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Aerodynamic Roughness Length Estimation 
with Lidar and Imaging Spectroscopy in a 

Shrub-Dominated Dryland 
Aihua Li, Wenguang Zhao, Jessica J. Mitchell, Nancy F. Glenn, Matthew J. Germino, Joel B. Sankey, and Richard G. Allen 

Abstract 
The aerodynamic roughness length (Z0m) serves an impor
tant role in the flux exchange between the land surface and 
atmosphere. In this study, airborne lidar (ALS), terrestrial 
lidar (TLS), and imaging spectroscopy data were integrated to 
develop and test two approaches to estimate Z0m over a shrub 
dominated dryland study area in south-central Idaho, USA. 
Sensitivity of the two parameterization methods to estimate 
Zom was analyzed. The comparison of eddy covariance
derived Z0m and remote sensing-derived Z 0m sho1iVed that the 
accuracy of the estimated Z0m heavily depends on the estima
tion model and the representation of shrub (e.g., Artemisia 
tridentata subsp. lryomingensis) height in the models. The 
geometrical method (RA1994) led to 9 percent (-0.5 cm) and 
25% (- 1.1 cm) errors at site 1 and site 2, respectively, which 
performed better than the height variability-based method 
(MR1994) with bias error of 20 percent and 48 percent at 
site 1 and site 2, respectively. The RA1994 model resulted 
in a larger range of Zom than the MR1994 method. We also 
found that the mean, median and 75th percentiles of heights 
(H75) from ALS provides the best Z 0m estimates in the MR1994 
model, while the mean, median, and MAD (Median Absolute 
Deviation from Median Height), as well as AAD (Mean Abso
lute Deviation from Mean Height) heights from ALS provides 
the best Z0m estimates in the RA1994 model. In addition, the 
fractional cover of shrub and grass, distinguished with ALS 
and imaging spectroscopy data, provided the opportunity to 
estimate the frontal area index at the pixel-level to assess the 
influence of grass and shrub on Z0m estimates in the RA1994 
method. Results indicate that grass had little effect on Z 0m in 
the RA1994 method. The Z0m estimations were tightly coupled 
with vegetation height and its local variance for the shrubs. 
Overall, the results demonstrate that the use of height and 
fractional cover from remote sensing data are promising 
for estimating Zom• and thus refining land surface models at 
regional scales in semiarid shrublands. 
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Introduction 
The roughness of the land surface plays an important role in 
the flux exchange between the land surface and atmosphere 
(Sud et aL, 1988; Prueger et al., 2004). Land surface roughness 
can be characterized by the aerodynamic roughness length 
(Z0m), which is the height of roughness elements at which the 
mean wind speed approaches zero given the extrapolation 
of the logarithmic wind profile (Garratt, 1992; Kaimal and 
Finnigan, 1994). In dryland ecosystems, such as semiarid 
shrublands, the spatial distribution of roughness elements 
and specifically Z0m are key parameters for physical models 
of aeolian transport and for estimating dust emissions from 
wind erosion (Prigent et al., 2005; Sankey et al., 2010; Sankey 
et al., 2013; Nield et al., 2013; Pelletier and Field, 2016) and 
for land surface models (Dickinson and Henderson-Sellers, 
1988; Jasinski and Crago, 1999). 

Traditionally, Zom is calculated using the Ivlonin-Obukhov 
similarity theory (MOST) applied to measurements of horizon
tal V\rind speed profiles (Garratt, 1994; Kustas et al., 1994). 
Therefore, Z0m can be obtained through observations by an 
eddy covariance (EC) system which provides meteorological 
measurements; however, estimating Zom from EC is restricted 
to a single value in the source area of the EC tower, and thus 
EC estimates are limited for regional land surface models 
(Paul-Limoges et al., 2013). To address this issue, studies have 
used remotely sensed information, such as scatterometer (Pri
gent et al., 2005) and bi-directional reflectance (Marticorena 
et al., 2004) data, along with laser altimeter measurements 
(Menenti and Ritchie, 1994; De Vries et al., 2003, Colin and 
Faivre, 2010, Weligepolage et al., 2012) for parameterizing 
Zom over a local or regional scale. Aerodynamic roughness 
is influenced by the height, geometry, density and pattern 
of roughness elements which include vegetation and micro
and macro-topographic features (Garratt, 1992; Lettau, 1969; 
Raupach, 1992 and 1994; Shaw and Pereira, 1982). Empirical 
relationships between Zom and measurable characteristics of 
roughness elements (e.g., vegetation height, normalized dif
ference vegetation index (NDVI), leaf area index (LAI), frontal 
area index (FAI, A.1)) have been used to parameterize Z0m over 
a large sale. For example, NDVI and LAI derived from optical 
remote sensing have been correlated with Zom (Choudhury and 
Monteith, 1988; Bastiaanssen, 1995; Jia et al., 2003). In some 
previous studies, Z0m was assumed as a proportion of rough
ness element height (i.e., Kustas et al., 1989; Garratt, 1992). 
The three-dimensional (3D) structure of the land's surface and 
vegetation, as captured by laser altimetry (or light detection 
and ranging (lidar)) provides a straightforward measure of 
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roughness element height across the landscape. Tian et al. 
(2011) combined lidar-derived forest structural variables (tree 
height, first branch height, crown width, and stand density) 
and SPOTS-derived LAI to parameterize Zom in a forested envi
ronment. They concluded that Z0 m estimates derived from li
dar are more accurate than those derived from satellite optical 
remote sensing data. Menenti and Ritchie (1994) computed 
zom based on the geometrical regularity of vegetation canopies 
using lidar-derived vegetation heights (average and standard 
deviations). This method was adapted by Brown and Hugen
holtz (2012) for Zom estimates in a mixed grassland prairie and 
further assessed by Paul-Limoges et al. (2013) in a harvested 
Douglas-fir forest. Colin and Faivre (2010) estimated Z0 m 

based on a geometrical model using lidar-derived h eight and 
wind profile information and concluded that the geometrical 
model could provide comparable results on natural hetero
geneous land covers present in the region, including sparse 
grassland and low tree land cover types. 

