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Abstract. We present an efficient secure and privacy-enhancing pro-
tocol for car access provision, named SePCAR. The protocol is fully
decentralised and allows users to share their cars conveniently without
sacrifising their security and privacy. It provides generation, update, re-
vocation, and distribution mechanisms for access tokens to shared cars,
as well as procedures to solve disputes and to deal with law enforcement
requests, for instance in the case of car incidents. We prove that SeP-
CAR meets its appropriate security and privacy requirements and that
it is efficient: our practical efficiency analysis through a proof-of-concept
implementation shows that SePCAR takes only 1.55 seconds for a car
access provision.

1 Introduction

As opposed to the traditional car ownership, the idea of car sharing, which
allows users to share their cars in a convenient way, is gaining popularity. Statis-
tics have shown that the worldwide number of users for car sharing services has
grown from 2012 to 2014 by 170% (4.94 million) [1, 18, 20] with a tendency to
increase by 2021 [9]. With the use of portable devices and in-vehicle telemat-
ics, physical car keys are slowly becoming obsolete. Keyless car Sharing Systems
(KSSs) allow car owners to rather use their portable devices such as smartphones
to distribute temporary digital car keys (access tokens) to other users. Several
companies (including Volvo [56], BMW [10], Toyota [55], and Apple [54]) have
started investing in such systems. Moreover, unlike traditional car rental compa-
nies, KSSs can provide a relatively inexpensive alternative to users who need a
car occasionally and on-demand [57]. Their use can also contribute to a decrease
in the number of cars, effectively reducing CO2 emissions [46] and the need for
parking space [38].

In spite of these advantages, information collection in car sharing systems
does not only jeopardise a system’s security, but also the users’ privacy. Uber
used a tool called “Hell” to spy on their rival company drivers [49], whereas their
mobile app always tracks their users’ location [17]. Moreover, it is possible to



reach high identification rates of drivers, from 87% to 99% accuracy, based on
data collected by the sensors of a car from 15 minutes of open-road driving [21].
In short, an adversary may try to eavesdrop and collect information exchanged
within the KSS, tamper with the car sharing details, extract the key of a car
stored in untrusted devices, generate a rogue access token to maliciously access
a car or to deny having accessed a car. Regarding users’ privacy, an adversary
may try to correlate and link two car sharing requests of the same user or the
car, to identify car usage patterns and deduce the users’ sharing preferences.
These preferences can be established by collecting information about sharing
patterns such as rental time, duration, pickup location, when, where and with
whom someone is sharing a car. An adversary may even attempt to infer sen-
sitive information about users such as racial and religious beliefs [43] or their
health status, by identifying users who use cars for disabled passengers. Sen-
sitive personal data are related to fundamental rights and freedoms, and merit
protection regarding the collection and processing as articulated in the new EU
General Data Protection Regulation (GDPR) [12]. In addition, a KSS may in-
troduce various other concerns with respect to connectivity issues [20], car key
revocations when a user’s device is stolen [26], and the fact that malicious users
may attempt to manipulate or even destroy potential forensic evidence on the
car or their devices.

A way to mitigate the security and privacy concerns is to implement a peer-
to-peer protocol between both the users and the car. The car owner can generate
a temporary access token for her car using the car key and distribute it to the
other user, the consumer, who can use the token to access the car. This approach
has two main limitations: (i) the owner and the consumer may not trust each
other, thus affecting the accountability of the system, and (ii) the owner has to
have a copy of the car key on her personal device which is prone to get lost or
stolen. These limitations can be overcome by having a centralised entity, which
is trusted by both users, to perform the access token generation on behalf of the
car owner. However, such a centralised entity will have to be fully trusted, which
might not be realistic under real world scenarios. It can jeopardise the users’
privacy as it will have access to users’ booking details and car keys.

Related Work. Troncoso et al. [52] proposed a pay-as-you-drive scheme to
enhance the location privacy of drivers by sending aggregated data to insurance
companies. Balasch et al. [4] proposed an electronic toll pricing protocol where a
car’s on-board unit calculates locally the driver’s annual toll fee while disclosing
a minimum amount of location information. For colluding (dishonest) users [4],
Kerschbaum et al. [33] presented a privacy-preserving spot checking protocol
that allows observations in public spaces. Mustafa et al. [37] proposed an anony-
mous electric vehicle charging protocol with billing support. EVITA [22] and
PRESERVE [40] are designated projects on the design and specification of the
secure architecture of on-board units. Driven by the PRESERVE instantiation,
Raya et al. [42] described the need for a Vehicular Public-Key Infrastructure
(VPKI), and Khodaei et al. [34] proposed a generic pseudonymization approach
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to preserve the unlinkability of messages exchanged between vehicles and VPKI
servers. None of these solutions provides a full-fledged keyless car sharing system.

Our work is closely related to the protocol proposed by Dmitrienko and Plap-
pert [20]. They designed a centralised and secure free-floating car sharing system
that uses two-factor authentication including mobile devices and RFID tags, e.g.,
smart-cards. However, in contrast to our solution, their protocol assumes a fully
trusted car sharing provider who has access to the master key of smart-cards and
also collects and stores all the information exchanged between the car provider
and their users for every car access provision.

Our Contributions. We design a concrete and fully decentralised secure and
privacy-enhancing protocol for car access provision, named SePCAR. The pro-
tocol provides generation and distribution of access tokens for car access provi-
sion, as well as update and revocation operations used for facilitating mutually
agreed modifications of the booking details and protecting against misbehaving
consumers, respectively. It internally uses secure multiparty computation to fa-
cilitate forensic evidence provision in the case of car incidents or at the request
of law enforcement. SePCAR is described in detail in Sect. 4.

We prove that the protocol fulfils the desired security and privacy require-
ments bound to the standards of connected cars. First, departing from Syme-
onidis et al. [48], we give a detailed list of security and privacy requirements in
Sect. 2. Then, in Sect. 5, we prove that SePCAR meets its security and privacy
requirements as long as its underlying cryptographic primitives (listed in Sect. 3)
are secure. Our theoretical complexity and practical efficiency analysis in Sect. 6
demonstrates SePCAR’s competitiveness. In particular, we implemented a pro-
totype as a proof-of-concept in C++ and we achieved a car access provision in
≈ 1.55 seconds.

2 System Model and Requirements

We describe the system model and functionalities of a KSS. Moreover, we specify
the threat model, the security, privacy and functional requirements which it
needs to satisfy, and our assumptions about the system.

System Model. We follow the KSS system model of Symeonidis et al. [48] (see
also Fig. 1). Users are individuals who are willing to share their cars, owners
(uo), and use cars which are available for sharing, consumers (uc); both use
of Portable Devices (PDs) such as smartphones. An On-Board Unit (OBU) is
an embedded or a standalone hardware/software component [31] that is part
of the secure access management system of a car. It has a wireless interface
such as Bluetooth, NFC or LTE. The Car manufacturer (CM) is responsible for
generating and embedding a digital key into each car. These keys are used for
car sharing and are stored in the manufacturers’ Database (DB). The Keyless
Sharing Management System (KSMS) is a complex of multiparty computation
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Fig. 1. System model of a physical Keyless car Sharing System (KSS) [48].

(MPC) servers that assists owners with car access token generation, distribution,
update and revocation. Each server individually retrieves its share of the car key,
Kcar, and the servers jointly encrypt the booking details, MB , to generate an
access token, AT car. The access token is published on a Public Ledger (PL),
which serves as a public bulletin board that guarantees the integrity of the
data [36]. The booking details are typically agreed upon by owner and consumer
prior to the beginning of the protocol.

