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Abstract

In this thesis, we develop an explicit multi-rate time stepping method for solv-

ing parabolic equations on a one dimensional adaptively refined mesh. Parabolic

equations are characterized by their stiffness and as a result are usually solved using

implicit time stepping schemes [16]. However, implicit schemes have the disadvan-

tage that they can be expensive in higher dimensions or complicated to implement

on adaptive or otherwise non-uniform meshes. Moreover, for coupled systems of

parabolic equations, it can be difficult to achieve the expected order of accuracy

without using sophisticated operator splitting techniques. For these reasons, we seek

to exploit the properties of stabilized explicit methods for parabolic equations. In

particular, we use the Runge-Kutta-Chebyshev (RKC) methods, a family of explicit

Runge-Kutta methods, with numerical stability regions that extend far into the left

half plane [12, 15, 21, 22, 26, 27, 28].

A central goal of this thesis is to use a second order RKC scheme to numerically

solve parabolic equations on a one dimensional adaptively refined finite volume mesh.

To make our implementation efficient, we design a time stepping algorithm in which

time step sizes are chosen to respect the local mesh widths. This time stepping

process requires communication between the RKC stages on different refinement

levels. By linearly interpolating in time between the stage values, we obtain the

ghost cell values for the finite volume scheme on each level. To our knowledge,

this approach to adaptively refining in time, commonly referred to as a “multi-rate

v



time stepping” strategy, combined with RKC time stepping method has not been

previously implemented.

We develop our multi-rate algorithm on a one dimensional statically refined mesh

using the second order finite volume scheme to numerically solve the heat or diffusion

equation on each grid stored in a hierarchy of meshes. Using the “method of manufac-

tured solutions”, we demonstrate that our method is second order accurate, and for

our test problem, the multi-rate scheme requires only about 20% of the computational

work required by the uniformly refined mesh at the same resolution.

The algorithm we develop manages the time stepping between the refinement

levels only, and so extends directly to higher dimensional problems. Future work

in this direction includes applying the new multi-rate RKC time stepping scheme

to biological pattern formations or crystal growth in the 2D ForestClaw code [7] on

parallel machines.
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Chapter 1

INTRODUCTION: THE HEAT EQUATION

A standard example of a parabolic partial differential equation (PDE) is the time

dependent diffusion of heat, vorticity, momentum, or tracer species. This model is

often a component in a larger system of equations for modeling fluid flow in engi-

neering and science applications. For example, in incompressible flow problems, the

viscous terms are modeled using a parabolic equation. In other problems, parabolic

equations are used to model the diffusion of heat, energy, chemical species, and so

on. For this thesis, we will use the terms “parabolic equation”, “heat equation”, or

“diffusion equation” interchangeably.

In one dimension, a simple example of heat diffusion is the change in a temperature

field over time in a one dimensional rod. The rod has a length l and has a sufficiently

small diameter so that the heat is distributed equally over the cross section at time t.

The surface of the rod is insulated, therefore, there is no heat loss through the surface

[10, 17]. The temperature distribution of the rod can be modeled by the solution of

the initial boundary value problem,

Ut (x, t) = κUxx (x, t) + S (x, t) , x ∈ (0, l) , t ∈ (0, T ) , (1.1)

where κ is the diffusion coefficient (for simplicity, we assume that κ = 1), S (x, t) is

the heat source term, T is the final time, and l > 0 is the length of the rod. The initial
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condition is a function of x given by

U (x,0) = f (x) ,

and the Dirichlet boundary conditions are prescribed as

U (0, t) = g (0, t) ,

U (l, t) = g (l, t) ,

where the temperature at both ends may be a function of time.

As an example, in Figure 1.1, we show the change in the solution of the heat flow

over time with a heat source term. In this example, we see that the heat is leaving

the domain, so the total amount of heat in the domain is decreasing over time. The

black curve shows the initial condition, and the curves below the black curve show

the solution at different times as they reach a uniform temperature of zero. The

sharp fronts are produced by the heat source term S (x, t) in equation (1.1). The

heat source term causes the solution to maintain its sharp fronts while diffusing over

time. Therefore, the solution does not behave like the solution of a typical diffusion

problem in which the solution diffuses fast in areas with high curvature. This specific

example will be discussed in more detail in Chapter 4.

On a uniform grid, in order to effectively approximate the numerical solution in

Figure 1.1 with a desired level of accuracy, we are restricted to discretizing the grid

using the smallest grid size required on the sharp fronts. While this is effective for

accuracy reasons, we are potentially wasting computational effort in areas where the

solution is smooth. In such areas, a lower number of grid cells would be potentially
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Figure 1.1: An example of a solution U (x, t) of the heat equation in equation
(1.1) with a heat source term S (x, t) that produces sharp fronts in
the solution. At the regions with a sharp gradient, we will want to
locally refine the mesh to improve computational efficiency.

adequate to achieve a desired level of accuracy. The use of adaptive mesh refinement

(AMR) allows us to split the spatial domain into a number of grids with different

resolutions which could produce a comparable level of accuracy with a significantly

less computational effort. In addition, it is advantageous to adaptively refine in time

as well and take time step sizes that are chosen to respect the local spatial grid

sizes. This time stepping strategy is often referred to as a “multi-rate time stepping”

strategy. Using adaptive mesh refinement with multi-rate time stepping can lead to

significant savings and computational work compared to the work needed to achieve

a comparable solution on a uniformly refined mesh.
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Chapter 2

NUMERICAL SCHEMES FOR THE HEAT EQUATION

One approach to numerically solving the heat equation is to use a semi-discretization

or a Method-of-Lines (MOL) approach. In this approach, we first discretize in space to

get a system of ordinary differential equations, and then apply standard time stepping

methods. There are several methods that can be used for the spatial discretization

such as the finite difference, finite element, and finite volume methods. Here, we

use the finite volume method. We break the spatial domain into N grid cells and

approximate the total integral of the unknown solution U (x, t) over each grid cell.

The finite volume scheme solves for the cell average of U (x, t) over a finite volume

cell. This average can be written as

Ui(t) ≈
1

h ∫
x
i+ 1

2

x
i− 1

2

U (x, t)dx,

where the limits of integration are: xi− 1
2
= xi − h

2 , and xi+ 1
2
= xi + h

2 . We have N cells:

i = 1, . . . ,N , and h = 1

N
is the spatial scale (assuming a domain of length 1), and

xi = (i − 1
2
)h are the cell center values, and xi− 1

2
= (i − 1)h are the cell edges. Using

an integral form of the differential equation (1.1) first presented in Chapter 1, we get

that the time rate of change of the average is given by
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1

h

d

dt ∫
x
i+ 1

2

x
i− 1

2

U (x, t)dx = 1

h ∫
x
i+ 1

2

x
i− 1

2

Uxx (x, t)dx +
1

h ∫
x
i+ 1

2

x
i− 1

2

S (x, t)dx.

Computing the integrals and using the fundamental theorem of calculus, we have,

d

dt
Ui (t) =

1

h
[Ux (xi+ 1

2
, t) −Ux (xi− 1

2
, t)] + Ŝ (xi, t) ,

Ô⇒ U ′

i (t) =
1

h
[Ux (xi+ 1

2
, t) −Ux (xi− 1

2
, t)] + Ŝi (t) ,

where the prime is differentiation with respect to t. We can replace the right hand

side term with its difference formula:

U ′

i (t) =
1

h
[U (xi+1, t) −U (xi, t)

h
− U (xi, t) −U (xi−1, t)

h
] + Ŝi (t) ,

= 1

h2
[U (xi+1, t) − 2U (xi, t) +U (xi−1, t)] + Ŝi (t) . (2.1)

Equation (2.1) can be turned into a system of ordinary differential equations (ODEs)

in time:

U ′ (t) = AU (t) + b (t) + Ŝ (t) , (2.2)

where U (t) is the vector of solution values, b (t) accounts for the inhomogeneous

boundary conditions, and A is a tridiagonal matrix with the three stencils in equation

(2.1):

A = 1

h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

1 −2 1

1 −2 1

⋱ ⋱ ⋱

1 −2 1

1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3)
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Before we consider applying a numerical time stepping scheme, we first investigate

the eigenvalues of A, as these will be used to determine any time step restrictions on

our numerical scheme. The eigenvalues of A can be computed as

λp =
2

h2
(cos( pπ

N + 1
) − 1) for p = 1,2, . . . ,N. (2.4)

A derivation of the eigenvalues in equation (2.4) can be found in Appendix C.

A matrix is stable when all of its eigenvalues have a norm strictly less than

one. The largest eigenvalue in magnitude dominates the behavior of the matrix and

controls the stability of the system [16]. The value of the largest eigenvalue λN occurs

when p = N . Since N is a large number,

N

N + 1
≈ 1 Ô⇒ cos( Nπ

N + 1
) ≈ cos (π),

thus, for the largest eigenvalue we have,

λN ≈ 2

h2
(cos (π) − 1) = − 4

h2
. (2.5)

The eigenvalues of the matrix A lie on the negative real axis and their magnitudes

increase with N .

We now use a time stepping scheme to discretize the problem in time. We take

time steps:

tn = nk, k = tn+1 − tn, t ∈ [0, T ] ,

where tn is the n-th time step, k is the fixed time step size, and T is the final time.

As an example, we discuss the explicit Forward Euler time stepping scheme. In order
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to compute the solution at time tn+1, the Forward Euler scheme can be written as,

Un+1 = Un + kF (Un) , (2.6)

where k is the time step, Un ≈ U (tn) is the numerical approximation of the exact

solution U (tn) on the grid cells at time tn (the variable xi in U (tn) is dropped

because this equation is for all x values), and the function F (Un) is the right hand

side function, which is equal to:

F (Un) = AUn + b (t) + Sn.

