hazards are determined by assessing the model estimates of probability 

and eroded volume together for each drainage basin. Debris flow predictions with high 

probabilities of occurrence but low estimated volumes are lower hazards than basins 

predicted to have both high probability of debris flow occurrence and high estimated 

volumes. We assigned values 1-4 for binned probability and volume ranges to consider 

both probability and volume in hazard rankings (Table 2). Probability and volume rank 

values were summed for each drainage basin. The summation provides a scaled hazard 

ranking 2-8 for drainage basins in the Boise Foothills. 

Table 2.2 Rank value of probability and volume values. Probability and volume 

rank values are summed for each basin to provide an overall hazard rank per 

drainage basin. 

Rank Probability Volume (m3) 

1 <25% <100 

2 25-50% 1,000 

3 50-75% 10,000 

4 75-100% 100,000 

Topography 

We delineated drainage basins and extracted slope and ruggedness values for 

hillslopes within the Boise Foothills study area using a 10-meter digital elevation model 

(DEM) and Spatial Analysis tools in ArcMap 10.2 (Dollison, 2010). To delineate 

drainage basins, we used the Flow Accumulation, Con, Watershed, Spatial Statistics and 

Raster Calculator tools in ArcMap 10.2. Post-fire debris flow models can only be used to 
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model basins between 0.1-10 km2. We used records of debris flow deposition in the Boise 

Foothills (Poulos, 2016) to select the basin size for analysis; the study found that deposits 

were sourced from basins <0.3 km2 in area. Ruggedness was calculated using the Melton 

Ruggedness Number (Eq. 3): 

 

(Zmax-Zmin) / Sqrt(A)      Equation 3 

 

where Zmax and Zmin are the maximum and minimum elevations of a given basin (m), 

respectively, and A is the area of the basin (m2). Drainage basin area, percent slope above 

30% and basin ruggedness were appended to an attribute table for the all the delineated 

drainage basins. The mean elevation and slope of each drainage basin were also 

calculated and appended to the drainage basin attribute table as supplemental data for 

analysis. 

Soil 

We acquired clay content and liquid limit data for soils of the Boise Foothills 

study area using the Soil Survey Geographic Database (SSURGO), available for 

download through the Web Soil Survey. Prior post-fire debris flow hazard assessments 

use the State Soil Geographic (STATSGO) (1:250,000) dataset, however Cannon et al. 

(2010) encourage the use of higher resolution data, where available. Therefore we used 

SSURGO maps for the Boise Foothills, which are mapped at 1:12,000 and 1:63,000 

scale. We used Spatial Statistics and Raster Calculator tools to calculate the average clay 

content and liquid limit within each drainage basin. The accuracy of soils data for the 

Boise Foothills is unknown. To determine the accuracy of soil clay content data mapped 
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by SSURGO, we compared SSURGO values to field samples whose clay content was 

measured using the hydrometer method. The results of this comparison can be found in 

Appendix A, and will be included in the discussion section of this chapter. 

Burn Severity 

Burn severity is the degree to which soil, flora and fauna have been altered or 

disrupted by fire (Miller et al., 2013). A burn area may contain patches of low, moderate 

and high severity burns. The USGS post-fire debris flow models require the percent at 

which a basin burned at moderate and high severity. While USGS post-fire debris flow 

models are often used within burn perimeters where fire severity across the landscape is 

known, modelling over a pre-fire landscape, where burn severity cannot be known, we 

instead apply a range of percentages of low, moderate and high burn severity to drainage 

basins at 25% increments. Applying incremental burn severity scenarios provides the 

range of potential post-fire debris flow hazards within the Boise Foothills study area. 

Precipitation 

The post-fire debris flow models require inputs of 1hr stormfall intensity (mm/hr) 

and 1hr total rainfall (mm) to estimate both debris flow probability and volume. We 

calculated 1hr stormfall intensity for 2- and 100-year recurrence interval storms using 

equations specific to the Snake River Valley (Miller et al., 1973) and rainfall intensity, 

duration and frequency curves for Boise, Idaho (City of Boise Public Works, 2010). 

Vegetation 

We used LANDFIRE Existing Vegetation Type to determine the vegetation cover 

for the Boise Foothills study area (LANDFIRE, 2017). The Boise Foothills study area 

contains twenty cover types classified by LANDFIRE (Table 3). We reduced these 
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classifications to forest, rangeland or urban for bimodal vegetation analysis of the post-

fire debris flow models. We classified each drainage basin as a rangeland or forested 

basin based upon which of the two classifications had the greater percent coverage within 

a basin. Basins dominated by urban cover were not included in vegetation-type basin 

comparisons. 

Table 2.3 LANDFIRE Existing vegetation Types and their classification as a 

Forest or Rangeland vegetation type 

Cover 

ID 

Description Range or 

Forest 

3001 Intermountain Basin sparse vegetation Rangeland 

3045 Northern Rocky Mountain dry-mesic montane mixed 

conifer 

Forest 

3053 Northern Rocky Mountain ponderosa Pine woodland and 

savanna 

Forest 

3080 Intermountain basin big sagebrush shrubland Rangeland 

3081 Intermountain basin mixed salt desert scrub Rangeland 

3106 Northern Rocky Mountain montane foothill deciduous 

shrubland 

Rangeland 

3123 Columbia Plateau steppe and grassland Rangeland 

3124 Columbia Plataeu low sagebrush steppe Rangeland 

3125 Intermountain basins big sagebrush steppe Rangeland 

3126 Intermountain basins montane sagebrush steppe Rangeland 

3139 Northern Rocky Mountain lower montane foothill-valley 

grassland 

Rangeland 

3181 Introduced upland vegetation – annual grassland Rangeland 

3182 Introduced upland vegetation – perennial grass and forb Rangeland 

3220 Artemisia tridentata ssp. Vaseyana Shrubland Alliance Rangeland 
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3227 Dry mesic montane Douglas Fir forest Forest 

3296 Developed – low intensity Developed 

3299 Developed – roads Developed 

3903 Western cool temperate urban herbaceous Developed 

3904 Western cool temperate urban shrubland Rangeland 

3923 Western cool temperate developed Ruderal shrubland Rangeland 

3965 Western cool temperate close-row crop Developed 

3967 Western cool temperate pasture and hayland Developed 

3968 Western cool temperate wheat Developed 

 

Results 

The Boise Foothills study area contains 857 drainage basins between 0.39 km2 

and 1.4 km2. Forty-nine of the basins are classified as forested basins and 771 are 

classified as rangeland basins (Figure 5). The remaining 37 basins are classified as urban 

development, and are not included further in this assessment. The average slope within a 

drainage basin ranges from 5 to 63 percent (2.8-32.2⁰). The average slope of basins 

increases with elevation (Figure 6). Forested basins have an average slope of 49.8 percent 

while rangeland slopes have an average slope of 30.6 percent (Figure 7). 
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Figure 2.5 Drainage basins of the Boise Foothills study area, classified by 

dominant vegetation type within each basin. 
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Figure 2 6 Average slope of drainage basins plotted against mean drainage basin 

elevation and divided by dominant cover types, forest (green), rangeland (tan) and 

urban (gray). 

 

 
Figure 2.7 Comparison of average basin slope between dominant vegetation cover 

types. Boxplots are scaled along the x axis by basin population. Box width indicates 

sample size, where forest n = 41, rangeland n = 771. 
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The ruggedness of drainage basins in the Boise Foothills ranges from 0.08 to 1.5, 

with a mean ruggedness of 0.42. Forested basins have an average ruggedness of 0.72 

while rangeland basins have an average ruggedness of 0.41. 

The average clay content within a drainage basin ranges between ~5% to ~36%. 

Clay content decreases as elevation increases (Figure 8). The average clay content for 

forested basins is ~8% and ~17% for rangeland basins. Because we used digitized 

(SSURGO) clay content instead of field-verified clay content values, we compared the 

SSSURGO clay content values to soil samples taken from the southeast region of the 

Boise Foothills study area. The results of that comparison can be found in Appendix A. 

 
Figure 2.8 Clay content (%) plotted against drainage basin outlet elevation. 

The average SSURGO liquid limit within drainage basins ranges from 9% to 

48%. The average SSURGO liquid limit for forested basins is ~41% and ~44% for 

rangeland basins in the Boise Foothills study area. 
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Figure 2.9 Drainage basin average liquid limit plotted against drainage basin 

outlet elevation. 

Post-fire debris flow scenarios 

We modeled eight post-fire debris flow scenarios by applying four burn severity 

scenarios, (25%, 50%, 75% and 100% at moderate and high severity) with two 

precipitation scenarios (1hr duration, 2- and 100- yr recurrence storms). A two-year 

recurrence, one hour storm intensity for the Boise Foothills is 10.1 mm/hr, while a 100-

year recurrence, one hour storm intensity is 27.0 mm/hr. To simplify the discussion of 

different scenarios, we will refer to each scenario as named in Table 4. 

Table 2.4 Burn severity and rainfall description of eight post-fire debris flow 

scenarios 

Scenario 

Name 

(L = low recurrence, 

H = high recurrence) 

Burn Severity 

Scenario 

% area burned at 

moderate & high 

severity 

Precipitation 

Scenario 

(recurrence interval) 

Stormfall 

Intensity  

(mm/hr) 

Total 

stormfall 

(mm) 

L25 25% 2 yr 10.1 10.9 

L50 50% 2 yr 10.1 10.9 

L75 75% 2 yr 10.1 10.9 
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L100 100% 2 yr 10.1 10.9 

H25 25% 100 yr 27.0 29.3 

H50 50% 100 yr 27.0 29.3 

H75 75% 100 yr 27.0 29.3 

H100 100% 100 yr 27.0 29.3 

 

Modeled post-fire debris flow volume estimates ranged between ~13 m3 and 

~8255 m3 for basins L25 and L100, respectively, and as high as 12,586 m3 for basins 

under the H100 scenario. Under all burn scenarios, debris flow volume estimates were as 

much as 52% higher under a 100-yr storm than a 2-yr storm. Models estimate the average 

post-fire debris flow volume to be 847 m3 and 1292 m3 higher in forested basins than 

rangeland basins under 2- and 100-year storm scenarios, respectively (Figure 10). 

When normalizing post-fire debris flow volumes by basin size, forested basins 

produce 269 m3/m2 and 411 m3/m2 more sediment than rangeland basins under 2- and 

100-year storm scenarios, respectively (Figure 11). Volume estimates for each scenario 

are broken into 2000 m3 intervals, and displayed in Table 5. The average post-fire debris 

flow volume produced by drainage basins under a two-year recurrence storm is 1237 m3, 

while the average volume produced by a 100-yr recurrence storm is 1885 m3. 

Modeled post-fire debris flow probability estimates ranged from <0.1% and 

93.7% for L25 and L100, respectively, and as high as 99.9% for basins under the H100 

scenario (Table 6). Under all burn scenarios, a 100-year recurrence, one hour storm 

increased debris flow probability within a single drainage basin by as much as 94% as 

compared to the two-year recurrence storm (Figure 12). The average probability of a 

basin producing a post-fire debris flow during a two-year recurrence storm is 6.4%, while 
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the average probability of a basin producing a post-fire debris flow during a 100-yr 

recurrence storm is 45.0%. 

Table 2.5 Count of basins that fall within 2000 m3 intervals of volume estimates 

under post-fire debris flow scenarios (n=857) 

Volume (m3) L25 H25 L50 H50 L75 H75 L100 H100 

<2000 721 618 708 597 691 578 675 571 

2000-4000 125 168 121 164 130 164 135 156 

4000-6000 11 58 26 66 33 75 40 79 

6000-8000 0 12 2 27 3 32 6 34 

8000-10000 0 1 0 3 0 6 1 14 

10000-12000 0 0 0 0 0 2 0 2 

 

Table 2.6 Number of basins that fall within 25% probability intervals under 

post fire debris flow scenarios (n=857) 

Probability (%) L25 H25 L50 H50 L75 H75 L100 H100 

<25 850 788 812 575 768 177 721 0 

25-50 7 40 40 135 47 152 51 39 

50-75 0 27 5 48 38 170 44 67 

75-100 0 2 0 99 4 358 41 751 
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Figure 2.10 Comparison of modeled post-fire debris flow volumes between low (L) 

and high (H) recurrence interval storms (2- and 100-yr rainfall events) within 

rangeland (tan) and forested (green) drainages under all burn scenarios. Median 

values for each scenario are indicated by bold horizontal lines. Rangeland n = 771, 

Forest n =41 

    
Figure 2.11 Comparison of modeled post-fire debris flow volumes, normalized for 

basin size, between low (L) and high (H) recurrence interval storms (2- and 100-yr 

rainfall events) within rangeland (tan) and forested (green) drainages under all burn 

scenarios. Median values for each scenario are indicated by bold horizontal lines. 
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Figure 2.12 Comparison of modeled post-fire debris flow probability between low 

(L) and high (H) recurrence interval storms (2- and 100-yr rainfall events) within 

rangeland (tan) and forested (green) drainages under all burn scenarios. Median 

values for each scenario are indicated by bold horizontal lines. 

Discussion 

Across all fire and precipitation scenarios, post-fire debris flow probability and 

resulting volume are higher in forested basins than rangeland basins. The average 

modeled sediment yield was ~1.4x higher for forested basins than rangeland basins under 

both the low and high precipitation recurrence scenarios. The average post-fire debris 

flow probability was ~15% and ~32% greater for forested basins than rangeland basins 

under the 2yr and 100yr recurrence rainfall events, respectively. 

Higher predicted debris flow occurrence and higher sediment volumes for 

forested drainage basins can be explained by disparities in soil properties, vegetation and 

fuels, and basin characteristics. Conceptually, the disparity of volume estimates between 

forested and rangeland slopes may be explained by soil thickness between forest and 

rangeland slopes. Poulos (2016) found that soils are thicker on forested, north-facing 
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slopes than on sparsely vegetated, south-facing slopes in the Boise Foothills. Therefore, 

per unit area, there is less mobile sediment available to contribute to a debris flow on 

rangeland slopes than forested slopes. Hypothetically then, if drainage basins of equal 

size and slope were comprised of contrasting vegetation types (rangeland and forest) and 

both failed in a post-fire debris flow, a rangeland debris flow would have a lower 

sediment yield than that of a forested basin. 

While this study controlled for burn severity within the post-fire debris flow 

scenarios, forests often burn at higher severity than rangelands. Therefore, fire in forests 

damage soil more severely than fire in rangelands. There is also more biomass to burn in 

forests than in rangelands, which may produce more ash than in rangelands, contributing 

more fine material from which debris flows initiate after fire. Additionally, forested soils 

within the study area are finer with forested slopes than rangeland slopes (Smith, 2010; 

Poulos, 2016). Fine sediment is thought to induce sediment bulking to initiate the debris 

flow-forming process. Fine sediment reduces infiltration rates, inducing overland flow. 

Fine sediment also increases the viscosity of flows that are able to entrain larger 

sediment, transitioning the sediment bulking process into a debris flow. 

In reality, however, the soils data used to predict post-fire debris flows in the 

Boise Foothills study area map lower clay content within forested basins than within 

rangeland basins. Unlike the majority of the basins within the Boise Foothills study area, 

low elevation drainage basins are comprised of lacustrine parent material. Lacustrine 

sediment of ancient Lake Idaho is comprised of fine sediment, and increase the 

abundance of fines that contribute to increased debris flow probability. Clay content 

values modeled by SSURGO maps used in this study have been found to have inaccurate 
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clay content measurements. Within lower-elevation soils of the Boise Foothills, 

SSURGO has been found to overestimate clay content by ~10%, which induces 

overestimation of post-fire debris flow probability in rangeland slopes (Appendix A). 

Dissimilarity of post-fire debris flow probability between forested and rangeland 

slopes may also be explained by higher slopes within forests compared to those of 

rangelands. Slopes within forested basins were ~19% higher than in rangeland basins, 

increasing the likelihood the failure would occur on burnt forested slopes than rangeland 

slopes. 

Interestingly, while post-fire debris flows are predicted to be less likely in 

rangelands than in forested basins, the Boise Foothills have produced fire-induced debris 

flows in recent history. In 1959 a ~9000 acre burn area produced debris flows from six 

large drainage basins, burying much of the Boise Metropolitan area in sediment in debris 

(Thomas, 1963). The basins that produced these debris flows are ~9-22 km2, 

approximately one order of magnitude higher than the basin size modeled in this study 

(0.1-1.4 km2). Cannon et al. (2010) describe that post-fire debris flow-producing basins 

are commonly no larger than 1 km2. Because basins that produced debris flows in the 

rangeland-sourced 1959 post-fire event were larger than those of forested basins, it may 

be that, because of the limited sediment source of basins that typify rangeland 

ecosystems, a larger drainage area is required to source sediment in order to produce 

post-fire debris flows. This theory is supported by Pierson et al. (2014),  who describe 

that, in rangeland systems, there is increasing soil loss at increasing scales of study (i.e. 

from plot to hillslope scale) on post-fire slopes. 
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Conclusion 

This study found that, using USGS post-fire debris flow models, the average 

modeled sediment yield for forested basins are predicted to be ~1.4x higher for than 

rangeland basins under low and high intensity rainfall events. Additionally, post-fire 

debris flow probability is predicted to be ~15% and ~32% greater for forested basins than 

rangeland basins under low (2 yr) and high intensity (100 yr) rainfall events, respectively. 

The disparity of these model predictions are the result of contrasting soils and slopes 

between these ecosystems within the Boise Foothills study area and, under real world 

events, may be further driven by contrasting burn severity between forests and rangeland. 

