
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/178459

 

 

 

Please be advised that this information was generated on 2018-07-07 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/130068167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/178459


All the AES You Need on Cortex-M3 and M4

Peter Schwabe and Ko Stoffelen

Radboud University, Digital Security Group,
Nijmegen, The Netherlands

peter@cryptojedi.org, k.stoffelen@cs.ru.nl

Abstract. This paper describes highly-optimized AES-{128, 192, 256}-
CTR assembly implementations for the popular ARM Cortex-M3 and
M4 embedded microprocessors. These implementations are about twice
as fast as existing implementations. Additionally, we provide the fastest
bitsliced constant-time and masked implementations of AES-128-CTR to
protect against timing attacks, power analysis and other (first-order) side-
channel attacks. All implementations, including an architecture-specific
instruction scheduler and register allocator, which we use to minimize
expensive loads, are released into the public domain.

Keywords: AES, software implementation, ARM Cortex-M, constant-
time, bitslicing, masking

1 Introduction

AES was published as Rijndael in 1998 and standardized in FIPS PUB 197 in
2001. Highly optimized implementations have been written for most common
architectures, ranging from 8-bit AVR microcontrollers to x86-64 and NVIDIA
GPUs. See, for example, [4,17,24]. Implementing optimized AES on any of
these architectures essentially requires to start from scratch to find out which
implementation approach is going to be the most efficient. The past decades have
seen a large shift toward ARM architectures and while we have seen efficient
AES implementations for high-end processors used in modern smartphones [5]
and for older microprocessors used in smart cards [1,6], there is little to choose
from for modern low-end embedded devices and Internet of Things applications.

Sometimes an embedded device contains a coprocessor that can perform AES
encryption in hardware, but such a coprocessor is not always available. It makes
a device more expensive and it can increase the power consumption of a device.
Simply compiling an existing implementation written in, for example, the C
programming language, is unlikely to produce optimal performance. Even worse,
embedded systems are typical targets for timing attacks, power analysis attacks,

? This work was supported by the European Commission through the Horizon 2020
program under project number ICT-645622 (PQCRYPTO) and by Netherlands Orga-
nization for Scientific Research (NWO) through Veni 2013 project 13114. Permanent
ID of this document: 9fc0b970660e40c264e50ca389dacd49. Date: October 19, 2016

1



and other forms of side-channel attacks, so software for those devices typically
needs to include adequate protection against such attacks.

We fill these gaps by providing highly optimized AES software implementations
for two of the most popular modern microprocessors for constrained embedded
devices, the ARM Cortex-M3 and the Cortex-M4. Our implementations of AES-
{128, 192, 256}-CTR are more than twice as fast as existing implementations.
We also provide a single-block AES-128 implementation, a constant-time AES-
128-CTR implementation and a masked implementation that is secure against
first-order power analysis attacks. All of them are the fastest of their kind. They
are put into the public domain and available at https://github.com/Ko-/aes-

armcortexm.
The results of this paper are not only interesting for “stand-alone” AES

encryption. In the ongoing CAESAR competition for authenticated encryption
schemes, 14 out of the 29 remaining second round candidates are based on AES
or the AES round function. Our implementations will be helpful to speed up
those candidates on embedded ARM microcontrollers.

Organization of the paper. In Section 2, we will first discuss AES and give
an outline of the different implementation approaches. We will also provide
an overview of the target architecture and what features we can benefit from
when optimizing software for speed. Section 3 then discusses our fastest AES
implementations, based on the T-tables approach, while Section 4 and 5 consider
our constant-time bitsliced and our masked implementation, respectively. We
report performance benchmarks and provide a comparison to related work at the
end of each of the Sections 3–5.