While some previous studies have demonstrated that 
lidar is well-suited for deriving Z 0m (e .g., Brown et al., 2012; 
Hugenholtz et al., 2013; Paul-Limoges et al., 2013), there are 
practical limitations of deriving structural information in 
shrublands from lidar, and in particular airborne lidar. These 
limitations include underestimation of height and difficulty 

in deriving individual roughness element canopies (Hopkin
son et al., 2005; Glenn et al., 2011; Mitchell et al., 2012). Vari
ables derived fro m complementary airb orne imaging spectros
copy (aka hypersp ectral) data may b e necessary, p art icularly if 
the combination w ith lidar is capable of improved vegetat ion 
cover estimates (Mitchell et al. , 2015), which a re rel atable to 
shrub density. 

In this paper w e develop an optimized processing flow 
that uses high resolut ion, remotely sen sed opt ical and 3D 
datasets to spatially extend Z0m mapp ing ove r a semiarid 
landscape domin ated by the open canopy, low stature, an d 
sparse vegetation ( <25 p ercent canopy cover) . This landscap e 
is representative of app rox imately 62 million ha of sageb rush 
steppe in the Great Basin , western US. Resolving diffe rences 
in Z 0m at the landscape scale w ith remote sensing techniques 
has the potential to imp rove en ergy balan ce estimates in 
hydrologic and ecologic models in this and similar dryland 
ecosystems (Allen et al., 20 11; Paul et al. 2014). Tw o existing 
models of estimatin g Z0m were evaluated: the h eight variabi l
ity model of Menent i and Ritchie (1994) (h ereafter, MR1 994) 
and the wind profile model developed by Raupach (1994) 
(hereafter, RA1994). We chose these two mo dels amongst 
those listed in Table 1 because they a re suitable for u se in 
sparse vegetation (Men ent i and Ritchie, 1994; Raupach , 1994; 

Table 1. Common Z
0
m Parameterization Methods with Input Parameters 

References Parameters Equations Strength Weakness 

Garratt (1994) Height Z 0m = ah The simplest method. Only height is t aken 
into account. 

Most appropriate in vegetation It is n ot suitable for 

Lettau (1969) 
Height and zom =a.sh ).f where the roughness elements roughness elements 
frontal index are very evenly spaced. with high density. 

Menenti and 
Z 0m = 7{; L [ O'hi / h; J * h Only height is taken Ritchie (1994) Height Empirical model. 

into account. 

Z 0m ( do J ( k U J Height, ~= 1- h, •exp - u. + qJ 1 
It is complex and 

Raupach (1994) 
frontal index , For sparse vegetation areas needs many input 
meteorological 1- exp[- ( cd/Z).f )°" J with small topographic relief. 
measurements do parameters. 

-= 1-
(cdl2 ).f r5 hv 

-'/; = 1 + a - i , ( ).P - 1) For heterogeneous land It is complex and 
Macdon ald (1998) 

Height and 
Zhm = (1 - *)exp[ - ( 0.5/J~~ (1 - f ) J.f r5

J 
surface and urban regions; 

needs many input frontal index Can explain the direction of 
airflow. 

parameters. 

The model has 

Bastiaanssen 
limits on different 

(1998) 
NDVI Z 0m exp (a + bNDVI) A pp lied at regional scales. vegetation types and 

results sensitive to 
plant phenology. 

d = h [1n( 1+xYo ) + 0.0 3ln(l + X
6

) J 
The model has 

Ch oudhury and [z,,. 0.2AhXY, foc O < x < 0.2 
limits on different 

Monteith LAI, h eight z = A pp lied at regional scales. vegetation types and 
(1988) om 0.3h(1-'.7);) f or 0.2 < X:::; 2 results sensitive to 

plant phenology. 
X = 0.2LAI 
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Brown and Hugenholtz, 2012). In addition, the models' input 
variables are suitable to derive from remote sensing data and 
subsequently allow us to explore the use of lidar and opti-
cal hyperspectral data for estimating aerodynamic roughness 
length. MR1994 is an empirical model and can be implement
ed by utilizing the roughness element height and its standard 
deviation. The RA1994 is a geometrical model based on the 
wind velocity profile and accounts for height and density of 
roughness elements (FA!, discussed in more detail below). Our 
objectives were to (a) explore an optimal Zam estimation mod
el for the shrub-steppe landscape studied herein; (b) quantify 
the sensitivity of the main driving parameters in the Zam esti
mation models; and (c) evaluate the potential advantages and 
limitations of integrating lidar and imaging spectroscopy data 
for parameterizing Zam over a larger, regional area. 

Experimental Site and Data 
Site Description 
The study site is located southwest of Hollister, Idaho 
(42°19'26.56"N, 114°42'3.29"W). The site was bound on either 
end by a scintillometer transmitter and receiver, and between 
them at even spacing were two eddy covariance (EC) sta
tions (Figure 1). The plant community consists primarily of 
Wyoming Big Sagebrush (Artemesia tridentata ssp wyomin
gensis) with an understory of native grasses and cheatgrass 
(Bromus tectorum). The sagebrush heights range from 0.01 to 
1 m with mean (SD) of0.11 m (0.04 m). Soils are shallow and 
are interspersed with basalt rocks (not protruding more than a 
few to 10 cm above ground). The elevation ranges from 1,410 
to 1,450 m with a mean of 1,426 m and standard deviation of 
9.5 m. The sagebrush canopy cover is relatively homogenous 
with 25 percent mean shrub cover (derived from hyperspec
tral and lidar, see below) at a several m' scale across the 1 to 2 
km transect. 

Meteorological Data 
Measurements from the two EC flux towers such as wind di
rection and speed, and sensible heat flux have been collected 
every half-hour since 2009. Meteorological measurements 
have been collected with several 3D sonic anemometers dis
persed across the footprint (turbulent source area) (RMYoung 
and CSAT). In addition, the site was instrumented in several 
locations to collect measurements of soil moisture, tempera
ture, and heat flux. Meteorological measurements collected 
over two time frames were used for in-situ Zam calculation and 
source area analysis. Zam was estimated on 05, 06, and 14 Au
gust 2010, corresponding to the lidar and imaging spectros
copy data collection. A multi-year period (2009 to 2010) was 
also used to provide an average estimate of Zam over a longer 
timeframe. The analysis over this period assumed limited 
shrub growth, typical of sagebrush-dominated regions (e.g., 
Watts and Wambolt, 1996). The original 20 Hz binary EC data 
were subjected to QA/QC (Quality Assurance and Quality Con
trol) procedures that included sufficient power for instrument 
operation (>10 V); erroneous measurements disrupted by r.ain
drops; wind direction from the backside of the CSAT3 some 
anemometers; removal of outlier data identified by comparing 
data from multiple co-located sensors, and spike removal. 
The EC data were adjusted to synchronize data from different 
types of sensors, using coordinate rotation of 3D wind data 
(Lee et al., 2004) and correction of density effects on sensible 
and latent heat transfer (Webb et al., 1980). The final samples 
of EC data were used to determine Zam under stable, unstable, 
and near-neutral conditions. 
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Figure 1. (a) The study area near Hollister, Idaho, USA; 
(b) a zoom of the right panel of (a); (c) The ratio of red and 
green bands from hyperspectral data; (d) the mean vegeta
tion height from lidar. The boundary of LAS receivers is the 
focal area of this study. Sites 1 and 2 are the locations of 
the EC towers. The transect line is a large aperture scintil
lometer transect and the dark circles are the 200 m buffer 
around the sites. 