Identifying and understanding contrasting post-fire debris flow response between these 

ecosystems is important when attempting to inform potential hazards. Our findings show 

that debris flow hazards may be lower when sourced from rangeland basins as opposed to 

forested basins when controlling for fire severity and precipitation intensity. However, 

wildfire and subsequent rainfall is often complex and unpredictable, and understanding 

individual circumstances is vital when attempting to assess potential risks to life and 

property. As such, by applying post-fire debris flow models in a pre-fire environment 

serves only as a starting point for assessing post-wildfire debris flow hazards, and may 

aid in making decisions regarding how to prepare for and mitigate this hazard in an urban 

setting. 
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CHAPTER III: COMPARISON OF POST-FIRE DEBRIS FLOW MODELS TO A 

HISTORIC POST-FIRE DEBRIS FLOW EVENT IN THE BOISE FOOTHILLS 

UNVEIL LIMITATIONS FOR MODEL USE IN RANGELAND LANDSCAPES 

Abstract 

Like many cities in the western US (e.g. Denver, Reno, Salt Lake City), the Boise 

Wildland Urban Interface (WUI) is located at the base of a mountain front. These 

vegetative communities are typified by shrubs (sagebrush-steppe) and grasslands at lower 

elevations, with open forests at higher elevation and on north-facing slopes. After fire, 

these mountainous slopes are highly susceptible to catastrophic flooding and erosion by 

post-fire debris flows. Despite increasing WUI development concurrent with growing fire 

and erosion hazards in these ecosystems, post-fire debris flow models are not developed 

or calibrated for sparsely vegetated systems, and have gone largely untested in these 

particularly vulnerable WUI landscapes. In this study, we test model post-fire debris flow 

probability and volume models developed by Cannon et al. (2010) against a historic 

record (Thomas, 1963) of post-fire debris flow erosion in the rangeland-dominated 

foothills of Boise, Idaho USA. Our work seeks to identify discrepancies in post-fire 

debris flow models that may arise as the result of applying models used in forested 

environments to areas for which they were not calibrated; namely the Boise Foothills and, 

more generally, rangeland ecosystems. Prior studies in Idaho show that lower severity 

fires burning on open grassland and sagebrush-steppe dominated slopes produce more 
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frequent erosion events of lower magnitude (smaller debris flows and sheetfloods) 

compared to post-fire erosion following high-severity fire in forested landscapes, where 

sediment storage capacity is higher and debris flows predominate (Pierce et al., 2004; 

Weppner et al., 2013: Riley et al., 2015). Therefore, we hypothesize that the models 

constructed from forest-sourced debris flow data will overestimate the volume of 

sediment and will under-predict the probability of debris flow occurrence compared to 

the actual 1959 post-fire debris flow event. We found that the post-fire debris flow 

volume model estimates yields (Mg/km2) ~2-6x greater than those produced in the 1959 

post-fire debris flow event. The 1959 debris flow yields are similar to those estimated in 

regional depositional records (Riley, 2012; Poulos, 2016) sourced from sparsely 

vegetated drainage basins, while modeled yields of the 1959 debris flow event are similar 

to those sourced from forested basins within the region. Additionally, only one drainage 

was modeled to have >50% probability of debris flow occurrence under the 1959 post-

fire debris flow scenario, and only under the highest modeled burn severity scenario, 

despite the fact that all basins did produce debris flows. We conclude that post-fire debris 

flow models are more suited to forested slopes, as sediment yields appear to be distinct 

between burned rangeland and forested drainage basins with the region. 

Introduction 

Wildfires in the western United States have increased in size and severity in 

response to earlier snowmelt (Westerling, 2016) and hotter ambient temperatures (Scasta 

et al., 2016) induced by climate change. As a result, the fire season is expanding due to 

both climatic (Abatzaglou et al., 2016) and human influence on wildfire activity and 

ignitions (Balch, et al., 2017). Subsequent to wildfire over a mountainous landscape, the 
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potential for erosion landscapes increases after fire (Swanson et al., 1981; Moody and 

Martin, 2009). Increases in wildfire activity may double erosion in some western US 

regions (Sankey, GSA/AGU). 

Debris flows constitute the most hazardous form of fire induced erosion and are 

an anticipated erosional response to wildfire in mountainous landscapes (Cannon and 

Gartner, 2005). When humans inhabit regions prone to both wildfire and debris flows, 

fire-induced debris flows pose a serious hazard to life and property. Human ignitions 

expand the wildfire season in the western United States (Balch et al., 2017). The 

population of the western US is predicted to continue expanding into the Wildland Urban 

Interface (Bramwell, 2015). As these fires increasingly burn slopes in the WUI, the risk 

of post-fire erosion also increases. Consequently, human expansion will likely partially 

occur in debris flow deposition zones, and the number of people threatened by post-fire 

debris flows will increase over time. 

Anticipating the location and magnitude of debris flows in recently burned areas 

has been a subject of study in recent years (Cannon et al., 2001; Cannon et al., 2008; 

Cannon et al., 2010; Staley et al., 2016). These studies culminated into the creation of 

models that predict where debris flows are most likely to occur after fire, and estimate the 

amount of sediment that the debris flow will deposit (Cannon et al., 2010, Staley et al., 

2016). The most recent iterations of these models are commonly used within wildfire 

perimeters on Forest Service land to target and manage for areas where high debris flow 

potential intersects resources of interest (e.g. roads, streams). 

Notably, these post-fire debris flow hazard models were built using data from 

debris flows sourced primarily from forested drainage basins. However, while many fire 
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induced debris flows occur in forested areas, their occurrence has been reported in 

rangelands and sparsely vegetated hillslopes (Thomas, 1963; Pierson et al., 2008). Due to 

contrasting soils, vegetation, and burn severity between forests and rangelands, it is 

possible that post-fire debris flow models built using data from forest debris flows may 

not be suitable to forecast debris flow hazards in rangeland landscapes. The utility of 

post-fire debris flow models in rangelands has not been tested. Because many 

communities abut mountainous rangelands (Colorado Front Range, Reno, Salt Lake City, 

Boise), it is important to test the ability of post-fire debris flow models to predict debris 

flow hazards in this unique ecoregion. The Boise Foothills of southwestern Idaho mark 

the northern extent of the Great Basin sage-steppe ecosystem and have a rich history of 

both wildfire and post-fire erosion, providing an ideal location to compare post-fire 

debris flow events within mountainous rangelands, to those predicted to occur through a 

modeling exercise. 

This study compares post-fire debris flow sediment yields produced from 

rangeland drainages after a ~100 yr rainfall event mobilized sediment within a ~9500 

acre fire in the Boise Foothills to those predicted by post-fire debris flow models. We 

then compare the event and model yields to local and regionally relevant sediment yields 

extrapolated from Holocene alluvial fan records to answer the following questions 1) do 

rangeland post-fire debris flow sediment yields differ between model predictions and 

measured volumes; 2) do local and regional depositional records reflect differences in 

post-fire debris flow sediment yields sourced between contrasting ecosystems (i.e. forests 

vs rangelands) and 3) do post-fire debris flow models accurately predict debris flow 

hazards for burnt rangeland hillslopes? 
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Because previous studies observe contrasting soil traits, fire severity, basin 

morphology and depositional expression between forested and rangeland slopes, we 

hypothesize that these debris flow models will overestimate the probability of debris 

flows occurring on rangeland slopes, recognizing that geologic records reflect sheetflood 

deposition on these less-vegetated slopes. We also postulate that models will 

overestimate the volume of debris flows on rangeland slopes, recognizing that less 

sediment is stored in rangeland soils, and when sediment is transported, it is by 

sheetflood rather than debris flow. 

Background 

Contrasting Post-Fire Erosion Response Between Rangelands and Forests 

Slopes in post-fire landscapes erode as a function of fire severity and intensity. In 

addition, topography, and precipitation intensity and duration, and vegetation influence 

erosion after wildfire. Fire may reduce soil cohesion, and heat may break apart soil 

aggregates, making them more susceptible to erosion (McNabb and Swanson, 1990). The 

breakup of aggregates and the introduction of ash to the soil surface may reduce pore 

space by filling former voids, decreasing infiltration rates, leading to erosive surface 

runoff (McNabb and Swanson, 1990). Ash smooths the slope surface, promoting a 

continuous runoff surface (Lavee et al., 1995; Woods and Balfour, 2010). Conversely, 

ash may store precipitation and reduce runoff overall (Cerda and Doerr, 2008). Burnt 

vegetation may volatilize and be expelled into the topmost portion of the soil profile 

where it cools and solidifies within pore spaces, inducing hydrophobicity and subsequent 

runoff (DeBano, 2000). Vegetation loss resulting from fire also increases the exposure 

and susceptibility of the burned surface to rainfall as the result of a reduced canopy 
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(Shakesby and Doerr, 2006; Pierson et al., 2008; Miller et al., 2013). The impacts of 

wildfire on soil and vegetation often compound to create highly erosive slopes. Reduced 

cohesion, decreased pore space, hydrophobicity and introduction of an ashen surface as 

the result of fire leads to decreased infiltration and an increase in overland flow, which is 

exacerbated by less canopy protecting the surface from rainfall. 

The impact of fire on erosion at the plot and hillslope scale (as described above) 

contribute soil, ash and sediment to erosional processes that occur at the drainage basin 

scale. Hyperconcentrated flows, sheetfloods and debris flows produced by drainages <2 

yr after wildfire transport ~40-90% sediment (by weight) and are capable of transporting 

>104 Mg/km2 in a single erosion event (Pierce et al., 2004; Riley, 2012). The form of 

sediment transport (i.e. hyperconcentrated flows, sheetfloods and debris flows) will vary 

with the fraction of water available to mobilize material. Despite the form it takes, each 

post-fire sediment transport type is often the result of sediment bulking by runoff from 

the coalescence of hillslope-scale sediment transport into main channels (Cannon et al., 

2010). 

The type of mass sediment transport that takes place within a burn area will vary 

by burn severity and extent, the intensity and duration of a rainfall event, soils, and 

drainage basin size and morphology (e.g. Cannon and Reneau, 2000, Pierce et al., 2004, 

Cannon et al., 2010; Staley et al., 2016). High burn severity damages soils, creates ashen 

material and may induce continuous hydrophobicity across hillslopes, conditions that 

promote the formation of debris flows. In contrast, low severity fires burn 

discontinuously over hillslopes, rendering them incapable of producing continuous runoff 

required to mobilize and entrain sediment needed to form debris flows through the 
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sediment bulking process. Precipitation alters slope stability at both the slope surface and 

subsurface. At the surface, precipitation that is not intercepted by vegetation hits the 

ground surface and initiates erosion through rainsplash. When rainfall rates exceed 

infiltration rates, surface runoff will initiate on hillslopes and entrain sediment through 

overland flow and rilling which may initiate the sediment bulking process. In contrast, 

when infiltration rates exceed rainfall rates, soil will absorb water until saturated, at 

which point discrete, saturation-induced slope failures may occur. Both infiltration and 

runoff-induced slope erosion can promote post-fire debris flows, which is partially 

controlled by the nature of the sediment being subjected to erosion. Course soils lacking 

fine material often have abundant pore space compared to finer soils, increasing the 

ability for rainfall to infiltrate during periods of intense rainfall. Additionally, soils 

lacking fines are unable to supply the initial fine material to runoff that required to 

increase the viscosity of runoff, thereby entraining ever-courser sediment in the sediment 

bulking process. Fire introduces ash that contribute fines to this process. The basin 

morphology also dictates the formation of debris flows. Steep (~>30%), rugged slopes 

are often found to produce debris flows, while shallow, smooth slopes promote surface 

runoff (Cannon and Reneau, 2000). Additionally, Cannon et al. (2010) found that post-

fire debris flows are not observed within basins ~10 km2, and are instead frequently 

sourced from low-order drainage basins, often <1 km2. Soil depth has been found to vary 

by vegetation type within the study region. Interestingly, these attributes vary by 

ecosystem type, and have been studied intensely within the study region. 

Burn severity is driven by wildfire intensity and duration. Large fuels associated 

with forests are able to burn intensely and for prolonged periods of time due to their size 
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(1000 hr fuels) compared to those of rangelands (1-100 hr fuels) containing grasses and 

shrubs. High severity fires in forests damage soil, introduce large volumes of ash and 

induce hydrophobicity and promote debris flow activity. In contrast, rangeland 

ecosystems often burn most intensely in patches of sagebrush and in riparian areas, where 

larger fuel is concentrated, but burns quickly and incompletely through shrub interspace 

grasses and forbs. The resulting runoff is often discontinuous and hindered by erosion 

barriers of unburned patches of vegetation. The patchiness of the erosion reduces the total 

sediment transported from a rangeland basin, thereby reducing the total deposited 

volume. Burn severity is thought to play a role in post-fire deposition type seen in alluvial 

fan records along the Middle Fork Salmon River and South Fork Payette River; fire-

related debris flows are inferred to result from high severity wildfires whereas low 

severity fires reflect sparsely vegetated hillslopes, and limits sediment deposition in post-

fire erosion events (Pierce et al., 2004; Riley, 2012). 

Soil texture and thickness vary with aspect-induced vegetation differences within 

the Boise Foothills. Forested, north-facing drainages of the Boise foothills have 1.1-2.3 

times thicker soils than those found on south-facing, sparsely vegetated slopes (Smith, 

2010). Soil depth limits the maximum amount of material that can be mobilized by a 

debris flow, and may ultimately control debris flow volume. Additionally, soils in the 

Boise Foothills have courser-textured soils on south-facing, sparsely vegetated slopes 

than those of north-facing forested soils (Tesfa et al., 2009). Coarse rangeland soils drain 

more quickly than fine soils, prolonging the induction of infiltrated-induced runoff that 

may initate sediment bulking. However, wildfire over rangeland soils introduce fine ash 

that may reduce infiltration and initiate surface runoff. Forested soils, with abundant 
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fines, in contrast, infiltrate water more slowly, and the onset of infiltration-excess 

induced failure may occur more readily. 

Slope-area thresholds are a well-studied aspect of post-fire debris flow induction. 

Slopes >30% are thought to have the gradient required to produce post-fire debris flows. 

Recent work from Dry Creek Experimental Watershed identifies that forested slopes have 

steeper slopes than sparse, rangeland slopes (Poulos, 2016). Poulos found that forested, 

north-facing drainage basins adjacent to the this study area have a mean slope of ~60%, 

while south-facing drainages have a mean slope of ~47%. While both forested and 

rangeland basins have slopes exceeding the 30% threshold, north-facing slopes have 

more gravitational potential to fail in a debris flow. Ruggedness of slopes also influences 

debris flow activity. Cannon et al. (2010) found that high ruggedness increases the 

probability of debris flow occurrence. In Chapter 3, we found that forested basins have an 

average ruggedness of 0.72 while rangeland basins have an average ruggedness of 0.4. 

Therefore, rangeland slopes would be less likely to produce debris flows. Additionally, 

post-fire debris flows have been observed to occur in basins <0.1 km2 - ~30 km2 (Cannon 

et al., 2010). Sediment produced by larger basins are thought to become diluted with 

water flowing in streams, thereby transitioning sediment transport from debris flow to 

concentrated flow (Cannon et al., 2001). 

Post-fire Debris Flow Prediction 

To predict post-fire debris flow hazards in the western US, the USGS developed 

empirically derived models that calculate the probability of debris flow occurrence and its 

resulting volume over a burn area and under a specified precipitation intensity and 

duration (Cannon et al., 2010). The models were developed using a logistic regression of 
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388 basins that burned within 15 fire perimeters within the Intermountain West. The 

models calculate debris flow probability using soil, topography, burn severity and 

precipitation attributes, and calculates debris flow volume using topography, burn 

severity and precipitation attributes. Debris flow probability (equation 1) is estimated 

using soil, topographic, burn severity and precipitation data in the probabilistic model 

(Eq. 1):  

P=ex/(1+ex)         

 (Equation 1a) 

and 

x =0.03(%A)-1.6(R)+0.06(%B)+0.07(I)+0.2(%C)-0.4(L)-0.7  

 (Equation 1b) 

where %A is the percent of basin area having slopes greater than or equal to 30%, R is 

basin ruggedness using the Melton Ruggedness Number (basin relief divided by the 

square root of the basin area), %B is the percent of the drainage basin burned at moderate 

and high severity, I is the average stormfall intensity (mm/hr), C is the clay content in 

percent, and L is the liquid limit. 

Debris flow volume (m3) is estimated using topographic, burn severity and 

precipitation data using the multivariate regression model (Eq.2):  

ln(V) = 7.5+0.6(ln(A))+0.7(B)1/2+0.2(T)1/2    

 (Equation 2) 
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where A (km2) is the area of the drainage basin having slopes greater than or equal to 

30%, B is the area (km2) of the drainage basin burned at moderate and high severity, and 

T is the total storm rainfall amount in millimeters. 

The post-fire debris flow models are capable of predicting debris flow probability 

and volume within the range of area of drainage basins used to develop the model; 

therefore the maximum basin size that can be assessed with the models is ~30 km2. 

Study Event  

On August 3, 1959, a human-caused grass fire ignited at the base of the Boise 

Foothills along Rocky Canyon Road (Gress, 2014). The fire quickly spread upslope 

through cured cheatgrass (Bromus tectorum), bunchgrasses, and sparse stands of 

sagebrush and rabbitbrush (Thomas, 1963) into small stands of open Ponderosa Pine 

forest of southern Boise National Forest, where the flames were contained at the ridgeline 

marking the transition from the Great Basin to the Northern Rocky Mountain Region. 

The fire burned >9,000 acres over six drainages that flow ephemerally into the Boise 

Metropolitan area. The fire burned 8-100% of the drainage basins. Only ~8% of 

Cottonwood Creek burned in the 1959 Lucky Peak Fire. In contrast, Picket Pin was 

burned entirely. 