2 Preliminaries

2.1 Implementing AES

AES is a substitution-permutation network that operates on 128-bit blocks. Key
sizes of 128, 192, and 256 bits are supported. Depending on the key size, the
network has 10, 12, or 14 rounds, respectively. The nonlinear substitution layer
consists of the SubBytes step, where an 8-bit S-box is applied to each byte of
the state. The linear permutation layer consists of ShiftRows and MixColumns,
to provide diffusion. In the beginning, between all rounds, and at the end, the
AddRoundKey step xors the state with round keys that are derived from the
main key during a key schedule. MixColumns is omitted in the final round [12].
In software, there are four main implementation approaches:

Traditional: All steps are implemented “as is”; typically SubBytes is imple-
mented through a 256-byte lookup table.

T-tables: SubBytes, ShiftRows, and MixColumns are combined in 4 1024-byte
lookup tables. Each AES round then consists of 16 masks, 16 loads from
the lookup tables and 4 loads from the round keys, and 16 XORs. This leads
to very efficient implementations on platforms with a word size of at least

2

https://github.com/Ko-/aes-armcortexm
https://github.com/Ko-/aes-armcortexm


32 bits. At the cost of extra rotations, only 1 lookup table is required. This
strategy was already suggested in the original Rijndael proposal [11]. Our
fastest implementations in Section 3 are based on this approach.

Vector permute: The disadvantage of the T-tables approach is that key- and
data-dependent lookups open the door for timing attacks on architectures
with cache. See, for example, [3,25,33]. Another approach to implementing
AES, which avoids such data-dependent lookups, uses vector-permute instruc-
tions [15]. However, such instructions are unavailable on our target platform,
which is why we do not go into more detail on this strategy.

Bitslicing: Another approach that does not require lookup tables is bitslicing,
originally introduced for DES by Biham [7]. The core idea is that data is split
over multiple registers, but that other blocks are used to fill the registers.
Multiple blocks can then be processed in parallel in a SIMD fashion. This
approach is especially beneficial for architectures with large registers. For AES,
the 128-bit state is usually bytesliced over 8 registers, as this allows for an
efficient linear layer. Various papers describe bitsliced implementations of AES
on Intel processors [19,20,21]; the most recent one by Käsper and Schwabe
from 2009 is still the software speed-record holder [17]. Our implementations
in Sections 4 and 5 are also using bitslicing.

2.2 ARM Cortex-M

The Cortex-M is a family of 32-bit processors by ARM meant for use in embedded
microcontrollers. They are designed to be cheap and to be energy efficient, while
still being powerful enough to offer adequate performance in applications such
as automotive systems, medical instruments, the Internet of Things, or other
consumer products. As of 2015, over 10 billion of these processors have been
shipped [27].

The Cortex-M3 was announced in 2004, while the Cortex-M4 is a more recent
successor from 2010. Both microprocessors have 16 32-bit registers, of which three
are reserved for program counter, stack pointer, and link register. The link pointer
can be pushed to the stack to free another register. Both microprocessors support
the ARMv7-M architecture and the Thumb-2 technology, but the Cortex-M4
supports additional instructions for digital signal processing, i.e., the ARMv7E-M
architecture. However, we do not use these extensions.

Bitwise and arithmetic instructions take one cycle on these architectures,
except for divisions or writes to the program counter. Branches, loads, and stores
may take more cycles, which is why they can easily bottleneck the performance. A
distinguishing feature of the ARM architecture is the availability of barrel-shifting
registers. This means that we can do arithmetic on rotated or shifted registers,
without any additional cost for the rotation or shift.

We used the STM32L100C and STM32F407VG development boards. The
first comes with 256 KB of flash memory, 16 KB of RAM, and 4 KB of EEPROM.
It can run a Cortex-M3 core at up to 32 MHz. The second is more powerful and
has a 168 MHz Cortex-M4 core, 1024 KB of flash memory, 192 KB of RAM, and
a true-random-number generator.