Remote Sensing Data 
In this paper, remote sensing data include airborne lidar (ALS), 
terrestrial laser scanning (TLS) and imaging spectroscopy data. 
(see Table 2). Lidar was used to derive the height-related in
formation for the roughness elements (shrub and grass vegeta
tion) and the digital elevation model (DEM). The hyperspectral 
data were combined with lidar for estimating percent cover of 
the roughness elements, which is approximate to the rough
ness element density and can be used for the frontal area in
dex (FA!) calculation. TLS data were also collected to calibrate 
the underestimation of vegetation height by ALS. Heights from 
TLS have been shown to have a nearly perfect agreement with 
field-measured sagebrush heights due to the ground-based 
collection method ofTLS (Li et al., 2015). Small footprint ALS 
data were acquired using a dual-mounted Leica ALS50 Phase 
II sensor onboard a Cessna Caravan 208B operated by Quan
tum Spatial, Inc., Corvallis, Oregon. The lidar data were col
lected on 05 and 06 August 2010, using a wavelength of 1064 
nm and a resultant average point density of 7 points perm'. 
The TLS data were collected in the near infrared (1550 nm) 
with a Riegl VZ-1000 (Riegl, Horn, Austria) instrument with 
a scan range of approximately 1 km and a beam divergence of 
0.3 mrad. The TLS data were collected in fall 2011 and 2012. 
Six plots, 30 m by 30 m each, were established and scanned 
using a TLS positioned on a tripod 2 m above the ground. 
Imaging spectroscopy data were collected 14 August 2010, 
with the HyMap sensor (operated by HyVista, Inc., Sydney, 
Australia), which collects calibrated radiance data in 126 
near-contiguous spectral bands (450 - 2480 nm) that range in 
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width from 15 µmin the visible and near infrared to 20 µmin 
the shortwave infrared (Cocks et al., 1998) at a pixel resolu
tion of 3.125 m by 3.125 m. 

Table 2. Remote Sensing and Eddy Covariance Data Sets Used 
in the Study 

Data sets 

Terrestrial 
lidar 

Airborne lidar 

Hyperspectral 

Eddy 
Covariance 

Methods 

Acquisition Date 

Sept. 2011 
and 2012 

05 and 06 
Aug 2010 

14 Aug 2010 

05, 06 and 14 
Aug 2010 

Characteristics 

Average point density of 10,000 
points per m 2 at six plots, each 
30 m by 30 m. Scanning occurred 
from a 2 m tripod. 

Average point density of 7 points 
perm2 

3 m resolution, 450-2500 nm 
wavelengths 

RMYoung and CSAT sensors 
Site 1: 
Main wind direction: 173° 
Main wind speed: 5.2 mis 
Site 2: 
Main wind direction: 183° 
Main wind speed: 5.3 mis 

In our study, FAI and vegetation heights are the main variables 
derived from the remotely sensed data for Zam estimation. The 
percent cover of vegetation (PVC) that represented the cover 
percentage of roughness elements was derived from a combi
nation of lidar and imaging spectroscopy data and then used 
for FAI calculation. In order to test the sensitivity of height in 
the models, a range of different height metrics were compared 
to obtain the optimal height statistics in the Zam estimation 
models. Additionally, we calibrated ALS-derived mean vegeta
tion heights with TLS-derived mean vegetation heights. This 
was performed to address the possible underestimation of 
mean vegetation heights from ALS and to assess the effective
ness of ALS-derived mean vegetation height in Zam estimation 
models. The calibrated heights were also used in the two Z 0m 

estimation models to assess whether the calibrated heights 
improved the estimates. We evaluated the sensitivity of the 
Zam estimation based on the spatial scale at which height 
variability is calculated in the MR1994 model. To evaluate the 
sensitivity of FAI in the RA1994 model, two FAI calculation 
methods were compared. The workflow is shown in Figure 2. 

Vegetation Height Metrics and DEM Derived from Lidar 

Figure 2. Workflow diagram. 
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The TLS data were registered, cleaned (removal of noise 
points) and height filtered in the RiSCAN Pro software 
package (Riegl GmbH, Horn, Austria) and BCAL Lidar Tools 
(Streutker and Glenn, 2006; http://bcal.boisestate.edu/tools/ 
lidarl). The ALS data were height filtered with the BCAL Lidar 
Tools. Both ALS and TLS were height filtered using 5 m and 50 
cm canopy spacing, respectively, a 5 cm ground threshold, 
nearest neighbor interpolation, and 50 iterations (Streutker 
and Glenn, 2006). We then transformed the height filtered 
lidar point data to raster products. Eight (n = 8) vegetation 
height metrics (Table 3) were rasterized at seven resolutions 
(0.5, 1, 3, 5, 10, 15, 30 m) from both the TLS and ALS data. The 
ALS-derived mean height had up to a 30 percent underestima
tion of the mean vegetation heights from TLS data, which is in 
agreement with previous studies in sagebrush-steppe commu
nities from airborne lidar (Streutker and Glenn, 2006; Glenn 
et al., 2011; Mitchell et al., 2011). Therefore, the ALS-derived 
mean height was calibrated and scaled with the TLS-derived 
mean height. The eight ALS-derived raster height-related 
products and the calibrated mean height were then used in 
the MR1994 and RA1994 models for Zam calculations. The 
RA1994 method was conducted at 3 m resolution to match 
the resolution of imaging spectroscopy data. The MR1994 
method used the lidar data only and was tested at varying 
resolutions (see below). The RA1994 and MR1994 models 
were compared at 3 m resolution. Correspondingly, a DEM at 
3 m resolution from the ALS data was generated for the source 
area analysis to compare the EC-based Zam with the remote 
sensing estimated Zam maps. 