The 1959 Lucky Peak Fire burned adjacent to two fire perimeters that burned in 

the two previous years (Figure 1). The 1957 Rocky Canyon Fire burned ~3200 acres 

within the Cottonwood and Curlew drainages. The 1958 Curlew Fire burned ~1200 acres 

in the Curlew Creek and Hulls Gulch, which is excluded from this study. 
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Figure 3.1 Aerial image of modern (2016) eastern Boise metropolitan area and 

Boise Foothills. Drainage basins from which debris flow sediment tonnage was 

estimated by Thomas (1963) are delineated and overlain with 1957-1959 wildfire 

perimeters (BLM). 

The fires burned through steep foothills slopes (average 32.5 % slopes) comprised 

of Tertiary sand and mudstone lake sediments at lower elevations and medium to coarse 

grained Idaho Batholith granite at higher elevations, both of which are overlain by thin, 

xeric soils (Othberg & Stanford, 1992). While cool, wet winters provide spring snowmelt 

runoff-dominated flow through the Boise foothills, the drainages are ephemeral, as 

summers are dry and hot. However, convective thunderstorms produced by orographic 

uplift into the southwestern Rocky Mountains provide high intensity summer 

precipitation over the study area (Watershed Description). 

The 1959 post-fire debris flow event occurred two weeks after the Lucky Peak 

Fire. On August 20, 1959, a summer convective storm event produced a 50-100 yr 
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recurrence precipitation event, releasing a total of 53.3 mm of water at a high elevation 

site with an average stormfall intensity of of 27.94 mm/hr. The storms initiated surface 

runoff over the recently burned slopes and ultimately mobilized damaged soil and 

sediment that deposited onto the Boise Metropolitan area. The erosion event occurred at 

night and, as a result, there are few descriptions of the flows as they exited the confined 

foothills drainages onto the floodplain of the Boise River. However, one witness 

described boulders exiting Curlew Creek as rolling atop the surface of the flow “like 

tumble weeds”. Flows exiting the Warm Springs Creek were described by a farmer as 

exiting the mouth of the foothills and spreading more than 0.75 miles wide, as typified by 

the alluvial fan form. Geologists observed that the deposits reflected flow behavior 

typical of low viscosity fluids, not as translational landslides or rockfalls. 

Descriptions of the 1959 Boise Mudbath deposits indicate that debris flows were 

the predominant form of post-fire erosion response to the August 20th storm event. Direct 

geologic observations are only available for Maynard Gulch and Highland Valley Gulch, 

and mapped for Cottonwood Creek. Deposits within Maynard Gulch were described as 

being well-graded, indicative of a sediment-laden flood rather than debris flow (Thomas, 

1963). However, pebbles described as being covered in silt indicate that the flow 

viscosity was likely elevated by suspended silts and clays. Along the long profile of 

Maynard Gulch, there were segments of scour where valley confinement is highest and 

deposition where valley confinement is low. Along one sharp bend in Maynard Gulch, 

Thomas noted that a mudflow-type event would have scoured the outer bend, but instead, 

grasses were intact. He noted that grasses inundated by the flow had only bent stems, and 

noted that “only a liquid-type turbulent flow could have moved through these channels 
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without making radical changes in the channel geometry” (Thomas, 1963). A 1960 map 

of sediment deposition sourced from Cottonwood Creek show that sediment was 

deposited at the outlet of Cottonwood Creek as an alluvial fan with ~0.5 mile radius, but 

that streets channelized sediment and flood waters that were transported as far as ~2 

miles from the fan apex of Cottonwood Creek (see Figure 2). 

 
Figure 3.2 Original map depicting the extent of post-fire debris flow deposition 

(hashed) and flooding extent (solid) after the August 20th, 1959 ~100 yr rainfall event. 
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Though direct observations of post-fire sedimentation are not reported for the 

other drainages that produced mudflows, preserved deposits of 1959 mudflows provide 

more information about the depositional events sourced from Squaw Creek and Highland 

Valley Gulch. Intact deposits <0.1 km above the outlet of Squaw Creek that contain 

matrix-supported boulders (Figure 3) are interpreted as being from the 1959 mudflow 

events. The granitic boulders were likely transported from points of incision similar to 

that reported by Thomas (Figure 4) in Maynard Gulch. Additionally, debris flow and 

sheetflood deposits below the outlet of Highland Valley Gulch are interpreted as being 

deposited after the August 20th storm event and subsequent smaller storms that rained 

over the Highland Valley drainage area. Debris flow deposits at this site contain abundant 

charcoal, and are topped by several sheetflood deposits, indicative of a high-intensity 

storm event following several smaller precipitation events. Other deposits that would aid 

in the interpretation of the mudflow events have been built over, disturbed or destroyed 

due to the expansion of the Boise Wildland Urban Interface. However, interpretation of 

aerial videography taken after the August 20th events (When the Pot Boiled Over) show 

that sediment from Maynard Gulch reached the Boise River, and that deposits from 

Squaw Creek and Highland Valley Gulch intersected Highway 21. Sediment at these 

locations distant from stream outlets were described as thin tongues of sand and silt 

deposited as the slope gradient lessened and the channel widened as each flow exited 

confined stream channels onto the Boise River Floodplain. 
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Figure 3. 3 Charcoal-bearing matrix supporting a granitic boulder exposed by 

incision of the modern Squaw Creek indicates transport by post-fire debris flow. The 

unsorted bouldery debris flow deposit with a silt and clay-sized matrix contains 

contrast with the sorted coarse the modern sandy stream depoists seen at the bottom 

of the photo. 
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Figure 3.4 A photo taken from the 1963 USGS Report of the 1959 Boise Mudbath 

of bouldery debris flow deposits in Maynard Gulch above Boise Idaho (Thomas, 

1963). The angularity of the boulders may indicate that incision reached bedrock, and 

eroded out boulder-sized material for transport. See circled onlooker for scale. 

The excessive volume of sediment deposition resulting from the August 20th 

flows were attributed to “the lack of live vegetative cover on the drainage areas, the 

looseness of the soils, the cover of ash from recent fires, the steep slopes and the intensity 

of the storm” (Thomas, 1963), The amount of sediment that was deposited beyond the 

outlets of the study drainage basins was estimated by Thomas in tons (Figure 5). The 

flows were estimated to have concentrations of approximately 50 percent by weight with 

flows containing 60 percent sediment by weight at their peaks (Thomas, 1963). Due to 

the contribution of organic material and ash, the specific gravity of these post-fire debris 

flow deposited was estimated to be 2.0 kg/m3, lower than that of the rock source, Idaho 

Batholith Granite, which has a specific gravity of 2.65 kg/m3. From these values, we can 

convert tons of debris to volume (m3), displayed in Table 1. 
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Figure 3.5 Image of original table reporting the estimated tonnage of the August 

20th, 1959 post-fire debris flow deposits (Thomas, 1963). 

 

Table 3.1 Post-fire debris flow volumes calculated from reported debris amount 

estimated in tons (Thomas, 1963).  
  

Debris 

Est. (ton) 

Est. 

Density of 

debris 

(kg/m3) 

Volume 

(m3) 

Mg/km2 

Drainage 

Name 

Picket 41000 2000 18688 4154 

Cottonwood 53300 2000 24176 2188 

Warm 67800 2000 30754 4719 

Squaw 26500 2000 12065 4630 

Maynard 46000 2000 20865 7067 

Highland 25400 2000 11521 5334 

Curlew 26600 2000 12066 2423 
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Methods 

We modeled post-fire debris flow probability and volume within the 1959 Lucky 

Peak Fire area using the post-fire debris flow probability and volume models described in 

Chapter 2. However, unlike in Chapter 2 where we modeled post-fire debris flow hazards 

under a range of theoretical burn and precipitation scenarios, the fire perimeter, stormfall 

intensity (mm/hr) and total rainfall (mm) are known. However, the burn severity within 

the 1959 burn perimeter is unknown. As such, we apply the same burn scenarios within 

the 1959 fire perimeter as were used in Chapter 2 (25%, 50%, 75% and 100% moderate 

and high severity burn). In contrast to Chapter 3, where we apply USGS post-fire debris 

flow models to first-order channels where debris flows are interpreted to have occurred 

within the depositional record (Poulos, 2016), and where differences in modeled debris 

flow probability and volume could be compared, we apply the models over the drainage 

basins (third order channels) from which debris flows have been recorded in more recent, 

written history (Thomas, 1963). The most recent iteration of USGS models (Staley et al., 

2016) provide an upper limit of basin size to be used to assess post-fire debris flow 

hazards, the former models (Cannon et al., 2010) can be used to determine post-fire 

debris flow hazards over basins as large as 30 km2. In the 1959 Lucky Peak Fire study 

area, the largest drainage basin, Cottonwood Creek, is ~22 km2 and, therefore, within 

range of assessment under post-fire debris flow models. 

We ran post-fire debris flow probability and volume models (Cannon et al., 2010) 

using the same procedures as Chapter 2, but using stormfall and burn perimeter data 

specific to the 1959 post-fire debris flow event. We acquired topographic and soil data 

using the same procedures described in Chapter 2. Total storm rainfall was acquired 
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through the Thomas Report (1963) and stormfall intensity was calculated using equations 

specific to the Snake River Valley (Miller et al., 1973). We ran the post-fire debris flow 

models through four burn severity scenarios, summarized in Table 2. The 1959 fire 

perimeter was obtained from the Bureau of Land Management Historic Fire Perimeters 

dataset available through Inside Idaho. We calculated the percent burned area within each 

basin using Zonal Statistics in ArcGIS 10.2.1. We used specific gravity and tonnage 

estimates provided in the Thomas, 1963 report to calculate the volume of debris flow 

deposits to provide a direct comparison between the field-estimated deposits and the 

USGS post-fire debris flow volume model. 

Table 3.2 Modeled 100-yr stormfall event fire severity scenarios 

Scenario 

Name 

(L = low recurrence, 

H = high recurrence) 

Burn Severity 

Scenario 

% area burned at 

moderate & high 

severity 

Precipitation 

Scenario 

(recurrence interval) 

Stormfall 

Intensity  

(mm/hr) 

Total 

stormfall 

(mm) 

LP25 25% 50-100 yr 27.94 53.3 

LP50 50% 50-100 yr 27.94 53.3 

LP75 75% 50-100 yr 27.94 53.3 

LP100 100% 50-100 yr 27.94 53.3 

 

Results 

Modeled post-fire debris flow volume estimates for drainage basins within the 

1959 Lucky Peak Fire burn area spanned an order of magnitude among the six drainages. 

Highland Valley Gulch and Warm Springs Creek are modeled to produce the lowest and 

highest debris flow volumes, respectively, and are estimated to produce an average of 

~33,200 m3 and ~163,200 m3, respectively (Table 3). All drainages produced less 
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sediment than estimated by all modeled storm scenarios (Figure D). Assuming a debris 

flow density of 2000 kg/m3 (Thomas, 1963),  Highland Valley Gulch and Warm Springs 

Creek produced ~11500 m3 and ~31000 m3, respectively. 

Table 3.3 Post-fire debris flow model volume estimates within each study 

drainage of the 1959 debris flow event under four burn severity scenarios 
  

Volume (m3)    
 

Scenario LP25 LP50 LP75 LP100 Average True 

1959 

Volume  

Drainage 

area 

(km2) 

 

Drainage 

Name 

Picket 59402 91703 127963 169463 112133 18688 8.99  

Cottonwood 63533 76898 89030 100734 82549 24176 22.11  

Warm 79203 129007 187580 257185 163244 30754 13.08  

Squaw 30401 40556 50595 60965 45629 12065 5.10  

Maynard 30492 38182 45375 52481 41632 20865 5.90  

Highland 23631 30166 36381 42605 33196 11521 4.31  

Curlew 22201 22201 22201 22201 22201 12066 9.94  

 

Modeled post-fire debris flow sediment yields (Table 4) normalized by their 

drainage areas (Mg/km2) allow for direct comparisons of volume estimates among 

drainages of different sizes, and are displayed in Figure 6. The post-fire debris flow 

model estimates that Cottonwood Creek would produce the lowest sediment yields 

(~7500 Mg/ km2) under 1959 post-fire debris flow conditions, while Warm Springs 

Creek would produce the highest sediment yields (~25000 Mg/ km2). Modeled sediment 

yields (~4500-25000 Mg/km2) are higher than the actual 1959 sediment yields (~2188-

5334 Mg/km2), in many cases by over half an order of magnitude. 
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Figure 3.6 Model averaged (colored shapes) and true (hollow black) post-fire 

debris flow sediment yield estimates plotted against the percent to which each basin 

burned in the 1959 Lucky Peak Fire. Error bars correspond to the highest and lowest 

modeled sediment yield estimates, under LP25 and LP100 scenarios, respectively. 
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Table 3.4 Post-fire debris flow modeled sediment yield within each study 

drainage of the 1959 debris flow event under four burn severity scenarios 
  

Modeled Sediment Yield (Mg/km2)   
 

Scenario LP25 LP50 LP75 LP10

0 

Averag

e 

*Tru

e 

1959 

yield

s 

Drainag

e  

area 

(km2) 

Drainag

e Name 

Picket 1320

3 

2038

2 

2844

1 

37665 24923 4154 

8.99 

Cottonwoo

d 

5747 6956 8053 9112 7467 2188 

22.11 

Warm 1210

9 

1972

3 

2867

8 

39319 24957 4719 

13.08 

Squaw 1191

3 

1589

3 

1982

7 

23891 17881 4630 

5.10 

Maynard 1034

3 

1295

2 

1539

2 

17802 14122 7067 

5.90 

Highland 1095

7 

1398

7 

1686

9 

19755 15392 5334 

4.31 

Curlew 4466 4466 4466 4466 4466 2423 9.94 

 

Single event sediment yields of the 1959 post-fire debris flow event (~2200-7100 

Mg/km2) are comparable post-fire debris flow sediment yields sourced from Idaho 

Batholith Granite within sparsely forested and rangeland drainage basins along the 

Middle Fork Salmon River (MFSR) (Figure 7). Drainage basins along the MFSR 

containing sparse vegetation of comparable size (~3.4-7.4 km2) to the 1959 Lucky Peak 

basins were measured to have post-fire debris flow sediment yields ~1800-5600 Mg/km2 

(Riley, 2012). The study found that wetter, forested basins produced higher single event 

post-fire sediment yields (~22950-34550 Mg/km2) (Riley, 2012). While sediment yields 
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from the sparsely vegetated MFSR study basins are comparable to the 1959 post-fire 

debris flow yields, they are an order of magnitude smaller than those modeled for the 

same 1959 debris flow event (~7500-17900 Mg/km2). 

 
Figure 3.7 1959 Lucky Peak Fire post-fire debris flow yields Boise, Idaho (dark 

yellow), modeled post-fire debris flow yields for the Lucky Peak Fire (gray). Single 

event post-fire debris flow deposits from sparsely vegetated (light yellow) and forested 

(dark green) basins of the Middle Fork Salmon River (MFSR) measured by Riley, 

2012. Estimated single-event post-fire deposits within the Dry Creek Experimental 

Watershed of Boise, Idaho (forested = green, rangeland = yellow). 

Modeled post-fire debris flow probabilities for the six burnt drainage basins 

ranged from <1%- ~6% under the LP25 scenario, and ~8-78% under the LP100 scenario 

(Table 5). Post-fire debris flow probability increases with the amount of moderate and 

high burn severity burn within the Lucky Peak Fire perimeter. The probability of post-fire 

debris flow occurrence within a drainage positively correlates with the percent of which 

the drainage basin burned as burn severity increases under the four burn scenarios (Figure 

8). Curlew Creek, despite not having burnt in 1959, is calculated to have a ~1% 

probability of producing a debris flow. Interestingly, even under the LP100 burn 
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scenario, no basin was modeled to have more than a ~78% probability of producing a 

debris flow following the 1959 Lucky Peak Fire, despite the fact that each basin did fail. 

Table 3.5 Calculated post-fire debris flow probability for each burned 1959 

drainage basin under four burn severity scenarios. 
  

Probability (%) 
 

Scenario LP25 LP50 LP75 LP100 

Drainage 

Name 

Picket 3.76% 14.85% 43.75% 77.63% 

Cottonwood 5.50% 6.14% 6.85% 7.64% 

Warm 0.80% 2.87% 9.77% 28.40% 

Squaw 0.74% 2.32% 7.06% 19.52% 

Maynard 3.78% 6.76% 11.80% 19.79% 

Highland 1.48% 3.86% 9.73% 22.41% 

Curlew 0.64% 0.64% 0.64% 0.64% 
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Figure 3.8 Post-fire debris flow probability within each drainage basin (separated 

along the X axis by their burn percent) under the four burn severity scenarios. 

Discussion 

Estimated sediment yields from individual basins in the 1959 post-fire storm 

(~2200-7100 Mg/km2) are comparable to those of a single event sediment yield (~3140 

Mg/km2) in a small (<0.5 km2), sparsely vegetated, south-facing catchment ~10 km from 

the 1959 burn area (Poulos, 2016). The 1959 debris flow sediment yields (~2170-6835 

Mg/km2) are also comparable to three small (~0.5 km2), forested, north-facing 

catchments directly adjacent to the south-facing catchment (Poulos, in review). Due to 

limitations in the sampling process, these yields are calculated from the minimum 

constrainable deposit thicknesses, and are likely higher than can be confirmed.

 Sediment yields observed in 1959 are also comparable to single event fire-related 

debris flow yields sourced from sparsely vegetated 2.4-13.3 km2 basins (~1840-5600 

Mg/km2) calculated from modern fire-related debris flow deposits along the Middle Fork 

Salmon River. Soils that supplied debris flow material in this study are derived from the 
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same erodible Idaho Batholith rocks that comprise the 1959 study area. Forested basins 

produced sediment yields ~23,000-35,000 Mg/km2. Contrasting sediment yields (~0.5 

order magnitude) between sparsely vegetated and forested slopes observed in these 

studies provide insight to the range of sediment that post-fire debris flows can produce 

under contrasting vegetative conditions. This contrast aids in our understanding of the 

disparity of 1959 debris flow sediment yields and those modeled using the post-fire 

debris flow volume model. 