3



2.3 Accelerating memory access

Memory access can be expensive in terms of CPU cycles. Additionally, there are
a lot of ways to introduce penalty cycles. Carefully optimized software therefore
avoids as many potential delays as possible. Here we list a number of generic
strategies related to memory access to reduce the cycle count of programs running
on the Cortex-M3 and M4. A siginifcant portion of our speedups of AES stem
from a combination of these strategies.

Flash. The instructions and tables are typically stored in flash memory. Accessing
flash can introduce a number of wait states, depending on the relative clock
frequency of the microprocessor core and the memory chip. For our development
boards, the STM32L100C and STM32F407VG, STMicroelectronics describes in
its documentation when it is possible to have zero wait states [29, p. 59, tbl. 13][30,
p. 80, tbl. 10]. For example, on the STM32L100C, the CPU clock can only run
at 16 MHz for a supply voltage of 3.3 V. To be able to compare the performance
of implementations across different devices or boards, it is important to be in
this scenario.

RAM. Something similar holds for accessing RAM, where the stack is stored. On
the STM32F407VG, four different regions of RAM are available: SRAM1, SRAM2,
SRAM3, and CCM. In our case it turned out to be faster to use the core coupled
memory (CCM), as it uses the D-bus directly.

Alignment. The Cortex-M3 and M4 support Thumb-2 technology, which means
that 16-bit and 32-bit encodings of instructions can freely be mixed. However,
consider the case that a 16-bit instruction starts at a word-aligned address,
followed by one or more 32-bit instructions. The 32-bit instructions are then no
longer word-aligned, which may cause penalty cycles for the instruction fetcher,
which fetches multiple instructions at a time. In this case, forcing the use of a
32-bit encoding for the first instruction by adding a .w suffix can improve the
instruction alignment and reduce the cycle count. Our implementations take this
into consideration. Penalty cycles may also be introduced when branching to
addresses that are not word-aligned, when loading from memory at addresses that
are not word-aligned or when not loading full words from memory. Implementers
needs to take care of the alignment themselves. Our implementations carefully
avoid these penalty cycles.

Pipelining loads. Most str instructions take 1 cycle, because of the availability
of a write buffer, but ldr instructions generally take at least 2 cycles. However, n
ldr instructions can be pipelined together to be executed in n + 1 cycles if there
are no address dependencies and the program counter remains untouched. An
instruction such as ldm pipelines all of its loads together, but when it is followed
by an ldr, those will not be pipelined together. For our implementations, we
pipeline as many loads as possible.

Caches and prefetch buffers. The Cortex-M3 and M4 by themselves do
not have any caches. However, caches can be added in embedded devices or
development boards to boost the performance. For example, the STM32F407VG

4



contains 64 128-bit lines of instruction cache memory and 8 128-bit lines of data
cache memory [30, p. 90]. It also contains an instruction prefetch buffer to reduce
the experienced number of wait states when a microprocessor running at a high
clock frequency accesses flash memory to fetch 128 bits of instructions [30, p. 82].
The STM32L100C supports a similar prefetch buffer when 64-bit flash access is
enabled [29, p. 59].

Data location. When one wants to read data that is stored in the flash memory,
one first needs to load the address of the data block before one can load the data
itself. However, when data is located within 4096 bytes of the value of the program
counter, the first load instruction can be replaced by an adr pseudo-instruction
that is really an addition or subtraction of the program counter, which may save
one cycle, depending on whether the load could be pipelined. It is therefore useful
to store data close to where the data is being used.

3 Making AES fast

Ever since Rijndael was standardized as AES, a lot of effort has been put into
making fast and secure software implementations for a large range of platforms
and architectures. Numerous optimization tricks have been suggested to improve
the performance. For T-table-based implementations, the majority is summarized
in [4]. In this section we discuss which strategies are useful to apply on the
Cortex-M3 and M4.