Threat Model. Within the KSS, the KSMS, the CM and the PL are considered
honest-but-curious entities. They will perform the protocol honestly, but they
are curious to extract private information about users. Owners are passive adver-
saries while consumers and outsiders may be malicious. The car’s OBU is trusted
and equipped with a Hardware Security Module (HSM) [40, 53] that supports
secure key storage and cryptographic operations such as symmetric and public-
key encryption, following the EVITA [22] and PRESERVE [40] specifications.
Users’ PDs are untrusted as they can get stolen, lost or broken.

Protocol Design Requirements. The keyless car sharing system should sat-
isfy the following security, privacy and functional requirements [48], which we
denote by SR, PR and FR, respectively. Here, we recall that MB refers to the
booking details, AT car the access token to the car and Kcar the car key.

– SR1 - Confidentiality of MB. No one but the shared car, uo and uc should
have access to MB .

– SR2 - Authenticity of MB. The shared car should verify the origin and
integrity of MB from uo.

– SR3 - Confidentiality of AT car. No one but the shared car and uc should
have access to AT car.

– SR4 - Confidentiality of Kcar. No one but the shared car and the CM should
have access to Kcar.
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– SR5 - Backward and forward secrecy of AT car. Compromise of a key used
to encrypt any AT car should not compromise other tokens (future and past)
published on the PL of any honest uc.

– SR6 - Non-repudiation of origin of AT car. The uo should not be able to
deny it has agreed to the terms of MB , and participated in providing the
respective AT car.

– SR7 - Non-repudiation of delivery of AT car. The uc should not be able to
deny it has obtained and used the AT car to open the car (once it has done
so).

– PR1 - Unlinkability of uc and the car. No one but the shared car, uo and uc
should be able to link two booking requests of the same uc for the car.

– PR2 - Anonymity of uc and the car. No one but the shared car, uo and uc
should learn the identity of uc and the car.

– PR3 - Undetectability of AT car operation. No one but the shared car, uo and
uc (if necessary) should be able to distinguish between AT car generation,
update and revocation.

– PR4 - Forensic evidence provision. The KSMS should be able to provide
authorities with the transaction details of an access provision to a car at the
request of law enforcement without violating the other users’ privacy.

– FR1 - Offline authentication. Access provision should be provided for loca-
tions where cars have limited (or no) network connection.

Assumptions. For SePCAR, we assume that before every evaluation, the book-
ing details are agreed upon by owner and consumer, but that both keep these
booking details confidential against external parties. SePCAR relies on a PKI
infrastructure [40], and we assume that each entity has her private/public-key
pair with their corresponding digital certificates. The communication channels
are secure and authenticated among entities using SSL-TLS and NFC. OBU is
equipped with a HSM [40, 53], and it is designed to resist deliberate or accidental
physical destruction (i.e., black box). The MPC servers are held by non-colluding
organisations, i.e., organisations with conflicting interests such as authorities, car
owner unions and car manufacturers.

3 Cryptographic Building Blocks

This section specifies, the cryptographic functionalities that are used across this
paper, as well as the MPC functionalities and cryptographic building blocks.

Cryptographic Functionalities. SePCAR uses the following cryptographic
building blocks. The suggested instantiations are the ones used in our proof-of-
concept implementation.

– σ ← sign(Sk,m) and true/false← verify(Pk,m, σ) are public-key operations
for signing and verification respectively. These can be implemented using
RSA as defined in the PKCS #1 v2.0 specifications [29].
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– z ← prf(K, counter) is a pseudo-random function (PRF) that uses as input
a key and a counter. This function can be implemented using CTR mode
with AES (as the message input is small).

– c ← enc(Pk,m) and m ← dec(Sk, c) are public-key encryption and de-
cryption functions. These can be implemented using RSA as defined in the
RSA-KEM specifications [30].

– c← E(K,m) and m← D(K, c) are symmetric key encryption and decryption
functions. These can be implemented using CTR mode with AES.

– v ← mac(K,m) is a symmetric key MAC function. This function can be
implemented using CBC-MAC with AES.4

– z ← hash(m) is a cryptographic hash function. This function can be imple-
mented using SHA-2 or SHA-3.

We will furthermore use the notation z ← query(x, y) to denote the retrieval
of the xth value from the yth database DB (to be defined in Sect. 4), and
z ← query an(y) to denote the retrieval of the yth value from the PL through
an anonymous communication channel such as Tor [51], aiming to anonymously
retrieve a published record submitted using the publish(y) function.

Multiparty Computation. Ben-or et al. [8] (commonly referred to as BGW)
proved that it is possible to calculate any function with perfect security in the
presence of active and passive adversaries under the information-theoretic model,
as long as there is an honest majority: 1/2 for passive and 2/3 for active ad-
versaries. The former can be achieved by assuming the use of private channels
among the servers and the latter using Verifiable Secret Sharing.

Our protocol is MPC-agnostic, meaning that it does not depend on the so-
lution that implements the MPC functionality; example protocols that could
be executed within our protocol are SPDZ [16] or MASCOT [32]. However, the
three-party protocol for Boolean circuits that was introduced by Araki et al. [3,
23] is fairly suited for our current needs, given its performance and threshold
properties. Hence, we use this protocol in our simulation. It can perform non-
linear operations with relatively high throughput and somewhat low latency
(when tested on 10 Gbps connections). The scheme provides threshold security
against semi-honest and malicious parties. Note that Furukawa et al. [23] further
adapt the protocol to provide security against a malicious adversary.

On an incremental setup for KSMS. Our protocol can support an incremental
setup and deployment where an (l>2)-case of KSMS servers is trivial, e.g., using
BGW [8]. The 2-party case setting could also be achieved with MPC protocols
such as SPDZ [16], however, the forensic properties of our setup would no longer
be attainable.

4 CBC-MAC is proven to be secure as long as it is only evaluated on equal-size mes-
sages (or on prefix-free messages) [7], which is the case for SePCAR. For variable
length messages, one should resort to encrypted CBC-MAC or replace the key for
the last block [28].
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Multiparty Computation Functionalities. SePCAR uses the following cryp-
tographic functionalities for MPC:

– [x] ← share(x) is used to secretly share an input. This function can be in-
stantiated using Araki et al.’s sharing functionality.

– x← open([x]) reconstructs the private input based on the secret shares.
– [z] ← XOR([x], [y]) outputs a secret shared bit, representing the XOR of

secret shared inputs [x] and [y]. Note that for both arithmetic or Boolean
circuits, such functionality could be implemented without requiring any com-
munication cost.

– [z] ← AND([x], [y]) outputs a secret shared bit, representing the AND of
two secret shared inputs [x] and [y]. This function can be instantiated using
Araki et al.’s AND operation.

– [z] ← eqz([x], [y]) outputs a secret shared bit, corresponding to an equality
test of two secret shared inputs [x] and [y]. This is equivalent to computing

[z]← [x]
?
= [y] where z ∈ {0, 1}.

– [C] ← E([K], [M ]) secretly computes a symmetric encryption from a secret
shared key [K] and a secret shared message [M ]. We include a succinct review
on how to implement AES below.

– [V ]← mac([K], [M ]) secretly computes a MAC from a secret shared key [K]
and a secret shared message [M ].

On the secure equality test. Various protocols have been proposed to implement
the equality tests (previously referred to an eqz functionality). Common ap-
proaches provide either constant rounds or a logarithmic number of them in the
bit size of its inputs, which could be proven more efficient for sufficiently small
sizes. Furthermore, they also offer different security levels, i.e., perfect or sta-
tistical security [11, 13, 35]. In this paper we assume the use of any logarithmic
depth construction, which matches the current state of the art.