The modeled post-fire debris flow volumes of rangeland drainages burnt in the 

1959 Lucky Peak Fire are higher than those reported across all six study basins. While 

models predict that, on average over the four burn severity scenarios, burnt basins would 

produce a minimum of ~33000 m3 under the August 20th, 1959 rainfall scenario, not even 

Warm Springs, the largest volume-producing basin, deposited that amount (~31,000 m3). 

Similarly, modeled debris flow volumes normalized by drainage area indicate that post-

fire debris flow models overestimate post-fire debris flow sediment yields within 

rangeland drainages. The highest individual drainage basin sediment yield produced by 

the August 20, 1959 rainfall event was from Maynard Gulch, which produced ~7100 

Mg/km2. Under the average burn severity scenario, however, the model estimates that 

Maynard Gulch would produce 2x that yield (~14100 Mg/km2). The average modeled 

sediment yield for Picket Pin (~24900 Mg/km2) was over half and order of magnitude 

higher than its true yield of ~4200 Mg/km2. 

It is unknown how post-fire debris flow sediment yields were estimated from the 

1963 USGS report. Thomas (1963) reported that the deposits of the 1959 event “attest to 

the large amounts of debris moved”, but there is no description how the quantity of the 
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debris was estimated. We do know, however, that Thomas assumed that the flows were 

50 percent sediment by weight and that the specific gravity of the debris was 2.0. Thomas 

used this information to estimate the quantity of debris, in tons, that the debris flows 

produced. Thomas notes in his report that the calculated estimated debris quantities “are 

speculative, and indicate only the general order of magnitude of the movement.” Due to 

the lacking description of how debris tons were estimated, we must speculate potential 

error in resulting sediment volume estimates that we use in this study’s comparison 

between post-fire debris flow model estimates and reality. It is possible that the estimates 

made by Thomas do not account for sediment that reached the Boise River. In the 

informational video When the Pot Boiled Over, which documents the 1959 Boise 

Mudbath, aerial footage shows that sediment reached the Boise River, and was 

transported out of the study area. If this sediment was not accounted for, then sediment 

yields calculated by Thomas would be underestimated. Additionally, Thomas assumes 

the specific gravity of the 1959 Mudbath sediment to be the same as the value reported 

for a post-fire debris flow event sourced from the Paria River at Lees Ferry, Arizona. It is 

possible that the specific gravity of the post-fire debris flow sediment for the 1959 Boise 

Mudbath was lower than the Lees Ferry reported value, which would impact post-fire 

debris flow sediment yield estimates. Fire-related debris flows in Idaho have been found 

to have a specific gravity of 1.5 (Kirchner et al., 2001; Meyer et al., 2001). If the debris 

flow density was lower than reported by Thomas, then the modeled post-fire debris flow 

sediment yields would be higher than modeled under the assumed 2.0 specific gravity 

value. 
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Overestimation of post-fire debris flow volumes using models built using debris 

flow data from primarily forested basins is indicative of differences in post-fire erosion 

response between forest and rangeland basins. While debris flows are observed to occur 

after fire on both rangeland and forested slopes, wildfire is not required to initiate erosion 

on rangeland slopes (Pierce, et al., 2011). Coarse grained, better sorted deposits sourced 

from sparsely vegetated, south-facing slopes in the Boise Foothills indicate that surface 

runoff may be a more continual form of erosion in rangeland catchments in this study 

region (Poulos, 2016). Sparsely vegetated rangeland slopes are posited to create more 

opportunity for continual surface runoff and erosion, reducing the likelihood of 

catastrophic erosion thought to be typified by forested slopes, where protection of soil by 

vegetation and sediment storage is comparably high (Riley, 2012). Additionally, it is 

possible that more frequent, but less severe fires may stimulate more persistent erosion on 

rangeland slopes. The invasion of flammable cheatgrass (bromus tectorum) over much of 

the Boise Foothills exacerbates continual erosion. Wildfires >100 acres in size burn 

annually in the foothills. Erosion from these areas often increases markedly, not 

catastrophically, and evacuate soil and sediment that would contribute more volume 

during a mass-wasting post-fire debris flow event. 

Model overestimation of rangeland post-fire debris flows may also be explained 

by the disparity in available soil and sediment between forested and rangeland slopes. 

Poulos (2016) found that soils are thicker on forested, north-facing slopes than on 

sparsely vegetated, south-facing slopesin the Boise Foothills. Therefore, per unit area, 

there is less mobile material to contribute to a debris flow on rangeland slopes than 

forested slopes. Hypothetically then, if drainage basins of equal size and slope but of 
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different vegetation types (rangeland and forest) were both to fail by post-fire debris 

flow, the rangeland debris flow would have a far lower sediment yield than the forested 

basin. 

From a hazards perspective, overestimating debris flow volumes is preferable to 

underestimating sediment production. In contrast, under-predicting debris flow 

occurrence may lead to under-preparation for erosion after wildfire. The post-fire debris 

flow probability model did poorly to express the likelihood of failure within the 

drainages. Each drainage burned by the Lucky Peak Fire produced debris flows. 

However, only under the LP100 burn severity scenario did one drainage, Picket Pin, have 

>50% probability of producing a debris flow. Conservative estimates of post-fire debris 

flow probability may create issues for hazard managers to prepare for and communicate 

debris flow hazards within threatened neighborhoods of the Boise metropolitan area. 

From a hazard mitigation perspective, it is far better to prepare for a false positive (non-

event) than be unprepared for a false negative (unanticipated event). 

Potential post-fire debris flow sediment yields appear to decrease markedly ~1yr 

after fire. Curlew Creek, which burned the year prior to the 1959 Lucky Peak Fire, 

produced a debris flow during the August 20th rainfall event, but the sediment yield 

(~2400 Mg/km2) was lower than those produced by most basins that had burned only 

weeks before the rainfall event (~2200-7100 Mg/km2). The comparatively lower 

sediment yield of Curlew Creek can likely be attributed to the prevalence of cheatgrass in 

the Boise Foothills. The Lucky Peak Fire burned primarily through dry cheatgrass-

covered slopes, and was also likely present during the 1958 Curlew Creek Fire. 

Cheatgrass is able to reseed the year following fire. It is likely that cheatgrass had already 
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reestablished over the Curlew Creek burn area in 1959, thereby contributing root 

cohesion, canopy cover and surface roughness to the drainage basin, and reducing the 

erodibility of  hillslopes. Cottonwood Creek, the largest basin (~22 km) to deposit 

sediment in the 1959 rainfall event, produced a lower sediment yield (~2200 Mg/km2) 

than Curlew Creek. Though the majority of it burned in the 1957 Rocky Canyon Fire, 

<5% of Cottonwood Creek burned in the 1959 Lucky Peak Fire, so vegetation recovery 

likely aided in its low sediment yield. The low yield was likely also the result of sediment 

storage within the large Cottonwood Creek channel that was not measured after the 1959 

debris flow event. 

Interestingly, a similar wildfire and subsequent rainstorm occurred within the 

1959 post-fire debris flow study area nearly 40 years later. On September 11, 1997, 0.4 

inches of rain fell in nine minutes over the ~15,000 acre 1996 8th Street Fire. Flooding 

took place around Crane Creek and Hulls Gulch, but was contained by retention ponds 

and did not produced debris flows. The flooding response was likely significantly 

reduced due to rehabilitation efforts including terracing, contour fell logging, reseeding, 

straw wattles and check dam construction that took place shortly after the fire to protect 

foothills soils and watersheds (Fend et al., 1999). Additionally, erosion and post-fire 

debris flows may have been prevented due to erosion mitigation efforts that took place 

shortly after the 1959 Mudbath; to prevent future erosion from causing damage to homes 

downslope, the Soil Conservation Service, Forest Service and Bureau of Land 

Management terraced hundreds of acres of previously forested foothills that burned in the 

1959 Lucky Peak Fire. The terracing of 1959 and 1997 can still be seen in the foothills 
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today, and may have prevented another Boise Mudbath during the intense 1997 rainfall 

event. 

Additionally, there may not have been a post-fire debris flow response in 1997 

because the sediment source evacuated in the August 20th, 1959 post-fire debris flow 

event has not been re-supplied through weathering and soil development processes. 

Excavation of mobile regolith and soil from the 1959 drainages may have reduced their 

potential sediment yields for future post-fire debris flow events. 

The evacuation of sediment during a debris flow event in rangelands may further 

add to the discrepancy between the post-fire debris flow predictive models and reality. If 

the evacuation of sediment from the 1959 rainfall event means that debris flows are less 

likely to occur in those drainages in the future, then it may be that rangeland debris flows 

form less frequently, and require a “recharge” of transportable hillslope material before 

another debris flow is possible. However, because rangeland slopes lack canopy cover 

and burn frequently when invaded by flammable grasses, they erode more continuously, 

though less catastrophically, reducing the opportunity for a “recharge” of erodible 

material. This may explain why few records of post-fire debris flows exist for sparsely 

vegetated mountain front regions like those adjacent to the Colorado Front Range, Salt 

Lake City and Reno. 

Conclusions 

Historic reports of the August 20th, 1959 post-fire debris flow event offers 

comparisons of model predictions to real-world occurrence of post-fire debris flows. Few 

comparisons of post-fire debris flow model predictions and real world post-fire debris 

flow events have taken place. Post-fire debris flow models are currently used by the 
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Forest Service within recently burned areas in the western US to anticipate and prioritize 

where erosion mitigation action needs to be taken. However, verification of the accuracy 

of the model predictions within these burn areas is not frequently or formally reported, 

though debris flow occurrence within burn areas may be reported by Forest Service 

Ranger District websites or on the news. Verifying models through historic records offer 

an alternative to testing the predictive capabilities of post-fire debris flow models. 

Verifying models is especially useful when attempting to predict debris flow occurrence 

at the Wildland Urban Interface, where life and property are at risk. Knowing where and 

at what magnitude debris flows have occurred in the past can aid in understanding the 

potential hazards of future debris flow events. 

We found that the post-fire debris flow volumes estimated by the USGS model 

were ~2-6x greater than those produced actually produced by the 1959 post-fire debris 

flow event. Interestingly, the 1959 debris flow yields are similar to those calculated in 

regional depositional records (Riley, 2012; Poulos, 2016) sourced from sparsely 

vegetated drainage basins. Conversely, the model yields of the 1959 debris flow event 

more closely match known debris flow yields sourced from forested basins within the 

region. These findings show that debris flow sediment yields appear to be distinct 

between forest and rangeland basins. Rangeland basins with thin, coarse soils produce 

less sediment in debris flows than forested basins, with thick, finer soils after a wildfire 

disturbance. Models built from forested basins that are run over rangeland basins predict 

sediment yields typified by forest debris flows and over-predict their volume. Under the 

1959 post-fire debris flow scenario, models over-predicted sediment yields by as much as 

6x the true sediment yield. Additionally, the post-fire debris flow probability model 
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underestimates debris flow occurrence under the 1959 debris flow scenario. Only one 

drainage modeled to have >50% probability of debris flow occurrence under the 1959 

post-fire debris flow scenario, despite the fact that all basins did in fact produce debris 

flows. We conclude that post-fire debris flow models are more suited to forested slopes, 

as sediment yields appear to be distinct between burned rangeland and forested drainage 

basins. 

This study demonstrates the need to have a local understanding of post-fire debris 

flow hazards. While models exist that predict post-fire debris flow hazards, the influence 

of local topography, vegetation and precipitation reflected in distinct ecosystems appear 

to play a major role in determining post-fire debris flow occurrence and magnitude. 

Understanding local post-fire debris flow hazards is especially necessary where fire-

induced debris flow-prone slopes intersect the Wildland Urban Interface, where life and 

property may be at risk. The importance of having a local understanding of post-fire 

debris flow hazards at the WUI of Boise, Idaho and other western US WUIs will to grow 

in tandem with wildfire size and severity under future climate change. 
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CHAPTER IV: WHAT THE SCIENCE TELLS US: UNDERSTANDING THE ROLE 

OF WILDFIRE SCIENCE IN DECISION MAKING AT THE BOISE WILDLAND 

URBAN INTERFACE 

Abstract 

There is a growing supply and demand of science addressing wildfire hazards at 

the Wildland Urban Interface (WUI), yet what makes science applicable and how it is 

used to make policy decisions is not well understood. In this mixed methods study, we 

merge quantitative and qualitative social science methods with public policy theory to 

identify how stakeholders at the Boise, Idaho WUI use science to inform wildfire hazard 

policy. We hypothesize that how a manager defines a wildfire problem will influence 

how that manager uses science to create a policy solution to that problem. To test this 

hypothesis, we performed content analysis on WUI policies of Boise wildfire 

stakeholders, and coded the policies into distinct categories that classify how they define 

wildfire problems. We then conducted interviews with managers representing local, state 

and federal stakeholders in the Boise WUI to discuss how new, local science may address 

wildfire hazards they identify as needing policy solutions. Our findings show that 

stakeholders at the Boise WUI address the wildfire hazards with unique policy solutions. 

Interviews reveal that, contrary to our hypothesis, unique problem definition does not 

result in unique use or usefulness of science; across managers, science is useful when it is 

quickly understood, and when it helps draw boundaries from which wildfire hazard 
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funding can be allocated and prioritized. While policies may reflect unique problem 

definition among stakeholders, when knowledge sharing and collaboration is high, WUI 

stakeholders are workingtoward the same problems, and may see the same utility in 

science. We recommend this framework to provide policy context to scientists as they 

discuss their results with interested stakeholders, and to managers requiring policy 

context to the wildfire science they are asked to consider. 

Introduction 

Prolonged droughts and increasing temperatures are driving longer fire seasons 

and increases in burnable area on a global scale (e.g. Westerling, 2016; Jolly et al., 2015). 

Climate change and increased development in the Wildland Urban Interface (WUI) are 

escalating both the size and likelihood of fire (Jolly et al., 2015). Human fire ignitions 

triple the length of the natural wildfire season in the US (Balch et al., 2017). Thirty-two 

percent of U.S. housing units and one-tenth of all land with housing is located in the WUI 

(Radeloff et al., 2005), and growth is expected to continue (Hammer et al., 2009). As a 

result, communities in mountainous areas across the West must address the risk of 

wildfire hazards. 

At the Wildland Urban Interface (WUI), where undeveloped landscapes meet the 

built environment (e.g. neighborhoods, towns and metropolitan areas), there is a complex 

interaction among local, state and federal land and hazard stakeholders that ultimately 

must work together to protect life and property from wildfire (Rogers et al., 2005; 

National Action Plan, 2014) Strategies for successful wildfire management often note the 

need for collaboration amongst stakeholders, and an effective use of science (e.g. 

National Action Plan, 2014. However, strategy and management documents do not 
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recommend how successful stakeholder collaboration might take place, or how science 

may be effectively used in wildfire management. The result may be that existing science 

is not shared among agencies, science needs are not being met or new science is either 

not useful, or is simply not being placed into the hands of managers who could use the 

information. Therefore, policy decisions in fire-prone areas should be informed by the 

best available science. But is this the case? 

In this study, we use the Multiple Streams Framework (MSF), a well-established 

policy process model that outlines the components of policy creation, as a lens through 

which to examine the role science plays in wildfire policy making. The MSF lens 

identifies that the problems, policies and politics of a political arena (e.g. municipality, 

county or state) influence how, and under what circumstances new policies are made. 

Indicators of wildfire risk provide insight into what problems require policy attention, 

and influence each of the three streams. Indicators can include rates (e.g. increase in the 

number of highway deaths per year), costs (e.g. the average cost to live in a city) and 

ranks (e.g. a state’s national education ranking). Science often contributes or identifies 

these indicators 

We postulate that land and hazards managers, hereafter referred to as ‘managers’, 

uniquely define wildfire problems at the WUI, and address those problems with equally 

distinct policy solutions. As a result, we hypothesize that managers also use science to 

address the wildfire problems they face. The results of this study may aid to increase the 

utility of wildfire science at the WUI, thereby increasing the capacity of communities to 

prepare for and adapt to wildfire. 
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Background 

Overview of Past and Present Wildfire Policy in the United States 

Wildfire’s influence on land and hazard management policy as evolved 

dramatically in the western United States over the past century. The Big Blowup of 1910, 

which burned >3 million acres in Idaho, Washington, and Montana, set the stage for 

suppression that dominated the early Forest Service policy (Pyne, 2017). The strive to 

repress all wildfires during the early days of the Forest Service is best illustrated by the 

10AM Policy Fire, which mandated that every fire be suppressed by 10:00 AM the day 

following being reported. Suppression in the western US reached its peak after World 

War II, when men, heavy equipment and air tankers became available after being relieved 

of military duty (Dombeck et al., 2004). Abundant resources during this time led to 

efficient and effective wildfire suppression. 

Change to wildfire policy came in 1988, when several small conflagrations 

merged under optimal wind and humidity conditions and ultimately burned ~36% of 

Yellowstone National Park (Young, 2016). This disaster spawned policies encouraging 

controlled burns and fuel reduction in forests. Importantly, new policy recognized that 

wildfire provides ecological benefits to the landscape, and that several, small natural fires 

can prevent one, large wildfire disaster. Despite national change in policy, ~98% of 

today’s wildfires are suppressed during the initial attack (Dombeck et al., 2004), yet 

modern wildfires burn more acres annually, despite fewer ignitions. The increase in 

wildfire size and severity is the result of climate change (Abatzaglou and Kolden 2013) 

and the so-called ‘fire deficit’ induced by fire suppression of the pre-Yellowstone era 

(Marlon et al., 2012). The trend of increasingly large, severe and complex wildfires is 
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anticipated to continue in forests throughout the 21st century (Gergel et al., 2017). 