Using the T-table-based approach, AES-128-CTR can typically be imple-
mented in 720 instructions: 208 loads, 4 stores, 160 shifts, 176 masks, 168 xors
and 4 others [4]. Thanks to ARM’s barrel-shifting registers, we can do combined
shifts and masks, saving 160 instructions. [4] also mentions scaled-index loads
and second-byte instructions. A scaled-index load is the option to shift the offset
of a load instruction for free, while a second-byte instruction allows for extracting
the second byte of a register in one instruction. Both features are supported by
our architecture, but as all shifts are already fully subsumed, these optimizations
no longer yield any additional advantage.

Byte loads and two-byte loads could save another 8 instructions by not
requiring an additional mask, but loads that are not word-aligned cause a
penalty cycle, so for speed these optimizations are of little use. Other potential
optimization strategies, such as combining masks and inserts or loads and xors,
are not possible in a single instruction on these platforms. Being able to do
byte extraction via loads allows to exchange arithmetic instructions for load
instructions, but loads are either as fast or slower, so this strategy gives no
advantage either.

With round-key recomputation, only one out of four round-key words is stored
for all rounds except the first. During encryption, the other parts of the round
keys can be recomputed on the fly, exchanging 30 loads for 30 xors. However, in
our case the loads can be fully pipelined and the round keys from the previous
round would not fit into registers anymore, so this would also not reduce the total
number of cycles. Round-key caching, where all round keys are kept in registers

5



when encrypting multiple blocks, would require even more registers. Another
technique called padded registers exists, where a 32-bit value is stored in a 64-bit
register in such a way that combing shifts and masks can be done a bit more
cleverly. However, our registers are too small to use anything like this.

However, counter-mode caching helps to save another 81 instructions in the
main loop. In counter mode, for 256 consecutive blocks, only 1 byte of the input
changes. This means that through the first and second AES round, computations
that do not depend on this one byte can be cached and reused. Starting from
the third round, everything will depend on all input bytes. While there is some
additional overhead involved in storing and retrieving the cached values, this
trick already leads to a speedup when only 2 blocks are processed.

3.1 Our implementations

Our implementations of AES-128 encryption, AES-128-CTR, AES-192-CTR, and
AES-256-CTR use one 1024-byte lookup table. The extra rotates that this would
normally cause come for free thanks to ARM’s barrel shifting registers. Using
four tables would save another 40 1-cycle instructions in the key schedule, and
16 1-cycle instructions in the final round for encryption, but as there is typically
little memory available on microcontrollers and the improvement in speed is only
marginal, we decided that this trade-off was not worth it. AES-128 decryption
needs two 1024-byte lookup tables. On the other hand, the 16 mask instructions
in the final round are no longer required.

Key expansion is performed separately, as the round keys can be reused for
multiple blocks. In our implementation of counter mode, there is a 32-bit counter
and a 96-bit nonce. The reason is that then we do not have to deal with a carry
from the counter and a conditional add for the second counter word, which gives
another small speedup. We consider a 32-bit counter, providing a maximum
stream length of 232 · 16 = 68719476736 bytes, to be large enough in a typical
microcontroller environment.

The performance of our speed-optimized implementations is summarized in
Table 1. All results are averages over 10000 runs with random keys, inputs, and, if
applicable, nonces. For encryption in counter mode, the number of cycles reflects
the average number of cycles per block when processing 256 blocks, or 4096
bytes. Loops are fully unrolled, so the code size can be reduced drastically with
only a small performance penalty. Note that data in ROM is typically shared by
key expansion and encryption/decryption, so it has to be in memory only once.
Under RAM usage, I/O refers to the amount of RAM that is required to store
the input and output for the functions, e.g., 192 + 2m means that we require 4
bytes for the counter, 12 for the nonce, 176 for all round keys, m for our m-byte
input, and m for the m-byte output. Again, I/O data is typically shared by key
expansion and encryption/decryption and the same stack space can be reused
for the encryption/decryption function call. It turns out that the same code runs
in slightly fewer cycles on the Cortex-M3, which is most likely caused by the
different way that instructions are fetched.