On AES over MPC. AES has been the typical functionality used for benchmark-
ing MPC protocols during the last few years. This fact and its usability for MPC
based applications have motivated faster and leaner MPC implementations of
the cipher. As it was previously stated, they consider the case where the MPC
parties hold a secret shared key K and a secret shared message M . The product
of the operation is a secret shared AES encrypted ciphertext [2, 14, 15, 27]. Note
that in this paper we assume the use of the methods proposed by Damg̊ard and
Keller [14] with some minor code optimisations.

4 SePCAR

This section provides a detailed description of SePCAR. For simplicity and with-
out loss of generality, we consider a single owner, consumer and a shared car.
The description straightforwardly scales to a larger set of owners, consumers,
and cars. Table 1 lists the notation used in the paper and Fig. 2 illustrates the
high-level overview of SePCAR.
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Table 1. Notation.

Symbol Description

KSMS, Si, PL, CM, uo, uc Set of KSMS servers, the ith server for i ∈ {1 . . . l}, Public
Ledger, Car Manufacturer, owner, consumer

IDB , IDuo , IDuc , IDcar ID of booking, uo, uc, car
CDuc/ACuc , Lcar Set of conditions/access rights under which uc is allowed to

access a car, car’s location

DBCM / DBSi Database that CM holds with (IDuo , IDcaruo , Kcaruo ) /
that Si holds with (IDuo , [IDcaruo ], [Kcaruo ]) for all own-
ers (uo’s) and their registered cars

~Duo Car records (IDuo
x , [ID

caruo
y ], [K

caruo
y ]) of the xth uo for

the yth car extracted (query) from DBSi , where |~Duo | = n

~Dcar The matched (eqz output) yth car key (
1

[0] · · · [0]
y

[1][0] · · ·
n

[0]),

where |~Dcar| = n
Pkx / Skx, Certuc Public/private key pair of the KSS entity x, certificate of uc

MB Booking details, i.e, {hash(Certuc ), IDcar, Lcar, CDuc ,

ACuc , IDB}
σuo , σcar

Access Signature (sign output) of MB with Skuo , and

{MB , TScar
Access} with Skcar

Kcar, Kuc , Kuc
1 /Kuc

2 Symmetric key of the car, uc’s master key, uc’s session keys
generated be (prf output) Kuc and counter/counter + 1

Muc , ATuc Concatenation of MB with σuo , a secure access token as the
encryption (E output) of Muc with Kcar

CSi Ciphertext (enc output) of session keys {[Kuc
1 ], [Kuc

2 ]} with

PkSi

[Cuc ] Ciphertext (E output) of {[ATuc ], [IDcar]} with [Kuc
1 ]

CB , [CB ] Message digest (mac output) of MB with Kuc
2 , and [MB ]

with [Kuc
2 ]

TSPub
i , TScar

Access Time-stamp of uc accessing the shared car, a record pub-
lished (publish) on the PL submitted by Si

SePCAR consists of four steps: session keys generation and data distribution,
access token generation, access token distribution and verification and car access.
We will discuss these steps in detail in the remainder of the section, with a general
overview picture given in Fig. 8 in Appendix A. We first discuss a few prerequisite
steps which have to be performed. After the discussion of the fourth (and last)
step, we complete the section with an overview of the possible operations after
SePCAR: access token update and revocation.

Prerequisite. Before SePCAR can commence, two prerequisite steps need to
take place: car key distribution and setting the details for the car booking.

Car key distribution takes place immediately after the xth owner, IDuo
x , has

registered her yth car, ID
caruo
y , with the KSMS. The KSMS forwards ID

caruo
y

to the CM to request the symmetric key, K
caruo
y , of the car. The CM retrieves

K
caruo
y from its DB, DBCM and generates ` secret shares of K

caruo
y and ID

caruo
y ,

denoted by [K
caruo
y ] and [ID

caruo
y ], respectively. Then, it forwards each share to

the corresponding KSMS server, i.e., Si. Upon receipt of the shares, each Si stores
IDuo together with the shares, [ID

caruo
y ] and [K

caruo
y ], in its local DB, DBSi .

The representations of the DB of CM and Si are shown in Fig. 3. For simplicity,
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TSPub
i [CB ] [Cuc ]

14774098 ersdf3tx0 fwefw234

. . . . . . . . .

14827104 fsd23f0x0 l2jhusa3u

1.1 CSi ← enc(PkSi , {[Kuc
1 ], [Kuc

2 ]})

Server 1

[Kcar]

Server i

[Kcar]

Server `

[Kcar]

KSMS

Car manufacturer
1.2 IDuo , CSi , [Muc ]

0. [Kcar]

2. [CB ], [Cuc ]

3.1 query an([CB ], [Cuc ])

3.2 AT car, IDcar4. Auth.

Fig. 2. SePCAR high level overview.

DBCM =



IDuo
1 ID

caruo
1 K

caruo
1

...
...

...
IDuo

x ID
caruo
y K

caruo
y

...
...

...
IDuo

m ID
caruo
n K

caruo
n

 DBSi =



IDuo
1 [ID

caruo
1 ] [K

caruo
1 ]

...
...

...
IDuo

x [ID
caruo
y ] [K

caruo
y ]

...
...

...
IDuo

m [ID
caruo
n ] [K

caruo
n ]


Fig. 3. The DB of CM (left) and the DB of the ith server Si (right).

in some parts of SePCAR we will use IDuo , IDcar and Kcar instead of IDuo
x ,

ID
caruo
y and K

caruo
y .

Car booking allows uo and uc to agree on the booking details, i.e., MB =
{hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}, where hash(Certuc) is the hash
of the digital certificate of uc, L

car is the pick-up location of the car, CDuc is
the set of conditions under which uc is allowed to use the car (e.g., restrictions
on locations, time period), ACuc are the access control rights under which uc
is allowed to access the car and IDB is the booking identifier. Recall that it is
assumed that an owner and a consumer agree on the booking details beforehand.

Step 1: Session Keys Generation and Data Distribution. uc generates
two symmetric session keys, Kuc

1 and Kuc
2 . Key Kuc

1 will be used by each Si
to encrypt the access token, such that only uc has access to it. Kuc

2 will be
used to generate an authentication tag which will allow uc to verify that the
access token contains MB which was agreed upon during the car booking. In
addition, uo sends the necessary data to each Si, such that the access token can
be generated. In detail, as shown in Fig. 4, uo sends a session-keys-generation
request, SES K GEN REQ, along with IDB to uc. Upon receipt of the request,
uc generates Kuc

1 and Kuc
2 using the prf() function instantiated by uc’s master

key, i.e., Kuc and counter and counter+1. Then, uc transforms these into ` secret
shares, [Kuc

1 ] and [Kuc
2 ], one for each Si in such a way that none of the servers will

have access to the keys but that they can jointly evaluate functions using these
keys securely. Then, it encrypts [Kuc

1 ] and [Kuc
2 ] with the public-key of each

Si, C
Si = enc(PkSi , {[Kuc

1 ], [Kuc
2 ]}), such that only the corresponding Si can
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Owner (uo) Consumer (uo) S1 . . .Si . . .Sl

msg{SES K GEN REQ, IDB}
Kuc

1 ← prf(Kuc , counter)
Kuc

2 ← prf(Kuc , counter + 1)
counter ← counter + 2
[Kuc

1 ]← share(Kuc
1 )

[Kuc
2 ]← share(Kuc

2 )
for i = 1 . . . l do
CSi ← enc(PkSi , {[Kuc

1 ], [Kuc
2 ]})

end for

σuo ← sign(Skuo ,MB)
Muc ← {MB , σuo}
[Muc ]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}
msgi{AT GEN REQ, IDuo , CSi , [Muc ]}

Fig. 4. Step 1: session keys generation and data distribution.

access the corresponding shares. Finally, uc forwards to uo an acknowledgment
message, SES K GEN ACK, along with IDB and {CS1 , . . . , CSl}.