Table 3. Height Metrics from Lidar Data 

Lidar 
variables 

Max 

Mean 

Description 

Maximum height 

Mean height 

Median(H50) Median height 

H75 

H90 

H95 

MAD 

AAD 

The 75th percentile of all lidar vegetation returns 
within a pixel 

The 9oth percentile of all lidar vegetation returns 
within a pixel 

The 95th percentiles of all lidar vegetation returns 
within a pixel 

Median Absolute Deviation (MAD) from median 
height of all lidar vegetation returns within a pixel. 
MAD = 1.4826 * median( I height - median height I) 

Mean Absolute Deviation (AAD) from mean height 
of all lidar vegetation returns within a pixel. AAD = 
mean( I height - mean height I ) 

Estimates of Cover Percentage of Roughness Elements with Lidar and 
Imaging Spectroscopy Data 
In this study, we used random forests (RF) (Breiman, 2001) to 
obtain the cover percentage (PVC) of the roughness elements 
(shrub and grass) from hyperspectral and lidar metrics. We 
then calculated the FAI from PVC for the final Zam estimates. 
Similarly, previous studies have used spectral and lidar met
rics in RF to predict forest canopy structural measurements 
(Leutner et al., 2012) and percent cover of shrub (Mitchell 
et al., 2015). We derived variables from the co-registered hy
perspectral and ALS data to predict shrub and grass cover by 
adopting approaches similar to those described in Mitchell et 
al. (2015). The hyperspectral data were atmospherically cor
rected using HyMap Correction (HyCorr2) and corrected for 
cross-track illumination. The height filtered lidar data were 
rasterized to produce vegetation height raster imagery at 3 m. 
The eight different vegetation height metrics were shown in 
Table 3. The hyperspectral and lidar imagery are co-registered 
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by specifying coincident ground control points. A series of 
vegetation indices (n = 21) used in Mitchell et al. (2015) were 
derived from the co-registered hyperspectral. The hyperspec
tral-derived vegetation indices, the lidar-derived thirty-three 
(n = 33) vegetation metrics (see details in http://bcal.boises
tate.edultools/lidar!), and the additional first twenty (n = 20) 
mm1mum noise transformed (MNF) bands from the hyperspec
tral data were evaluated as variables in RF for the calculation 
of grass and shrub cover. Nearest neighbor imputation was 
used to generate a spatially explicit raster response surface 
(Crookston and Finley, 2008) that contains predicted values 
for the variable ofinterest (e.g., shrub and grass cover) at 
unsampled locations. 

Zorn Estimates with Remote Sensing Data 

Zorn Estimates Based on Height Variability by Method MR1994 
The method MR1994 parameterizes Z 0m based on height vari
ability using the mean and standard deviation of vegetation 
height (Menenti and Ritchie, 1994) (Equation 1). Estimations 
of Zam from the lidar-derived heights were performed for 
each grid cell by using the variability in roughness heights. 
Two scale terms, the estimate and slice scales, are used in 
this method. The estimate scale is the grid cell size (spatial 
resolution) at which Z 0m is estimated and the slice scale is 
the segment size inside the estimate scale (Figure 3). Zam was 
estimated by Equation 1: 

(1) 

where Z 0m and hare the aerodynamic roughness length esti
mate and the average roughness element height from lidar at 
the estimate scale, respectively; N is the number of segments 
within the grid cell of the estimate scale; (Jh; is the standard 
deviation of the lidar-derived roughness element height in 
the segment i; and h; is the lidar-derived roughness element 
height in segment i. 

D Estimate scale (pixel) 

D Slice scale (sub-pixel) within the 
estimate scale pixel 

Figure 3. Schematic diagram of estimate and slice scales. 

Model Sensitivitv 
A sensitivity analysis was performed to analyze the depen
dencies of MR1994 on the height and height varibility of the 
roughness elements. We ran eighty-eight (n = 88) separate 
analyses using different slice scales (0.5 m and 1 m) at dif
ferent estimate scales (1, 3, 5, 10, 15, and 30 m) for the eight 
different height metrics shown in Table 3. 

Zorn Estimates Based on Wind Profile by Method RA1994 
The method RA1994 is based on the wind profile. The wind 
velocity profile over the land surface is commonly approxi
mated by a simple logarithmic expression that assumes near 
neutral buoyancy conditions. The method RA1994 parameter
izes Zam by combining vegetation density, height, and wind 
speed information in Equations 2 and 3. FAI (A) is the ratio 
of frontal surface (perpendicular to the flow) over the total 
surface covered by roughness elements and represents the 
surface roughness density (Grimmond and Oke, 1999; Burian 
et al., 2002), and is used in both the calculation of d0 and Zam· 
Notably, this method accounts for the vegetation density, but 
not for the distribution of roughness. 
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with 

1- exp[-(cd12 At )°5 J 
(cd12 At )°5 

Zam ( do ) ( k U ) -- = 1-- •exp - -+ rph 
hv ~ U* 

u* . [( )o.5 ( u*) ] At -=mm Cs+CRAt ; - andAt=-
U umax AT 

(2) 

(3) 

where d0 is the displacement height; Z 0m is the aerodynamic 
roughness; hv is vegetation (roughness element) height; u* is 
the friction velocity; k is the von Karman constant; U is the 
wind velocity; rph is the roughness-sublayer influence func
tion, describing the departure of the velocity profile just above 
the roughness from the inertial-sublayer logarithmic law; Cs is 
the drag coefficient for a roughness element free surface; CR is 
the drag coefficient for an isolated roughness element; cdlis a 

free parameter; and (u*) is equal to 0.2, as calculated from 
U max 

the EC data in 05, 06, and 14 August 2010. Recommended 
values fork, rph, Cs, CR and cdl are 0.41, 0.193, 0.003, 0.3 and 
7.5, respectively (Raupach, 1994; Colin et al., 2010). 

To solve Equations 2 and 3 for d0 and Zam• one must calcu
late At, which is equal to the ratio of the frontal surface area 
and total surface area. In this study, two methods were tested 
to calculate At. The first method uses the height and the per
centage of the roughness elements for At estimation (F cover). The 
second method uses the vegetation height differences among 
different directions and intervals along the wind direction. 
The intervals are equivalent to the pixel size (Fsectionl· 

Estimation of Af Using the Height and the Percentage of the Roughness Ele
.m..e..o.tslEcoverl 
Calculation of F cover assumes the roughness elements have 
equivalent average height and trend towards a homogeneous, 
compact surface. The roughness element was considered 
either a cuboid (Equation 4) or cylinder shape (Equation 5). At 
was estimated by the ratio of the frontal surface (At) and the 
total surface area (AT). Given the height of roughness elements 
derived from lidar, At was obtained by the roughness plane 
(projected) area (A). 