Without loss of generality, we can assume that the heat source term is equal to zero,

and that we have homogeneous Dirichlet boundary conditions; for a more detailed

approach, please see [16]. We replace the right hand side function F (Un) = AUn in

equation (2.6),

Un+1 = Un + k (AUn) ,

= (I + kA)Un,

Ô⇒ Un+1 = BUn,

where I is an identity matrix, and B is a new matrix equal to I + kA. The solutions

Un+1
i will remain bounded in time if the eigenvalues of B are less than 1. In order

to determine the eigenvalues of the matrix B, we take advantage of the fact that we

know the eigenvalues of A. Let λ be an eigenvalue of A, then 1 + kλ is an eigenvalue

of B. For every eigenvalue in B, we must have:
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∣1 + kλ∣ ≤ 1,

Ô⇒ −1 ≤ 1 + kλ ≤ 1,

Ô⇒ −2 ≤ kλ ≤ 0. (2.7)

We define the stability region, S ⊂ C as

SFE = {kλ ∶ ∣1 + kλ∣ ≤ 1, λ ∈ C} .

In Figure 2.1a, the stability region of the Forward Euler scheme is shown (the red

shaded region) in the complex plane. It is a disk of radius 1 centered at point (−1,0)

in the complex plane.

The product z = kλ must stay inside the stability region to have a stable scheme.

The largest most negative eigenvalue from our discretization of the heat equation is

λN ≈ − 4

h2
.

Replacing λ with λN in the inequality in equation (2.7), we have

−2 ≤ kλN ≤ 0,

−2 ≤ − 4

h2
k ≤ 0,

Ô⇒ k ≤ h
2

2
.

If the spatial scale h is small (where, eventually, we assume that h ≪ 1), we must

take a small time step size k to maintain stability. This is a severe restriction on the

time step. This shows the “stiffness” of the heat equation, which is the general idea
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that the size of the time step is severely restricted due to the numerical scheme and

the nature of the physical problem. For the stiff heat or diffusion problem, we must

choose small time steps for stability rather than for accuracy reasons [16]. In a time

stepping scheme, it is preferred to have a time step size controlled by accuracy rather

than stability considerations. For the Forward Euler scheme, the temporal scale is

proportional to the square of the spatial scale,

k ∼ h2.

As the small grid size h approaches zero, the time step k becomes much smaller. For

example, if we divide h by a factor of 2, then k must be divided by a factor of 4. The

Forward Euler scheme is not an optimally efficient scheme to numerically solve the

heat equation. Ideally, in time stepping schemes k should be equal or proportional

to h, not h2.

There are several popular time stepping schemes including Forward Euler, Back-

ward Euler, Trapezoidal, and fourth order Runge-Kutta schemes with properties that

make some of them suitable for stiff problems.. Figure 2.1 shows the stability regions

of these time stepping schemes in the complex plane. The Forward Euler and the

fourth order Runge-Kutta schemes in Figures 2.1a and 2.1c, respectively, are explicit

schemes with limited stability intervals on the negative real axis. Explicit methods

have some advantages and disadvantages including:

• They are relatively straightforward to implement, especially for coupled systems

of parabolic PDEs.

• They do not require the solution to a linear system of equations, which is

potentially expensive.



10

(a) Forward Euler (b) Backward Euler

(c) Fourth order Runge-Kutta (d) Trapezoidal

Figure 2.1: Stability regions of four basic time-stepping schemes: Forward
Euler, Backward Euler, Trapezoidal, and fourth order Runge-Kutta
schemes in the complex plane. The red shaded region is the stability
region, and z = kλ where λ is the eigenvalue and k is the time step
size.
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• However, explicit schemes, when applied to stiff problems, can have severe time

step restrictions.

The Backward Euler and Trapezoidal schemes in Figures 2.1b and 2.1d, respec-

tively, are implicit schemes with extended stability regions that contain the entire left

half plane. Implicit schemes, have some advantages and disadvantages as well, which

include:

• They often have infinite stability regions that contain the entire left half plane.

Such schemes are “unconditionally stable”.

• Work for a reasonable time step size.

• However, they are challenging to implement on non-uniform meshes.

• Coupled systems may require operator splitting techniques, which can introduce

time stepping errors.

• Require solutions to linear systems, which can be expensive.

While implicit schemes are unconditionally stable for parabolic stiff problems,

they require matrix assembly for complicated (adaptively refined) meshes. They can

be complicated because the stencils required to approximate the Laplacian in each

cell are not easily computed. For these reasons, we would like to avoid using implicit

methods, and seek to exploit the properties of stabilized explicit methods for stiff and

mildly stiff parabolic equations.
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Chapter 3

THE RUNGE-KUTTA-CHEBYSHEV (RKC) SCHEMES

A family of explicit stabilized Runge-Kutta schemes that have been developed

for mildly stiff heat or diffusion problems are the Runge-Kutta-Chebyshev (RKC)

schemes [12, 13, 15, 21, 22, 26, 27, 28]. The RKC schemes were designed by Van

Der Houwen and Sommeijer (1980) for the explicit time integration of stiff systems

of ODEs which originate from spatial discretization of parabolic PDEs [13, 28]. The

RKC schemes are easy to implement because they are explicit; and they avoid errors

that can occur with operator splitting approaches in implicit schemes. For mildly

stiff reaction-diffusion problems, the RKC schemes can numerically solve the problem

efficiently [21].

The RKC schemes have several advantages. They possess an extended stability

region, and because they are explicit, they are easy to implement. They also exploit

the recursion relations of the Chebyshev polynomials which will be explained later

in this chapter. The RKC schemes only require six vectors of working storage,

independent of the number of stages [21]. In addition, they have internal stability

within the intermediate stages [13]. Some of the disadvantages of the RKC schemes

include being challenging to design for higher orders of accuracy and non-intuitive

formulas and parameters.
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3.1 Stability functions

Consider the well known Dahlquist test problem [15, 16],

U ′ (t) = λU (t) , U(0) = 1, (3.1)

where λ is a large negative scalar and U (t) is the unknown function. The exact

solution of this problem is the exponential function U (t) = eλt [15, 16]. A typical

one-step time stepping scheme for this test problem can be written as

Un+1 = R (z)Un,

where z = kλ, k is the time step, and R (z) is called the “stability function” of the

scheme. For example, for the Forward Euler scheme we have,

Un+1 = Un + kF (Un) = Un + kλUn = (1 + z)Un,

R (z) = 1 + z.

The stability function must satisfy two requirements: accuracy and stability. For

accuracy, the stability function must approximate the exponential function with some

order of accuracy [15],

R (z) ≈ ez = 1 + z + z
2

2!
+ z

3

3!
+ . . . . (3.2)

For example, to produce a first order accurate time stepping scheme, the stability

function must include at least the first two terms of the Taylor series expansion of

the exponential function in equation (3.2),
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R (z) = 1 + z +O (z2) .

Similarly, to produce a second order accurate time stepping scheme, the stability

function must include at least the first three terms of the Taylor series expansion in

equation (3.2),

R (z) = 1 + z + 1

2
z2 +O (z3) .

The accuracy of the time stepping scheme improves as the stability function R (z)

includes more terms of the Taylor series expansion of the exponential function in

equation (3.2); therefore, for a p-th order accurate time stepping scheme, the stability

function must exactly include the first p + 1 terms,

R (z) = ez +O (zp+1) .

For stability, in order for the solutions not to grow exponentially, the magnitude

of the stability function must be less than or equal to 1 [15],

∣R(z)∣ ≤ 1.

The goal is to find or design a stability function R (z) so that the stability region in

the complex plane

S = {z ∈ C ∶ ∣R(z)∣ ≤ 1} ,

contains a large interval on the negative real axis

[−βR,0 ] ,
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with βR, the boundary of absolute stability, as large as possible.

3.1.1 First order RKC schemes

Consider the following potential stability function (for first order RKC schemes),

Ps (z) = Ts (1 + z

s2
) , (3.3)

where Ts (x) is a Chebyshev polynomial of the first kind of degree s. Evaluating

Ps (z) for any s values, the stability function produces first order accuracy,

Ps (z) = Ts (1 + z

s2
) = 1 + z +O (z2) .

For example, for P3 (z) and P6 (z) we have,

P3 (z) = T3 (1 + z

32
) = 1 + z + 4z2

27
+ 4z3

729
, (3.4)

P6 (z) = T6 (1 + z

62
) = 1 + z + 35z2

216
+ 7z3

729
+ z4

3888
+ z5

314928
+ z6

68024448
. (3.5)

The stability interval and the boundary of absolute stability βR are obtained by

finding z such that ∣Ps (z)∣ ≤ 1,

∣Ts (1 + z

s2
)∣ ≤ 1.

From properties of Chebyshev polynomials we have ∣Ts(x)∣ ≤ 1 Ô⇒ ∣x∣ ≤ 1 [25];

therefore,

∣Ts (1 + z

s2
)∣ ≤ 1 Ô⇒ ∣1 + z

s2
∣ ≤ 1.
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We can solve for all z such that this inequality holds. In general, z is a complex

number; however, since we are looking for an interval on the real axis, we can assume

that z is real, and obtain

∣1 + z

s2
∣ ≤ 1,

Ô⇒ − 1 ≤ 1 + z

s2
≤ 1,

Ô⇒ − 2s2 ≤ z ≤ 0.

The interval of absolute stability for the first order RKC schemes with the stability

function in equation (3.3) is

[−βR,0] , where βR = 2s2. (3.6)

This interval increases quadratically in s. Figure 3.1 shows a number of stability

functions Ps (z) for different s values 2 ≤ s ≤ 5. This stability boundary is optimal in

the following sense.

Theorem 3.1.1. (Van Der Houwen, Verwer) For any explicit, consistent Runge-

Kutta method, the boundary of absolute stability βR depends on the number of stages

s with βR ≤ 2s2, and the optimal stability function is the shifted Chebyshev polynomial

of the first kind [12, 15, 26, 27].

The proof of this theorem was provided by Markoff in 1892 and Van Der Houwen

in 1996 and it can be found in [15, 26].

As an example to illustrate the stability regions in the complex plane, we consider

the stability functions of P3 (z) and P6 (z) in equations (3.4) and (3.5). Figures
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Figure 3.1: The stability functions Ps (z) for 2 ≤ s ≤ 5

3.2 and 3.3 show the stability regions of P3 (z) and P6 (z) in the complex plane,

respectively. The stability intervals can be computed using equation (3.6) as

[−βR,0] = [−18,0] , for P3 (z) ,

[−βR,0] = [−72,0] , for P6 (z) .

A simple one-step multi-stage Runge-Kutta-Chebyshev scheme that can be shown

to produce the stability function for the first order RKC schemes in equation (3.3) is

given by [21, 27, 28, 29, 30],
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Figure 3.2: The stability region of P3 (z). The stability region is the red shaded
region.