Managers have responded to this trend by employing an “All hands – all lands” approach 

(Pyne, 2017). Wildfires increasingly cross jurisdictional boundaries, and so too must 

wildfire management. 

The “All hands – all lands” approach is at the center of the National Cohesive 

Wildland Fire Management Strategy, which guides today’s wildfire management. The 

Cohesive Strategy provides direction for planning, risk analysis and collaboration among 

local, state and federal agencies, and tribal and non-governmental partners to restore and 

maintain resilient landscapes, create fire-adapted communities, and respond to wildfires 

(The National Strategy). Importantly, the Cohesive Strategy is structured around using 

the best-available science, while the National Action Plan, which supports the 

implementation of the Cohesive Strategy, underscores the need to use science and data to 

support decision-making at all levels (National Action Plan, 2014; The National Strategy, 

2015). 

How science is used in wildfire decision-making 

Science is often framed as being capable of providing solutions to modern 

wildfire management problems and fire-adapted communities, and is considered to the 

key to successfully preparing for wildfire at the WUI (Integrating the Local Natural 

Hazard Mitigation Plan into a Community’s Comprehensive Plan, 2013). Management 

strategies, including the Cohesive Strategy, highlight the importance of the distribution 

and production of science from which sound decisions can be made at the local to 

national level. For example, Calkin et al. (2011) highlights the use of science by stating 
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that “the creation of fire-adapted human communities is based on an interagency cohesive 

wildland fire strategy that […] is grounded in scientific research”. 

Yet while there is a push for wildfire managers to use science, there is also 

continually a pull by managers and funders to make science “useable”. For example, the 

Joint Fire Science Program, which is tasked with allocating funding for emerging wildfire 

issues in the United States, has a slogan of “Research Supporting Sound Decisions”. 

Additionally, there is an entire group, the Fire Science Exchange Group, dedicated to aid 

in the transfer of science to decision-makers. 

Despite the motivation of these groups, what exactly makes science “useable” 

remains poorly and broadly described in the literature. For example, the National 

Wildfire Coordinating Group describes usable science as that which is capable of 

“integrating [with] the missions of resource management in fire-adapted ecosystems” 

(Machlis, 2002), while Brunner (2005) simply states that current natural management 

“relies on science as the foundation of policies.” However, a review of the literature 

reveals little about what actually makes fire science useful to decision makers. In fact, 

little is known about how fire managers make decisions given the information in front of 

them (Machlis, 2002). 

According to Machlis (2002), what makes knowledge usable to decision-makers 

requires it to provide information (e.g. data), insight (rounded understanding of the 

system be worked in), prediction (forecasts) and actions (e.g. suggested ways that the 

impacts of wildfires can be reduced). In addition, science must address a decision-

maker’s needs at a level of detail appropriate to the decision (Machlis, 2002). This 

outcome is understandably challenging when one form of science is being delivered to 
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stakeholders at many levels. Different decision-makers have different problems that 

science can inform. In a more tangible context, wildfire science has been found to be 

useful when it is provided as a general technical report that provides user guides and 

synthesizes major findings (Barbour, 2007). Additionally, Barbour found that distributing 

science through seminars and publications were less favored to active learning through 

field trips. These findings shed light on how to successfully transfer fire science to users 

(decision makers). The science needs to be succinct, informed and tangible. 

Conversely, studies attempting to understand the use of wildfire science by 

decision-makers have successfully identified what makes science unusable. Broadly, 

science may not have use for managers because of differences in cultures and values 

(Finch & Patton-Mallory, 1993). A noteworthy finding by Wright (2010) found that it 

was far more common for practitioners with graduate degrees and employees of higher 

pay grades to use science than those without. Similarly, Sicafuse et al. (2011) found that 

managers lacking trust in scientists acted as a barrier to the use of science. Similarly, 

science may not be used because scientists distributing research findings use language 

different than the managers who would otherwise use the science (Finch & Patton-

Mallory, 1993). Time available for managers to seek out and assess wildfire science is 

also cited as a common barrier to science use (Wright, 2010; Seeholtz 2008; Hunter, 

2016). Many surveys and interviews have found that when there is no time allocated to 

seeking out and understanding new and pertinent wildfire science, it is unlikely that it 

will be used (Hunter, 2016). 

In regards to wildfire science distributed through the Joint Fire Science Program 

(JFSP), Hunter (2016) sought to determine whether or not science produced through the 
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JFSP was used to inform management, and under what conditions science was used. 

Interviews identified that most science produced through the fire-specific Program was 

used, at some point, by managers, and that science was most frequently utilized during 

the planning phase of management (Hunter, 2016). Importantly, this research revealed 

that, of those interviews, no respondents indicated that science influenced policy (Hunter, 

2016). While the study notes that the methods applied during the research may have been 

inadequate to assess the influence of science on policy, this result sheds light on the 

disconnect between science and policy. It is important to note that this research was 

conducted by interviewing scientists and “boundary spanners” (those in the fire 

community who interact with both scientists and managers), rather than by interviewing 

the managers themselves. In addition, while it was determined that science is often used 

during the planning phase of management, which may have implications for policy, there 

is no indication of what attributes made that science useful. 

The studies summarized above reveal the necessity to understand what makes 

science useful to decision makers. Though the studies reveal that some attributes of 

science, including succinctness and tangibility, provide utility to managers, a comparison 

of science’s utility among managers, especially at different levels of management, has yet 

to be seen. For example,  is wildfire science that is considered useful to a county hazard 

manager the same as what is useful to a state forester? Additionally, the studies do not 

focus on the transfer of science to management at the WUI. Lastly, the aforementioned 

studies do not divulge how science is used in the policy making process. The need to 

understand the role that wildfire science plays when managers make wildfire policy 

decisions is growing as more people expand into the WUI. 
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Problems, Policy and Politics: a Background on the Multiple Streams Framework  

Broadly, public policies are created when decision makers provide government 

authority to address a problem. There may be many policy solutions that can address a 

problem. In order to put a policy in place, the problem the policy addresses must be 

considered important, salient and, most importantly, solvable (Henstra, 2010). The 

problem must have a solution. Whether or not any one policy solution is chosen for 

implementation will be contingent on how the problem is defined (is the policy 

addressing a compelling problem?), the resources available to the policy maker (is there 

time and manpower to work on carrying the policy forward?), and whether or not the 

public recognizes the problem and agrees with the policy solution (Kingdon, 1995). The 

government implementing the policy can exist at any level (e.g. city, state or federal 

level), and the policy may take the form of an ordinance, law or general course of action. 

These key steps are all recognized and outlined by the Multiple Streams Framework 

(MSF). 

MSF is a popular model that explains the policy-making process from its earliest 

stages in the policy “primeval soup” (Kingdon, 1995) to the implementation of the new 

policy. MSF explains how policies are made under ambiguous conditions. Ambiguity in 

the policy-making process refers to having multiple ways of thinking about the same 

condition (Sabatier and Weible, 2014). Ambiguity in policy-making results in an 

accumulation of ways to define problems, and results in the introduction of multiple 

policy solutions to address the same problem. 

Importantly, more information does not reduce ambiguity in the policy-making 

process. As stated by Sabatier and Weible (2014), “while information may reduce 
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uncertainty, more information does not reduce ambiguity.” As an example, new 

information may tell us that wildfire smoke contains a newly-discovered toxic 

hydrocarbon, but that information does not aid in determining if the potentially-toxic 

smoke is a management, ecological, health, or climate change issue. Under ambiguous 

conditions, problems and solutions are brought forth by many stakeholders (i.e. anyone 

interested in the problem at hand) and are thrown into a “garbage can” from which only a 

few are selected for consideration, and reducing the ambiguity of the issue. Continuing 

the prior example, stakeholders (e.g. Forest Service) may select a policy that limits the 

number of days that they can implement prescribed fires. A management policy solution 

addressed the smoke problem. MSF attempts to explain why a particular policy solution 

is selected from numerous options that sit within that ‘garbage can. 

MSF is comprised of four main components: problems, policies, politics, and a 

window of opportunity. The problem stream contain all of the possible problems that a 

government may be attending to at any given time. Decision makers in government are 

often aware of problems due to indicators. Indicators are often simple statistics, and may 

comprise of a single value (e.g. ninety firefighters died on-duty in 2015), or a trend in 

values (e.g. the number of acres burned annually in wildfires has increased since the 

1980s, the number of days in the wildfire season has increased due to drought). 

Decision makers are also made aware of problems through focusing events. A 

focusing event is a sudden development, such as a disasters or crisis, which calls the 

attention of policy makers and, likely the public (Kingon, 1982). An example of a 

focusing event would be the 2016 Fort McMurray Wildfire, which burnt ~1.5 million 

acres and destroyed 2400 homes in Alberta, Canada. Perhaps the most important aspect 
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of the problem stream is how the problem is described. How a decision maker describes a 

problem is called ‘problem definition.’ 

Perhaps one of the best examples of problem definition comes from the issue of 

drug abuse in the United States, spanning from the late Nixon to the Obama 

Administration. Nixon and Obama used very different language to define the drug 

problem in the United States. President Nixon initiated the ‘war on drugs,’ whereas 

President Obama defined it as a ‘drug epidemic.’  While both of these refer to the same 

issue, the definitions provide very different outlines for policy; a war is something that 

needs to be fought, whereas an epidemic is something that needs to be cured. 

Understandably, how a problem is defined influences the selection of a policy used to 

address that problem. 

The policy stream is comprised of potential policy solutions to problems and the 

advocates that support those policies, called policy entrepreneurs. The policy stream 

contains a “primeval soup” of policy ideas that are supplied by policy entrepreneurs and 

policy communities. Importantly, there are stakeholders within a policy communities. For 

example, the wildfire policy community can include local, state and federal land 

managers, municipal fire stations, private land owners and nonprofits. Each of these 

stakeholders have their own solutions to a given problem, but only policy solutions that 

are technically feasible and acceptable by fellow stakeholders are seriously considered 

(Kingdon, 1995). Additionally, policy entrepreneurs with a vested interest in a given 

policy may invest time and energy to have that policy implemented successfully. 

Ultimately, within a “primeval soup” of potential solutions to problems, only some 

become policies. The unity or fragmentation of policies within a policy community is 
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dictated by the collaborative nature of the community. Fragmented policy communities 

often lead to fragmented polices over a given policy issue (Kingdon, 1995), leading to 

disconnect between solutions to a similar problem. 

The final stream, the politics stream, is comprised of attributes including the 

public mood and changes in government authority (e.g. a new president is elected) 

(Kingdon, 1995). The mood of the public alters how receptive civilians are to 

government decisions, and will ultimately result in either majority support or opposition 

of a given policy. Changes in government authority will alter how a policy community 

defines a problem which, in turn, will alter the favor of policy solutions under 

consideration. For example, separating the politics of Presidents Nixon and Obama in 

regards to the drug issue in the United States results in two distinct problem definitions 

(i.e. The War on Drugs versus The Drug Epidemic) and distinct policy solutions (i.e. 

police authority versus medical aid). Each of these aspects of the politics stream drive the 

salience of a given problem and, as a result, affect the potential for a given policy to be 

emplaced. 

Multiple Streams Framework describes how problems, policies and politics 

streams flow independently of each other until the streams merge and flow through a 

window of opportunity, during which time a new policy is implemented. A window of 

opportunity may open and close quickly. A new administration may have the momentum 

from a recent election to push new policies through the window in quick succession while 

the public mood favors the new administration, but lose momentum over time. Similarly, 

a window of opportunity may open suddenly as the result of a disaster. Hypothetically, a 

city may have several new earthquake-oriented building codes drafted for 
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implementation, but it is not until an earthquake destroys several homes and businesses 

that the building codes pass as new ordinances. Windows of opportunity may also open 

and close slowly. Climate change, for example, may act as a slow opening window 

through which several policies may flow through. For example, Sweden seeks to become 

a fossil-free nation and, as a result, new energy policies replace old ones as the nation 

reaches towards its goal. 

Science plays a key role in all three streams of MSF. Science can identify new 

problems (i.e. newly-discovered toxic hydrocarbon in wildfire smoke), and is often the 

source of indicators used to identify problems. Countless measurements, calculations, 

analyses and interpretation have culminated into the recognition that wildfires have 

increased in size and severity since 1980 (Westerling, 2016). Spatial analyses and 

statistical assessment have further parsed apart that growing fire size and severity can be 

both attributed to fire suppression (Marlon et al., 2012) and climate change (Westerling, 

2016; Abatzaglou and Kolden, 2013). Science may also aid in creating and informing 

policy solutions. Science can create or be the source of the discovery of new things that 

may act as an exciting new solution to a problem. New advances in medical technology, 

for example, may offer solution to health problems where current policies have stagnated 

the issue. Science may also influence the politics stream. New scientific discoveries may 

become salient to the public around a given issue, and change the public mood 

surrounding a problem. For example, the information influx regarding climate change has 

permeated the news for several years, and the public’s concern regarding the issue is at an 

eight-year high (Gallup Poll, 2016), and may aid in passing new energy, transportation 

and technology policies that combat the effects of human-induced climate change. 
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Multiple Streams Framework and the Wildland Urban Interface 

MSF provides a formalized framework to observe the policy-making process, 

making it appropriate for observing the use of science when producing wildfire policy at 

the WUI. At the WUI, wildfire policies are made by a diverse policy community. City, 

state, and federal stakeholders each have policies that address wildfire hazards. The 

jurisdictions and policies of these stakeholders often abut or overlap one another, creating 

management complexity within shared space. MSF, however, allows us to examine the 

policy-creation process of each stakeholder at times when the window of opportunity is 

open and new science is being considered in the decision-making arena. By examining 

how each stakeholder defines a problem, identifies a solution to said problem, and brings 

it through the window of opportunity with information that wildfire science provides, we 

can better understand how diverse sets of stakeholders ultimately use science to make 

decisions at the WUI. 

Study Area 

Boise, Idaho USA provides an example of a WUI where diverse land and hazard 

managers must work in close proximity to one another. Five land management agencies 

and two hazard management agencies have a stake in the wildfire activity at this 

interface. These stakeholders collaborate frequently, and share knowledge that informs 

wildfire hazards in the ignition-prone, topographically complex WUI. Like much of the 

western United States, the population of Boise is growing rapidly. The City of Boise is 

expected to grow ~35% from its current ~237,000 population to ~320,000 by 2040 

(Communities in Motion 2040 Vision). 
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Like many western US WUIs, Boise is threatened by wildfires every summer. 

Boise’s wildfire season extends from May to September, though human ignitions can 

extend the fire season significantly (Balch et al., 2017). Boise sits at the base of the Boise 

Foothills, and marks the southwestern extent of the Rocky Mountains in Idaho (Figure 1). 

The Boise Foothills encompass the ecotone between low elevation, sage-steppe to high 

elevation open coniferous forests. Fires often ignite at low elevations closer to 

development and spread quickly through dense, invasive grasses within the sage-steppe, 

to higher elevation, forested slopes. 

Approximately 86% of wildfires in the WUI are human-caused. In 2016 alone, 

three human-caused fires burned ~7300 acres of the Boise Foothills, threatening hundreds 

of homes (see Figure 2), destroying one home and several uninhabited structures. Erosion 

following fire in the foothills is common, extending the hazards that wildfires cause long 

after the fire is extinguished. Several historic records of mudslides and sedimentation 

from the Boise Foothills indicate that fire drives erosion, and threaten residents of the city 

of Boise, whose homes are built in deposition zones. 

We define the Boise Wildland Urban Interface as the combination of the WUI 

delineated by Ada County (Figure 1 – red hashed) and the Boise Foothills drainage area 

between Lucky Peak Reservoir and I-55 (Figure 1 – red perimeter). We include the Boise 

Foothills drainage area outside of the Ada County WUI perimeter because we chose to 

include the foothills that are geographically connected to Boise’s wildfire hazards, which 

extend beyond the political boundary of Ada County to the Boise Foothills ridgeline. 
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Figure 4.1 Map of the Boise Wildland Urban Interface (WUI). In this study, the 

Boise WUI is a combination of both political and topographic boundaries. The Ada 

County WUI (red hashed ends at the county line in the northeast. We extend the WUI 

beyond the county line to include the Boise Foothills ridgeline (bold red) further 

northeast. 

Local, state and federal land management have authority within the Boise WUI, 

and include the City of Boise, Ada County, Idaho Department of Lands (IDL), and the 

Bureau of Land Management (BLM). Hazards within the Boise WUI are managed by 

Ada County Emergency Management (ACEM) and the Idaho Office of Emergency 

Management (IOEM). Generally, land closest to the Boise Metropolitan area is owned 

and managed by the City and County. The BLM land encompasses lower elevation, sage-

steppe and grassland slopes while FS land is located furthest from the city, at high 
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elevations within the forest. In the eastern extent of the Boise Foothills, much land is 

managed by the IDL directly adjacent to BLM land. 

County and State hazard officials coordinate wildfire hazard mitigation within the 

Boise WUI. ACEM is tasked with coordinating emergency management activities for all 

potential hazards in Ada County, and to make Ada County resilient to hazards. Wildfire 

is one of eight natural hazards that ACEM considers in their coordination efforts. 

However, because wildfire is a frequently occurring hazard in Ada County, ACEM’s 

attention is often dominated by wildfire, especially during the summer months. Because a 

majority of Ada County’s population resides in Boise, Idaho’s largest city, much of 

ACEM’s emergency efforts focus on the city. The IOEM is tasked with both preparing 

for and responding to hazards in the state of Idaho. 

