
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/178461

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/178461

Eric Verheul

KeyControls and Radboud University
Nijmegen
P.O. Box 9010,
NL-6500 GL Nijmegen
eric.verheul@keycontrols.nl

Bart Jacobs

Radboud University Nijmegen
P.O. Box 9010,
NL-6500 GL Nijmegen

bart@cs.ru.nl

Polymorphic Encryption and Pseudonymisation
in Identity Management and Medical Research

To appear in: Nieuw Archief voor Wiskunde, 2017

This paper sketches how the classical ElGamal
public key encryption system can be used in a
novel way to provide new privacy protection mech-
anisms, notably in identity management and in
medical research.

1. Introduction

In 2014 the first author identified a paradox in the foreseen
Dutch eID scheme [3, 5]. This scheme allows citizens to
authenticate to governmental organisations through pri-
vate parties, like banks or telecom providers. For func-
tional reasons, these parties would need to provide a na-
tional citizen identifier called ‘BSN’ to such governmen-
tal organisations. However, Dutch privacy regulation pre-
cludes private parties from processing the BSN. This led
to the following question: is it possible to store the BSN in
some encrypted form at an authentication provider such
that it can be later transformed into a form decipherable
by, and only by, the intended governmental organisation?
During transformation the BSN should not temporarily
emerge in the clear at the authentication provider, so that
a common decrypt-encrypt transformation would not be
suitable. Also, in the end, only the intended governmental
organisation should be able to decrypt the BSN. A solution
to this problem was needed. But the obvious approach to
provide each governmental organisation with the same se-
cret key for decryption would undermine the required level
of security.

The second author encountered a similar challenge in
healthcare and medical research. Here, different parties
(doctors, researchers) wish to investigate patient data from
various sources. To avoid cumbersome bilateral exchanges,

a central repository is required. As in the eID case, pri-
vacy regulation mandates that these data be stored in en-
crypted form. Hence also in this case it would be desirable
if the encrypted data (ciphertext) is transformable to a
form that is locally decipherable for the different parties.

Both use cases gave rise to the development of Poly-
morphic Encryption and Pseudonymisation, abbreviated
as PEP. With the similar techniques of polymorphic en-
cryption and polymorphic pseudonymisation new security
and privacy guarantees can be given which are essential
in areas such as privacy-friendly identity management,
(personalised) healthcare, medical data collection via self-
measurement apps, and more generally in the internet of
things and in data analytics.

The key ideas of polymorphic encryption are:

(1) Personal data can be encrypted in a ‘polymorphic’
manner and stored at a central party in such a way
that the central storage facility cannot get access.
Crucially, there is no need to fix a priori who can de-
crypt the data later, so that the data can immediately
be protected at the source.

(2) Later on it can be decided who can decrypt the data,
via some transformation of the encrypted data (ciph-
tertext) which makes it locally decryptable via locally
different (diversified) cryptographic keys. This deci-
sion will be made on the basis of a policy, in which
the data subject should play a key role.

(3) This transformation of encrypted data can be per-
formed by a trusted party in a blind manner, without
seeing the content; the resulting transformed cipher-
text is transformed into locally decryptable ciphertext,
for a specific other party.

In an eID scheme the encrypted data can be a national
citizen identifier (like BSN) stored at an authentication

1

provider; it can be decided later which government organ-
isation gets access to it, after a citizen’s login request. In
healthcare, a PEP-enabled measurement device — oper-
ated by a doctor or by a user himself — can immediately
encrypt the data; the user can decide later that, for in-
stance, doctors X,Y, Z may at some stage decrypt and
use the data in their diagnosis, or medical research groups
A,B,C may use it for their investigations, or third parties
U, V,W may use it for additional services, etc.