Figure 3.3: The stability region of P6 (z).

Y0 = Un,

Y1 = Y0 +
k

s2
F0,

Yj = 2Yj−1 − Yj−2 +
2k

s2
Fj−1, 2 ≤ j ≤ s,

Un+1 = Ys.

(3.7)

where Yj values are the intermediate solutions at each RKC stage, and they depend

on the previous two stages, s is the number of stages, and Fj’s are the values of the

right hand side F at stage Yj. We are again solving the Dahlquist test problem in

equation (3.1). Applying the scheme in equation (3.7) to this test problem, we recover

the stability functions in equation (3.3) for each stage
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Y0 = Un,

Y1 = (1 + z

s2
)Y0 = T1 (1 + z

s2
)Un,

Y2 = 2Y1 − Y0 +
2z

s2
Y1 = T2 (1 + z

s2
)Un,

Y3 = 2Y2 − Y1 +
2z

s2
Y2 = T3 (1 + z

s2
)Un,

Yj = 2Yj−1 − Yj−2 +
2z

s2
Yj−1 = Tj (1 + z

s2
)Un, 4 ≤ j ≤ s,

Un+1 = Ys.

(3.8)

In this derivation, we have used the three-term recursion relations for Chebyshev

polynomials of the first kind [25]

T0 (x) = 1, T1 (x) = x,

Tj (x) = 2xTj−1 (x) − Tj−2 (x) , 2 ≤ j ≤ s.

3.1.2 Second order RKC schemes

For higher order RKC schemes (second order and higher), there are no analytical

expressions for truly optimal stability functions in the sense of βR = 2s2 [1, 12, 27]. For

the second order stability functions, there are two approximate functions in analytic

form for arbitrary s ≥ 2. One approximate function in analytical form was given by

Bakker in 1971 [5]. In 1996, Van Der Houwen and Sommeijer constructed another

stability function for the second order RKC schemes; however, they preferred Bakker’s

function above theirs. [15, 27]. Bakker’s stability functions for the second order RKC

schemes are given by

Bs (z) =
2

3
+ 1

3s2
+ (1

3
− 1

3s2
)Ts (1 + 3z

s2 − 1
) . (3.9)
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This stability function is not optimal (it generates about 80% of the optimal stability

region); however, it has been extensively tested in the literature and has been proven

to perform well [12, 27]. The derivation and proof of this stability function can be

found in [15, 26]. If we evaluate Bs(z) for different s values, we obtain second order

accuracy:

Bs (z) =
2

3
+ 1

3s2
+ (1

3
− 1

3s2
)Ts (1 + 3z

s2 − 1
) = 1 + z + 1

2
z2 +O (z3) .

For example, for B5 (z) and B6 (z) we have

B5 (z) =
2

3
+ 1

3 (5)2
+ (1

3
− 1

3 (5)2
)T5 (1 + 3z

(5)2 − 1
)

= 1 + z + z
2

2
+ 7z3

80
+ z4

160
+ z5

6400
(3.10)

B6 (z) =
2

3
+ 1

3 (6)2
+ (1

3
− 1

3 (6)2
)T6 (1 + 3z

(6)2 − 1
)

= 1 + z + z
2

2
+ 16z3

175
+ 324z4

42875
+ 432z5

1500625
+ 216z6

52521875
. (3.11)

The stability interval, and the boundary of absolute stability βR, are obtained by

finding z such that ∣Bs (z)∣ ≤ 1:

∣2
3
+ 1

3s2
+ (1

3
− 1

3s2
)Ts (1 + 3z

s2 − 1
)∣ ≤ 1,

−1 − (2

3
+ 1

3s2
) ≤ (1

3
− 1

3s2
)Ts (1 + 3z

s2 − 1
) ≤ 1 − (2

3
+ 1

3s2
) .

Then dividing all sides by (1

3
− 1

3s2
) and simplifying further, we have,
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−1 − 4s2 + 2

s2 − 1
≤ Ts (1 + 3z

s2 − 1
) ≤ 1.

For s ≥ 2, the expression on the left is strictly less than −1, therefore, we only need

to check,

−1 ≤ Ts (1 + 3z

s2 − 1
) ≤ 1,

and from properties of Chebyshev polynomials we have ∣Ts(x)∣ ≤ 1 Ô⇒ ∣x∣ ≤ 1 [25],

implying

∣Ts (1 + 3z

s2 − 1
)∣ ≤ 1 Ô⇒ ∣1 + 3z

s2 − 1
∣ ≤ 1.

Therefore, we can solve for all z such that this inequality holds. Similar to the first

order case, since we are looking for the interval on the real axis, we assume that z is

real,

∣1 + 3z

s2 − 1
∣ ≤ 1,

Ô⇒ − 1 ≤ 1 + 3z

s2 − 1
≤ 1,

Ô⇒ − 2 ≤ 3z

s2 − 1
≤ 0,

Ô⇒ − 2

3
(s2 − 1) ≤ z ≤ 0.

The interval of absolute stability for the second order RKC schemes with the stability

function in equation (3.9) is
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[−βR,0] , where βR ≈ 2

3
(s2 − 1) . (3.12)

Again, the interval increases quadratically in s. Figure 3.4 shows a number of stability

functionsBs(z) for different s values 2 ≤ s ≤ 5. As an example to illustrate the stability

Figure 3.4: The stability functions Bs (x) for 2 ≤ s ≤ 5.

regions in the complex plane, we consider the stability functions of B5 (z) and B6 (z)

in equations (3.10) and (3.11). Figures 3.5 and 3.6 show the stability regions of B5 (z)

and B6 (z) in the complex plane, respectively. The stability intervals can be computed

using the equation (3.12) and are given by

[−βR,0] = [−16,0] , for B5 (z) ,

[−βR,0] = [−70

3
,0] , for B6 (z) .
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Figure 3.5: The stability region of B5 (z).

Figure 3.6: The stability region of B6 (z).

As pointed out in the literature, odd and even degree Chebyshev polynomials

produce slightly different stability intervals for the stability function in equation

(3.9) [15, 27]. For an even degree, the stability interval is exactly equal to the

interval in equation (3.12), whereas for an odd degree, the stability interval is slightly

larger. In Figure 3.7, we plot the stability functions B5 (z) and B6 (z), and show

their intersections with the lines y = 1 and y = −1. In this plot, the even function

B6 (z) alternates between (1

3
+ 2

3s2
) and 1, and intersects the line y = 1 exactly at

βR = 70

3
. The odd function B5 (z), also alternates between (1

3
+ 2

3s2
) and 1, but
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intersects the line y = −1 at a point x∗ < −16 , so we can still take the interval with

absolute stability boundary βR = −16. We compute the actual intersection point x∗

numerically, and show that it is always less than the boundary of absolute stability

βR = −2

3
(s2 − 1). In Table 3.8, we show the difference between x∗ and βR, which

converges to approximately 0.88 as the number of stages increases. This does not

have a major effect on the stability region; in fact, it increases the interval of absolute

stability which is favorable.

Figure 3.7: The stability functions B5 (z) and B6 (z) and their intersections with
the lines y = ±1. The stability interval of an odd degree stability
function is slightly larger than an even degree stability function.
The odd intersection point (red circle) is the x∗ point referred to in
the text.
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Figure 3.8: The difference between the x∗ and βR for an odd degree stability
function for second order RKC schemes.

3.2 Damped stability functions

In Figures 3.2 and 3.3, the stability regions for first order RKC schemes, and Fig-

ures 3.5 and 3.6, the stability regions for second order RKC schemes, wherever on the

real axis the stability function ∣R (z)∣ = 1, the stability region S = {z ∈ C ∶ ∣R(z)∣ ≤ 1}

contracts to a point on the real axis.

As seen in Figures 3.2, 3.3 (first order) and Figures 3.5 and 3.6 (second order),

the stability region S = {z ∈ C ∶ ∣R(z)∣ ≤ 1} contracts to a point on the negative real

axis. This is very restrictive in some applications; a small imaginary perturbation

on z might cause instability [15]. Since perturbing such a z away from the axis into

the complex plane gives a point z where ∣R(z)∣ > 1, it is preferable to perturb the

stability functions with a damping parameter. The choice of damping was first made

by Guillou and Lago in 1961 [12, 16, 27]. By damping the stability functions with a

damping parameter, the magnitude of the stability function, ∣R(z)∣, becomes bounded

slightly below 1 on the real axis between −βR and the origin, but it remains the same

order accurate. The result is a slight decrease in the value of βR, leading to a slightly
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smaller stability interval than the original undamped version [3]. This slight decrease

in the interval of absolute stability is acceptable, and it is a small price to pay to

avoid the stability regions contracting to a boundary point on the real axis.

In the damped version, some new parameters are introduced, such as the damping

parameter

w0 = 1 + ε

s2
, (3.13)

where ε is a small positive number. A commonly chosen value for ε is 0.05 for the first

order schemes and
2

13
for the second order schemes [15, 16]. In order to derive the

damped stability functions of the RKC schemes, we use the following representation

of the RKC schemes [13, 27, 28]. We assume that R(z) has the form

R (z) = as + bsTs (w0 +w1z) , (3.14)

where by imposing accuracy requirements of first or second order, we can obtain the

parameters w1, as, and bs for first and second order RKC schemes.