6



Table 1. Performance of unprotected AES

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 key expansion encryption 289.8 294.8 902 1024 176 32

AES-128 key expansion decryption 1180.0 1174.6 3714 2048 176 176

AES-128 single block encryption 659.4 661.7 2034 1024 176 + 2m 44

AES-128 single block decryption 642.5 648.3 1974 2048 176 + 2m 44

AES-128-CTR 546.3 554.4 2192 1024 192 + 2m 72

AES-192 key expansion 264.9 272.2 810 1024 240 32

AES-192-CTR 663.2 673.0 2576 1024 224 + 2m 72

AES-256 key expansion 364.8 371.8 1166 1024 240 32

AES-256-CTR 786.9 791.7 2960 1024 256 + 2m 72

3.2 Comparison to existing implementations

There are few publicly available AES implementations optimized for the Cortex-
M3 and M4:

– In the SharkSSL crypto library, a speed of 1066.7 cycles per block is claimed
for AES-128-ECB on the Cortex-M3 [28]. CTR mode is unavailable.

– A company called Cryptovia sells an implementation that does AES-128 on
a single block in 1463 cycles [10], also on the Cortex-M3.

– The latest version of mbed TLS [26], formerly known as PolarSSL, contains a
table-based AES-128-CTR implementation that takes 1247.4 cycles per block
on the M3, while AES-128 key expansion takes 41545 cycles1.

– NXP hosts the AN11241 AES library [23], but its implementation is very
slow. AES-128-ECB runs in 4179.1 cycles per block on the M3, while the
AES-128 key expansion takes 1089 cycles1.

– The fastest implementation currently listed by the FELICS benchmarking
framework [13] encrypts a single block with AES-128 in 1816 cycles on a
Cortex-M3. The fastest key scheduling takes 724 cycles2.

We therefore claim that our CTR-mode implementations are about twice as
fast as existing implementations. We also require fewer cycles than optimized
implementations for older yet similar ARM architectures [1], even though in [1]
heavy use is made of the fact that the full lookup tables fit in the data cache on
a StrongARM-1110, which does not hold for our platforms.

1 We used gcc -O3 -funroll-loops -fno-schedule-insns with GCC 6.1.1 for these
benchmarks, the best set of compiler flags we could find, based on all sets that are
tried in the SUPERCOP benchmarking framework.

2 AES 128 128 V06 in scenario 0 with -Os and with -O3, respectively.

7



3.3 Benchmarking with FELICS

The FELICS framework [13] has been proposed as an open system to benchmark
the performance of implementations of lightweight cryptographic systems on
three different microprocessors, one of them being the ARM Cortex-M3. Cycle
counts and memory usage are measured for three usage scenarios. Scenario 0
deals with single-block encryption, where the round keys are stored in RAM. In
scenario 1, 128 bytes are encrypted in CBC mode. In scenario 2, 128 bits are
encrypted in CTR mode.

This choice of scenarios means that our implementation needs to be adapted
to fit in the framework. In particular, counter-mode caching can no longer be
used and needs to be removed, which impacts the performance. Furthermore, the
decryption algorithm and decryption key expansion are now required as well in
scenarios 0 and 1. But most importantly, the FELICS framework does not set
the number of wait states, which means that a load from memory will cost more
than 2 cycles and that reported cycle counts are biased toward implementations
with less load instructions. This greatly slows down the overall performance of
our implementation.

The framework reports 1641 cycles for our encryption in scenario 0 and 578
cycles for our key schedule. Although this is still faster than currently listed
results, the margin is smaller. This also holds for scenarios 1 and 2.

4 Protecting against timing attacks

While the availability of caches allows for speedups on platforms with relatively
slow memory, it also makes table-based AES implementations vulnerable to
cache-timing attacks [3,18]. A popular technique for writing a constant-time AES
implementation that is still reasonably fast, is by applying bitslicing. Of course,
caches can be simply disabled when performing cryptographic operations, but
this implementation also serves as a step toward the masked implementation.