This PEP technology can provide the necessary security
and privacy infrastructure for big data analytics, where
data comes from various sources, like in the internet of
things. People can entrust their data in polymorphically
encrypted form, and each time decide later to make (parts
of) it available (decipherable) for specific parties, for spe-
cific analysis purposes. In this way users remain in control,
and can monitor which parts of their data are used where,
by whom, and for which purposes.

The polymorphic encryption infrastructure can be sup-
plemented with a pseudonymisation infrastructure which
is also polymorphic, and guarantees that each individual
will automatically have different pseudonyms at different
parties.

This paper provides an introduction to Polymorphic
Encryption and Pseudonymisation (PEP), focusing on
identity management and health care as two application
areas.

The PEP framework is currently being implemented in
the Dutch eID scheme, see Section 5. The framework
is also elaborated into an open design and open source
(prototype) implementation at Radboud University in Nij-
megen, The Netherlands. The technology will be used and
tested in a real-life Parkinson research project at the Rad-
boud University Medical Center, see Section 6.

2. ElGamal revisited

The expression ‘ElGamal’ is used for one of the first asym-
metric, public key crypto algorithms, named after its in-
ventor [1]. It can be used both for encryption and for
digital signatures. Here we only use the encryption ver-
sion. This section recalls the basic definitions and results,
assuming familiarity only with elementary group theory.
In particular, it describes three operations on ElGamal ci-
phertexts that form the basis for PEP. Indeed, the PEP
functionality exploits the ‘malleability’ of ElGamal en-
cryption, see Lemma 2.1 below.

ElGamal works in a cyclic group. In practice we shall
use (prime order subgroups of) elliptic curves [4] as groups,
involving addition of points on a curve, and so we prefer
additive notation for a group G = (G,+, 0). Let G be a
group of prime order q and let G ∈ G be a fixed generator.
This means that q is the least non-zero natural number
with q ·G = 0 and that each element H ∈ G can be writ-
ten as H = k · G for a unique k ∈ {0, 1, . . . , q − 1}. The

latter set is the carrier of the field Fq of size q, which is
how we shall write it from now on. With F∗

q we denote the
non-zero elements of the field, i.e. its multiplicative group.
A randomly selected element in a set is denoted by ∈R.

The security of ElGamal encryption depends on the
hardness of the discrete logarithm (DL) problem in the
group. The DL problem says: given n · G ∈ G, for some
number n ∈R Fq, then it is computationally infeasible to
find n in polynomial time in log2(q), i.e. in the number
of bits in the binary representation of q. A suitable in-
stance of G is the (largest prime order subgroup of the)
Montgomery Elliptic Curve Curve255191, offering 128 bits
of security, or the Brainpool320r1 curve2 offering 160 bits
of security. The latter curve is currently also used in Eu-
ropean electronic passports, including the Dutch ones.

We recall the basics of ElGamal encryption.
Private key The private key y of a user is a random

element in F∗
q , which is kept secret by the owner.

Public key The public key Y ∈ G is the group element
Y = y ·G ∈ G. Due to the DL problem, y cannot (feasibly)
be obtained from Y and G. This value Y is assumed to
be known to everyone.

Encryption Let M ∈ G be a message that we wish to
encrypt, with public key Y . ElGamal encryption is ‘ran-
domised’ or ‘probabilistic’: it uses randomness in each en-
cryption so that encrypting the same message twice gives
different ciphertexts, with high probability. We choose a
non-zero r ∈R Fq and encrypt M as the pair of group
elements:

〈 r ·G, M + r · Y 〉. (1)

We recall that a fresh (new) random number r should be
used for each encryption.

Decryption Let a ciphertext pair 〈B,C〉 ∈ G × G be
given corresponding to the public key Y = y · G. The
ElGamal decryption of 〈B,C〉 is the group element:

C − y ·B. (2)

(We use the letters B for blinding and C for cipher.) One
can easily verify correctness, i.e. that decryption returns
the original message M . Security is based on the DL prob-
lem.