3.2.1 First order damped RKC schemes

In order to derive the damped stability function of the first order RKC schemes,

assume the stability function Ps (z) has the form given in equation (3.14) and we set

Ps (z) = as + bsTs (w0 +w1z) . (3.15)

For consistency and first order accuracy, we have,

Ps (0) = as + bsTs (w0) = 1, and P ′

s (0) = bsw1T
′

s (w0) = 1,
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where we have two equations and three unknown parameters w1, as, and bs. Thus,

one of the parameters is an arbitrary parameter. In the literature, this arbitrary

parameter is as, and is set to zero [13, 15, 28]. Then, we obtain an expression for bs

as

as = 0, (3.16)

Ô⇒ Ps (0) = bsTs (w0) = 1 Ô⇒ bs =
1

Ts (w0)
. (3.17)

Then, we can find w1,

P ′

s (0) = bsw1T
′

s (w0) = 1 Ô⇒ w1 =
1

bsT ′

s (w0)
Ô⇒ w1 =

Ts (w0)
T ′

s (w0)
. (3.18)

After writing the expressions for bs and w1, we can write the stability function in the

format of equation (3.15),

Ps (z) = as + bsTs (w0 +w1z) =
Ts (w0 +w1z)

Ts (w0)
, (3.19)

which presents the damped stability function of the first order RKC schemes. In

Section 3.3, we will numerically show that this stability function is generated by the

RKC schemes. The damped stability interval of the first order RKC is

[−βR,0] , where βR ≈ 2s2. (3.20)

The interval increases quadratically by s similar to the undamped version. The

boundary of absolute stability is slightly less than 2s2 compared to the undamped

version. The analytical expression of the boundary of absolute stability βR, of the
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damped first order RKC schemes has been derived by Hundsdorfer and Verwer in

[15, 27]. In order to show the decrease in the stability region with damping, we plot

Figure 3.9: The stability region of P3 (z) with damping. The slightly stretched
(blue) curve shows the stability region without damping.

the damped and undamped stability regions on the same axes. Figures 3.9 and 3.10

show the stability regions of the damped stability functions of P3 (z) and P6 (z) in the

complex plane. The slightly stretched (blue) curve in the figures shows the stability

region without damping.

Figure 3.10: The stability region of P6 (z) with damping. The slightly stretched
(blue) curve shows the stability region without damping.
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3.2.2 Second order damped RKC schemes

Similar to first order RKC, we assume that the stability function Bs (z) of the

second order RKC schemes has the form given in equation (3.14), so we set

Bs (z) = as + bsTs (w0 +w1z) . (3.21)

For consistency and second order accuracy, we have

Bs (0) = as+bsTs (w0) = 1, B′

s (0) = bsw1T
′

s (w0) = 1, B′′

s (0) = bsw2
1T

′′

s (w0) = 1,

where we have three equations and three unknown parameters as, bs, and w1. Solving

for w1 we have,

B′′

s (0)
B′

s (0)
= bsw

2
1T

′′

s (w0)
bsw1T ′

s (w0)
= 1 Ô⇒ w1 =

T ′

s (w0)
T ′′

s (w0)
.

Then, solving for bs we have,

B′

s (0) = bsw1T
′

s (w0) = 1 Ô⇒ bs =
1

w1T ′

s (w0)
Ô⇒ bs =

T ′′

s (w0)
(T ′

s (w0))2
.

Finally, we can solve for as,

as = 1 − bsTs (w0) = 1 − T ′′

s (w0)
(T ′

s (w0))2
Ts (w0) .

After writing the expressions for bs and w1, we can write the stability function in the

format of equation (3.21),
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Bs (z) = 1 − T ′′

s (w0)
(T ′

s (w0))2
Ts (w0) +

T ′′

s (w0)
(T ′

s (w0))2
Ts (w0 +w1z) ,

which can be factored as

Bs (z) = 1 + T ′′

s (w0)
(T ′

s (w0))2
(Ts (w0 +w1z) − Ts (w0)) , (3.22)

which presents the damped stability function of the second order RKC schemes. In

Section 3.3, we will numerically show that this stability function is generated by the

RKC schemes. The damped stability interval of the second order RKC schemes is

[−βR,0] , where βR ≈ 2

3
(s2 − 1) .

The interval increases quadratically by s similar to the undamped version. The

boundary of absolute stability is slightly less than
2

3
(s2 − 1) compared to the un-

damped version. Similar to the first order RKC schemes, the analytical expression

of the boundary of absolute stability βR, of the damped second order RKC schemes

can be found in [15, 27]. Figures 3.11 and 3.12 show the decrease in the stability

region when using damping. The slightly stretched (blue) curve in the figures shows

the original stability region without damping.

3.3 RKC time stepping formulas

Now that we have obtained the desired stability functions for first and second

order RKC schemes, we need an s-stage RKC scheme that produces these stability

functions for a general test problem. Such a scheme is given in the following Shu-Osher

form [9, 11, 21, 23]
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Figure 3.11: The stability region of B5 (z) with damping. The slightly stretched
(blue) curve shows the stability region without damping.

Figure 3.12: The stability region of B6 (z) with damping. The slightly stretched
(blue) curve shows the stability region without damping.

Y0 = Un,

Y1 = Y0 + µ̃1kF0,

Yj = µjYj−1 + νjYj−2 + (1 − µj − νj)Y0 + µ̃jkFj−1 + γ̃jkF0, 2 ≤ j ≤ s,

Un+1 = Ys

(3.23)

where Fj = F (tn + cjk, Yj), Un ≈ U (tn) is the approximation of the solution at time

tn, k = tn+1 − tn is the time step, and Yj values are the intermediate solutions at each

stage j. The solution Yj at each intermediate stage depends on the two previously

computed intermediate solutions and Y0.

The integration parameters in equation (3.23) for 2 ≤ j ≤ s are defined analytically



32

as

µ̃1 = b1w1, µ̃j = 2w1

bj
bj−1

,

µj = 2w0

bj
bj−1

, νj = −
bj
bj−2

,

γ̃j = − (1 − bj−1Tj−1 (w0)) µ̃j.

These parameters are specifically designed such that the stability functions of the

RKC schemes are recovered. In addition, the parameter choices depend on the desired

order of accuracy.

For first order RKC schemes, we use the expressions for w0 and w1 obtained earlier,

w0 = 1 + ε

s2
, ε = 0.05, w1 =

Ts (w0)
T ′

s (w0)
.

We can derive the expressions for bj for intermediate stages in a manner analogous

to how we derived the bs values. We assume that the intermediate stages must have

the RKC representation in the following form

Pj (z) = aj + bjTj (w0 +w1z) , 0 ≤ j < s.

For consistency and first order accuracy, we have,

Pj (0) = aj + bjTj (w0) = 1, and P ′

j (0) = bjw1T
′

j (w0) = 1.

Similar to as in equation (3.16), we set aj = 0 for the first order RKC schemes, and

solve for bj to get
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Pj (0) = bjTj (w0) = 1 Ô⇒ bj =
1

Tj (w0)
, 0 ≤ j < s.

Therefore, all of the b values are defined as

bj =
1

Tj (w0)
, 0 ≤ j ≤ s.

The time increment parameters in the first order RKC schemes are given by [21, 27, 28]

as

c0 = 0,

cj =
Ts (w0)
T ′

s (w0)
T ′

j (w0)
Tj (w0)

, 1 ≤ j ≤ s − 1,

cs = 1.

For each stage, the stage time tj is given by tn + cjk.

Similarly, for the second order RKC schemes, we use the expressions for w0 and

w1 obtained earlier,

w0 = 1 + ε

s2
, ε = 2

13
, w1 =

T ′

s (w0)
T ′′

s (w0)
.

We can derive the expressions for bj for intermediate stages in a manner analogous

to how we derived the bs values. We assume that the intermediate stages must have

the RKC representation in the form

Bj (z) = aj + bjTj (w0 +w1z) , 2 ≤ j < s. (3.24)

For consistency and second order accuracy, we have
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Bj (0) = aj+bjTj (w0) = 1, B′

j (0) = bjw1T
′

j (w0) = 1, B′′

j (0) = bjw2
1T

′′

j (w0) = 1.

We solve for aj and bj to get

aj = 1 −
T ′′

j (w0)

(T ′

j (w0))
2Tj (w0) , 0 ≤ j < s,

bj =
T ′′

j (w0)

(T ′

j (w0))
2 , 2 ≤ j < s.

Note that b0 and b1 are free parameters. In the literature, they are chosen to be equal

to b2 [22]. Therefore, all of the b values are defined as

b0 = b2, b1 = b2,

bj =
T ′′

j (w0)

(T ′

j (w0))
2 , 2 ≤ j ≤ s.

The time increment parameters in the second order RKC schemes are given by [21,

27, 28]

c0 = 0, c1 =
c2

T ′

2 (w0)
,

cj =
T ′

s (w0)
T ′′

s (w0)
T ′′

j (w0)
T ′

j (w0)
, 2 ≤ j ≤ s − 1,

cs = 1.

Again, for each stage, the stage time tj is given by tn + cjk.

It is challenging to analytically show that the RKC schemes in equation (3.23)

generate the damped stability functions of the first and second order RKC schemes.

Instead, we show this numerically by computing one time step using the RKC schemes,
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and one time step using the damped stability functions of the first and second order

RKC schemes. We solve the Dahlquist test problem, U ′(t) = λU(t), U(0) = 1 using

λ = −10, k = 0.001, and we set the number of stages to vary from 1 to 15. The exact

solution at this time step is equal to Un+1 = 0.9900498337491681. Note that in Tables

3.1 and 3.2, the difference between taking one time step using the RKC schemes and

taking one time step using the stability functions is near machine precision. Thus,

the formulas in equation (3.23) in fact recover the damped stability functions of first

and second order RKC schemes in equations (3.19) and (3.22), respectively.

s Un+1 From RKC Un+1 = Ps (z)Un Relative diff.
4 0.9900160206759102 0.9900160206759130 2.80 × 10−15

5 0.9900164066850475 0.9900164066850554 7.96 × 10−15

6 0.9900166163993918 0.9900166163993891 2.69 × 10−15

7 0.9900167428608667 0.9900167428608604 6.39 × 10−15

8 0.9900168249433932 0.9900168249433960 2.92 × 10−15

9 0.9900168812207998 0.9900168812208083 8.63 × 10−15

10 0.9900169214766443 0.9900169214766517 7.40 × 10−15

11 0.9900169512619237 0.9900169512618967 2.73 × 10−14

12 0.9900169739163572 0.9900169739163640 6.84 × 10−15

13 0.9900169915470152 0.9900169915470188 3.70 × 10−15

14 0.9900170055365031 0.9900170055364751 2.83 × 10−14

15 0.9900170168225733 0.9900170168226244 5.17 × 10−14

Table 3.1: Comparing one time step solved with a first order RKC scheme and
one time step solved using a stability function. Parameters: s is the
number of stages, and Ps (z) is the stability function of first order
RKC schemes.