Assuming a cuboid shape of a shrub with width of a, 
A= a2 andAt= ah; 
then, 

(4) 

Assuming a cylinder shape of a shrub with radius of width r, 
A = rrr2 and At= 2rh; 
then, 

(5) 

where h is vegetation height and PVC is the percent cover of 
vegetation. AT is the total surface area andAT = spatial resolu
tion x spatial resolution. We used 3 m spatial resolution to 
match the resolution of the hyperspectral data. A is the area 
that roughness elements cover and A = PVC x Ay. 

Estimation of Using Vegetation Height Differences !Fsectionl 
In the analysis we calculated At using a method previously 
adopted by Hiyama et al. (1996), De Vries et al. (2003) and 
Weligepolage et al. (2012). The method assumes that the land 
surface is isotropic and At can be defined over a cross-section
al line as follows (Figure 4): 
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(6) 

where t.y is the positive height difference for each t.x in the 
cross section. In order to estimate surface features we ex
tracted several cross sections (height at 10 cm intervals) along 
two different directions (north-south and east-west) from the 
generated vegetation height model. 

Figure 4. Schematic of land surface feature parameters. H is 
the mean height of roughness elements, Lis the mean dis
tance between the tops of roughness elements, and S is the 
mean roughness element width (De Vries et al., 2003). 

Model Sensitivity 
We ran six separate analyses using different frontal area index 
calculations and shapes for shrub and grass elements to deter
mine if the RA1994 method is sensitive to the estimation of 
the roughness length. These six analyses included: Aft as the 
A1 based on shrub cover assuming the roughness element with 
a cylinder shape; A,12 as the A1 based on shrub cover assuming 
the roughness element with a cuboid shape; Ap as the Al based 
on total vegetation cover (shrub and grass) cover assuming the 
roughness element with a cylinder shape; A/4 as the Al based 
on total vegetation cover (shrub and grass) cover assuming the 
roughness element with a cuboid shape; AJS as the Al based on 
a cross section along a north-south (NS) direction; and A/6 as 
the A1 based on a cross section along an east-west (EW) direc
tion. 

Estimates with EC Measurements 

Estimates with EC Measurements for Different Conditions 
Zom calculated from the samples of the EC measurements was 
used as the reference data and was calculated as: 

(7) 

Where, z is the measurement height (m); d0 is the zero plane 
displacement height (m); k is the von Karman's constant 
(= 0.41); u is the horizontal wind velocity (m/s·1) measured by 
the 3-D sonic anemometers at height z; u. is the friction veloc
ity (m/s·1

), and Pm is the stability correction for momentum. 
The stability correction for momentum was computed differ
ently for stable, neutral, and unstable atmospheric conditions 
as (Zhao et al., 2008): 

'JI = o (underneutral conditions) ( 8) l - s(z - d0 ) (under stable conditions) 

m 2in(l + X} +ln (1 + x 2
) = 2arctan(X) +f-3ln 2 (under unstable conditions) 

where , Lis the Monin-Obukhov length, and Xis a function 
of the Monin-Obukhov length that is expressed as: 
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(9) 

where L >0 and L <0 indicate stable and unstable conditions, 
respectively, and large values of IL I indicate near neutral 
conditions (Equation 8). The Monin-Obukh ov length L was 
calculated using the equation in Ottoni ( 1992). 

From the EC measurement data, sensible heat flux H was 
calculated from the covariance between vertical wind velocity 
wand sonic temperature T, ( w'T~) and then corrected with the 
WPL corrections (Webb et al., 1980). The fri ction velocity u. 
was computed from: 

~-2 -2 
u. = 4 w'u' +w'v' 

where, the prime represents the deviation of the instanta
neous 20 Hz wind velocities from the mean and the over 

(10) 

bar represents mean values over a specific time period (30 
minutes in our case). The zero plane displacement height d

0 
was estimated from a two-concentric-loop iterative method 
proposed by Zhao et al. (2008). In addition, site 2 had RM 
Young 81000 3-D anemometers but no Li-Cor LI-7500 C02/ 
H20 analyzer. Therefore, we were not able to perform the 
Webb-Pearman-Leuning (WPL) correction for the site 2 data. 
Thus, the estimates of Z0m under different atmospheric condi
tions was only performed at site 1. 

Footprint Analyses for the Source Area Contribution to the Estimation 
The area surrounding our sensors was uniform in height and 
density and relatively flat for hundreds of m to km, such 
that variations in the contributing area influencing measure
ments due to winds peed or direction likely caused little or no 
influen ce on our fluxes or Zom· Because the fllL-x or Z0m at an 
eddy covariance site is a point measurement representing an 
upwind flux source area, the micrometeorological method pro
vides a single estimate that is a weighted spatial average over 
the entire instantaneous source area (the contributing area). 
Yet the remote sensing data provides an estimate of Z0m for 
each grid cell. Therefore, the footprint analyses for the source 
area were necessary for a direct comparison of EC and remote
ly sensed model Z 0m estimates. A cumulative turbulent source 
area analysis proposed by Hsieh et al. (2000) was performed. 
This model creates a point estimate of flux contribution (flux 
units per m2) for each pixel in the raster. The total contribution 
from a pixel is then calculated as the product of the point esti
mate and pixel area. Once the pL-xel contribution is calculated, 
contour lines are created with a list of inputs. The source area 
is defined by contours of up to 95 percent of the cumulative 
contribution. The sum of the contours describes the contribu
tion of the measured flux originating from that source. Then, 
a single Z0m was derived by weighting the values in the source 
area (Hsieh et al., 2000; Jia et al., 2012; Bai et al., 2015), where 
the weights are the values from the contour lines. An addition
al method using the average of the estimated Z am for grid cells 
within a 200 m buffer around the EC sites was also compared. 