Bitslicing is often explained as a technique where every bit of the state is stored
in a separate register, such that we can do operations on the bits independently
and such that we can process 32 blocks in parallel on 32-bit machines. However,
in the case of AES this is not the fastest way to bitslice, as most operations are
byte-oriented. Full bitslicing would also increase the amount of registers needed
to store the state by a factor of 32. There are very few architectures that have
enough registers to keep the bitsliced state in registers, so there would be a lot
of overhead in storing and loading data to other types of memory.

Könighofer suggested in [19] to ‘byteslice’ and to process 4 blocks in parallel
on an architecture with 64-bit registers. Käsper and Schwabe were able to process
8 blocks in parallel using 128-bit registers [17]. Unfortunately, the Cortex-M3
and M4 only have 32-bit registers, so we can only process 2 blocks in parallel
while still retaining an efficient implementation of the linear layer.

8



4.1 Our implementation

After key expansion, the round keys are stored in their bitsliced representation. To
transform to bitsliced representation, we require 12 SWAPMOVE operations [22].

SWAPMOVE(a,b,n,m) {

t = ((a � n) ⊕ b) & m

b = b ⊕ t

a = a ⊕ (t � n)

}

Due to ARM’s barrel shifter, we can implement SWAPMOVE in just 4 1-cycle
instructions, which gives a transformation overhead of 48 cycles.

eor t, b, a, lsl #n

and t, m

eor b, t

eor a, a, t, lsr #n

During encryption, the AES state is first transformed to bitsliced representation.
AddRoundKey is then again just a matter of xoring the bitsliced round keys with
the bitsliced state.

For SubBytes, a lot of research has been done on an efficient hardware
implementation of the AES S-box [9]. These results are also very useful for
bitsliced software implementations. Boyar and Peralta found a circuit with only
115 gates [8], which was later improved to 113: 32 AND gates, 77 XOR gates, and 4
XNOR gates. This is the smallest known implementation, which is why we used it
as a basis for our implementation. However, with only 14 available registers, it is
impossible to implement it directly in 113 instructions. We need more instructions
to deal with storing values on the stack or with recomputation of values. We
wrote an ad hoc combined instruction scheduler and register allocator that is
tailored to our microprocessors.

Scheduling. Both instruction scheduling and register allocation are hard prob-
lems, as is the combined problem. Compilers usually implement a graph coloring
algorithm and/or linear-scan allocation. They aim to schedule well on average,
but do not necessarily generate the most efficient assembly for a specific part of
code.

Existing compilers do not provide a lot of options to play with different
scheduling and allocation strategies, which is why we decided to write an ARM-
specific instruction scheduler and register allocator. This allows us to focus on
ARM’s three-operand instructions and to try several approaches. We aim to
minimize the number of loads and stores and the usage of the stack. We first
reschedule instructions to reduce the size of the active data set, by pushing
instructions down based on their left-hand side and by pushing instructions up
based on their right-hand side. Then we allocate registers in a greedy fashion,
where we insert loads and stores when necessary and try to leave the output in

9



registers. A more thorough overview of the tool is provided in [31], including a
comparison against the compilers GCC, Clang, and the ARM Compiler.

Our tool is nondeterministic because of hash randomization in Python, so
we try several scheduling strategies multiple times and only use the best result.
With our scheduler we are able to compute the AES S-box in 145 instructions:
the 113 original operations, 16 loads and 16 stores. It is unknown whether this is
optimal.