County and state hazard agencies work closely with local, state and federal land 

managers to prepare for wildfire hazards and mitigate its potential effects on life and 

property. This policy community gathers annually for the Southwest Idaho Wildfire 

Mitigation Forum, where managers and practitioners share new information, discuss 

ongoing projects and consider lessons learned during the previous wildfire season. 

Additionally, it is common for these stakeholders to work together to supply education 

and outreach to the public, share data and collaborate on wildfire prevention projects, 

including fuel breaks, mowing projects and Firewise gardens. 

Multiple Streams in the Boise WUI 

Each wildfire stakeholder at the Boise WUI can be framed under MSF as 

members of a policy community that push problems, policies and politics through a 

window of opportunity. At the Boise WUI the window of opportunity may open 
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suddenly, during wildfire events that threaten the city, or during updates to county and 

state hazard assessments, recurring period of time when managers discuss new wildfire 

knowledge. The window may also open more slowly, as salience of wildfire hazards are 

high, perhaps during a drought year or during a particularly active wildfire season. 

While stakeholders often make decisions independent of each other, Boise 

represents a WUI where stakeholders are tied closely to one another, and decisions are 

often reached through collaboration and information sharing. Despite having different 

goals and jurisdictions, these stakeholders confront similar wildfire risks, namely that 

wildfire may burn on their land and threaten life and property at the WUI. Similarly, 

members of this closely confined policy community have a similar science-based 

knowledge of wildfire hazards in the foothill because information sharing among 

agencies is high. Managers have the same science at their disposal from which they can 

make decisions. However, despite having similar sets of knowledge about the area, each 

stakeholder addresses the same risks with different policies. 

In this study, we examine how wildfire science influences problems and policies 

under local politics at the Boise WUI. By examining decision-making at the Boise WUI 

through the MSF, we can attempt to understand how science influences the problems and 

policies that land and hazard managers must address when making wildfire hazard 

decisions. The Boise Foothills WUI provides an excellent case study location on this 

topic. A diverse set of managers work collaboratively while representing diverse 

jurisdictions and goals. Additionally, several windows of opportunity have been recently 

opened in the Boise WUI. Both the County and State updated their hazard mitigation 

plans in 2016 (the year of this study) and a ~2500 acre wildfire threatened hundreds of 
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homes in the WUI. As such, 2016 provided an optimal chance to examine the three 

streams as they interacted to identify new policy problems and potential policy solutions. 

Methods for analyzing the Boise WUI through the Multiple Streams Framework 

We used MSF to frame the Boise WUI policy community, and collected 

quantitative and qualitative policy data from Boise WUI stakeholders using explanatory 

sequential design (ESD). ESD begins with the collection of quantitative data, followed by 

the collection of qualitative data, where the quantitative results to inform the qualitative 

sampling (Figure 2). ESD is designed for qualitative data to explain the quantitative 

results (Creswell, 2015). We began this study by collecting all of the current wildfire 

policies in place by each stakeholder in the Boise WUI policy community. We then 

performed a content analysis of the collected policies to assess and interpret different 

themes among the wildfire policies. The resulting themes were coded into distinct 

categories to quantify and compare the policy themes of each stakeholder. Subsequently, 

we interviewed managers representing each Boise WUI stakeholder qualify the results of 

the coding. We further explain the quantitative and qualitative methods in the following 

two methods subsections. 
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Figure 4.2 Explanatory Sequential Design, framed within Multiple Streams 

Framework, modified from Creswell, 2015. 

Quantitative analysis 

We collected the wildfire policies of land and hazard managers who participate in 

wildfire management at the Boise WUI, including the BLM, IDL, City of Boise, IOEM 

and ACEM. We excluded land management policies of Ada County from this study, as 

the primary use of land owned by Ada County is as a landfill. We acquired policies from 

stakeholder websites. Policies of each stakeholder range from ordinance, codes and 

statutes to mandates, goals and objectives (see Table 1). From these policy documents, 

we identified policies that address wildfire hazards, including wildfire prevention, 

wildfire response, wildfire mitigation, and secondary wildfire hazards (i.e. flooding and 

erosion). We assessed all policies that tied directly wildfire management within Boise’s 

WUI land, excluding, for example, policies that addressed wildfire starts within logging 

areas. We did not code policies that were associated specifically with structure fires or 

with no possible connection to wildfire hazards (e.g. sprinkler and smoke detector codes). 
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The resulting list of policies were placed into an excel sheet with key descriptive data, 

such as what document the policy came from, for content analysis. 

Table 4.1 Policy documents of Boise WUI stakeholders considered in this study  

Stakeholder Policy Documents 

City of Boise Boise City Code, Comprehensive Parks and 

Recreation Plan 

Bureau of Land 

Management 

Manual Transmittal Sheets: Fire Program 

Management, Fire Planning, Land Health, Integrated 

Vegetation and Management, Land Use Planning, 

Burn Area Emergency Stabilization and 

Rehabilitation 

Idaho Department of 

Lands 

Idaho Statutes 

Ada County of Emergency 

Management 

Ada County All Hazards Mitigation Plan 

Idaho Office of 

Emergency Management 

Idaho Hazard Mitigation Plan 

 

We completed content analysis on the final list of policies to analyze differences 

in the ways in which policies address wildfire problems. We measured the latent content 

(underlying meaning) of the policies and identified themes of how a policy can address a 

wildfire hazard problem. It was important that the themes, which we would use to code 

all wildfire policies, were both simple and exhaustive. We required themes that succinctly 

describe the way each stakeholder defines wildfire problems, thus informing the problem 

stream of MSF. 

Once we established our codes, we assigned a code to each policy. Policies that fit 

under more than one theme were given multiple codes. After assigning codes, we counted 

the number of policies under each coded theme for each stakeholder. We calculated the 
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percentage of policies that fell under each code for each stakeholder, which provided a 

means to compare how stakeholders address wildfire problems by comparing differences 

in the dominant policy codes. 

Qualitative interviews 

We had learned from content analysis that the wildfire policies of stakeholders 

fall under key themes. We interviewed land and hazard managers within the Boise WUI 

policy community to elaborate on how managers use science to make wildfire policy 

decisions. We sought to confirm whether or not these themes would be reflected during 

interviews, where we asked wildfire managers questions about wildfire problems, 

wildfire policies and how wildfire science informed problems and policies. Individual 

interviewees were selected based upon our knowledge of wildfire manager representing 

different stakeholders within the Boise WUI policy community. Other managers were 

recommended to us during the initial set of interviews in a quasi-snowball sampling 

method. Before commencing interviews, final interview questions were written into an 

interview protocol and approved by Boise State University’s Internal Review Board 

(IRB) (See Appendix D). Under IRB protocol we informed interviewers of the anonymity 

of their interview responses in the event of dissemination of any publications. 

Our semi-structured interview script was designed to acquire information about 

individual managers’ experiences with wildfire science and policies at the Boise WUI. 

We divided the semi-structured interviews into four sections (1) background questions 

about the managers, (2) stakeholder interaction questions, (3) wildfire problems and 

policies and, (4) use of science by managers. Background questions were intended 

identify the managers’ unique role in the Boise WUI and to compare their role to other 
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managers within the Boise WUI policy community. ‘Stakeholder interaction’ questions 

further developed the manager’s role within the Boise WUI stakeholder group by asking 

questioned designed to identifying key collaborators and partnerships within the WUI 

stakeholder group. ‘Problems and policies’ questions were designed to link interviews 

into MSF and the results of the quantitative analysis. This was done by asking questions 

that identify what wildfire problems managers currently face, how they define those 

problems, and discuss current and potential policy solutions to those policy problems. 

‘Use of science’ questions were designed to discuss wildfire science in particular, and to 

glean information as to how different stakeholders and individual managers access, 

analyze and use science to make policies and policy decisions. Interview questions were 

also designed to link into MSF, by asking ‘use of science’ questions directly related to 

each managers’ responses to the ‘problems and policies’ interview questions. By asking 

the same core questions of every manager (Table 2), we were able to compare the 

responses by stakeholders in tandem with quantitative results of the policy coding 

assessment. 

Table 4.2 Common interview questions asked of manager interviewees. 

Interview section Sample questions 

Background How long have you been in your current working 

position 

Describe your job 

Stakeholder 

interaction 

Who are the main stakeholders you interact with at 

the WUI 

Who do you interact with most frequently 

Use of science How do you use science 

What makes science helpful 
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problems and 

policies 

What are the top wildfire problems you see in the 

Boise WUI 

How does science help you address those problems 

  

Results 

Quantitative data 

Stakeholders of the Boise WUI policy community have a combined 164 policies 

that address wildfire hazards at the WUI (Table 3). A complete list of annotated policies 

for each stakeholder is found in APPENDIX D. The City of Boise had the most (68) WUI 

wildfire fire policies while the Idaho Office of Emergency Management had the least 

(13). The dominant coded wildfire policies were distinct among Boise WUI stakeholders 

(see Figure 3). 

To code these policies, we adopted themes used in the Ada County Hazards 

Assessment to describe wildfire policies (Ada County All Hazard Assessment, 2013). We 

found that the themes inclusive of all policies. The four themes used for coding are (1) 

manipulate, (2) reduce exposure, (3) reduce vulnerability and (4) increase ability to 

respond to a wildfire hazard. Manipulation was coded for policies that address controlling 

or altering a wildfire hazard. Examples under this code included landscaping 

requirements (e.g. specific vegetation not allowed to be planted because it’s highly 

flammable) and building standards (e.g. foundation fill must be as compact as 

undisturbed hillside). Reducing exposure to a hazard was coded for policies that prevent 

intersection with the wildfire hazards in the first place. For example, there are City 

zoning codes that prevent development from taking place on slopes greater than 25% 

grade, and IBHS attempts to purchase landslide-prone lands to prevent developers from 

building on them. Policies were coded as reducing vulnerability if the policy attempts to 
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increase the ability of the item in question to withstand a wildfire hazard. An example of 

this is the City policy that requires new homes constructed within the WUI to use fire 

resistant products on exterior walls. A policy was coded to increase the ability to respond 

to a hazard when the policy increased access for emergency response (e.g. fire trucks) or 

when the policy’s goal was to educate citizens and managers about wildfire hazards. 

Examples of policies that increase the ability to respond include mandating all homes in 

the WUI to have turn-around access for fire trucks, but also include goal –oriented 

policies like increasing collaboration among stakeholders, or providing public outreach. 

At the State and Federal level of management, policies frequently focus on 

manipulating and reducing exposure to wildfire hazards. The Idaho Office of Emergency 

Management has an even distribution wildfire policies, while the policies of Ada County 

Emergency Management policies most frequently address reducing resident’s 

vulnerability to wildfire hazards and to increase the ability of both citizens and 

emergency personnel to respond to a hazard. The City of Boise’s WUI wildfire policies 

focus primarily on manipulating and reducing vulnerability to wildfire hazards, though 

most of Parks and Recreation’s polices address increasing the ability to respond to the 

hazard. Many of Parks and Recreation’s policies focus on educating the public. Boise 

City Planning and Zoning focuses heavily on policies that manipulate wildfire hazards or 

reduce the vulnerability of homes to those hazards. Boise City Fire codes often work to 

reduce the vulnerability of homes to a hazard. 
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Table 4.3 Count of policies within four policy themes for each stakeholder in the 

Boise WUI. 

Stakeholder Manipulate Reduce 

exposure 

Reduce 

vulnerability 

Increase 

ability to 

respond 

Total 

City of Boise 25 14 28 15 68 

Boise City Fire  8 7 12 6 27 

Boise City 

Zoning 

16 7 14 2 32 

Boise City 

Parks and 

Recreation 

1 0 2 7 9 

Ada County 

Emergency 

Management 

3 4 10 11 22 

Idaho Office of 

Emergency 

Management 

4 6 5 6 13 

Idaho 

Department of 

Lands 

8 15 5 6 19 

Bureau of Land 

Management 

16 10 5 12 42 
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Figure 4.3 The dominant coded wildfire policies were distinct among Boise WUI 

stakeholders. 

We also coded each policy for who is considered responsible for implementing 

the policy, and included (1) an individual, (2) a group of people, or (3) the government. 

The individual refers to a homeowner, landowner or business owner. The group may 

refer to a subdivision developer, advocacy group, or Firewise community. The 

government refers to the local, state or federal government that enforces the policy. 

Responsibility was not always made clear in the policy, we interpreted the most 

appropriate and logical responsibility for each policy. In many cases, multiple parties 

were interpreted to be considered responsible. These results are displayed in Table 4 and 

the relative amount responsibility placed by each stakeholder displayed in Figure 4. 
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Table 4.4 Count of responsibility of each stakeholder in the Boise WUI. 

Stakeholder Individual Group of 

people 

Government Total 

policies 

City of Boise 25 43 11 68 

Boise City Fire 19 7 1 27 

Boise City Zoning 5 31 2 32 

Boise City Parks and 

Recreation 

1 5 8 9 

Ada County 

Emergency 

Management 

3 19 7 22 

Idaho Office of 

Emergency 

Management 

2 5 13 13 

Idaho Department of 

Lands 

7 8 8 19 

Bureau of Land 

Management 

6 11 42 42 

 

 
Figure 4.4 The relative amount responsibility placed by each stakeholder policy in 

the Boise WUI. 
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Qualitative results  

We interviewed seven managers representing the land and hazard managers of the 

Boise WUI. We interviewed at least one member of every land and hazard management 

agency within the Boise WUI. Interviews lasted approximately one hour and were 

conducted in person or over the phone. Interviews focused heavily on the problem and 

policy streams of MSF. We sought to have WUI managers describe the wildfire problems 

they commonly face at the Boise WUI. We also asked mangers to describe potential 

policy solutions to the wildfire problems they had provided in the previous response. In 

this way, we were able to determine if how a manager discusses wildfire problems and 

their policy solutions aligned with the policy coding that current policies of each agency 

already had in play. 

Problems and policies 

Managers we interviewed identified several wildfire problems at the Boise WUI. 

Managers frequently described development in the foothills as a major current problem. 

ACEM, BLM, and IOEM noted that continued development into the Boise Foothills and 

toward hazardous areas was one of the top wildfire problems that they will face in the 

coming years. IDL also noted that a lack of planning codes that considered wildfire 

hazards was a problem at the WUI in general. Another frequent wildfire problem 

identified through interviews was humans causing their own wildfire hazards. The BLM, 

City, IOEM and IDL all discussed the presence of wildfire hazards that are caused by 

people living in the WUI. Examples of this problem included human-caused ignitions, 

flammable vegetation in close proximity to homes and people having an “it’s not going to 

be me” mentality. Other recurring wildfire problems brought up by managers included 
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dense, flammable vegetation in occluded areas and flammable non-native grasses. 

Secondary hazards (i.e. post-fire flooding) was only mentioned once, by IOEM, as a 

wildfire problem. A complete list of WUI problems identified by managers can be found 

in Table 5. 

Table 4.5 Complete list of WUI problems defined by managers during 

interviews. 

 

Interview

er  

Problem definition 

ACEM Economic loss from disasters 

Development in foothills 

Flooding 

BLM Getting people to actually prevent wildfire 

Preventing fire long enough to restore a landscape 

Development in hazardous areas 

Bulldozers making fuel breaks - hard to turn around 

Number of recreationists in foothills that would need to get out if 

a fire took place 

Lack of anchor points for combating fire 

IOEM Where hazards intersect homes 

Where hazards are highest 

City 

Fire 

Amount of hazardous vegetation in proximity to homes 

Lack of defensible space 

Lack of fuel breaks between homes and open space 

Occluded areas (e.g. open space) with dense vegetation near 

homes 

IOEM 2 Development at the WUI 
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Drought 

Human impacts - native and non-native species, ignitions 

IDL Public complacency  

Inadequate resources in government 

Lack of planning and building codes 

 

We asked interviewees to describe potential policy solutions to the problems that 

they each identified. Some managers had unique solutions for each wildfire problem they 

identified, while other managers described one policy solution for multiple problems. For 

example, managers at the BLM had unique policy solution ideas for each of the problems 

they identified; the problem of developments in hazardous wildfire areas could be solved 

with a policy that encourages fuel breaks around those developments, while the problem 

of having a lack of anchor points within WUI developments (tactical locations to combat 

fire) could be solved by creating a policy that requires anchor points in new 

developments. Conversely, the Boise Fire Department addressed the wildfire problems 

that they identified - a lack of defensible space around homes, occluded areas, a lack of 

fuel breaks, and dense vegetation near homes - with a single policy solution of increasing 

the capacity to get funding to take action on these problems. A complete list of policies 

that each interviewer supplied to address each of their wildfire problems can be found in 

Table 6. 

 

 

 

 



122 

 

 

 

Table 4.6 Complete list of policy solutions to wildfire problems as described by 

interviewed managers. 

Interviewer  Policy solution 

ACEM ID hazard areas, collaborate with groups that can implement policies 

that can reduce economic loss 

 

BLM Create "accommodation space" from which "actual" change regarding 

wildfire protection can take place (people need to be eased into big 

changes) 

Create fuel breaks  

Fuel breaks 

None 

Create safety zones in foothills for recreationists to go in case of fire. 

Could double as site for education about wildfire 

Create hardscaping anchor points in new developments 

IOEM Allocate funding to ID those location, map, and understand those 

hazards 

 

City Fire 
Prioritize funding and get more funding to meet the problems that 

science addresses (e.g. informs location of prescribed fires) 

IOEM 2 Always coordinate to protect life and property.  