Notation We shall write EG for the ElGamal encryp-
tion function, but with a minor twist. We define:

EG(r,M, Y) = 〈 r ·G, M + r · Y, Y 〉. (3)

As before r is the random number that needs to be dif-
ferent each time. Notice that the function EG produces
a 3-tuple in (3), instead of a 2-tuple in (1): its type is
EG : Fq×G×G −→ G×G×G. This is purely for adminis-
trative reasons: it makes it easier to formulate the results
in Lemma 2.1 below. We do not use a special function or
notation for ElGamal decryption.

We now describe the three homomorphic properties of
ElGamal that form the basis of PEP. They are used in the

1See https://cr.yp.to/ecdh.html for more information.
2See http://www.ecc-brainpool.org.

operations of re-randomising, re-keying, and re-shuffling
that act on ciphertexts.

Lemma 2.1. In the notation introduced above we define
three functions RR,RK,RS each with type:

G3 × F∗
q −−−−→ G3

and describe their properties.

(a) The re-randomisation of a triple 〈B,C, Y 〉 ∈ G3

with s ∈ F∗
q is defined via the function:

RR(〈B,C, Y 〉, s) def
= 〈 s ·G + B, s · Y + C, Y 〉. (4)

If the input 〈B,C, Y 〉 is an ElGamal ciphertext, then
so is the output:

RR
(
EG(R,M, Y), s

)
= EG(s + r,M, Y). (5)

This ciphertext decrypts to the original message M via
the original private key y.

(b) The re-keying with k ∈ F∗
q is defined via the function:

RK(〈B,C, Y 〉, k)
def
= 〈 1

k ·B, C, k · Y 〉, (6)

where 1
k is the multiplicative inverse of k in the field

Fq. We then have:

RK
(
EG(r,M, Y), k

)
= EG(r

k ,M, k · Y). (7)

This ciphertext decrypts to the orignal message M via
a different private key k · y.

(c) The re-shuffling with n ∈ F∗
q is defined as a function:

RS(〈B,C, Y 〉, n)
def
= 〈n ·B, n · C, Y 〉. (8)

Then:

RS
(
EG(r,M, Y), n

)
= EG(n · r, n ·M,Y). (9)

Hence in this case we can decrypt with the original
private key to a re-shuffled message n ·M .

Proof All results are obtained by easy calculations. As
an illustration we prove that equation (5) holds: re-
randomisation (4) on an ElGamal encryption yields a new
ElGamal encryption of the same message with the same
public key, but with random number s + r, since:

RR
(
EG(r,M, Y), s

) (1)
= RR(〈r ·G, r · Y + M,Y 〉, s)
(4)
= 〈s ·G + r ·G, s · Y + r · Y + M,Y 〉
= 〈(s + r) ·G, (s + r) · Y + M,Y 〉
= EG(s + r,M, Y). �

The purpose of re-randomisation in the first part of
Lemma 2.1 is to create a copy of an ElGamal encryption
that is unlinkable to the original. The obtained unlink-
ablity is equivalent to a mathematical problem called the
Decision Diffie-Hellman problem in G which is believed
to be hard in the elliptic curve groups mentioned earlier.
This problem can be formulated as: given H ∈R G and the
quadruple (G,H, a ·G, b ·H) for a, b ∈R F∗

q decide if a = b.
Compare [2, Theorem 10.20]. Sometimes we shall combine

the re-keying and re-shuffling operations. The next result
tells that the order of such combinations does not matter.

Lemma 2.2. The re-keying and re-shuffling operations
RK and RS from Lemma 2.1 commute. Explicitly:

RS
(
RK(〈B,C, Y 〉, k), n

)
= RK

(
RS(〈B,C, Y 〉, n), k

)
.