ShiftRows on a bitsliced state can be computed very efficiently on modern
Intel CPUs using 8 SSSE3 byte-shuffling instructions [17]. However, something
like this is unavailable on the Cortex-M3 and M4. We use the ubfx and uxtb

bitfield instructions, together with eor on shifted registers, to compute ShiftRows
in 8 · 13 = 104 1-cycle instructions. The code below performs ShiftRows on r9,
while r12 and r5 are used as temporary registers.

uxtb.w r12 , r9

ubfx r5 , r9 , #14, #2

eor r12 , r12 , r5 , lsl #8

ubfx r5 , r9 , #8, #6

eor r12 , r12 , r5 , lsl #10

ubfx r5 , r9 , #20, #4

eor r12 , r12 , r5 , lsl #16

ubfx r5 , r9 , #16, #4

eor r12 , r12 , r5 , lsl #20

ubfx r5 , r9 , #26, #6

eor r12 , r12 , r5 , lsl #24

ubfx r5 , r9 , #24, #2

eor r9 , r12 , r5 , lsl #30

In contrast, the barrel shifters allow us to compute MixColumns in just 27
eor instructions on shifted registers, which is even more efficient than in [17].

To update the counter for the next blocks, one can either store the bitsliced
representation and operate on this, or one can use the original representation
and transform this to bitsliced representation every two blocks. While the first
may appear to be faster, we implemented both and it turned out that the latter
is in fact more efficient. This is due to overhead caused by the limited way in
which you can do conditional execution with IT-blocks on these microprocessors.

Table 2 contains performance benchmarks of our implementation. Again,
speed is measured as the average number of cycles per block when encrypting 256
consecutive blocks, which explains the decimal for the encryption. The amount
of cycles is exactly equal for all 10000 combinations of random nonces, keys,
and inputs that we tried. We see a slowdown of roughly a factor 2.9 compared
to our previous implementation. Note, however, that when one can disable the
caches during the AES execution or when caches are not available at all, our
previous faster implementations are also constant-time and should be favored.
We verified that after disabling caches, the cycle counts are exactly equal for

10



random combinations of inputs and keys. There is little related work that would
make a fair comparison.

Table 2. Performance of constant-time AES

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 bitsliced

key expansion

1027.8 1033.8 3434 1036 368 188

AES-128-CTR

bitsliced constant-time

1616.6 1617.6 12120 12 368 + 2m 108

5 Protecting against side-channel attacks

Microprocessors are typical targets for side-channel attacks such as differential
power analysis or differential electromagnetic analysis. A well-known counter-
measure against first-order side-channel attacks that is used in practice is by
Boolean masking, where a secret intermediate value a is split into two statistically
independent shares, i.e., ra and ā = (a⊕ ra), where ra is called a random mask.
Linear operations can be computed on both shares independently. After a linear
operation, the shares can be xored together to unmask the result. Nonlinear
operations are more difficult to mask securely. Trichina suggested the following
provably secure method to mask a · b [32], where ā = (a⊕ ra), b̄ = (b⊕ rb), and
ra, rb, r are random masks:

((ā · b̄)⊕ ((ra · b̄)⊕ ((ra · rb)⊕ r)))⊕ (rb · ā).

This means that every AND operation requires 4 AND operations, 4 XOR operations,
and 1 load (of r) to mask.

We added first-order Boolean masking using Trichina gates to our constant-
time bitsliced implementations to find out how much this additional security
would cost on common microprocessors.

5.1 Our implementation

To generate the masks, we need a source of randomness. The STM32F407VG
contains a random number generator (RNG) that guarantees a new 32-bit random
word every 40 periods of the RNG clock. In the case of AES, 8 random words are
required to mask the input, as two blocks are processed in parallel, and 320 random
words are required for a single encryption, as SubBytes contains 32 AND operations
and is executed in all 10 rounds. While interleaving randomness generation and
executing instructions can decrease the waiting time, the performance of the

11



implementation will greatly depend on the performance of the RNG and the
relative clock frequency between the core and the RNG.