3.4 Efficiency of the RKC schemes

The number of time steps taken in a time stepping scheme can be important for

efficiency considerations. For example, for the Forward Euler scheme, the number of

time steps M , is a large number since we must take a large number of time steps
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s Un+1 From RKC Un+1 = Bs (z)Un Relative diff.
4 0.9900499191391322 0.9900499191391311 1.12 × 10−15

5 0.9900499115710127 0.9900499115710123 4.49 × 10−16

6 0.9900499076074784 0.9900499076074787 3.36 × 10−16

7 0.9900499052656166 0.9900499052656088 7.96 × 10−15

8 0.9900499037645023 0.9900499037645024 1.12 × 10−16

9 0.9900499027437906 0.9900499027437789 1.18 × 10−14

10 0.9900499020178435 0.9900499020178370 6.50 × 10−15

11 0.9900499014829413 0.9900499014829345 6.84 × 10−15

12 0.9900499010773610 0.9900499010773606 4.49 × 10−16

13 0.9900499007624769 0.9900499007624618 1.53 × 10−14

14 0.9900499005130893 0.9900499005130815 7.85 × 10−15

15 0.9900499003121912 0.9900499003122032 1.21 × 10−14

Table 3.2: Comparing one time step solved with a second order RKC scheme
and one time step solved using a stability function. Parameters: s
is the number of stages, and Bs (z) is the stability function of second
order RKC schemes.

because of the small time step size k. Due to the stiffness of the heat problem, the

small time steps k of the Forward Euler scheme are to maintain stability rather than

to improve accuracy. In this section we compare the efficiency of the RKC schemes

with the Forward Euler scheme in terms of the number of time steps. As explained

in Chapter 2, we can find the suitable time step size based on the stability of the

scheme. For the Forward Euler scheme, we have, a severe restriction on the time step

size,

kFE ≤ h
2

2
.

For the purposes here, we will then assume that kFE = h
2

2
. We can compute the

number of time steps M by dividing the final time T by the time step size kFE,

MFE = T

kFE
= 2T

h2
. (3.25)
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For the RKC schemes, we assume that kRKC = h. To compute the total number of

time steps, we also take into account the number of stages required, which is obtained

by

s =
√

ρ (A)kRKC
σ

, (3.26)

where ρ (A) is the spectral radius of the MOL discretization matrix of the heat

equation, and σ is a positive scalar [28]. For the first order RKC schemes, the

literature suggests σ = 1.9, and for the second order RKC schemes, σ = 0.653 [28].

The spectral radius is

ρ (A) ≈ ∣−4
h2

∣ Ô⇒ s =
√

4 kRKC
h2 σ

.

Assuming kRKC = h, we can compute the number of stages,

s =
√

4 h

σ h2
= 2√

σh
.

The total number of steps taken is then

MRKC = s T

kRKC
= sT

h
= 2 T√

σh3
. (3.27)

By comparing equations (3.25) and (3.27), we observe that the number of time steps

to be taken by the RKC schemes is smaller than that of Forward Euler by a factor of√
h

σ
:

MRKC

MFE

=
√

h

σ
Ô⇒ MRKC =

√
h

σ
MFE ≪MFE.

For small values of h, the RKC schemes will generally require much fewer time steps

than the Forward Euler scheme.
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3.5 Numerical results of the RKC schemes

Consider the following example of the heat equation without a heat source term

Ut (x, t) = Uxx (x, t) , (3.28)

with inhomogeneous Dirichlet boundary conditions,

U (0, t) = U (1, t) = e−4π2t

and the initial condition

U (x,0) = cos (2πx) .

The exact solution to this problem is

U (x, t) = e−4π2t cos (2πx) .

We solve this problem using the first and second order RKC schemes and show the

results in Tables 3.3 and 3.4. As expected, the estimated numerical rate of convergence

is 1 for the first order RKC schemes, and 2 for second order RKC schemes.

In the following figures, we compare the results of the first and second order RKC

schemes and the Forward Euler scheme. Figure 3.13 shows how error decreases as we

reduce the spatial grid size h. The numerical convergence rates for both the second

order RKC schemes and the Forward Euler scheme are second order, and first order

for the first order RKC schemes. Formally, the Forward Euler scheme is first order;

however, due to the severe time step size restrictions, it gains a second order accuracy

when it is used to numerically solve the parabolic heat equation.
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N s Error Time (s) Rates
32 8 6.8552 × 10−2 1.1082 × 10−2 –
64 11 2.9187 × 10−2 6.9333 × 10−3 1.23

128 15 1.4373 × 10−2 1.0491 × 10−2 1.02
256 20 6.9592 × 10−3 1.5902 × 10−2 1.05
512 28 3.4508 × 10−3 2.5712 × 10−2 1.01

1024 39 1.7167 × 10−3 7.5811 × 10−2 1.01

Table 3.3: Errors from the problem given in equation (3.28) using the first order
RKC schemes. The last column shows the convergence rate of the
scheme.

N s Error Time (s) Rates
32 13 1.3066 × 10−2 1.7781 × 10−3 –
64 17 2.7318 × 10−3 3.3888 × 10−3 2.26

128 24 6.7761 × 10−4 5.3779 × 10−3 2.01
256 33 1.4934 × 10−4 1.4656 × 10−2 2.18
512 46 3.7002 × 10−5 4.3555 × 10−2 2.01

1024 65 9.1346 × 10−6 1.2392 × 10−1 2.02

Table 3.4: Errors from the problem given in equation (3.28) using the second
order RKC schemes. The last column shows the convergence rate of
the scheme.

Figure 3.14 shows that the amount of computational work (in time) increases as

the number of grid cells N , increases. For a given N , the amount of work required by

both RKC schemes is lower, and increasing at a lower rate than the Forward Euler

scheme. The amount of computational work (in time) required for the first order

RKC schemes is lower compared to the second order RKC schemes because it takes

fewer stages.

Figure 3.15 shows that the amount of computational work (in time) increases as

the error decreases. We observe that the second order RKC schemes require the least

amount of computational work for a given level of accuracy. The first order RKC
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Figure 3.13: The plot of error versus the spatial grid size h: as h decreases,
the error decreases as well. The Forward Euler and second order
RKC schemes are second order, and the first order RKC scheme
is first order. The numbers in the parentheses show the numerical
convergence rates.

schemes are not preferable in this case, since the computational work increases at the

highest rate (2.54 in Figure 3.15) to achieve a better accuracy.
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Figure 3.14: The plot of computational work (in time) versus the number of
grid cells N : as N increases, the computational work increases as
well. The amount of work required for both RKC schemes is lower
and increasing at a rate slower than the Forward Euler scheme.
The numbers in the parentheses show the numerical convergence
rates.

Figure 3.15: The plot of work (in time) versus the error: the computational cost
increases as the error decreases. For better accuracy, more com-
putational work is needed. The convergence rates in parentheses
show that the second order RKC schemes are the most efficient,
while the first order RKC schemes are the least efficient.
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Chapter 4

MULTI-RATE RKC TIME STEPPING ON ADAPTIVELY

REFINED MESHES

The solutions to the heat or diffusion equations is typically smooth; however,

for problems involving heat source terms, the solutions could produce sharp fronts.

For the spatial discretization, we could use a uniformly fine mesh, where we will

be restricted by the smallest grid resolution h required on the sharp fronts. This

approach could be computationally expensive and inefficient, because we could use

a larger resolution in areas where the solution is smooth, yet obtain an acceptable

level of accuracy. An alternative approach is to take advantage of adaptive mesh

refinement (AMR) on the spatial domain to lower the computational cost while

producing comparable results to those on uniformly fine grids. In this approach, we

only refine the mesh in regions of the domain where more resolution is needed to better

resolve any sharp fronts. This is particularly appropriate for stiff problems with sharp

gradients which are present only in some parts of the domain. As an example, Figure

4.1 demonstrates a two dimensional adaptively refined mesh, where each rectangle

represents a grid, and the resolution of the grids increase as we approach the interface

(blue swirl) in the figure.

When using time stepping schemes, if we take the same global time step on all

of the grids with different resolutions, we will be restricted by the smallest time
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Figure 4.1: An exmple of a two dimensional adaptively refined mesh, where each
rectangle represents a grid. The resolution of the grids increases as
we get closer to the interface (the blue swirl).

step which is required on the finest grid due to stability and accuracy considerations.

Similar to the argument about spatial refinement, if we take the same global time step

on all of the refined grids, our time stepping scheme is likely to be computationally

expensive and inefficient, since we are potentially wasting computational effort on

areas where we could take larger time steps. An alternative approach is to devise

a scheme where each refined grid is able to take a time step that is appropriate for

its spatial grid size. Such a scheme is referred to as a “multi-rate time stepping

scheme” [14, 19]. The multi-rate scheme allows us to take different local time steps

over regions of the domain with different spatial resolutions. In a multi-rate scheme,

we would like the time step k to be equal or proportional to the spatial grid size h,

so that we have spatial and temporal refinement simultaneously. Implementing the
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RKC schemes using multi-rate time stepping requires coordinating the stages across

multiple grids and grid resolutions. In this thesis, we have developed an algorithm

that carries out this coordination on a one dimensional adaptively refined grid.

4.1 Spatial refinement using tree data structures

In order to store multiple grids with different resolutions, we can use a tree data

structure in which data are organized in nodes that can have zero or more children

nodes. The first node is the root and has children, but it does not have any parents

or siblings. Nodes that have no children are called leaves. Since a tree is not a linear

array, there are many ways to traverse through the tree and analyze the nodes. In

order to iterate through the tree to parse the nodes, we can use a depth-first approach.

Once we meet a node, we parse all of its children and sub-children before parsing its

siblings. In other words, once we start from the root through the first branch, we do

not stop traversing until we have reached the leaf of that branch; then, we go up one

level and repeat the process until we are done with all of the branches.