Proof This follows from an easy calculation:

RS
(
RK(〈B,C, Y 〉, k), n

)
= RS

(
〈 1k ·B,C, k · Y 〉, n

)
= 〈n · (1

k ·B), n · C, k · Y 〉
= 〈 1k · (n ·B), n · C, k · Y 〉
= RK

(
〈n ·B,n · C, Y 〉, k

)
= RK

(
RS(〈B,C, Y 〉, n), k

)
. �

Based on the above lemma we can combine re-keying
and re-shuffling into a single function RKS : G3× (F∗

q)2 →
G3 by:

RKS(〈B,C, Y 〉, k, n) = 〈nk ·B,n · C, k · Y 〉. (10)

3. Polymorphic encryption

From now on we assume that there is a system-wide fixed
group G with generator G ∈ G of prime order q. Also,
some trusted party has generated a master private key
y ∈R F∗

q , with corresponding public key Y = y · G. The
private y is securely stored, for instance in a hardware se-
curity module (HSM). It will not be used for decryption,
but only for generating other, derived private keys.

Given certain (personal) data D, anyone can form what
we call the polymorphic encryption of D, of the form:

EG(r,D, Y) where r ∈R F∗
q . (11)

This means that any data source can encrypt data, using
the master public key Y , and a self-chosen random num-
ber r. Our aim is to transform this ciphertext in such a
way that dedicated parties can decrypt it.

We consider a collection of service providers Sj , for
some finite index sets of j’s. In order to perform their
services, they need to get access to (parts of) the poly-
morphically encrypted data. In an identity management
context this could be a governmental organisation and in
an healthcare context this could be a doctor or a medical
researcher. Note that in the first context a data source can
polymorphically encrypt any data and not only the BSN.

In our setup, there is for each service provider Sj a se-
cret number sj ∈R F∗

q that is only known to a trusted
party called the transformer. The service provider obtains
a private key yj ∈ F∗

q which has the form yj = sj ·y, where
y is the master private key, mentioned earlier. The corre-
sponding public key Yj of Sj is then equal to sj ·Y , where
Y is the master public key. Indeed:

yj ·G = (sj · y) ·G = sj · (y ·G) = sj · Y = Yj .

Given some ciphertext 〈B,C, Y 〉 arising as in (11), the
transformer can turn it into a ciphertext that can be de-
crypted by a given service provider Sj . This is done via

re-keying with the secret factor sj , as in:

RK(〈B,C, Y 〉, sj) = 〈Bsj , C, sj · Y 〉 = 〈Bsj , c, Yj〉.

As we have seen in Equation (7), via such re-keying, any
data D that is polymorphically encrypted with the master
public key Y , becomes encrypted with the public key Yj of
service provider Sj . Hence this service provider can, after
this intervention of the transformer, decrypt the data.

We remark that the transformer should also apply re-
randomisation on either the input or output of the trans-
formation to avoid linkability issues. Notice that the se-
curity of the system rests on having two separate trusted
parties, one holding the master private key y, and one
‘transformer’ holding the key factors sj for each service
provider Sj . If these two trusted parties collude, the sys-
tem breaks down. Notice that the transformer manipu-
lates ciphertexts, but cannot see the content. This is a
very powerful and useful feature that we will further dis-
cuss in Sections 4 and 6.

4. Polymorphic pseudonymisation

In some cases service providers do not only want access to
personal data but also want to have a persistent identifier
related to the person to which the data pertains. That
is, for the same person this identifier is the same over all
sources providing data. In an identity management con-
text this could be a webshop that is not allowed to process
the BSN but needs a persistent identifier to give clients
access to their own accounts. Different webshops should
get different identifiers for the same client, so that they
cannot combine their records — simply based on the iden-
tifier. Researchers in a healthcare context typically are not
allowed to process the BSN either, but need to be able to
link the data from various sources to the same individual.

To facilitate these requirements PEP supports service
provider specific pseudonyms that can accompany the
data. To this end, we assume that the data sources also
have access to a ‘global’ personal identification number Id
of the person to which it relates. In a Dutch setting one
can think of (some hash of) the earlier mentioned BSN.