While waiting for the response of uc, the owner uo signs MB with her private
key, i.e., σuo = sign(Skuo ,MB). In a later stage, the car will use σuo to verify
that MB has been approved by uo. Then uo transforms Muc = {MB , σuo} into
` secret shares, i.e., [Muc ]. Upon receipt of the response of uc, uo forwards to
each Si an access-token-generation request, AT GEN REQ, along with IDuo ,
the corresponding CSi and [Muc ].

Step 2: Access Token Generation. The servers generate an access token and
publish it on the PL. In detail, as shown in Fig. 5, upon receipt of AT GEN REQ
from uo, each Si uses the IDuo to extract [Kcar] from DBSi as follows. Initially,
each Si uses IDuo to retrieve the list of identities of all cars and car key shares
related to the set of records that correspond to uo. The result is stored in a
vector ~Duo of size n× 3, i.e.,

~Duo =



IDuo [ID
caruo
1 ] [Kcar

1 ]
...

...
...

IDuo [ID
caruo
y ] [Kcar

y ]
...

...
...

IDuo [ID
caruo
n ] [Kcar

n ]

 ,

where n is the number of cars which uo has registered with the KSS.

To retrieve the record for the car to be shared, each Si extracts [IDcar] from

[Muc ] and performs a comparison with each of the n records of ~Duo using the
eqz() function. The comparison outcomes 0 for mismatch and 1 for identifying

the car at position y. The result of each iteration is stored in a vector ~Dcar of
length n, i.e.,

~Dcar =
( 1

[0] · · · [0]
y

[1][0] · · ·
n

[0]
)
.
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Public Ledger (PL) S1 . . .Si . . .Sl

~Duo ← query(IDuo , DBSi)
for y = 1 . . . n do
~Dcar

y ← eqz([IDcar], [ID
caruo
y ])

end for
[Kcar]← ~Dcar × ~Duo

[AT car]← E([Kcar], [Muc ])
{[Kuc

1 ], [Kuc
2 ]} ← dec(SkSi , CSi)

[Cuc ]← E([Kuc
1 ], {[AT car], [IDcar]})

[CB ]← mac([Kuc
2 ], [MB ])

msgi{AT PUB REQ, [CB ], [Cuc ]}

Fig. 5. Step 2: access token generation.

Each Si then multiplies ~Dcar and ~Duo to generate a third vector of length 3, i.e.,

~Dcar × ~Duo =
(
IDuo [ID

caruo
y ] [K

caruo
y ]

)
,

from which the share of the car’s secret key, [Kcar], can be retrieved. Then,
the KSMS servers Si collaboratively encrypt [Muc ] using the retrieved [Kcar] to
generate an access token for the car in shared form, [AT car].

As AT car and IDcar need to be available only to uc, a second layer of en-
cryption is performed using Kuc

1 . To retrieve the shares of the session keys,
{[Kuc

1 ], [Kuc
2 ]}, each Si decrypts CSi using its private key. Then, the servers

encrypt [AT car] and [IDcar] with [Kuc
1 ] to generate [Cuc ]. In addition, they

generate an authentication tag, [CB ], using the mac() function with [Kuc
2 ] and

[MB ] as inputs. Finally, each Si sends to PL an access-token-publication request,
AT PUB REQ, along with [CB ] and [Cuc ].

Step 3: Access Token Distribution and Verification. The PL publishes
the shares of the encrypted access token which are then retrieved by uc. Once
retrieved, uc can obtain the access token and use it to access the car. In detail,
as shown in Fig. 6, upon receipt of AT PUB REQ, PL publishes [CB ], [Cuc ]
and TSPub, which is the time-stamp of the publication of the encrypted token.
Then PL sends an acknowledgement of the publication, AT PUB ACK, along
with TSPubi to at least one Si which forwards it to uo who, in turn, forwards it
to uc.

Upon receipt of AT PUB ACK, uc uses TSPubi and the query an() function
to anonymously retrieve [Cuc ] and [CB ] from PL, such that PL cannot identify
uc. Then, uc uses the open() function to reconstruct CB and Cuc using the
retrieved shares. Next, uc verifies the authentication tag CB locally using the
mac() function with Kuc

2 and MB as inputs. In the case of successful verification,
uc is assured that the token contains the same details as the ones agreed during
car booking. Then, uc decrypts Cuc using Kuc

1 to obtain the access token and
the car identity, {AT car, IDcar}.

Step 4: Car Access. The consumer uses the access token to obtain access
to the car. In detail, uc sends {AT car, IDcar,Certuc} to the car using a secure
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Owner (uo) Consumer (uo) Public Ledger (PL) S1 . . .Si . . .Sl

publish(TSPub
i , [CB ], [Cuc ])

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

query an(TSPub
i )

TSPub
i [CB ] [Cuc ]

14774098 ersdf3tx0 fwefw234

. . . . . . . . .

msg{[CB ], [Cuc ]}

CB ← open([CB ])

if CB ?
= mac(Kuc

2 ,MB) then
Cuc ← open([Cuc ])
{AT car, IDcar} ← D(Kuc

1 , Cuc)
else

Break
end if

Fig. 6. Step 3: access token distribution and verification.

Owner (uo) Car Consumer (uo)
msg{AT car, IDcar,Certuc}

{MB , σuo} ← D(Kcar, AT car)
verify(Pkuo ,MB , σuo)

Challenge / Response

σcar
Access ← sign(Skcar, {MB , TScar

Access})

msg{σcar
Access, TS

car
Access}

verify(Pkcar, {MB , TScar
Access}, σcar

Access)

Fig. 7. Step 4: car access. Dashed lines represent close range communication.

and close range communication channel such as NFC or Bluetooth (see Fig. 7).
Upon receipt, the car’s OBU obtains Muc = {MB , σuo} by decrypting AT car

with Kcar. It then performs three verifications. It checks if the access attempt
satisfies the conditions specified in MB . Then, it verifies σuo to be assured that
the booking details, MB , have not been modified and have been indeed approved
by the car owner. Finally, it verifies the identity of uc. For the last verification,
as the OBU receives Certuc (along with the hash(Certuc) in MB), it can use any
challenge-response protocol based on public/private key [19] and RFIDs [20].
If any of these verifications fails, the OBU terminates the car access process
and denies access to the car. Otherwise, it grants uc access to the car, signs
{MB , TScarAccess}, where TScarAccess is the time-stamp of granting the access and
asynchronously sends msg{σcarAccess, TS

car
Access} to uo.

Access Token Update and Revocation. Upon an agreement between uo and
uc to update or revoke an access token, SePCAR can be performed as described
in steps 1-3. The values of an update request can be changed according to new
booking details, M̂B , whereas for revocation, each of the parameters in M̂B

can receive a predefined value indicating the revocation action. However, there
are occasions when uo may need to enforce an update or revocation of an access
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token. To prevent uc from blocking such operations, SePCAR should be executed
only by uo, without the involvement of uc. More specifically, uo generates session
keys, requests an access token, queries the PL, and sends the token to the car
using long range asynchronous communication channel such as LTE.

5 Security and Privacy Analysis

We prove that SePCAR satisfies the security and privacy requirements of Sect. 2,
provided that its underlying cryptographic primitives are sufficiently secure. The
theorem statement and the proof given below are informal; a formal description
of the security models and the stand-alone proof are given in Appendix B.