In order to store our grids, we use a binary tree, which is a specific type of tree

where each node has zero or two children, and their position is either left or right. In

Figure 4.2 we show a binary tree which includes one head, 31 total number of nodes,

and 16 leaves. Each node in the tree has a bit index consisting of 0s and 1s which

uniquely encodes its position in the tree. We identify different “levels” of spatial

refinement by the position of the leaves. Each time a node splits into two children,

we have a new level of refinement. For example, in Figure 4.2, we have five levels of

refinement. The first level called level 0, includes the head of the tree, and level 1

includes the two children of the head node (nodes 10 and 11).
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In order for the grids stored in the leaves to exchange ghost cell values (boundary

conditions on each grid), we must know their positions on the tree. In order to link the

leaves together, we create a doubly linked list of the leaves. Each leaf in the doubly

linked list contains information about the data array (which contains the grid), a

link to the next leaf, and a link to the previous leaf. After each node splits into

two children nodes, the linked list adds the children to the leaf list, and deletes the

parent node from the leaf list. As we use the leaf list to exchange ghost cell values

between the grids, depending on the neighboring grids’ levels, the cell values might

be averaged, copied, or interpolated to obtain the ghost cell values of the current grid

we are on. This will be discussed in more detail in Section 4.4.

Figure 4.2: A binary tree data structure. The 0 – 1 bit index uniquely locates
each node in the tree structure.

4.2 Temporal refinement using multi-rate time stepping

After refining in space, we would like to refine in time by using a multi-rate time

stepping scheme. As mentioned earlier, we would like to implement the RKC schemes

using multi-rate time stepping, and so we must coordinate the stages with different

time levels across multiple grids. In order to visually demonstrate the multi-rate
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scheme and how we coordinate the stages, we plot the stages of RKC for one time

step in Figure 4.3. Assume that we have two levels of spatial and temporal refinement:

a coarse grid of level 0, which takes one full time step k from time tn to time tn+1,

and a fine grid of level 1, which takes two half time steps 1
2k from tn to tn+ 1

2
, and

from tn+ 1
2

to tn+1 to complete one full time step. The dashed line shows where the

half time step tn+ 1
2

is in time. Similar to the time steps, the spatial resolution on level

1 is twice as much as the spatial resolution on level 0.

Figure 4.3: Multi-rate time stepping on two levels of refinement: a coarse grid
of level 0, which takes one full time step, and a fine grid of level 1,
which takes two half time steps. The spatial resolution on level 1 is
twice as much as the spatial resolution on level 0.

In the beginning the two levels are time synchronized at tn, so they have the

required ghost cell values to advance one stage. After taking the first stage on each

grid, the stages become unsynchronized because they do not advance in equal time
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increments. This is because the distribution of the time increments cj depend on the

number of stages s, which in turn depends on the spectral radius of the discretization

matrix and the time step size. In one time step, level 0 completes 9 stages and level

1 completes two sets of 6 stages. Therefore, we encounter a problem: the stages are

not time synchronized and cannot advance without valid ghost cell values.

(a) Interpolation in time on level 0 (b) Interpolation in time on level 1

(c) Interpolation in time on level 0 (d) Interpolation in time on level 1

Figure 4.4: Obtaining ghost cell values on each stage by linearly interpolating
in time using the adjacent grids’ stages while using multi-rate time
stepping on two levels of refinement.

In order to obtain the ghost cell values, we linearly interpolate in time using the

adjacent grids’ stages. For example, in Figure 4.4a, level 1 cannot advance because of
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the lack of ghost cell values on the left. So we linearly interpolate in time on the right

end values of the two stages of level 0, and obtain the ghost cell value for level 1 in

Figure 4.4a. Thus, level 1 advances a stage as shown in Figure 4.4b. Now, the right

end ghost cell value of level 0 is not available (Figure 4.4b). By linearly interpolating

on the left end values of the stages in level 1, we obtain the ghost cell value, and level

0 advances a stage as shown in Figure 4.4c. As long as any stage has valid ghost cell

values, it can advance in time. Only when it has advanced beyond one or two of its

neighbors grids, does it have to wait to fill in its ghost values. This process continues

until we complete the stages on both grids for one complete time step in Figure 4.3.

As mentioned earlier, each of the horizontal lines in Figure 4.3 represents an RKC

stage. The computation of each stage requires some amount of work in terms of

computational time, or the number of evaluations of the right hand side function.

From the previous example with two levels, it may not seem that there is much to

be gained using multi-rate time stepping: we computed 21 stages with multi-rate

time stepping compared to 24 stages with global time stepping. However, an example

with more levels of refinement demonstrates that multi-rate time stepping can lead

to significant performance gains. With four levels of refinement as in Figure 4.5, we

compute 97 stages with multi-rate time stepping, instead of 160 stages with global

time stepping. Thus, multi-rate time stepping computes the results with significantly

less computational cost.

In the above performance analysis, we assume that each level does the same

amount of work, i.e. has the same number of grids. This might not always be

true, so it is important to consider adaptive refinement patterns, some of which are

more suited to take advantage of multi-rate time stepping than others. But to fully

evaluate the effectiveness of the multi-rate time stepping, we would need to do further
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Figure 4.5: Performance gains using multi-rate time stepping on four levels
of refinement: the number of stages computed by multi-rate time
stepping is 97 as opposed to global time stepping with 160 stages.

analysis.

4.3 Heat equation with AMR and multi-rate time stepping

We consider the following example of the heat problem with a source function

Ut (x, t) = Uxx (x, t) + S (x, t) , x ∈ (0,1) , t ∈ (0, T ) , (4.1)

where we assume that the solution to this problem has the following form

U (x, t) = P (t)Q (x) . (4.2)
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We have chosen the following equations for P (t) and Q (x):

Q (x) = T (x − 0.25

c
) − T (x − 0.75

c
) ,

P (t) = e−t,

where T (x) = 1

2
(tanh (x) + 1), and c is a small positive scalar c≪ 1 (small c produces

a sharp square wave). To compare the numerical solution to the exact solution, we

compute the source function as,

S (x, t) = P ′ (t)Q (x) −Q′′ (x)P (t) .

We have chosen the heat source term based on the exact solution in equation

(4.2). This numerical verification approach is called the “method of manufactured

solutions”. This choice of S (x, t) causes the solution to maintain its sharp fronts as

the heat diffuses over time. The initial condition of the PDE in equation (4.1) is:

U (x,0) = P (0)Q (x) = T (x − 0.25

c
) − T (x − 0.75

c
) ,

and the Dirichlet boundary conditions are:

U (0, t) = P (t)Q (0) ,

U (1, t) = P (t)Q (1) .

The plot of the solution is shown in Figure 4.6 where the grids on the sharp fronts

are refined. Figure 4.7 shows the tree structure and the composite grid.

In order to exchange ghost cell values for the finite volume discretization, we copy,
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Figure 4.6: One dimensional refinement pattern for a regularized square wave
of radius 0.25 centered at x = 0.5. The bottom plot is the composite
grid of the problem with refinement
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Figure 4.7: The binary tree structure of the grid in Figure 4.6 with the com-
posite grid that shows the refinement pattern.

average, or interpolate the cell values from the adjacent grids. If two adjacent grids

have the same resolution, we copy the ghost cell values from the interior of one grid to

the ghost cells of the adjacent grid. If two adjacent grids have different resolutions, we

average or interpolate the cell values to obtain the ghost cell values. If the neighboring

grid is a fine grid, we average its two cell values to obtain the ghost cell value for the

coarse grid. If the neighboring grid is a coarse grid, we interpolate coarse grid values

to obtain the ghost cell value for the fine grid. This process will be discussed in detail

in Section 4.4.

In Figure 4.8, we compare the computational time versus the number of evalua-

tions of the right hand side function by solving the heat problem in equation (4.1)

using AMR with multi-rate time stepping. Since the relationship is linear, we conclude

that we can use the number of evaluations of the right hand side function as a measure

of computational work.
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Figure 4.8: The linear relationship of the computational time and the number
of evaluations of the right hand side function. This shows that the
computational time does not involve overhead.

We solve the heat problem in equation (4.1) with three different approaches:

uniformly refined mesh with global time stepping (no adaptivity), AMR using global

time stepping (adaptivity in space only), and AMR using multi-rate time stepping

(fully adaptive). For global time stepping, we compute using a global time step size

which is restricted by the smallest time step required on the finest grid. To do a

convergence study, we fix the number of grids, and increase the resolution of each

grid. We define the “effective resolution” of the whole domain as the resolution of the

finest level grid, (i.e. as if the domain were uniformly refined). An effective h value

is the length of the domain divided by the effective resolution.

In Table 4.1, as we increase the spatial resolution, the error decreases, and the

number of evaluations of the right hand side function increases. As expected, using a

uniformly refined mesh with global time stepping has the smallest error since we have

fully refined in both space and time; however, it is the most computationally expensive
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approach. Using AMR and global time stepping reduces the computational cost by

about
1

3
, and using AMR and multi-rate time stepping, reduces the computational

cost by about
1

6
compared to the uniformly refined case. Using AMR and multi-rate

time stepping reduces computational cost by half compared to using AMR and global

time stepping. Therefore, as expected, using AMR and multi-rate time stepping

produces comparable results with significantly lower computational cost.

Time-step./Mesh Eff. N Res. # grids Error RHS Rate Ratio
512 8 64 2.75 × 10−4 193 344 – 1.00

Global/ 1024 16 64 6.94 × 10−5 532 480 1.98 1.00
Uniform 2048 32 64 1.73 × 10−5 1 489 792 2.00 1.00

4096 64 64 4.34 × 10−6 4 208 640 1.99 1.00
8192 128 64 1.08 × 10−6 11 822 400 2.00 1.00
512 8 20 1.84 × 10−3 66 720 – 0.35

Global/ 1024 16 20 4.48 × 10−4 172 760 2.04 0.32
Adaptive 2048 32 20 1.11 × 10−4 480 060 2.02 0.32

4096 64 20 2.74 × 10−5 1 332 420 2.01 0.32
8192 128 20 6.84 × 10−6 3 729 440 2.00 0.32
512 8 20 1.91 × 10−3 33 856 – 0.18

Multi-rate/ 1024 16 20 4.42 × 10−4 87 528 2.10 0.16
Adaptive 2048 32 20 1.10 × 10−4 242 784 2.00 0.16

4096 64 20 2.73 × 10−5 674 160 2.01 0.16
8192 128 20 6.77 × 10−6 1 884 896 2.01 0.16

Table 4.1: Comparing uniform versus adaptively refined grids, as well as com-
paring global versus multi-rate time stepping. The uniform mesh has
a fixed number of levels (minlevel=maxlevel=6) while the adaptive
mesh varies in refinement levels (minlevel=3, maxlevel=6).