In the previous section we assumed a master public key
Y and a transformer which holds for each service provider
Sj a secret key factor sj . We now assume that there ex-
ists another a master public key Z = z · G and that the
transformer has for each Sj secret key factors tj similar
to sj and additional ‘pseudonym’ factors uj . Thus, these
tj and z play the same role as sj and y. All these factors
sj , uj , tj are random but fixed.

For the actual usage of these pseudonyms, the trans-
former plays an important role again. Suppose service
provider Sj also wants access to a pseudonym related to
the person with identity Id. Then the data source first
embeds Id into the group G through an (one-way) embed-
ding I(.). Then the data source polymorphically encrypts
I(Id) using public key Z. This results in the polymorphic
pseudonym EG(r, I(Id), Z), and sends this together with

the index j to the transformer. The transformer looks up
the key factor tj and the pseudonym factor uj for service
provider Sj , and performs both re-keying (with tj) and
re-shuffling with uj , written as RKS in (10). This gives:

RKS
(
EG(r, I(Id), Z), tj , uj

)
= EG(r

tj
, uj · I(Id), tj · Z)

= EG(r
tj
, uj · I(Id), Zj).

The result is the encrypted local pseudonym of the form
uj ·I(Id) for Sj , which can be decrypted by Sj . Notice that
the transformer learns nothing, except that someone is ac-
cessing service provider Sj . Each time this process is run,
it produces the same local pseudonym uj · I(Id) at service
provider Sj , and a different local pseudonym uk · I(Id) at
a different service provider Sk. Pseudonym unlinkability
is guaranteed through the hardness of the Decision Diffie-
Hellman problem. As remarked earlier, the transformer
should apply re-randomisation on either the input or out-
put of the transformation to avoid linkability issues.

5. Polymorphic pseudonymisation in the Dutch eID
scheme

In the projected Dutch eID scheme a central government
organisation called BSN Linking (BSN-l) plays the role
of data source discussed in Sections 3 and 4. The trans-
forming role is played by (private) parties performing au-
thentication for the government. As part of user (citizen)
registration, authentication providers provide BSN-l with
information uniquely identifying the citizen, e.g. first and
last name, date of birth etc. BSN-l then looks up the cit-
izen and its BSN. The BSN-l forms both a Polymorphic
Idenitity (PI) and a polymorphic Pseudonym (PP). The
PI is simply a polymorphic encryption EG(r,BSN, Y) of
the BSN. The Polymorphic Pseudonym is a polymorphic
encryption of the form EG(s, I(BSN), Y). The embedded
BSN, i.e. I(BSN), of Section 4 is based on a keyed hash
function (HMAC). Although the embedded value should
never be accessible outside BSN-l, the keyed hash ensures
that the BSN cannot be derived from it. Both PI and PP
are then sent to the requesting authentication provider
and stored in a client database. A citizen can register at
multiple authentication providers, for instance in order to
have a back-up authentication mechanism.

If registration was successful, the authentication
provider supplies the citizen with a (strong) means of au-
thentication, linked to the PI/PP pair. This, for instance,
could be a smart card, a challenge/response token or an
authentication APP on a mobile device. If a citizen wants
to login to a web service he is re-directed to an authen-
tication provider of his choosing — where he has been
registered already. By use of the authentication means,
the citizen can be linked to its PI/PP in the client data-
base of the authentication provider. If the web service is
allowed to use the BSN, the authentication provider then
blindly turns the PI to an Encrypted Identity holding the
BSN using Equation (7). The Encrypted Identity is then

sent to the organisation who can decipher the BSN from
it. If the organization is not allowed to use the BSN, the
authentication provider selects the PP and blindly turns
this to Encrypted Pseudonym via (10). This is then sent
to the organisation who can decipher a local pseudonym
from it.