Results 
Comparison of TLS-Derlved Height and ALS-Derived Height 
As expected, the ALS-derived height was underestimated in 
comparison to the TLS-derived height (Figure 5). Only mean 
height was used for the TLS calibration because the mean 
height provides the (center) tendency of height for vegeta
tion . A scale parameter of 1.3 was used to adjust the ALS mean 
height. The scaled mean height has an average bias of -0.01 m 
and RMSE (root-mean-square error) of 0.07 m. 
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Effects of Different Height Metrics on Estimation by MR1994 
For all eight height metrics except the H95 and AAD heights, a 
1 m slice scale provided higher values of Zam than using a 0.5 
m slice scale (Figure 6a). Roughness length is stable at different 
scales for each height metric except the H95 height. The stan
dard deviation of roughness length changes with the estimate 
scales. The coarser the resolution, the smaller the standard 
deviation, using 1 m or 0.5 m slice scales (Figure 6b). Although 
the H90 and H95 heights were higher than non-adjusted mean 
heights, they cannot be used as representative heights since 
they resulted in excessively high values of Zam· The mean, 
median (H50) and H75 heights led to the best approximation to 
in-situ Zam from EC data when using a 0.5 slice scale. 

Effects of Different Vegetation Density Calculations on Estimation by the 
RA1994 Method 
Shrub cover was estimated with approximately 58 percent 
of variance explained and a RMSE of 7 percent in the RF 
regression model (Table 4). Grass cover had similar variance 
explained though the RMSE was higher (11 percent; Table 
4). The percentage of shrub was estimated by MAD, IQR, and 
Veg_Cov from lidar, and ARI and R2G from imaging spectros
copy. The percentage of grass was estimated by MAD and IQR 
from lidar and the imaging spectroscopy metrics GNDVI, ARI, 
PSRI, MNF _SWIR4, and MNF _SWIR8 (see Table 5). 

Calculations of FAI (Jc1) based on Equations 4, 5, and 6 are 
shown in Table 6. The assumed shapes resulted in small 
differences for F AI. When taking grass cover into account, 
FAI was higher than when accounting for shrub cover alone. 

Mean 
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The calibrated height didn't change the FAI estimates when 
using the F section for the F AI calculation because the same scale 
parameter was used to increase the height values which were 
offset in the height difference (in Equation 6); however, the 
calibrated height affected the F AI calculation by F cover since 
another variable (PVC) was used in Fcover (Equations 4 and 5). 
From Table 6, the larger the FAI, the smaller the Zam; and the 
larger the height, the larger the Zam· The predictors MAD, AAD, 
and median heights resulted in the closest value of Zam to the 
site measurement. The result demonstrates that the relation
ship between Zam and FAI was not simply linear. Results also 
indicate that height metrics influenced Zam estimates more 
than the different F AI calculations in RA 1994 (Figure 7). 
We also explored the relationships between Zam estimates 

Table 4. Cover Percentage Estimates with Lidar and 
Hyperspectral Data by RF Model. R2 and RMSE in RF 

Regression Model were Listed Here to Show the Accuracy of 
Percentage Estimate 

Source of Predictor 
Species predictor variables variables selected Rz RMSE 

Shrub lidar + hyperspectral MAD,IQR, 0.58 7.35% 
Veg_Cov, ARI, RZG 

Grass lidar + hyperspectral MAD, IQR, GNDVI, 0.57 11.2% 
ARI, PSRI, 

MNF_SWIR4, 
MNF_SWIRS 
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; 
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Figure 5. Comparisons of different height metrics from ALS and TLS data. 
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Figure 6 (a). The mean and (b) the standard deviation of the estimated Zam using different slice sizes and estimate scales using 
the MR1994 method. For example, E3mS50cm uses an estimate scale of 3 m and slice scale of 50 cm. Results for max heights 
were not shown here because Zam estimations using max height were overestimated (larger than 0.15 m). 
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Figure 7 (a) The mean, and (b) the standard deviation of estimated Zam using RA1994. Results for max height were not shown 
here because Zam estimations were overestimated (larger than 0.4 m). 
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Figure 8. Scatterplots of Zam with (a) mean height, (b) standard deviation of height, (c) percent shrub cover, and (d) frontal 
area index (Jcf3). 

Table 5. Variables in Table 4 

Predictor variables 

From Lidar 

IQR 

MAD 

Veg_Cov 

From Hyperspectral 

ARI 

R2G 

GNDVI 

PSRI 

MNF_SWIR4 

MNF_SWIRB 
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Description 

Interquartile Range (IQR) of height of all lidar vegetation returns within 
a pixel IQR = Q75-Q25, where Q75 and Q25 are 75th percentile and 25th percentile. 

Same in Table 3 

Percent ratio of lidar vegetation returns (greater than 0.15 m height) and total returns within a pixel 

Anthocyanin Reflectance Index (ARI)= (800*(1/R510) - (1/R700) 

Red band and Green band Ratio (R2G) = Rred I Rgreen 

Green Normalized Difference Vegetation Index (GNDVI) = (Rnir - Rgreenl I (Rnir +Rgreenl 

Plant Senescence Reflectance Index (PSRI) = (R680 - R500) I R750 

The fourth shortwave infrared (SWIR) band from the SWIR bands after MNF 

The eighth shortwave infrared (SWIR) band from the SWIR bands after MNF 
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using the two methods with mean height, standard devia-
tion of height, PVC and FAI (Jc.fl) (Figure 8). In comparison to 
the MR1994 method, the RA1994 method resulted in a larger 
range of Z0m estimates and has a linear relationship with mean 
height and FAI. 

When MAD was used to represent the roughness element 
height in RA1994, Z0m using shrub cover is very similar to Z 0m 

using the total (shrub +grass) cover with R2 of 0.99 (Figure 
9a). Thus the higher roughness element density due to the 
grass did not result in a higher Zam in this study. We explored 
this result by examining the histograms of the grass-dominat
ed pixels (PVC >75 percent) in comparison to the histograms 
of shrub-dominated pixels (PVC >35 percent) (Figures 9b and 
9c). The grass-dominated pixels have a lower mean value of 
Zorn than the shrub pixels due to the lower height of grass, 
even though grass cover is higher across this landscape. 

Table 6. FA! (Jc1) Calculations 

FA! calculation method FA! value FA! value 

FA! Based on F ,0"" 

using mean using scaled 

types 
height mean h eight 

Vegetation 

I Shape Mean I Std. 
Mean I Std. 

cover Dev. Dev. 

A.fl Shrub cover Cylinder 0.021 0.009 0.028 0.012 

A.fl Shrub cover Cuboid 0.020 0.008 0 .025 0.010 

A.fl 
Shrub cover 

Cylinder 0.030 0.011 0.039 0.014 
+grass cover 

,l/4 
Shrub cover 

Cuboid 0.02 7 0.009 0 .034 0.012 
+grass cover 

FA! calculation method FA! value FA! value 

FA! Based on F,oction 
using mean using scaled 

types 
height mean height 

Cross-sections I Direction M I Std. Mean I Std. 
ean Dev. Dev. 