The results of Table 4.1 are also displayed in Figures 4.9 - 4.12. Figure 4.9 shows

that as we decrease the grid size h, the error decreases as well. We also see that the

multi-rate time stepping is comparable to global time stepping as their plots overlap,

and their rates of convergence are both very close to 2. On the other hand, the
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uniform mesh also has the same rate of convergence; however, its accuracy is better

because we are solving the problem on a uniformly refined mesh.

Figure 4.9: The plot of error versus the effective grid size h. As we decrease
the grid size h, the error decreases as well. Multi-rate time stepping
produces comparable results compared to global time stepping.

In Figure 4.10, as we increase the effective grid resolution N , the amount of

computational work (number of right hand side evaluations) increases. The three

schemes have similar convergence rates; however, the computational work for the

multi-rate scheme is lower than the others.

In Figure 4.11, we compare the amount of computational work required to improve

accuracy. As the error decreases, the amount of computational work increases almost

at the same rate for all of the schemes. For a certain error, the uniformly refined

approach might be an acceptable choice, since it is slightly better than the AMR

with global time stepping approach; however, the multi-rate approach produces the

most satisfactory results.

In Figure 4.12, we compare the three approaches in a different way. On the
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Figure 4.10: The plot of computational work (number of evaluations of the RHS
function) versus the effective grid resolution N . As we increase
the effective N , the computational work increases. The multi-rate
scheme takes far less computational work.

Figure 4.11: The plot of computational work (number of evaluations of the
RHS) versus the error. The computational cost increases as the
error decreases. The multi-rate approach with AMR has the
smallest error.
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Figure 4.12: The plot of computational work (number of evaluations of the
RHS) versus the effective N . In the uniformly refined approach,
we increase the levels from 3 − 3 to 6 − 6 (on the uniform grid, the
minimum and maximum levels are equal). On the AMR grids,
we increase the maximum level each time from 3 − 3 to 3 − 6. The
multi-rate approach has the smallest rate of increase.

uniformly refined grid, we increase the refinement levels from 3 − 3 to 6 − 6 (the

minlevel and maxlevel are equal). On the adaptive grids, we increase the refinement

levels from level 3− 3 to 3− 6 (increasing the maximum refinement level from 3 to 6).

In other words, we start by a uniformly refined grid, and then increase the refinement

levels. The multi-rate approach has the smallest rate of increase.

4.4 Interpolation schemes on the spatial grids

As mentioned earlier, the grids must communicate their ghost cell values at each

time step. Based on the initial refinement pattern, we average, copy, or interpolate

the cell values on the adjacent grid to obtain the ghost cell values. In this section,

we compare three different ways of interpolation. In the first scheme, we interpolate
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pointwise quadratically using three values from the coarse grid. In Figure 4.13, the

two cell center values on the fine grid are averaged to obtain the ghost cell value on

the coarse grid; then, this value along with the two neighboring cell values on the

coarse grid are used in an interpolation stencil to fill in the ghost value on the fine

grid.

Figure 4.13: Pointwise interpolation using coarse grids. The average value of
the two cell values on the fine grid is computed to fill in the ghost
cell value on the coarse grid. Then, this value is used with two
other cell values on the coarse grid to interpolate quadratically
and obtain a ghost cell value on the fine grid.

In a second interpolation scheme, we again use a pointwise stencil, but this time,

we use cell values from both the fine and coarse grids. We use two cell values from

the fine grid directly along with one cell value from the coarse grid. In Figure 4.14,

the arrows show the cell values that are used to compute the pointwise interpolation.

Finally, a third approach is to use conservative interpolation. In this interpolation

scheme, we calculate the average values of the coarse grid by enforcing the condition

that the integral of the interpolating polynomial equals the interpolated value. In

this approach, we are viewing our solution values as average values, not just pointwise

values. Figure 4.15 shows the cells that are used to compute the integral. For example,

we can compute the integral to obtain the average value on the cell from −h to 0 on
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Figure 4.14: Pointwise interpolation using two cell values from the fine grid and
one cell value from the coarse grid. The arrows show the cell values
used for the pointwise interpolation.

the coarse grid, from 0 to
h

2
, and from

h

2
to h on the fine grid. For example, on the

coarse grid, we compute the integral

2

h ∫
0

−
h
2

(a2x2 + a1x + a0)dx ≡ U (−h
4
) .

After we compute the integral over the required intervals, we can create a system and

compute the interpolation coefficients a2, a1, a0.

We compare these three interpolation schemes in Table 4.2. As the resolution in-

creases, the error decreases in all of the interpolation schemes; however, the pointwise

interpolation schemes converge at a rate closer to 1, than 2. On the other hand, the

conservative interpolation is second order, and produces results comparable to using

the exact solution for ghost cell values.
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Figure 4.15: Conservative interpolation using an integral to compute the cell
averages. The arrows show the cells on which the integrals are
imposed.

Interpolation type Eff. N Res. # grids Error RHS Rate
512 8 20 7.55 × 10−3 33 856 –

Pointwise coarse 1024 16 20 2.67 × 10−3 87 528 1.50
interpolation 2048 32 20 1.04 × 10−3 242 784 1.36

4096 64 20 4.51 × 10−4 674 160 1.21
512 8 20 4.27 × 10−3 33 856 –

Pointwise mixed 1024 16 20 1.61 × 10−3 87 528 1.40
interpolation 2048 32 20 6.83 × 10−4 242 784 1.24

4096 64 20 3.13 × 10−4 674 160 1.12
512 8 20 1.91 × 10−3 33 856 –

Conservative 1024 16 20 4.41 × 10−4 87 528 2.12
interpolation 2048 32 20 1.10 × 10−4 242 784 2.00

4096 64 20 2.73 × 10−5 674 160 2.01
512 8 20 3.47 × 10−4 33 856 –

Exact, 1024 16 20 6.11 × 10−5 87 528 2.50
no interpolation 2048 32 20 1.48 × 10−5 242 784 2.04

4096 64 20 3.67 × 10−6 674 160 2.02

Table 4.2: Errors produced using three different interpolation schemes to fill in
fine grid ghost cell values. The “mixed” scheme refers to the scheme
that uses pointwise values from both the coarse and fine grid. The
last row shows the errors computed using the exact solution to fill
in the fine grids ghost cell values.
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Chapter 5

CONCLUSION

The family of explicit stabilized RKC time stepping schemes were first introduced

by Van Der Houwen and Sommeijer in 1980 [20, 21, 28, 29, 31]. These schemes have

favorable stability properties making them ideal to efficiently solve stiff parabolic

partial differential equations. These schemes provide a way to efficiently time step

the parabolic heat or diffusion equation in an explicit manner. The RKC schemes are

effective for solving coupled systems by avoiding the need to solve a linear system of

equations.

When using the RKC time stepping schemes, we are guaranteed to solve in a

pre-determined number of stages, rather than relying on iterations typically required

for the type of schemes that require solving a linear system. Explicit schemes have

particular advantages when solving on adaptive meshes because we can implement

them in multi-rate time stepping. Thus, the RKC schemes are ideal for solving the

parabolic heat equation in an AMR setting.

In this thesis, we have described the RKC time stepping strategy in detail and

have shown its ideal stability properties. The main contribution is the development

of a multi-rate time stepping strategy for adaptively refined meshes. We have demon-

strated this in a one dimensional tree code in Matlab. Our numerical evidence suggests

that this approach is second order accurate.
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The RKC schemes have been used in a variety of settings. In MRI signaling of

water diffusion in biological tissues, RKC can be effectively used while coupling a

standard Cartesian spatial discretization with an adaptive time discretization [6]. In

air quality modeling, RKC can also be used to perform air quality simulations which

are computationally intense and require efficient parallelization to make them practi-

cal [24]. Other applications include combustion modeling [8], projection methods for

the solution of incompressible Navier–Stokes systems [32], and simulation of reacting

flow with detailed kinetics and transport [18].

In the future, we would like to apply the RKC schemes to biological pattern

formations or crystal growth, and show their effectiveness for solving general reaction-

diffusion equations on adaptive meshes. One of the future goals of this thesis is to

extend this multi-rate time stepping scheme into higher dimensions in ForestClaw,

which is a library for solving PDEs on adaptively refined, multi-block quadtree meshes

[7]. Another goal is to apply our multi-rate algorithm to the class of fourth order

ROCK methods, designed by Abdulle [2, 3, 4].
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Appendix A

BUTCHER TABLEAU OF RKC



We can organize the RKC scheme in a standard Runge-Kutta form. Here, we

present the RKC scheme on a Butcher tableau.

c0 = 0 0 0 0 0 0

c1 = µ̃1 µ̃1 0 0 0 0

c2 a21 µ̃2 0 0 0

c3 a31 µ3µ̃2 µ̃3 0 0

c4 a41 a42 µ4µ̃3 µ̃4 0

c5 a51 a52 a53 µ5µ̃4 µ̃5

b1 b2 b3 b4 b5

Table A.1: The Butcher tableau for the RKC Scheme
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c2 = µ2µ̃1 + µ̃2 + γ̃2

a21 = µ2µ̃1 + γ̃2

c3 = µ3(µ2µ̃1 + µ̃2 + γ̃2) + ν3µ̃1 + µ̃3 + γ̃3

a31 = µ3(µ2µ̃1 + γ̃2) + ν3µ̃1 + γ̃3

c4 = µ4 (µ3c2 + ν3c1 + µ̃3 + γ̃3) + ν4 (µ2µ̃1 + µ̃2 + γ̃2) + µ̃4 + γ̃4

= µ4 (µ3µ2µ̃1 + µ3µ̃2 + µ3γ̃2 + ν3µ̃1 + µ̃3 + γ̃3) + ν4 (µ2µ̃1 + µ̃2 + γ̃2) + µ̃4 + γ̃4

a41 = µ4[µ3(µ2µ̃1 + γ̃2) + ν3µ̃1 + γ̃3] + ν4(µ2µ̃1 + γ̃2) + γ̃4

= µ4µ3µ2µ̃1 + µ3µ4γ̃2 + µ4γ̃3 + µ4ν3µ̃1 + ν4µ2µ̃1 + γ̃4 + ν4γ̃2

a42 = µ4µ3µ̃2 + ν4µ̃2

c5 = [µ4 (µ3c2 + ν3c1 + µ̃3 + γ̃3) + ν4(µ2µ̃1 + µ̃2 + γ̃2) + µ̃4 + γ̃4]

+ ν5 [µ3 (µ2µ̃1 + µ̃2 + γ̃2) + ν3µ̃1 + µ̃3 + γ̃3] + µ̃5 + γ̃5

a51 = µ5 [µ4 [µ3(µ2µ̃1 + γ̃2) + ν3µ̃1 + γ̃3] + ν4 (µ2µ̃1 + γ̃2) + γ̃4]

+ ν5 [µ3 (µ2µ̃1 + γ̃2) + ν3µ̃1 + γ̃3] + γ̃5

a52 = µ5 (µ4µ̃2 + ν4µ̃2)

a53 = µ5µ4µ̃3 + µ̃3

Notice that the following holds for all of the c values.