Dutch governmental organisations are allowed by law
to use the BSN, but only if strictly necessary. If a pseu-
donym suffices, then that should be used. This is also
known as the data minimisation principle stipulated in
European privacy regulations. Hence in the case of gov-
ernmental organisations there is a choice, namely to use
the Polymorphic Identity (PI) — for BSN — or the Poly-
morphic Pseudonym (PP) — for a pseudonym — at the
authentication provider. The status controller introduced
below is a first example of a governmental service based
on pseudonyms instead of BSNs.

To facilitate these transformations, the authentication
providers are given secret factors sj , tj , uj by the govern-
ment which need to be stored in a hardware security mod-
ule. Notice that in the polymorphic setup, authentication
providers do not get access to citizen BSNs solving the
paradox from the introduction. Actually, the polymor-
phic setup can also solve another paradox. In the setup
indicated above, authentication providers know both the
identities of citizens and the service providers that they
want to login to. There are many cases where just regis-
tering that a user accessed a specific service can constitute
a breach of privacy. Such cases include a user retrieving
his results of a medical test or a user having an online psy-
chiatric consultation. This issue becomes even more man-
ifest if one is using private organisations that also provide
other services. As an illustration, suppose one is regularly
logging into an online consultation for alcoholics through
a bank acting as authentication provider. How comfort-
able would one then be to apply for a mortgage or a car
insurance application at that bank?

We note that privacy regulations mandate that authen-
tication providers need user consent to send information to
the governmental organisation. So not supplying the au-
thentication provider with the identity of the governmen-
tal organisation is not suitable. In the projected Dutch
eID scheme [3] such ‘privacy hotspot’ issues are procedu-
rally mitigated: authentication providers are required to
separate their registrations holding identifying user data,
e.g. name, address etc., from registrations holding usage
data, i.e. authentication transactions. Note that the poly-
morphic setup conveniently caters for this as authentica-
tion providers can store transactions under a local pseu-
donym.

This lead to the question if this separation can be
technically enforced: is it possible that an authentication
provider authenticates a user for an organisation without
knowing the identity of the user? This is paradoxical as
the authentication provider is required to identify the user

and to personally provide him with means of authentica-
tion. This paradox can also be solved through the poly-
morphic setup via a personal PEP-enabled smart card.
This is actually being developed for the public authenti-
cation provider (DigiD) in the Dutch eID scheme. For
this version of the eID system the PI and PP are not
(only) stored by the authentication provider, but also on
a contactless Dutch identity card, or driver’s license card
(hereafter simply called eID card). During authentication
DigiD reads the PI and PP from the eID card whereby the
card re-randomises these first. DigiD is then able to do the
transformation for a governmental organisation but can-
not determine the identity of the citizen. Actually, if the
same citizen would authenticate one second later, DigiD
would not even be able to determine this. This is due
to the hardness of the Diffie-Hellman Decision problem
mentioned earlier. To determine if the card has not been
revoked, e.g. after loss or theft, DigiD also uses the poly-
morphic setup. DigiD forms an encrypted pseudonym for
a so-called status controller and requests the status of the
card by sending this to the controller. The status of the
card is maintained by the issuer of the card which is also
provided an encrypted pseudonym during production of
the card. See also [5].

To allow his eID card to be read by DigiD, the user
needs to connect a contactless card reader to his com-
puter or to use a mobile device (smartphone) supporting
Near Field Communication (NFC). The eID card is heav-
ily based on electronic passport technology; in effect the
PI/PP on the card are protected as fingerprints on pass-
ports. Through this technology it is also arranged that the
user is technically in control of whether his card is provid-
ing both a PI and a PP to DigiD or only a PP. This allows
for applications such as referenda where the pseudonym
enforces that a citizen can cast his ballot only once but
where BSN usage would violate ballot secrecy.