Idaho Department of Water Resources responsibility  

Use native grasses and shrubs in slope stabilization projects. Aligning 

goals of road ignitions prevention with other agencies 

IDL Educate to reduce the "it's not going to be me" mentality. Rural 

communities are more accepting of wildfire than urban areas 

Move money/funding from on the ground to wildfire management 

Assist in moving legislation for building and zoning codes  
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How science is used 

We asked managers how science could be used to help solve the problems they 

identified, and how science could assist in developing or informing policy solutions. If 

interviewees were unable to identify how science could be used to inform the problem or 

policy stream, we asked, in a more general sense, what made science useful to them when 

making decisions at the WUI. All responses to these questions are in Table 7. 

Two themes regarding the use of science emerged from interviews. The first is 

that science is used to identify wildfire hazard locations or future project areas. ACEM, 

BLM, IOEM and the City of Boise all noted that science is used when making decisions 

regarding the spatial location or extent of a current or future project. The second theme 

was that science is useful when it is understood quickly. ACEM, the BLM and IOEM all 

discussed how science is most useful when it conveys information in an efficient way. 

The BLM noted that “a 700 page document is nothing compared to a map that can 

visualized and understood immediately”, while the IOEM mentioned that science is 

useful when it tells a story. In contrast, the IDL discussed that science was not 

particularly useful as the made decisions, noting that “science doesn’t influence decisions 

that have already been made.” When asked what they used science for when making 

decisions, the IDL interviewer recalled one situation where wildfire behavior models 

were used to make a land use decision, but that such occasions were uncommon. 
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Table 4.7 Interview responses to being asked what makes wildfire science useful 

at the WUI. 

Interviewer  What science is used for? What makes science useful? 

ACEM Compile data Makes maps and models better, 

personalized and local, easy to 

understand Increases collaboration 

Layers of hazard 

assessment 

BLM Visual tool of where fires 

have been and what 

vegetation is there 

700 page document is nothing 

compared to a map that can be 

visualized and understood, 

quickly usable and 

understandable 

IOEM Identify hazard areas  Use maps to tell stories allocate 

funding 
Identify where hazards 

intersect homes to allocate 

funding 

City Fire Use to educate the public   

Prioritize funding and 

justify budget 

Inform policy makers who 

can increase funding 

Could inform locations of 

prescribed fires 

 IOEM 2 Cyclically look for gaps in 

knowledge that science 

can fill 

  

Landslide identification  

Fills gaps in knowledge 

IDL Model wildfire risk Science didn't identify anything 

that changed decisions that were 

already being made 
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Discussion 

We conducted this study in order to determine how science is used to make 

decisions at the Wildland Urban Interface. We hypothesized that how a stakeholder 

defined a problem would be reflected in their policy solutions to that problem, and 

because science informs and influences problems and policies, we could identify how 

different stakeholders use science at the Wildland Urban Interface. To test this 

hypothesis, we first coded policies of Boise WUI stakeholders and identified that 

different stakeholders address wildfire problems with unique policy solutions. Land 

managing stakeholders at the City level (i.e. Boise Fire Department and Boise Zoning) 

address wildfire problems with policies that manipulate and reduce vulnerability to 

wildfire hazards, while the Idaho Department of Lands more strongly addresses reducing 

exposure to wildfire hazards, and the Bureau of Land Management policy focuses on 

manipulating and increasing the ability to respond to wildfire hazards. Hazard managers 

at the county level (ACEM) have policies that work to decrease vulnerability and 

increase the ability to respond to wildfires while state hazard managers (IOEM) have 

evenly distributed policies that address wildfire hazards. 

City-level policies are dominated by manipulating wildfire hazards and reducing 

vulnerability to wildfire hazards. This can be explained by the wildfire hazards they must 

manage for. The city must create policies that manage for homes that have already been 

built at the WUI. In order to combat wildfire hazards that threaten life and property, city-

level managers must write ordinances that reduce the danger placed on humans. For 

homes already at the WUI, it is difficult to reduce exposure to the hazard – the homes 

have already been built. Because homes and neighborhoods have already been 
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established in the Boise Foothills, it is not surprising to see that many wildfire policies 

are considered the responsibility of homeowners and neighborhoods to implement. For 

example, many City WUI codes prohibit certain flammable or untreated building 

materials to be used when constructing or repairing homes in the WUI, and require that 

certified flame-resistant materials be used instead. To reduce vulnerability to wildfire 

hazards, new homes constructed in WUI neighborhoods must have a defensible space, 

which is an area surrounding a home that has been designed to slow the intensity of 

advancing fire from which wildfire suppression can be anchored. 

The Idaho Department of Lands policies frequently address reducing exposure to 

the hazard. Many of their policies involve reducing wildfire ignitions by prohibiting 

campfires during wildfire season and by requiring logging outfits to suppress fires that 

they start while cutting and removing forest products (i.e. trees) from the forest. This 

policy places the incentive on logging companies to reduce the cost of suppressing 

wildfire by not starting them in the first place. 

Bureau of Land Management WUI policies focus on manipulating and increasing 

the ability to respond to wildfire hazards. The BLM is often the first to respond with 

engines and firefighters to wildfires within BLM land near the WUI, therefore it is not 

surprising that their policies focus on increasing the ability to respond to wildfire hazards. 

Additionally, several BLM policies are in place to coordinate efforts with other 

firefighting entities (i.e. Boise Fire Department, Forest Service) when fighting fires in 

order to ensure rapid fire response. The BLM also has numerous policies in place to 

manipulate wildfire hazards, especially secondary hazards like post-fire flooding. The 

Emergency Stabilization and Rehabilitation protocol of BLM contains policies that 
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reduce the potential for post-fire erosion by funding soil stability projects in erosion-

prone areas. Reseeding, straw bale installation and mulching projects often take place 

within sloped BLM land to reduce erosion and capture runoff after wildfire. 

Ada County Emergency Management policies focus equally on reducing 

vulnerability and increasing the ability to respond to wildfire hazards. Their policies 

focus on the neighborhood level, and include that neighborhoods have available water 

and quick access by emergency response when a wildfire occurs. Additionally, ACEM 

encourages wildfire mitigation to be undertaken by the local government (e.g. City of 

Boise) that would minimize damage done by wildfire. Many of ACEM’s policies work to 

increase the ability to respond to the fire through education of the public about potential 

hazards, including wildfire, and also encourage intense collaboration among different 

wildfire stakeholders. Increased communication equates to increased ability to respond 

when a wildfire occurs at the Boise WUI. 

Idaho Office of Emergency Management policies are evenly distributed among 

manipulating, reducing exposure, reducing vulnerability and increasing ability to respond 

to hazards. This can likely be explained by the broadness of their hazard policies. IOEM 

manages for several hazards throughout the state of Idaho, of which wildfire is only one 

amongst earthquakes, avalanches, pandemics, landslides and others. As a result, while 

some of their policies pertain to wildfire at the WUI, IOEM policies are often all-

encompassing, and less likely to be categorized into one of the four WUI codes. For 

example, IOEM’s policy to ‘improve land use planning’ could be coded under reducing 

exposure, reducing vulnerability and increasing the ability to respond to a wildfire 

hazard, rather than fitting within one code alone. 
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While each of the stakeholders at the Boise WUI have different dominate policy 

types to address wildfire hazards, they commonly define their wildfire problems 

similarly. Continued development in the foothills is considered a top problem by 

stakeholders. ACEM, BLM, IOEM and IDL noted that continued development into the 

Boise Foothills and toward fire-prone areas is one of the top wildfire problems that they 

will face in the coming years. The Boise WUI is growing quickly. Within the past two 

years (2015-2017), the City and County have approved at least two major housing 

developments, within which ~2000 homes will be constructed within the WUI, adding to 

the number of homes threatened by wildfire. Because these housing developments have 

been approved in recent time, the salience of development in the WUI likely explains 

why it was a commonly noted problem in interviews. Additionally, firefighters used 

recently graded home foundations within the new Harris Ranch development in the 

foothills to combat a ~2600 acre fire. If homes had already been constructed upon those 

newly-dug foundations, it is possible that the wildfire would have burned down those 

homes. 

The BLM, Boise Fire, IOEM and IDL all discussed the problem of human 

influence on wildfire hazards. These managers each discussed that human-caused 

ignitions, human-selected landscaping, or homeowners uninformed of the wildfire 

hazards they face increase wildfire hazards at the WUI. Eighty-six percent of wildfires at 

the Boise WUI are started by humans. Fireworks, landscaping equipment and vehicles 

caused three major wildfires within the Boise Foothills this year, which burned a 

combined ~7500 acres. Additionally, many homes within the Boise WUI, especially in 

older developments, are surrounded by dense, mature, flammable vegetation. Decorative 
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junipers and pines are highly combustible, and create a serious hazard directly adjacent to 

homes. Many homeowners are simply unaware of the wildfire hazards they create for 

themselves. To combat this problem, the Boise Fire Department and BLM have strong 

education components to their wildfire mitigation efforts. Programs like Ready Set Go 

encourage homeowners to develop an evacuation plan with their families in the event of a 

wildfire. In the program homeowners are educated about preparing for wildfire door-to-

door with information kits that provide succinct information about what is required to 

evacuate in the event of a wildfire. Additionally, the City of Boise offers an annual 

chipping program that allows homeowners to have their hazardous vegetation chipped 

and hauled away at no cost to the homeowner. Information regarding what vegetation is 

hazardous is provided door-to-door prior to the chipper’s arrival, allowing homeowners 

to gauge the hazards their vegetation creates. 

When asked how science is used to make decisions about these problems, 

stakeholders described two dominant themes. First, science is commonly used to draw 

boundaries. Boise Fire, ACEM, BLM and IOEM discussed that science is used to inform 

project locations, such as where vegetation thinning is most necessary or areas that are 

most suited to prescribed fires. Additionally, the IOEM also mentioned that visual tools 

are a good educational tool for telling stories, which is useful when conveying 

information to the public in a meaningful way. Secondly, many managers discussed that 

visual tools could help allocate where funding for projects is most necessary, such as 

areas where dense vegetation surrounding homes could most use a chipper or education 

and outreach. This result relates back to the findings of Machelis (2002) regarding how 

science is used to make decisions. Maps are succinct and tangible. When designed well, 
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maps convey a great deal of information in a short period of time, and draw boundaries 

indicating where and where not hazards exist or money needs to be allocated. Wright 

(2010) and Hunter (2016) both mention that time constraints make science unusable. A 

BLM manager stated that “a 700 page document is nothing compared to a map that can 

be visualized and understood quickly”. Maps are certainly faster to read than a 700 page 

document that may convey the same scientific information in a non-visual manner. As a 

hypothetical example, there may be several reports about where herbicide treatment has 

and has not reduced flammable invasive grasses, but only a map displaying those 

locations of success and failure may help managers to tangibly understand whether or not 

that treatment should be prescribed on their own land. As such, a map would quickly help 

managers decide where to allocate funding for herbicide treatments. 

We hypothesized that because different stakeholders at the WUI used different 

policies to address wildfire problems that each stakeholder would describe science as 

being useful for distinct reasons, thus fitting within the Multiple Streams Framework. 

Science flowing through the problems and policy streams of each stakeholder will be 

used differently, as each stakeholder has different policies to address problems. However, 

stakeholders described that science is useful for similar reasons: science draws 

boundaries and helps allocate funding. Interestingly, MSF can describe why science is 

not used uniquely among stakeholders. In the background section, we described 

fragmentation of policy communities. Fragmented policy communities often lead to 

fragmented polices over a given policy issue (Kingdon, 1995), leading to disconnect 

amongst solutions to a similar problem. Fragmentation is the result of low collaboration, 

communication and knowledge sharing. At the Boise WUI, however, knowledge sharing 
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is high and fragmentation is low. ACEM encourages collaboration among City, State and 

Federal stakeholders. As such, it is not uncommon for the BLM to co-educate the public 

with the City Fire Department or for IDL to work with the County on Community 

Wildfire Protection Plans. Additionally, annual windows of opportunity (i.e. wildfires in 

the foothills) create situations where stakeholders at the Boise WUI work together on the 

same wildfire problem, because wildfires frequently cross jurisdictional boundaries. The 

2016 Table Rock Fire, for example, burned within City, State and Federal land, creating 

the opportunity to collaborate on rehabilitation projects. Because fragmentation is low 

amongst stakeholders, it is possible that managers at the Boise WUI, representing City, 

State and Federal land and hazard stakeholders, can be treated as one large stakeholder 

group. Within a spatially confined location (i.e. the Boise WUI), these stakeholders must 

address the same wildfire problems regardless of their differences in policies. This may 

explain why science considered to be useful for the same reasons across stakeholders. 

What is useful for a federal stakeholder (i.e. the BLM) at the local level (i.e. the Boise 

WUI) may not be what is useful throughout the land that the BLM manages. 

Science must also address the right people in order to be usable (Figure 4). City-

level policy often relies on individuals (e.g. homeowners) to implement the policies set 

forth, while state (IOEM) and federal (BLM) policies are to be implemented within their 

own level of government, rather than being passed on to neighborhoods or individual 

business owners. Ultimately, in order for science to be used when pushing policies 

through the window of opportunity, it must be communicated to the right people, be it 

individual homeowners or federal level managers. This may be why visual tools, such as 

maps, are useful by all stakeholders. While most citizens or managers may not 
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understand a piece of scientific literature, like a journal article, most citizens and 

managers are likely to understand a map containing boundaries and zones of information. 

This finding is important for producers of science to consider. At the local level, where 

home and business owners are the responsible for implementing policies such as thinning 

vegetation around their homes or cutting flammable grasses, science must be able to 

speak to the general public. At the state and federal level, managers can use maps to 

target areas to provide education and outreach to encourage the implementation of 

wildfire reduction policies. As such, one piece of science would be useful for all levels of 

decision-making. 

The implications of this analysis for Boise, and potentially for other WUIs, is 

significant. The push and pull of science must be mutual between scientist and user; this 

is not a new finding (Dilling and Lemos, 2011; Palmer, 2012). However, this study adds 

to our knowledge of the pull on science by decision-makers at the WUI. When a WUI is 

comprised of an unfragmented policy community, the same scientific information may be 

useful for all stakeholders. If a piece of science draws boundaries, is quick to understand 

and helps allocate funds, it will likely be considered useful by many wildfire 

stakeholders. When science is presented in a manner that is tailored to the target 

audience(s) by recognizing which policy themes they are required to follow, science can 

be better used to identify problems and inform policies that maximizes the use of that 

science. Ultimately, the three streams will merge and pass through the window of 

opportunity to make new policy decisions. Science can act as an indicator to influence 

these streams, and inform policies that combat wildfire hazards. These policies can 

manipulate and reduce exposure to wildfire hazards, reduce vulnerability to wildfire 
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hazards or increase the ability to respond to those hazards. It is a matter of producing 

science that is capable of informing these policies to the levels of government that needs 

the information. It may be important for scientists to tailor science to meet the needs of 

managers, and if not, may lead to a disconnect between science and decision maker. If a 

scientist learns something about a natural hazard but doesn’t inform policy at a level that 

can use it, the scientific endeavor may not have been worthwhile. Conversely, these 

findings also indicate that it may be the responsibility of wildfire decision-makers within 

the WUI policy community to continually inform scientists what scientific information 

would be useful to them and what will make it useful. As such, the mutual push and pull 

of science by scientists and decision makers will maximize the utility and use of science, 

creating more informed, and better prepared and protected Wildland Urban Interface. 
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A Comparison of Field, Lab and SSURGO Clay Content in the Boise Foothills 

The model used to predict the probability of post-fire debris flows in Chapters III 

and IV require inputs of topographic, precipitation, fire severity and soil attributes. Clay 

content is one such required soil input, and markedly influences model predictions of 

post-fire debris flow probability; as the clay content of soil within a drainage basin 

increases, the predicted probability of a post-fire debris flow also increases. SSURGO 

provides high resolution soils data for the Boise foothills; however, it is unknown how 

accurate SSURGO modeled values of clay content are compared to what is actually 

found in the field. In the results of this appendix, we provide the results of a comparison 

of field and hydrometer soil textures of soil samples taken in the foothills above Harris 

Ranch subdivision. We compared the resulting ‘real world’ clay content values to those 

provided by SSURGO for the same sample locations. Results show that both field texture 

and SSURGO overestimate clay content compared to that measured by hydrometer 

analysis. SSURGO overestimates clay content sample sites by ~10%. Interestingly, many 

of these previously undisturbed sample sites have since been disturbed in the construction 

of an extension of Harris Ranch subdivision, adding value to these findings. These results 

emphasize the need to field verify soil textures provided in regional and national soils 

maps (i.e. STATSGO and SSURGO) when calculating post-fire debris flow activity. 

Study Area 

The Harris Ranch subdivision is located at the eastern extent of the city of Boise, 

Idaho, at the boundary between the Boise River floodplain and the Idaho Batholith. 

Harris Ranch sits at the outlet of Squaw Creek, one of several ephemeral drainages that 

flow into the Boise metropolitan area. Incised portions of the outlet of this drainage 
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reveal that Squaw Creek has deposited fire-induced, as well as at least one fire-related 

debris flow event, as indicated by charcoal within both deposits. The eight soil samples 

for this study were acquired from six hillside sites that drain into Squaw Creek within 

~0.5 miles from the outlet from the Boise Foothills to the Boise River floodplain. 

Samples were taken from hillslopes 875-920 m above sea level. Samples were acquired 

from both north and south facing slopes which consist of sparsely vegetated south facing 

slopes and sagebrush dominated north facing slopes. However, vegetation in this area has 

been altered by human activity; grazing in the early 1900s led to the removal of native 

vegetation and introduction of cheatgrass and medusahead rye. 

Methods 

The top 30 cm of soil were collected from each site. Samples below 30 cm was 

collected when possible. Cobbles prevented soil from being acquired past 20 cm at site 1. 