Theorem 1. If communication takes place over private channels, the MPC is
statistically secure,

– the signature scheme sign is multi-key existentially unforgeable [25],
– the pseudo-random function prf is multi-key secure [24],
– the public-key encryption scheme enc is multi-key semantically secure [5],
– the symmetric key encryption scheme E is multi-key chosen-plaintext se-

cure [6],
– the MAC function mac is multi-key existentially unforgeable [25], and
– the hash function hash is collision resistant [45],

then SePCAR fulfils the security and privacy requirements of Sect. 2.

Note that, indeed, for each of the keyed cryptographic primitives we require
security in the multi-key setting, as these are evaluated under different keys.
For example, sign is used by all owners, each with a different key; enc is used
for different keys, each for a different party in the KSMS, and E and mac are
used for independent keys for every fresh evaluation of the protocol. We refer to
Bellare et al. [5] for a discussion on generalizing semantic security of public-key
encryption to multi-key security; the adaptation straightforwardly generalizes to
the other security models.

Proof (sketch). We treat the security and privacy requirements, and discuss how
these are achieved from the cryptographic primitives, separately. We recall that
consumer and owner have agreed upon the booking details prior to the evaluation
of SePCAR, hence they know each other.

SR1 - Confidentiality of MB. In one evaluation of the protocol, uc, uo, and the
shared car learn the booking details by default or design. The KSMS servers only
learn shares of the booking data, and under the assumption that the MPC is
statistically secure, nothing about the booking data is revealed during the MPC.
The outcomes of the MPC are CB and Cuc satisfying

CB = mac(Kuc
2 ,MB) , (1)

Cuc = E(Kuc
1 , {E(K

caruo
y , {MB , σuo}), IDcar}) , (2)
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both of which reveal nothing about MB to a malicious outsider due to the
assumed security of mac, E, and the independent uniform drawing of the keys
Kuc

1 and Kuc
2 . The nested encryption E does not influence the analysis due to

the mutual independence of the keys Kuc
1 and K

caruo
y .

SR2 - Authenticity of MB. An owner who initiates the access token genera-
tion and distribution, first signs the booking details using its private key before
sending those to the KSMS in shares. Therefore, once the car receives the to-
ken and obtains the booking details, it can verify the owner’s signature on the
booking details. In other words, the car can verify the source of the booking
details, the owner and their integrity. Suppose, to the contrary, that a malicious
consumer can get access to a car of an owner uo. This particularly means that it
created a tuple (MB , σuo) such that verify(Pkuo ,MB , σuo) holds. If σuo is new,
this means that uc forges a signature for the secret signing key Skuo . This is
impossible by assumption that the signature scheme is existentially unforgeable.
On the other hand, if (MB , σuo) is old but the evaluation is fresh, this means
a collision hash(Certuc) = hash(Certuc′), which is computationally infeasible as
hash is collision resistant.

SR3 - Confidentiality of AT car. The access token is generated by the KSMS
servers obliviously (as the MPC is statistically secure), and only revealed to the
public in encrypted form, through Cuc of (8). Due to the uniform drawing of the
key Kuc

1 (and the security of the public-key encryption scheme used to transmit
this key), only the legitimate user can decrypt and learn the access token. It
shares it with the car over a secure and private channel.

SR4 - Confidentiality of Kcar. Only the car manufacturer and the car itself hold
copies of the car key. The KSMS servers learn these in shared form, hence learn
nothing about it by virtue of the statistical security of the MPC. Retrieving a
car key from encryptions made under this key constitutes a key recovery attack,
which in turn allows to break the chosen-plaintext security of the symmetric key
encryption scheme.

SR5 - Backward and forward secrecy of AT car. The access token is published
on the public ledger as Cuc of (8), encrypted under symmetric key Kuc

1 . Every
honest consumer generates a fresh key Kuc

1 for every new evaluation, using a
pseudo-random function prf that is secure, i.e., that is indistinguishable from
a random function. This implies that all session keys are drawn independently
and uniformly at random. In addition, the symmetric encryption scheme E is
multi-key secure. Concluding, all encryptions Cuc are independent and reveal
nothing of each other. (Note that nothing can be said about access tokens for
malicious users who may deviate from the protocol and reuse one-time keys.)

SR6 - Non-repudiation of origin of AT car. The car, who is a trusted identity,
verifies the origin through verification of the signature, verify(Pkuo ,MB , σuo).
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The consumer uc verifies the origin through the verification of the MAC al-

gorithm, CB
?
= mac(Kuc

2 ,MB). Note that the consumer does not effectively
verify AT car, but rather CB , which suffices under the assumption that the MPC
servers evaluate their protocol correctly. In either case, security fails only if the
asymmetric signature scheme or the MAC function are forgeable.

SR7 - Non-repudiation of delivery of AT car. The owner can verify correct de-
livery through the verification of the message sent by the car to the owner,
verify(Pkcar, {MB , TScarAccess}, σcarAccess) at the end of the protocol. Security breaks
only if the signature scheme is forgeable.

PR1 - Unlinkability of uc and the car. The only consumer-identifiable data is
in the consumer’s certificate included in the booking details. Note that these
are agreed upon between the consumer and the owner, so the owner learns the
identity of the consumer by default. Beyond that, the consumer only communi-
cates with the car, which is supposed to learn the consumer’s identity so that
it can perform proper access control. The consumer consults the public ledger
over an anonymous channel. The booking details are transferred to and from the
KSMS, but these are encrypted and do not leak by virtue of their confidentiality
(security requirement SR1).

PR2 - Anonymity of uc and the car. The reasoning is identical to that of PR1.

PR3 - Undetectability of AT car operation. Access token generation, update, or
revocation is performed using the same steps and the same type of messages sent
to the KSMS and PL. Hence, outsiders and system entities cannot distinguish
which operation has been requested.

PR4 - Forensic evidence provision. In the case of disputes, the information
related to a specific transaction (and only this information) may need to be
reconstructed. This reconstruction can be done only if the KSMS servers collude
and reveal their shares. In our setting, these servers have competing interests,
thus they would not collude unless law authorities enforce them to do so. Due to
the properties of threshold secret sharing, the private inputs can be reconstructed
by a majority coalition. This is, if the KSMS consists of three parties, it suffices
two of such parties to reconstruct the secrets (for semi-honest and malicious
cases).

FR1 - Offline authentication. Note that steps 1-3 of the protocol require a net-
work connection, but step 4, car access, is performed using close range communi-
cation and with no need of a network connection. The decryption and verification
of the access token can be performed by the car offline (it has its key Kcar and
the owner’s public-key Pkuo stored). Sending the confirmation signature σcarAccess

can also be done offline. ut
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6 Performance Evaluation

Below we analyse the theoretical complexity and practical efficiency of SePCAR.

Theoretical Complexity. The complexity of MPC protocols is typically mea-
sured by the number of communication rounds produced by non-linear opera-
tions, as linear operations can usually be performed without any information
exchange and are virtually free of charge. In one evaluation of SePCAR, the
non-linear operations performed by the KSMS servers are (i) the retrieval of
the car key through multiple calls of the eqz functionality using the IDcar and
their counterparts in ~Dcar as parameters, and (ii) have two evaluations of the
encryption scheme E and one evaluation of mac.

For (i) the evaluations of the eqz functionality, we consider a multiplicative
depth of dlog(|IDcar|)e+ 1, where |IDcar| is the amount of bits in IDcar. Note

that we can parallelize the eqz call for all ~Dcar entries. Therefore, the bulk of the
overhead of extracting the car key comes from implementing the equality test in
logarithmic depth [35]. Besides executing the eqz tests, we also have to perform
an extra communication round since we need to multiply the result of each
equality test with its corresponding car key. The total number of communication
rounds for (i) is thus dlog(|IDcar|)e+ 1.