6. Polymorphic encryption and pseudonymisation for
medical research

The second application area for PEP that we briefly ela-
borate on is medical research. In addition to traditional
‘one-time’ medical data sources, like an ECG or MRI scan,
researchers nowadays like to have continuous, real-time
access to patient data, for instance via various wearable
monitors and activity trackers. This presents challenges
for protected data management.

Via polymorphic encryption each data item D can be
stored securely at some storage facility as EG(r,D, Y).
Each device can itself compute such encryptions for the
data that it generates, since all that is needed is the pub-
lic key Y . As before, a ‘transformer’ can keep key factors
for each participating researcher or doctor, and re-key the
data so that it can be decrypted by that particular party.

In addition, via polymorphic pseudonyms it can
be achieved that different researchers receive different
pseudonyms for the same patient. This makes it hard to

combine data, for instance after data loss or theft. Again,
the pseudonymisation factors need to be associated with
each participating party, known by the transformer, who
can then re-shuffle and re-key in order to form local, de-
cryptable pseudonyms.

By also providing local database pseudonyms to the
researchers in encrypted form, researchers can put their
findings back into the database, so that it can become
visible for other participating researchers. Use of re-
randomisation of encrypted pseudonyms avoids linkabil-
ity issues. Even though these researchers all have different
polymorphic pseudonyms, the enriched data that they put
back will end up with the right individuals.

The PEP technology will be used for the first time
in 2017 on a larger scale in a medical research project
on Parkinson’s disease3, set up jointly by the Radboud
University Medical Center and by Verily, the life science
branch of the Google group, now called Alphabet. This
study will involve 650 patients, who will be monitored for
three years. Verily will provide wearable devices for this
purpose. Radboud’s computer security group, to which
the authors belong, contributes with an implementation
of the PEP technology4.

Apart from the basic functionality sketched above, the
PEP implementation provides authentication and autho-
risation for the various participants. The study is open to
other (international) research groups. They will first have

to submit a research plan to a supervisory body, and, after
approval, will get the appropriate (derived) cryptographic
keys, in order to access parts of the collected data that
are relevant for their research. In this set-up they will also
get their own (polymorphic) pseudonyms for the patients
involved.

Thus, the PEP infrastructure functions as a secure
database with encryption and pseudonymisation. This
sounds ideal, but there are also some restrictions. We
mention the two most prominent ones.

(1) It always remains possible to de-pseudonymise pa-
tients via the contents of the data, esp. with rare
symptoms, or by combining the data with other
sources. PEP will not protect against this. In the
Parkinson study such de-pseudonymisation is simply
forbidden by contract.

(2) When data is stored in encrypted form, searching in
the stored data, in order to select specific parts, is
not possible5. In principle, a researcher will have to
download all the data, decrypt locally, and then search
and select. This problem is alleviated by storing the
encrypted data together with unencrypted meta-data.
These meta-data can be used for selection, for instance
based on content or dates.

Once the PEP software is sufficiently tested and stable, it
will be made available as open source.

References
[1] T. ElGamal, A Public Key Cryptosys-

tem and a Signature scheme Based

on Discrete Logarithms, IEEE Trans-

actions on Information Theory 31(4),
1985, pp. 469-472.

[2] J. Katz, Y. Lindell, Introduction to
Modern Cryptography, CRC PRESS,
2008.

[3] Ministry of the Interior and Kingdom
Relations, Uniforme Set van Eisen, ver-

sion 1.0, 15-12-2016.

[4] D. Hankerson, A. Menezes and S. Van-
stone, Guide to Elliptic Curve Cryptog-
raphy, Springer, 2004.

[5] E.R. Verheul, The polymorphic eIDAS

token, Keesing Journal of Documents &
Identity, February 2017.

3See http://www.parkinsonopmaat.nl/
4See pep.cs.ru.nl for more information; the PEP development is funded by the province of Gelderland.
5There are advanced cryptographic techniques for searching in encrypted data, but they have not been integrated (yet) with PEP.