A.JS 
Based on NS 0.024 0.002 cross-sections 0 .024 0.002 

A.JG 
Based on WE 0.024 0.003 0 .024 0.003 cross-sections 
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Comparison of Remote Sensing Data-Derived 
and Meteorological Data-Derived 
Figure 10 illustrates the cumulative turbulent source area and 
the 200 m buffer region around the towers in the study area, 
overlaid by Zorn estimates based on the mean height using the 
RA1994 method. Heterogeneity in vegetation height is limited 
in this study area and thus calculating Zam as an average 
across the 200 m buffer had similar results as using the entire 
study area. Only slight differences were found between Zam 
estimates in the 200 m buffer and in the cumulative turbulent 
source area (Table 7). The remote sensing derived Z0m values 
are larger than the multi-year (2 years) EC derived data (Table 
7). However, the values are more similar when correlating 
the Zam calculations from the eddy covariance measurements 
with the same dates as the remote sensing data collection 
(05, 06, and 14 August 2010). The remote sensing derived 
Zam ranges from 0.055 to 0.075 m, with the minimum value 
closest to near neutral conditions (mean of 0.060 and std. 
dev. of 0.023 for Zaml (Table 8, Figure 11). Mean Zam varies for 
neutral conditions (0.060 m), stable conditions (0.048 m), and 
unstable conditions (0.039 m) (Figure 11). The values of Zam 
derived from the CSAT EC data with wind speed larger than 3 
mi s had good agreement with Z0m values from CSAT EC data 
with all wind speeds at near neutral and unstable conditions 
(Table 8). Although the Zam values from the remote sensing 
and RMYoung data are more similar, the smaller values of the 
CSAT data are expected to be more reliable than those from the 
RMYoung data (Greth et al., 2013) (Table 7). 

Discussion 
Variation between the multi-year EC data and remote sensing 
derived Z0 m values may be attributed to a number of reasons. 
For example, the multi-year EC data are averaged over seven 
years, whereas the remote sensing data observations come 
from an instantaneous observation at the end of the seven
year period. The variations in Zam highlight the differences 
in temporal and spatial resolution of the in situ and remote 
sensing data. Using the EC estimates from the time of remote 
sensing data collection (05, 06, and 14 August 2010) has a 
better correlation, but does not necessarily account for coarser 
time-scale variations. The lidar measurements across larger 
areas are complementary to the EC measurements which can 
represent Zam across a range of atmospheric conditions. 
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Figure 9. (a) Scatterplot of Z0m using shrub cover and Zam using total (shrub + grass) cover given mean height for roughness 
elements; (b) histogram of Zorn for pixels with grass cover more than 75 percent (maximum grass cover is 80 percent); (c) his
togram of Z0 m for the pixels in which shrub cover is more than 35 percent (maximum shrub cover is 41 percent). Mean is the 
average value of Zorn · Zorn was estimated by RA1994 in all plots. 
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Table 7. Comparison of Remote Sensing Data Derived Zam 
(Based on Mean Height and MAD Height) and Multi-Year (2004 
to 2010) EC Data Derived Zam 

Methods based on Remote Sensing 
RA1994: Site 1 Average over the source area 
Based on Site 1 Average over the 200 m buffer area 
lidar + Site 2 Average over the source area 
hyper-

Site 2 Average over the 200 m buffer area s ectral 

MR1994: 
Site 1 Average over the source area 

Based on 
Site 1 Average over the 200 m buffer area 

. Site 2 Average over the source area 
hdar data Site 2 Average over the 200 m buffer area 
Method based on meteorological data 

Based on 
EC data 

Site 1 RMYoung data 
Site 1 CSAT data 
Site 2 RMYoung data 

N 

A 

Roughness leng1h (m) 
0.23 

8 
8 

175 350 m 

Zaw (m) Zaw (m) 
Using Using 
mean MAD 
height height 
0.072 0.060 
0.069 0.057 
0.067 0.055 

0.069 0.057 

0.066 0.075 
0.068 0.077 
0.065 0.071 
0.067 0.075 
Zaw (m) 
0.055 
0.042 
0.044 

Table 8. Zam (m) Calculated from CSAT Eddy Covariance 
Measurements On 05, 06, and 14 August 5, 6 and 14 2010 

All wind speed data Data with wind 
speed> 3 m/s 

CSAT data Number Number 
Mean 

Std. 
of Mean 

Std. 
of 

Dev. 
samples 

Dev. 
samples 

All 
atmospheric 0.047 0.044 89 0.050 0.022 56 
conditions 

Near neutral 0.060 0.023 20 0.060 0.023 20 

Unstable 0.048 0.025 37 0.047 0.021 32 

Stable 0.039 0.065 32 0.029 0.005 4 

Note: Number of samples is the half-hourly EC data obtained from 
the 36,000 sets of 20Hz original EC measurement data. A QA/QC 
and corrections were performed on the original data resulting in the 
number of samples represented here. 

85% !oCJ 100 ns 

Figure 10. Zam estimates based on mean height using RA1994. The white outlines the cumulative turbulent source areas and 
the red circles are the 200 m buffer regions around the towers. 
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Figure 11. Zam derived from CSAT EC data at different atmospheric conditions. The maximum and minimum values are the 
range of Zam derived from remote sensing data (see Table 7). 
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Similar to previous studies (Brown and Hugenholtz, 2012; 
Paul-Limoges et al., 2013), we found that the method used to 
calculate the height and standard deviation of height from li
dar significantly influenced the Z 0rn estimation in the RA1994 
method, However, there are no criteria for choosing a particu
lar segment size or radius filter to make these calculations. In 
studies by Brown and Hugenholtz (2012) and Paul-Limoges et 
al. (2013), a filtering radius using a moving window was used 
to account for neighboring pixels for the vegetation height 
and its standard deviation. This procedure was utilized due to 
the effect of different filter sizes on the estimation of ground 
surface elevation from lidar (Wang et al., 2009). However, 
the filter radius method can also introduce noise generated 
from the neighboring pixels if they have large differences 
from the pixel of interest. Therefore, the filter radius method 
was not utilized in this paper and instead the estimation and 
slice scales were used to calculate vegetation height and its 
standard deviation. This approach allows consideration of 
height variability at the grid cell size of interest. In this paper, 
the 50 cm slice scale led to smaller and better results than 
the 1 m slice scale. The variability of height at coarser slice 
scales demonstrated large height differences in comparison to 
finer slice scales, where the variability of height can capture 
the relative variation of a shrub. The slice scale was selected 
in this study by balancing the point density and individual 
shrub size. 