For (ii) the two evaluations of the encryption scheme E and the single evalua-
tion of mac we use, as mentioned in Sect. 3, CTR mode with AES and CBC-MAC
with AES, respectively. Note that in a single AES evaluation the number of non-
linear operations equals the number of S-Boxes evaluated in these functions, but
many can be parallelized. Denote by ν the number of communication rounds
needed to encrypt a single 128-bit block using AES. The two evaluations of
CTR mode can be performed in parallel, and cost 2 ·ν rounds. The evaluation of

CBC-MAC is inherently sequential and costs
⌈
|MB |
128

⌉
· ν communication rounds.

The total number of communication rounds can thus be expressed as:(
dlog(|IDcar|)e+ 1

)
+ 2 · ν +

⌈
|MB |
128

⌉
· ν . (3)

Efficiency. Our protocol is agnostic towards the underlying multiparty protocol.
In our experiments we have incorporated the 3-party semi-honest protocol by
Araki et al. [3], given its relative efficiency of AES calls compared to alternatives
such as, [16, 32]. The upshot of our experiments is that SePCAR needs only
1.55 seconds for a car access provision. We elaborate on our simulation below,
following the steps of Sect. 4. An allocation of the time on the different steps is
provided in Table 2.

Step 1. Recall that step 1 handles the preparation and sharing of the booking
details and generation of keys. For enc we use RSA with 2048-bit keys (≈ 2 ms)
and for sign we use RSA with SHA-2 with a 512-bit output (≈ 50 ms). The prf
is implemented using AES in CTR mode (≈ 2µs). For all these functions we
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use OpenSSL [39]. The share function is implemented by the sharing primitive
introduced by Araki et al. [3].

Step 2. In this step, the KSMS servers retrieve the car key and perform the
corresponding encryption and other subroutines linked to generating the MAC.
We consider the following message configuration size: hash(Certuc) of 512-bits,
IDcar of 32-bits, Lcar of 64-bits, CDuc of 96-bits, ACuc of 8-bits, IDB of 32-
bits and σuo of 512-bits. The booking details MB are of size 768-bits (including
padding) and the final access token ATuc is of size 1408-bits (including padding).
For the dec function we use RSA with 2048-bit keys (≈ 2 ms). The symmetric
encryption E is implemented in CTR mode and the mac in CBC mode. As men-
tioned before, the functions E, mac, and eqz use the primitives proposed by Araki
et al. [3], and we use the multiparty AES method of Damg̊ard and Keller [14].
Using this method, a single S-Box evaluation takes 5 communication rounds.
A single evaluation of AES consists of 20 sequential evaluations of an S-Box,
where we included the key expansion and took into account that parallelizable
S-Boxes do not add up to the number of communication rounds, hence encryp-
tion requires ν = 100 communication rounds. From (3) we obtain that in our
simulation the total number of communication rounds is(

5 + 1
)

+ 2 · 100 + 6 · 100 = 806 .

Key expansion for different keys needs to be performed only once, and for mul-
tiple evaluations of SePCAR for the same car the round complexity reduces.

Step 3. In this step the consumer retrieves, reconstructs, and verifies the assigned
access token. The PL is implemented using SQLite. The implementation of open
again follows the primitive of Araki et al. [3], and mac is implemented using AES
in CBC mode (≈ 13 ms).

Step 4. The final step consists of a challenge-response protocol between uc and
the car, but it does not directly affect the performance of SePCAR and we omit
it from our implementation.

Environment Settings. We implemented our simulation for SePCAR in C++ and
evaluated it using a machine equipped with an Intel i7, 2.6 Ghz CPU and 8GB
of RAM.5 The communication within the KSMS was simulated using socket
calls and latency parameters. We used the setting from Araki et al. [3] to sim-
ulate the LAN latency (≈ 0.13 ms) and from Ramamurthy et al. [41] for Wi-Fi
(≈ 0.50 ms). We did not assume any specific network configuration for our ex-
perimentation.

5 The implementation can be obtained from https://bitbucket.org/Siemen11/sepcar.
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Table 2. Performance of SePCAR, where time is averaged over 1000 runs.

Phase Description Time (in sec)

Step 1 Sharing the booking details and keys 0.220± 0.027
Step 2 Extracting car key and making access token 1.274± 0.032
Step 3 Verifying the access token 0.055 (+1 Tor [50])
Total 1.551± 0.043 (+1 Tor)

7 Conclusion

SePCAR is proven to be secure and privacy-enhancing, efficiently performing in
≈ 1.55 seconds for a car access provision. We presented a formal analysis of the
security and privacy requirements of our protocol and we designed a prototype as
proof-of-concept. SePCAR provides a complementary solution to physical keys,
aiming for those that hold portable devices and want a dynamic and efficient
way to access to a car. As future work, we plan to extend SePCAR to support
additional operations such as booking and payment. It would also be interesting
to investigate potential modifications of the protocol, in order to provide security
and privacy guarantees while KSMS, CM, and PL are active adversaries.
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Owner (uo) Car Consumer (uc) Public Ledger (PL) S1 . . .Si . . .Sl

MB = {hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}
msg{SES K GEN REQ, IDB}

Kuc
1 ← prf(Kuc , counter)

Kuc
2 ← prf(Kuc , counter + 1)

counter ← counter + 2
[Kuc

1 ]← share(Kuc
1 )

[Kuc
2 ]← share(Kuc

2 )
for i = 1 . . . l do
CSi ← enc(PkSi , {[Kuc

1 ], [Kuc
2 ]})

end for

σuo ← sign(Skuo , {MB})
Muc ← {MB , σuo}
[Muc ]← share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}

msgi{AT GEN REQ, IDuo , CSi , [Muc ]}
~Duo ← query(IDuo , DBSi)
for y = 1 . . . n do
~Dcar

y ← eqz([IDcar], [ID
caruo
y ])

end for
[K

caruo
y ]← ~Dcar × ~Duo

[AT car]← E([K
caruo
y ], [Muc ])

{[Kuc
1 ], [Kuc

2 ]} ← dec(SkSi , CSi)
[Cuc ]← E([Kuc

1 ], {[AT car], [IDcar]})
[CB ]← mac([Kuc

2 ], [MB ])

msgi{AT PUB REQ, [CB ], [Cuc ]}

publish(TSPub
i , [CB ], [Cuc ])

msg{M PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

msg{AT PUB ACK,TSPub
i }

query an(TSPub
i )

TSPub
i [CB ] [Cuc ]

14774098 ersdf3tx0 fwefw234

. . . . . . . . .

msg{[CB ], [Cuc ]}

CB ← open([CB ])

if CB ?
= mac(Kuc

2 ,MB) then
Cuc ← open([Cuc ])
{AT car, IDcar} ← D(Kuc

1 , Cuc)
else

Break
end if

msg{AT car, IDcar,Certuc}

{MB , σuo} ← D(Kcar, AT car)
verify(Pkuo ,MB , σuo)

Challenge / Response

σcar
Access ← sign(Skcar, {MB , TScar

Access})

msg{σcar
Access, TS

car
Access}

verify(Pkcar, {MB , TScar
Access}, σcar

Access)

Fig. 8. SePCAR complete representation.
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B Extended Security and Privacy Analysis

We prove that SePCAR satisfies the security and privacy requirements of Sec-
tion 2, provided that its underlying cryptographic primitives are sufficiently se-
cure. In Section B.1 we describe the security models of the cryptographic prim-
itives. Then, the formal reasoning is given in Section B.2.

B.1 Cryptographic Primitives

The security definitions for signature schemes and MAC functions are inspired
by Goldwasser et al. [25], for pseudorandom functions by Goldreich et al. [24],
for public key encryption by Bellare et al. [5], and for symmetric key encryption
by Bellare et al. [6].