70

c1 = a11

c2 = a21 + a22

c3 = a31 + a32 + a33

c4 = a41 + a42 + a43 + a44

c5 = a51 + a52 + a53 + a54 + a55

Therefore we have,

cj =
j−1

∑
l=0

ajl

Due to the recursive form of the method (recursion on Yj values), it is more convenient

to show the stages using the stages like in the RKC formulas in Chapter 3 rather than

with the Butcher Tableau.
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Appendix B

THE ORDER OF ACCURACY OF RKC



Consider solving the test problem U ′ = λU using the RKC scheme. According to

the RKC formulas in Section 3.3 (equation 3.23) we have s stages. Assume that we

have 3 stages, Y1 , Y2, and Y3. Referring to Section 3.3, we can write the formulas for

the Y ’s accordingly.

Y0 =un

Y1 =Y0 + µ̃1kF0 = un + µ̃1kλu
n = [1 + µ̃1kλ]un

Y2 = µ2Y1 + ν2Y0 + (1 − µ2 − ν2)Y0 + µ̃2kF1 + γ̃2kF0

=µ2 (1 + µ̃1kλ)un + ν2un + (1 − µ2 − ν2)un + µ̃2kλ (1 + µ̃1kλ)un + γ̃2kλun

= [µ2µ̃1kλ + 1 + µ̃2kλ + µ̃2µ̃1k
2λ2 + γ̃2kλ]un

= [1 + (µ2µ̃1 + µ̃2 + γ̃2)kλ + µ̃2k
2λ2]un

Y3 =µ3Y2 + ν3Y1 + (1 − µ3 − ν3)Y0 + µ̃3kF2 + γ̃3kF0

=µ3 [1 + (µ2µ̃1 + µ̃2 + γ̃2)kλ + µ̃2µ̃1k
2λ2]un + ν3 (1 + µ̃1kλ)un + (1 − µ3 − ν3)un

+ µ̃3kλ [1 + (µ2µ̃1 + µ̃2 + γ̃2)kλ + µ̃2µ̃1k
2λ2]un + γ̃3kλun

= [µ3 (µ2µ̃1 + µ̃2 + γ̃2)kλ + µ3µ̃2µ̃1k
2λ2 + ν3µ̃1kλ + 1 + µ̃3kλ + µ̃3(µ2µ̃1 + µ̃2 + γ̃2)k2λ2

+ µ̃3µ̃2µ̃1k
3λ3 + γ̃3kλ]un

=[1 + µ3 (µ2µ̃1 + µ̃2 + γ̃2)kλ + ν3µ̃1kλ + µ̃3kλ + γ̃3kλ + µ3µ̃2µ̃1k
2λ2 + µ̃3 (µ2µ̃1 + µ̃2 + γ̃2)k2λ2

+ µ̃3µ̃2µ̃1k
3λ3]un

=[1 + [µ3(µ2µ̃1 + µ̃2 + γ̃2) + ν3µ̃1 + µ̃3 + γ̃3]kλ + [µ3µ̃2µ̃1 + µ̃3(µ2µ̃1 + µ̃2 + γ̃2)]k2λ2

+ µ̃3µ̃2µ̃1k
3λ3]un

un+1 = Y3
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Now, in order to determine the accuracy, we check the coefficients of kλ and k2λ2.

Assume z = kλ, so we are checking the coefficients of z, and z2, as we saw in Section

3.1. Using formulas of the first order RKC, we verify that the coefficient of z is equal

to 1 to prove the first order accuracy.

µ3(µ2µ̃1 + µ̃2 + γ̃2) + ν3µ̃1 + µ̃3 + γ̃3 =
2w0b3
b2

[2w0b2
b1

w1

w0

+ 2w1b2
b1

] + −b3
b1

w1

w0

+ 2w1b3
b2

= 4w2
0b2b3w1

b1b2w0

+ 4w1w0b3b2
b1b2

+ −b3w1

b1w0

+ 2w1b3
b2

= 4w2
0b2b3w1 + 4w1w2

0b2b3 − b3w1b2 + 2w1b3b1w0

b1b2w0

= 1

w0b1b2
[8w2

0w1b2b3 −w1b2b3 + 2w0w1b1b3]

= T1T2
w0

[8w2
0

T3
T ′

3

1

T2T3
− T3
T ′

3

1

T2T3
+ 2w0

T3
T ′

3

1

T3

1

T4
]

= T2 [
8w2

0

T ′

3T2
− 1

T ′

3T2
+ 2

T ′

3

]

= 8w2
0

T ′

3

− 1

T ′

3

+ 2T2
T ′

3

(T2 = 2w2
0 − 1, T ′

3 = 12w2
0 − 3)

= 8w2
0 + 2(2w2

0 − 1) − 1

12w2
0 − 3

= 12w2
0 − 3

12w2
0 − 3

= 1

This shows first order accuracy. Similarly, for the second order case, the coefficient

of z = kλ must be equal to 1; furthermore, the coefficient of z2 = k2λ2 must be equal

to 1
2 to fulfill the second order accuracy requirement. For the first equation, we have,
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µ3 (µ2µ̃1 + µ̃2 + γ̃2)+ν3µ̃1 + µ̃3 + γ̃3 =

=2w0
b3
b2

[2w0
b2
b1
b1w1 + 2w1

b2
b1
− (1 − b1T1(w0)).2w1

b2
b1

]

+ −b3
b1
b1w1 + 2w1

b3
b2
− (1 − b2T2(w0))2w1

b3
b2

=2w0
b3
b2

[2w0b2b1w1

b1
+ 2w1b2

b1
− 2w1b2(1 − b1T1(w0))

b1
]

+ −b3b1w1

b1
+ 2w1b3

b2
− 2w1b3(1 − b2T2(w0))

b2

=2w0b3
b2

[2w0b2b1w1

b1
+ 2w1b2b1T1(w0)

b1
] + −b3b1w1

b1
+ 2w1b3b2T2(w0)

b2

=4w2
0w1b1b2b3
b1b2

+ 4w2
0w1b1b2b3
b1b2

− w1b1b2b3
b1b2

+ 2w1b2b3b1T2(w0)
b1b2

(where T2(w0) = 2w2
0 − 1)

=8w2
0w1b1b2b3
b1b2

− w1b1b2b3
b1b2

+ 4w2
0w1b1b2b3
b1b2

− 2w1b1b2b3
b1b2

=12w2
0w1b1b2b3
b1b2

− 3w1b1b2b3
b1b2

=12w2
0w1b3 − 3w1b3

= (12w2
0 − 3) b3w1

=3 (4w2
0 − 1) . T

′

3(w0)
T ′′

3 (w0)
.
T ′′

3 (w0)
(T ′

3(w0))2
(where T ′

3 (w0) = 12w2
0 − 3)

=3 (4w2
0 − 1)

12w2
0 − 3

=1

Now we check the second equation,
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µ3µ̃2µ̃1+µ̃3(µ2µ̃1 + µ̃2 + γ̃2) =

=2w0
b3
b2

2w1
b2
b1
b1w1 + 2w1

b3
b2

(2w0
b2
b1
b1w1 + 2w1

b2
b1
− (1 − b1T1 (w0))2w1

b2
b1

)

=4w0w2
1b2b3b1
b1b2

+ 2w1b3
b2

[2w0w1b1b2
b1

+ 2w1b2
b1
− 2w1b2

b1
+ 2w1b2b1T1(w0)

b1
]

=4w0w2
1b1b2b3
b1b2

+ 4w0w2
1b1b2b3
b1b2

+ 4w2
1b1b2b3w0

b1b2

=12w0w2
1b1b2b3

b1b2

=12w0w
2
1b3

=12w0
(T ′

3 (w0))2

(T ′′

3 (w0))2
T ′′

3 (w0)
(T ′

3 (w0))2

= 12w0

T ′′

3 (w0)
(where T ′′

3 (w0) = 24w0)

=1

2

This shows second order accuracy.



76

Appendix C

EIGENVALUES OF THE MOL DISCRETIZATION

MATRIX OF THE HEAT EQUATION



In this appendix, we find the eigenvalues of matrix A discussed in Chapter 2,

U ′ (t) = AU (t) + b (t) Ô⇒ A = 1

h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0

1 −2 1

1 −2 1

⋱ ⋱ ⋱

1 −2 1

0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where h is the spatial scale. We note that we want to find λ such that

Avp = λpvp

where vp is the corresponding eigenvector. Since we are looking at the 1D case, these

will be scalar values. So, we look to solve

vp+1 − 2vp + vp−1
h2

= λpvp p = 1,2,⋯,N

Now, there are only n eigenvalues and n eigenvectors, so we let v0 = vn+1 = 0. In order

to utilize Chebyshev polynomials, we let 2α = (2 + h2λ) and we scale v so that v1 = 1.

Then the problem becomes the recurrence

v0 = 0

v1 = 1

vp+1 = 2αvp − vp−1
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which gives vp+1 = Up (α), where Uk is the pth Chebyshev polynomial of the second

kind. Since vN+1 = 0, we see that Un (α) = 0. This implies that we can find the

eigenvalues λk by first finding the roots of Un. These roots are known to be

αk = cos( pπ

N + 1
) .

Recall that we let 2α = (2 + h2λp). So

2 cos( pπ

N + 1
) = 2 + h2λp

implying that

λk =
2

h2
(cos( pπ

N + 1
) − 1) for p = 1,2,⋯,N.