We also found that different lidar-derived height statistics 
resulted in differences in Z0 m estimates and that the arithme
tic mean height did not lead to the most accurate estimate of 
Zom· Mean height, median height, and H75 height resulted in 
better Z0m estimates than other height metrics in the MRl 994 
model and median height resulted in the closest Zorn value in 
comparison to the EC-derived Zorn· However, mean, median, 
MAD, and AAD heights had better Zorn estimation than other 
height metrics in the RAl 994 model. Similar to Mitchell et al. 
(2015), MAD height proved to be a robust metric that captures 
the variability of the shrub height and resulted in Z0m esti
mates closest to the EC-derived Zorn· 

We assumed a limited amount of sagebrush growth from 
the one to two-year time gap between ALS and TLS data acqui
sitions (Zeng et al., 2008). However, a single scaling param
eter did not account for variations in the differences between 
ALS and TLS mean heights among the pixels. Although the 
scaling parameter increased the magnitude of aerodynamic 
roughness, the results showed that the scaled height led to a 
larger bias than the un-scaled mean height when compared 
to the in-situ Zorn· Interestingly, both AAD and MAD, which 
capture the variability of height, had similar results in the 
RA1994 method (Figure 6) and provided the best estimates. 
We interpret that height variation rather than mean height 
serves an important role for calculating aerodynamic rough
ness, emphasizing the need to capture height variability 
across space with remote sensing. In contrast, in the MR1994 
method the un-scaled mean height resulted in the aerody
namic roughness most approximate to the in-situ EC measure
ments. Compared to the RA1994 model , the MR1994 can be 
implemented more easily with only height-related informa
tion in a relatively homogenous area. However, in complex 
and heterogeneous areas where the frontal area index can be 
obtained, the RA1994 method may be more representative 
of Zorn· Although more driving parameters are nee ded for the 
RAl 994 model, the sensitivity of these coefficients should 
be tested for different ecosystems. Additionally, a more ac
curate method would be to use higher density airborne lidar 
observations (>8 points per m2

) to potentially capture more 
accurate height variability. We used a 3 m spatial resolution 
for our analysis because this was the pixel size of the imag
ing spectroscopy data. A finer-scale pixel size could be used 
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with lidar data of sufficient point density. However, sub-pixel 
analysis of the imaging spectroscopy data in this low vegeta
tion cover ecosystem is challenging. In addition , because we 
used narrow-band indices fo r our spectroscopy analysis, a 
finer pixel-scale analysis will require collecting data at higher 
spatial resolution. 

In addition to height, aerodynamic roughness varied along 
density, spatial pattern and geometry of roughness elements. 
However, we found that the Z0rn estimation using shrub cover 
had only small differences from that using total percent 
roughness element cover (shrub and grass cover). This may 
be due to the ALS mean height only capturing shrubs, as grass 
heights are within the vertical error of this small footprint 
lidar. Another reason that the grass had a low impact on the 
Z0m in our study area may be due to its low height , and thus 
lower resistance. Although the grass was accounted for in the 
frontal area index calculation, the ratio of the friction 

velocity and the wind velocity ( ~ J limited the increase of 

Z0rn due to the increase of the cover percentage of roughness 
elements. Our results indicate that in this mixed shrub-grass 
community, the shrub component contributed the most resis
tance of roughness elements for wind and th us when using 
the cover percentage for the frontal area index estimates, grass 
cover is not necessary to include. The combination of lidar 
and hyperspectral data improved the vegetation percent cover 
estimates but had less improvement for shrub in comparison 
to grass (Mitchell et al., 2015; Glenn et al., 2016). Thus, in 
areas where imaging spectroscopy data cannot be obtained, 
especially where grass is sparse, lidar can be sufficiently used 
alone for shrub cover estimates and for frontal area index 
estimates of aerodynamic roughness. 

In the RA1 994 method, the roughness element d ensity was 
equal to the percent vegetation cover in magnitude. However, 
the pattern of roughness elements cannot be interpreted from 
percent vegetation cover. In addition, the porosity of the 
vertical vegetation structure was not considered. Uncertainty 
was also introduced into the Z 0rn estimates by using simpli
fied cuboid and cylinder shapes to represent shrubs and the 
assumption of compaction of roughness elements. Further ex
ploration on the shape and pattern of the roughness elements 
could be achieved by using finer-scale l idar data (higher 
point density and full-waveform) or a simulation approach 
to characterize both the vertical and horizontal structure of 
the canopy. More accurate percent vegetation cover could 
also enhance the frontal area index calculation and thus the 
aerodynamic roughness estimates. 

Conclusions 
Our study found that the roughness element height informa
tion from lidar can be used to map Z0rn across space. The 
RA1994 model represented the in-situ EC measurements 
better than the MR 1994 m ethod, and is also more applicable 
in complex landscapes with varying geomet ry (e.g., grass, 
shrub, trees) when assessing the effects of different roughness 
elements on Zom· While we used imaging spectroscopy data to 
assist in deriving vegetation cover, we found that grass cover 
had a small effect on the overall Zorn and can be excluded in 
Zorn calculations in this shrub-dominated area. Thus, model
ing the shrub component is likely of more importance in simi
lar ecosystems. Further, h igher point density lidar (>8 points 
per m2

) could be used to estimate percent vegetat ion cover 
of shrub (Li et al., 2015) and thus reduce the dependency on 
imaging spectroscopy data in the RA1 994 method. Conversely 
in areas where the vegetation cover is more heterogeneous, 
imaging spectroscopy data will assist with percent vegetation 
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cover estimates (Kokaly et al., 2007), and thus contribute a 
more significant role. We will have additional opportunities 
to test and apply the RA1994 model to a range of ecosystems 
over time and space with the increasing availability of lidar 
data. Resultantly, land surface models will need to accom
modate and test the refinement of Z0m estimates with remote 
sensing data. While regional availability of ALS is steadily 
increasing, two upcoming NASA missions, ICESat-2 (satellite) 
and GEDI (International Space Station), will provide photon 
counting and full-waveform datasets, respectively, across 
broader geographic regions albeit at coarser scales. The data 
from these missions will provide new opportunities to esti
mate Z0m across time and space. 
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