Sites 2, 5 and 6 were sampled from soil profiles that were either naturally or 

anthropogenically exposed. Equal volumes of soil were acquired from each site. Samples 

were placed in Ziploc plastic bags. The bags were opened and left to dry in the Surface 

Processes lab for approximately 2 weeks. Each sample was weighed and sent through a 2 

mm sieve and material >2 mm removed. The remaining samples underwent field texture 

analysis to estimate clay content as outlined by the USDA’s flowchart (Soil Survey Field 

and Survey Methods Manual). Field texture analysis measures clay content for each 

sample within 15-20%. Each sample was then tested using the hydrometer methods using 

instructions provided by the USDA (Soil Survey Field and Survey Methods Manual). 
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Results 

Harris Ranch Study Site 

    

SSURGO Texture by feel 
Hydrometer 

Site  date aspect depth range 

(cm) 

Clay Content % resulting texture 
Clay content 

range (%) 

Clay 

content % 

1 1 S 0-20 11.1 SCL 
20-35 10 

2 2 N 0-20 16.7 SCL 
20-35 14 

2b 3 N 20-49 30.6 SC 
35-55 16 

3 4 SW 0-21 30.9 SC 
35-55 12 

4 5 W 0-30 34.4 SC 
35-55 16 

5 6 N 0-30 34.4 SC 
35-55 31 

5b 7 N 30-60 45.3 SC 
35-55 28 

6 8 S 0-34 35.3 C 
55-100 50 

 

The lowest clay content was sampled from site 1, the base of a south-facing slope 

comprised of lacustrine sediment outcrops and angular cobble and boulder-sized clasts. 

7 of the 8 soil samples measured by the hydrometer yielded values lower than 

those provided by SSURGO. Hydrometer clay content for samples were, on average, 

22.5% lower in clay content than the median value estimated by field methods. Field 

texture, however, overestimates the clay content in 7 out of 8 samples as compared to the 

SSURGO. The clay content of each sample measured using the hydrometer methods falls 

completely out of range of clay content estimated by field texture. 
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Figure A.1 Comparison of clay content of samples from Harris Ranch study site to 

clay content displayed on WSS at sample site location. Average overestimation was 

10.7% clay content. For sample 8, WSS underestimates clay content by 14.7% 

 
Figure A.2 Comparison of texture by feel field clay content of Harris Ranch sites 

to resulting hydrometer analysis clay content of each sample. Note that each sample's 

hydrometer clay content falls completely outside the range of that determined using 

texture by feel analysis (range indicated by green and red points). 
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Pairing USGS Post-fire Debris Flow Volume Model Estimates with LAHZRZ 

Depositional Extent to Estimate Post-fire Debris Flow Depositional Extent into 

Boise, Idaho 

The objective of this exercise was to apply USGS post-fire debris flow model 

estimates of debris flow volume (acquired in Chapter 3) to a model, LAHARZ, which 

predicts the runout extent. I compared LAHARZ predictions to a mapped mudflow event 

that occurred in Boise in 1959. I hypothesized that LAHARZ would underestimate the 

depositional extent of mudflow deposits sourced from the Boise Foothills study area; 

debris flows have higher viscosity than mudflow and sediment-laden flood events that 

historically typify the Boise Foothills. I found that the debris flow function in LAHARZ 

underestimates the runout extent of mudflows that have occurred in the 1959 mudflow 

events; modeled deposition often did not reach alluvial fans that are known to have 

received mudflow deposition. The lahar function in LAHARZ produces runout onto 

alluvial fans. These results indicate that LAHARZ is not suited to estimate debris flow 

extent for mudflow-type debris flow deposition seen in the Boise foothills, but that the 

lahars function may produce a more accurate estimate. 

Background 

When attempting to identify areas that may be threatened by debris flow 

deposition, one option is to identify and delineate alluvial fans. However, this method of 

hazard identification does not account for portions of alluvial fans that may be deposition 

alley inactive, and does not consider differences in depositional volume. LAHARZ 

estimates the depositional extent of lahars, debris flows, and rock avalanches of a given 

volume. Given a starting point of deposition and a DEM, LAHARZ routes the debris 
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flow volume and delineates the aerial extent of the debris flow volume. LAHARZ is 

commonly used to identify the paths of volcanic lahars, but has functions to estimate 

debris flow extent (Magirl et al., 2010; Youberg, 2010). 

Methods 

LAHARZ is a toolbox designed to run within a GIS, and is compatible with 

ArcMap. The tool was originally designed to delineate areas inundated by a lahar of a 

given volume. The latest of LAHARZ is also capable of delineating inundation zones for 

debris flows and rock avalanches. Inundation zones are empirically derived from lahar, 

debris flow and rock avalanche measurement records (see Figure 2). Regression through 

these measurements create the equations from which LAHARZ calculates and maps 

cross-sectional and planimetric inundation zones upon the provided DEM, beginning at 

deposition a deposition apex selected by the user. Within the toolbox are seven scripts, 

coded in Python™ language. Only two scripts are required if the user is selecting their 

own deposition starting points. These scripts are 1) create surface hydrology rasters, and 

3) create debris flow distal zones. 
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Figure A.3 Graphs depicting the relationship between lahar and debris flow 

volume to cross-section and planimetric area of deposition 

To calculate debris flow extent using LAHARZ, I used modeled post-fire debris 

flow volume estimates from <0.5 km2  basins calculated in Chapter 3, volume estimates 

of sediment from the 1959 mudflow event, and a 30 meter DEM of the 1959 burn area. 

Starting points of deposition were interpreted from aerial imagery. The selected starting 

locations for depositions were selected to be that of the apex of alluvial fans that deposit 

at the flanks of the Boise Front onto the Boise River plain. These data inputs were 

supplied to the LAHARZ scripts. 

The first script, Create Surface Hydrology Rasters automates the process of filling 

sinks and generating flow direction, flow accumulation and stream rasters at a stream 

threshold specified by the user. The user then supplies volumes of debris flows to 

simulate. In this study, post-fire debris flow volume estimates were taken from both the 

USGS post-fire debris flow models and official reports regarding the 1959 mudflow 

events (Thomas, 1963). Once supplied volume estimates, LAHARZ iteratively “fills” 

each downhill pixel, using the empirical equations to determine inundation zone extent, 

until the entire input volume has been “deposited”. The output is a raster representing the 

deposition extent of the volumes provided by the user. For this study, this process was 

repeated for the debris flows and lahar functions to compare the deposition extents of the 

two deposit types, the workflow for which is depicted in Figure 3. 
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Figure A.4 Model builder-type work flow undertaken to produce debris flow 

extent for the Boise Foothills 

The depositional extent of volume estimates of each sediment-producing stream 

outlet were modeled in LAHARZ. Cottonwood Creek, Warm Springs Creek, Squaw 

Creek, Maynard Gulch, and Highland Valley Gulch (Figure 4) deposited a field-

estimated 219,100 tons of sediment and debris in the 1959 event (Table 1). LAHARZ 

requires volume input as m3. The conversion from tons to cubic meters assumed a debris 

flow density of 2000 kg/m3. We compare 1959 mudflow volumes to post-fire debris flow 

model estimates of the same fire perimeter over a range of fire severity scenarios. The 

model estimates of volume for each scenario are summarized in Table 3. 
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Figure A.5 Original table from 1963 report (Thomas) of  tons of debris from each 

stream in response to 1959 fire and rainstorm event. 

Table A.1 Translating estimates of debris flow material in tons to volume in 

m^3. Density of debris flow material accounts for both the density of the granitic 

source (2650 kg/m^3) and less dense ash and soil, resulting in material 

approximately 2000 kg/m^3 

Stream Estimated 

debris (tons) 
tons to kg density of material 

(kg/m^3) 

volume (m^3) 

Highland 

Valley 

25400 23042499 2000 11521.25 

Maynard Gulch 46000 41730510 2000 20865.26 

Squaw Creek  26500 24040402.5 2000 12020.2 

Warm Springs 

Creek 

67800 61507143 2000 30753.57 

Picket Pin 

Creek 

41000 37194585 2000 18597.29 

Cottonwood 

Creek 

53300 48352960.5 2000 24176.48 
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Table A.2 Post-fire debris flow model volume estimates for 1959 burn area over 

range of burn severities  
 

Volume (m3) under different % 

moderate to high burn severity 

scenarios 

Drainage name 25% 50% 75% 100% 

Highland Valley 6222 6871 7417 7913 

Maynard Gulch 12710 14046 15174 16203 

Squaw Creek 18777 21059 22595 23992 

Warm Springs Creek 39690 44014 47682 51034 

Picket Pin Creek 25382 27511 29291 30906 

Cottonwood Creek 41333 44845 47778 50430 

Results 

Because Picket Pin and Cottonwood Creek merge to one outlet that flows into 

Boise, their volumes were summed for modeling in LAHARZ. A map comparing the 

debris flow function to the lahars function of LAHARZ is displayed below. The runout 

extents using the debris flow function for modeled and field measured volumes (from 

1959 mudflow) do not deposit onto the Boise River plain, but remain within the confines 

of their stream valleys. 
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Figure A.6 Debris flow vs lahar deposition 

Maps depicting the debris flow extent (via the lahars function) of 4 different burn 

scenarios (25%, 50%, 75% and 100% burned at moderate and high burn severity) are 

displayed below for each channel examined in this study. The ‘field estimate’ category 

refers to the estimates reported for the 1959 report.  
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Figure A.7 Cottonwood Creek LAHARZ deposition extent using the lahar 

function. The resulting debris flow covers much of Military Reserve. 
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Figure A.8 Warm Springs LAHARZ deposition extent using the lahar function. 

The resulting debris deposits within the bounds of the Warm Springs alluvial fan. 
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Figure A.9 Squaw Creek LAHARZ deposition extent using the lahar function. 

Note that the debris flow deposits toward the downstream direction (NW) of the 

Harris Ranch neighborhood. 
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Figure A.10 Maynard Gulch LAHARZ deposition extent using the lahar function. 

Note that, upon reaching the Boise River, LAHARZ routes the remaining volume 

along one of the eight compass directions identified using the flow direction tool. 

Could be used as baseline estimate of how much sediment could enter the Boise River 

in event of post-fire debris flow. 



154 

 

 

 

 
Figure A.11 Highland Gulch LAHARZ deposition extent using the lahar function. 

Note that, like Maynard Gulch, upon reaching the Boise River, LAHARZ routes the 

remaining volume along one of the eight compass directions identified using the flow 

direction tool. 
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Lastly, below is a map displaying both the mapped extent of mudflow deposition from 

the 1959 post-fire debris flow event in conjunction with LAHARZ estimated extent using 

the lahars function. 

 
Figure A.12 Cottonwood Creek modeled vs. mapped deposition extent. Note how 

there are dissimilar debris flow extents and paths of deposition. 
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IRB Approval Form 
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Annotated Policies of Stakeholders at the Boise Wildland Urban Interface 

This table lists the abbreviated policies that were coded in Chapter 4. The 

complete excel dataset of policies can be found under G:\Geomorph\Katie 

Gibble\Thesis\Policies. Websites containing the location of these policies are listed 

within each Agency’s individual workbook tab.  

Managing Agency Policy  

Boise City Fire Weed and grass mitigation 

Open burning permit 

Illegal fires 

Turning radius 

Fireworks 

Foothills roof cover 

Foothills defensible space 

Foothills appeals 

Foothills fireworks and open flame 

WUI designated zones 

WUI authority 

WUI appeal 

WUI building regulations 

WUI general 

WUI roof cover 

WUI roof replacement 

WUI siding 

WUI eaves 
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WUI exterior walls 

WUI unenclosed underfloor 

WUI appendages 

WUI exterior glazing 

WUI exterior doors 

WUI vents 

WUI detached structure 

WUI emergency vehicle access 

WUI safety plan 

Boise City Zoning Hillslope permits over 15% 

Hillslope permits public hearing 

Hillslope permit must meet requirements 

Hillslope development avoid scarps 

Hillslope development avoid faults 

Hillslope development avoid collapsible soils 

Hillslope development avoid slopes >25% 

Hillslope development avoid high water table 

Hillslope must account for geology, vegetation 

Development must use minimal grading 

Development innovative methods of stabilization 

Development access by fire department possible 

Development pedestrian access possible 

Development grading cannot exceed a given amount 

Development max vegetation clearance 
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Fill removal if not conducive to stability 

Retaining wall max 

Re-compaction minimum 

Cut-slope maximum 

Fill-slope maximum 

Subsurface stability standards 

Cut and fill set back from property 

Erosion prevention onto adjacent properties 

Interception ditches above cut and fill 

Curbs designed to prevent erosion 

Natural stream stabilization 

Runoff must be conserved on site 

Drainage must accommodate 100 year flood 

Sediment collection/retention ponds 

Nothing near street can hinder flood flow 

Roads designed to minimize disturbance 

Established deep rooted veg must be preserved 

Boise Parks & Rec Promote public education and awareness  

Erosion, protect river banks through programs 

Host Firewise seminars 

Team with other departments on educating about Firewise 

Partner with other departments to map fire hazards at WUI 

Work with planning on WUI fuels project 

Seek funding to restore and mitigate 
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Provide education and awareness in addressing WUI issues 

Ada County 

Emergency 

Management 

Neighborhood must have available water 

Neighborhood must be in proximity of fire services 

Neighborhood must have emergency vehicle access 

Neighborhood must have site planning? 

Neighborhood must have noncombustible construction materials 

Neighborhood must have landscaping and fuel modification 

maintenance and management 

Must complete local hazard mitigation plan 

Mitigation protect lives and reduce hazard related injuries 

Minimize damage from natural hazards to properties 

Encourage development of long term mitigation projects 

Maintain natural environments capacity to deal with impacts of natural 

hazards 

Improve emergency preparedness and collaboration 

Minimize disruption to communities 

Use best available science and continually improve understanding of 

hazards 

Encourage retrofit purchase or relocation of property based on level of 

exposure and repetitive damage 

Strengthen codes and enforcement to insure communities can 

withstand impacts of hazards 

Integrate hazard mitigation policies into local government plans that 

protect and maintain resilience of landscape 

Develop new and improve early warning protocols 

Educate public on area's potential hazards 

Establish partnerships with stakeholders 
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Increase resilience of facilities 

Determine ways to integrate requirements of mitigation plan into local 

government 

IBHS Save lives, and reduce exposure to risk from hazards 

Reduce and prevent damage 

Enhance coordination 

Reduce adverse environmental, natural resources 

Enhance vulnerability assessments through collection of data 

Prioritize mitigation based off VAs 

Reduce fuel loads in critical areas 

Publish maps identifying areas with high wildland fire probability 

Increase public awareness of financial consequences of building homes 

in hazard zones 

Improve land use planning 

Add incentives for counties to do cost sharing 

Purchase fire-prone lands 

Establish mitigation actions  to promote fire adapted communities 

IDL 38.104 

38.104B 

38.111 

38.113 

38.115 

38.116 

38.117 

38.118 
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38.119 

38.12 

38.121 

38.122 

38.123 

38.124 

38.125 

Chapter 4 - Fire Hazard Reduction Programs 

38.405 

Chapter 5 - Seeding of burn areas 

38.502 

Chapter 6 - Forest insects, pests and disease 

Chapter 13 - Forest practices act 

Chapter 16 - Interstate Forest Fire suppression compact 

38.1201 

BLM Price match for mapping WUI hazards 

Monitor to ensure progress is made 

Involve public, local stakeholders in collection and monitoring 

Report findings 

Implement programs through soil water and riparian programs 

Implement wildfire management through wildfire management 

program 

Monitor veg after disturbance 

Data gathering to determine whether meeting objectives 

Use biological control to alter wildfire 
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Use plantings/seeds after fire 

Protection of firefighters first 

Who's in charge in event/coordination 

Fire planning safety first 

Risk assessment to understand uncertainty 

Communicate uncertainty 

Based off best available science 

Interagency coordination is essential 

Emergency Stabilization and Recovery (ESR) stabilization of soil 

ESR human life and property 

ESR monitoring for success 

ESR rehabilitation evaluation 

ESR if land unlikely to recover 

ESR rehab weed treatment 

ESR rehab tree planting 

ESR repair facilities 

Reduce human caused fires through aggressive trespass program in 

concert with a high visibility prevention program 

Closures of access points to burn area 

Contour fell logging 

Culverts and rolling dips 

Early warning flood evacuation 

Protective fences 

Forest treatments (seeding) 

Hazard tree removal 
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Log erosion barriers 

Mulching 

Recreation 

Revegetation 

Road stabilization 

Safety and public heath 

Soil stabilizations 

Straw bales 

Trails 
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Check list for Comparing 1959 Boise Mudbath to 2016 Updated Post-fire Debris 

Flow Models 

In Chapter 3, we compared recorded sediment yields of post-fire debris flows in 

the 1959 Boise Mudbath to 2010 post-fire debris flow models (Cannon et al., 2010). Post-

fire debris flow models were updated in 2016 (Staley et al., 2016) but were not used in 

this thesis. This appendix includes a checklist of items to compare the 2016 model 

predictions to 1959 sediment yields and the original 2010 post-fire debris flow model. 

Preparation 

__ confirm 2016 model maximum basin size (below 10 km2) 

__ decide how to split up basins that are >10 km2 (Cottonwood and Warm 

Springs) 

__ acquire 15 min peak storm rainfall accumulation (in mm) for 1959 storm in 

Boise Foothills. 1959 storm was 0.4 inches in 9 minutes – how to back out for 15 

minute intensity? 

__ acquire soil KF-Factor map for Boise Foothills. See Web Soil Survey 

Execution 

__ once split, re-run 2010 models over newly split basins 

__ use Statistics as Table tool to pull average KS-Factor for each drainage basin 

__ run new debris flow models through the 1959 precipitation scenario under 4 

NBR scenarios 

 

 