We will, in fact, need security of the cryptographic primitives in the multi-key
setting, as these are evaluated under different keys. For example, sign is used by
all owners uo, each with a different key; enc is used for different keys, each for
a different party in the KSMS, and E and mac are used for independent keys
for every fresh evaluation of the protocol. We refer to Bellare et al. [5] for a
discussion on generalizing semantic security of public key encryption to multi-
key security; the adaptation straightforwardly generalizes to the other security
models.

In below definitions, for a function f , we define by Func(f) the set of all
functions with the exact same interface as fK . We denote a random drawing by
$←−.

Definition 1. Let µ ≥ 1. Consider a signature scheme sign = (keygen, sign, verify).
For any adversary A, we define its advantage in breaking the µ-multikey exis-
tential unforgeability as

Advµ-euf
sign (A) =

Pr
(

(Pk1, Sk1), . . . , (Pkµ, Skµ)
$←− keygen : Asign(Ski,·)(Pki) forges

)
,

where “forges” means that A outputs a tuple (i,M, σ) such that verify(Pki,M, σ) =
1 and M has never been queried to the i-th signing oracle. We define by
Advµ-euf

sign (q, t) the supremum over all adversaries making at most q queries and
running in time at most t.

Definition 2. Let µ ≥ 1. Consider a pseudorandom function prf = (keygen, prf).
For any adversary A, we define its advantage in breaking the µ-multikey pseu-
dorandom function security as

Advµ-prf
prf (A) =

∣∣∣Pr
(
K1, . . . ,Kµ $←− keygen : Aprf(Ki,·) = 1

)
−

Pr
(

$1, . . . , $µ
$←− Func(prf) : A$i

= 1
)∣∣∣ .

We define by Advµ-prf
prf (q, t) the supremum over all adversaries making at most

q queries and running in time at most t.
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Definition 3. Let µ ≥ 1. Consider a public-key encryption scheme enc =
(keygen, enc, dec). For any adversary A, we define its advantage in breaking the
µ-multikey semantic security as

Advµ-pke
enc (A) =

∣∣∣Pr
(

(Pk1, Sk1), . . . , (Pkµ, Skµ)
$←− keygen : AO0(Pki) = 1

)
−

Pr
(

(Pk1, Sk1), . . . , (Pkµ, Skµ)
$←− keygen : AO1(Pki) = 1

)∣∣∣ ,
where Ob for b ∈ {0, 1} gets as input a tuple (i,m0,m1) with i ∈ {1, . . . , µ} and
|m0| = |m1| and outputs encPki(mb). We define by Advµ-pke

enc (t) the supremum
over all adversaries running in time at most t.

Definition 4. Let µ ≥ 1. Consider a symmetric-key encryption scheme E =
(keygen,E,D). For any adversary A, we define its advantage in breaking the
µ-multikey chosen-plaintext security as

Advµ-ske
E (A) =

∣∣∣Pr
(
K1, . . . ,Kµ $←− keygen : AE(Ki,·) = 1

)
−

Pr
(

$1, . . . , $µ
$←− Func(E) : A$i

= 1
)∣∣∣ .

We define by Advµ-ske
E (q, t) the supremum over all adversaries making at most

q queries and running in time at most t.

Definition 5. Let µ ≥ 1. Consider a MAC function mac = (keygen,mac). For
any adversary A, we define its advantage in breaking the µ-multikey existential
unforgeability as

Advµ-mac
mac (A) = Pr

(
K1, . . . ,Kµ $←− keygen : Amac(Ki,·) forges

)
,

where “forges” means that A outputs a tuple (i,M, σ) such that mac(Ki,M) = σ
and M has never been queried to the i-th MAC function. We define by
Advµ-mac

mac (q, t) the supremum over all adversaries making at most q queries and
running in time at most t.

Finally, we consider the hash function hash to be collision-resistant. We denote
the supremal probability of any adversary in finding a collision for hash in t
time by Advcol

hash(t). The definition is, acknowledgeably, debatable: for any hash
function there exists an adversary that can output a collision in constant time
(namely one that has a collision hardwired in its code). We ignore this techni-
cality for simplicity and refer to [45, 47, 44] for further discussion.

B.2 Analysis

We prove that SePCAR satisfies the security and privacy requirements of Sec-
tion 2 provided that its underlying cryptographic primitives are sufficiently se-
cure.
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Theorem 2. Suppose that communication takes place over private channels, the
MPC is statistically secure, hash is a random oracle, and

Advµo+µcar-euf
sign (2q, t) + Advµc-prf

prf (2q, t) + Advl-pke
enc (t)+

Advq+µcar-ske
E (2q, t) + Advq-mac

mac (q, t) + Advcol
hash(t)� 1 ,

where µo denotes the maximum number of uos, µc the maximum number of ucs,
µcar the maximum number of cars, l the number of servers in the KSMS, q the
total times the protocol gets evaluated, and t the maximum time of any adversary.

Then, SePCAR fulfills the security and privacy requirements of Section 2.

Proof. Recall from Section 2 that uos and CM are honest-but-curious whereas
ucs and outsiders may be malicious and actively deviate from the protocol. Cars
are trusted.

Via a hybrid argument, we replace the pseudorandom functions prf(Kuc , ·)
by independent random functions $uc . This step is performed at the cost of

Advµc-prf
prf (2q, t) , (4)

as in every of the q evaluations of SePCAR there are two evaluations of a func-
tion prf, and there are at most µc instances of these functions. As we assume that
the MPC is performed statistically secure, we can replace the KSMS by a single
trusted authority (with l interfaces) that is trusted, perfectly evaluates the pro-
tocol, and does not reveal/leak any information. Assuming that the public-key
encryption reveals nothing, which can be done at the cost of

Advl-pke
enc (t) , (5)

we can for simplicity replace it with a perfectly secure public-key encryption
ρKSMS to the KSMS directly (an encryption does not reveal its origin and con-
tent, and only KSMS can magically decrypt), therewith eliminating the fact that
KSMS has l interfaces and has to perform multiparty computation. Now, as the
pseudorandom functions are replaced by random functions, the keys to the sym-
metric encryption scheme E are all independently and uniformly distributed, and
as the public-key encryption scheme is secure, these keys never leak. Therefore,
we can replace the symmetric encryption functionalities by perfectly random in-
vertible functions, πcaruo for the cars and unique πuc ’s for every new encryption
under uc’s session keys, at the cost of

Advq+µcar-ske
E (2q, t) , (6)

as there are q + µcar different instances involved and at most 2q evaluations
are made in total. Note that this means that, instead of randomly drawing

Kuc
1 ← $uc , we now randomly draw πuc

$←− Func(E).
We are left with a simplified version of SePCAR, namely one where the

KSMS is replaced by a single trusted authority, the pseudorandom functions are
replaced by independent random drawings (uc uses $uc which generates fresh
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outputs for every call), public-key encryptions are replaced with a perfectly se-
cure public-key encryption function ρKSMS, and symmetric-key encryptions are
replaced by perfectly random invertible functions πcaruo and πuc . The simplified
protocol is given in Figure 9. Here, the derivation of the car key (or, formally,
the random function corresponding to the encryption) from the database is ab-
breviated to πcaruo ← query(IDuo , DBKSMS) for conciseness.

We will now treat the security and privacy requirements, and discuss how these
are achieved from the cryptographic primitives, separately. We recall that uc
and uo have agreed upon the booking details prior to the evaluation of SePCAR,
hence they know each other by design.

SR1 - Confidentiality of MB. In one evaluation of the protocol, uc, uo, the
trusted KSMS, and the shared car learn the booking details by default or de-
sign. The booking details only become public through the values CB and Cuc

satisfying

CB = mac(Kuc
2 ,MB) , (7)

Cuc = πuc({πcaruo ({MB , σuo}), IDcar}) . (8)

The latter value reveals nothing about MB as πuc is randomly generated for
every evaluation, whereas the former value reveals nothing about MB as Kuc

2 is
randomly generated for every evaluation. The nested encryption πuc◦πcaruo does
not influence the analysis due to the mutual independence of the two functions.

SR2 - Authenticity of MB. An owner who initiates the access token genera-
tion and distribution, first signs the booking details using its private key before
sending those to the KSMS in shares. Therefore, once the car receives the token
and obtains the booking details, it can verify uo’s signature on the booking de-
tails. In other words, the car can verify the source of MB , uo, and its integrity.
Suppose, to the contrary, that a malicious consumer can get access to a car
of an uo. This particularly means that it created a tuple (MB , σuo) such that
verify(Pkuo ,MB , σuo) holds. If σuo is new, this means that uc forges a signature
for the secret signing key Skuo . Denote the event that this happens by

E1 : A forges sign(Skuo , ·) for some Skuo . (9)

On the other hand, if (MB , σuo) is old but the evaluation is fresh, this means a
collision hash(Certuc) = hash(Certuc′). Denote the event that this happens by

E2 : A finds a collision for hash . (10)

We thus obtain that a violation of SR2 implies E1 ∨ E2.

SR3 - Confidentiality of AT car. The access token is generated by the KSMS
obliviously (as it is trusted), and only revealed to the public in encrypted form,
through Cuc of (8). Due to the uniform drawing of πuc (and the security of ρKSMS

used to transmit this function), only the legitimate user can decrypt and learn
the access token. It shares it with the car over a secure and private channel.
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SR4 - Confidentiality of Kcar. By virtue of our hybrid argument on the use
of the symmetric-key encryption scheme, EKcar got replaced with πcaruo , which
itself is a keyless random encryption scheme. As the key is now absent, it cannot
leak.

SR5 - Backward and forward secrecy of AT car. The access token is published
on PL as Cuc of (8), encrypted using πuc . Every honest uc generates a uniformly
randomly drawn function πuc for every new evaluation. Therefore, all encryptions
Cuc are independent and reveal nothing of each other. (Note that nothing can be
said about access tokens for malicious users who may deviate from the protocol
and reuse one-time keys.)

SR6 - Non-repudiation of origin of AT car. The car, who is a trusted identity,
verifies the origin through verification of the signature, verify(Pkuo ,MB , σuo).
The consumer uc verifies the origin through the verification of the MAC function,

CB
?
= mac(Kuc

2 ,MB). Note that uc does not effectively verify AT car, but rather
CB . In either case, security fails only if the asymmetric signature scheme or the
MAC function are forgeable. The former is already captured by event E1 in (9).
For the latter, denote the event that this happens by

E3 : A forges mac(Kuc
2 , ·) for some Kuc

2 . (11)

We thus obtain that a violation of SR6 implies E1 ∨ E3.

SR7 - Non-repudiation of delivery of AT car. uo can verify correct delivery
through the verification of the message sent by the car to the him/her,
verify(Pkcar, {MB , TScarAccess}, σcarAccess) at the end of the protocol. Security breaks
only if the signature scheme is forgeable. Denote the event that this happens by

E4 : A forges sign(Skcar, ·) for some Skcar . (12)

We thus obtain that a violation of SR7 implies E4.

PR1 - Unlinkability of uc and the car. The only consumer-identifiable data is in
uc’s certificate included in the booking details. Note that these are agreed upon
between uc and uo, so uo learns the identity of uc by default. Beyond that, uc only
communicates with the car, which is supposed to learn uc’s identity so that it can
perform proper access control. uc consults PL over an anonymous channel. The
booking details are transferred to and from the KSMS, but these are encrypted
and do not leak by virtue of their confidentiality (security requirement SR1).

PR2 - Anonymity of uc and the car. The reasoning is identical to that of PR1.

PR3 - Undetectability of AT car operation. Access token generation, update, or
revocation is performed using the same steps and the same type of messages sent
to the KSMS and PL. Hence, outsiders and system entities can not distinguish
which operation has been requested.
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PR4 - Forensic evidence provision. In the case of disputes, the information
related to a specific transaction (and only this information) may need to be
reconstructed. This reconstruction can be done only if the KSMS servers collude
and reveal their shares. In our setting, these servers have competing interests,
thus they would not collude unless law authorities enforce them to do so. Due to
the properties of threshold secret sharing, the private inputs can be reconstructed
by a majority coalition. This is, if the KSMS consists of three parties, it suffices
two of such parties to reconstruct the secrets (for semi-honest and malicious
cases).

FR1 - Offline authentication. Note that steps 1-3 of the protocol require a net-
work connection, but step 4, car access, is performed using close range communi-
cation and with no need of a network connection. The decryption and verification
of the access token can be performed by the car offline (it has its πcaru0 and uo’s
public key Pkuo stored). Sending the confirmation signature σcarAccess can also be
done offline.

Conclusion. In conclusion, SePCAR operates securely as long as the costs of
(4-6), together with the probability that one of the events (9-12) occurs, are
sufficiently small:

Advµc-prf
prf (2q, t) + Advl-pke

enc (t) + Advq+µcar-ske
E (2q, t) + Pr (E1 ∨ E2 ∨ E3 ∨ E4)� 1 .

By design, the probability that event E1 ∨ E4 occurs is upper bounded by
Advµo+µcar-euf

sign (2q, t), the probability that event E3 occurs is upper bounded
by Advq-mac

mac (q, t), and the probability that E2 occurs is upper bounded by
Advcol

hash(t). We thus obtain

Pr (E1 ∨ E2 ∨ E3 ∨ E4) ≤ Advµo+µcar-euf
sign (2q, t) + Advq-mac

mac (q, t) + Advcol
hash(t) ,

which completes the proof. ut
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Owner (uo) Car Consumer (uc) Public Ledger (PL) KSMS (trusted)

MB = {hash(Certuc), IDcar, Lcar, CDuc , ACuc , IDB}
msg{SES K GEN REQ, IDB}

πuc $←− Func(E)
Kuc

2 ← $uc

CKSMS ← ρKSMS({πuc ,Kuc
2 })

σuo ← sign(Skuo , {MB})
Muc ← {MB , σuo}

msg{SES K GEN ACK, IDB , CKSMS}

msg{AT GEN REQ, IDuo , CKSMS,Muc}

πcaruo ← query(IDuo , DBKSMS)
AT car ← πcaruo (Muc)
{πuc ,Kuc

2 } ← (ρKSMS)−1(CKSMS)
Cuc ← πuc({AT car, IDcar})
CB ← mac(Kuc

2 ,MB)

msg{AT PUB REQ,CB , Cuc}

publish(TSPub, CB , Cuc)

msg{M PUB ACK,TSPub}
msg{AT PUB ACK,TSPub}

msg{AT PUB ACK,TSPub}
query an(TSPub)

TSPub CB Cuc
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. . . . . . . . .

msg{CB , Cuc}

if CB ?
= mac(Kuc

2 ,MB) then
{AT car, IDcar} ← (πuc)−1(Cuc)

else
Break

end if

msg{AT car, IDcar,Certuc}

{MB , σuo} ← (πcaruo )−1(AT car)
verify(Pkuo ,MB , σuo)

Challenge / Response

σcar
Access ← sign(Skcar, {MB , TScar

Access})

msg{σcar
Access, TS

car
Access}

verify(Pkcar, {MB , TScar
Access}, σcar

Access)

Fig. 9. Simplified representation of SePCAR for the proof of Theorem 2.
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