All other operations are linear, so at least a factor of 2 slowdown can be
expected there. However, because the size of the active data set doubles and
will not fit in 14 registers anymore, a lot of overhead is created by additional
loads and stores. Our scheduler manages to generate a securely masked bitsliced
SubBytes implementation in 2 · 83 + 4 · 32 = 294 XORs, 4 · 32 = 128 ANDs, 99
stores and 167 loads, that are pipelined as much as possible. Once more, the
speed is measured as the average number of cycles per block when encrypting
256 consecutive blocks. The cycle counts are precisely equal for all combinations
of inputs, keys, and nonces.

Table 3. Performance of masked constant-time AES

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128-CTR

masked constant-time

N/A 7422.6 39916 12 368 + 2m 1588

The performance of the final implementation is summarized in Table 3. Note
that of these 7422.6 cycles per block, 2132.5 are spent on generating random
words and pushing them to the stack, while all the rest takes 5290.1 cycles per
block. A faster RNG could significantly boost the total speed. Of the 1588 bytes
on the stack, 1312 are taken by the 328 random words.

5.2 Comparison to existing implementations

Balasch et al. [2] showed at CHES 2015 that adding first-order Boolean masking
with Trichina gates slows the implementation down by roughly a factor of 5
on the Cortex-A8. On the Cortex-M4, we see something similar compared to
the unmasked bitsliced implementation, with a factor 4.6, although a faster
RNG could reduce this to almost a factor of 3.5. Furthermore, we require less
randomness because we based ourselves on the 113-gate SubBytes implementation.

Goudarzi and Rivain [14] investigated the performance of different approaches
to higher-order masking based on the ISW masking scheme [16] by implementing
masked versions of AES and PRESENT on the ARM7TDMI-S microprocessor, a
somewhat older architecture from 2001 that is still widely deployed. For first-order
masking, their fastest implementation takes 49329 cycles [14, tbl. 16, standard
AES with parallel Kim-Hong-Lim S-box, 2 shares], which is a factor 5.6 more than
ours, but that comparison is not entirely fair as we do not support higher-order
masking. However, instruction timings appear to be similar between the two
architectures.

12



6 Conclusion and outlook

This paper presented various speed-optimized AES software implementations
for multiple use case scenarios, including side-channel attack protection, for the
ARM Cortex-M3 and M4. All of them are the fastest of their kind. Additionally,
we provide an ARM-specific instruction scheduler and register allocator that
is of independent interest to optimize other software for these platforms. All
software is put into the public domain, which also may benefit the performance
of (AES-based) CAESAR candidates on modern embedded microcontrollers.

We admit that the ‘all the AES you need’ claim in our tittle does not hold for
use cases that need to protect against higher-order side-channel attacks. We plan
to have an assembly generator for higher-order masked AES implementations,
although one then may want to resort to masking schemes other than gate-level
masking.

References

1. Kubilay Atasu, Luca Breveglieri, and Marco Macchetti. Efficient AES implementa-
tions for ARM based platforms. In Proceedings of the 2004 ACM Symposium on
Applied Computing, pages 841–845. ACM, 2004.

2. Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. DPA,
bitslicing and masking at 1 GHz. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems – CHES 2015, volume 9293 of
LNCS, pages 599–619. Springer, 2015.

3. Daniel J. Bernstein. Cache-timing attacks on AES. https://cr.yp.to/antif

orgery/cachetiming-20050414.pdf, 2005.

4. Daniel J. Bernstein and Peter Schwabe. New AES software speed records. In
Dipanwita Roy Chowdhury and Vincent Rijmen, editors, Progress in Cryptology
– INDOCRYPT 2008, volume 5365 of LNCS, pages 322–336. Springer, 2008.
http://cryptojedi.org/users/peter/#aesspeed.

5. Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems
– CHES 2012, volume 7428 of LNCS, pages 320–339. Springer, 2012. https:

//cryptojedi.org/papers/#neoncrypto.

6. Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and
Stefano Marchesin. Efficient software implementation of AES on 32-bit platforms.
In Burton S. Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2002, volume 2523 of LNCS, pages
159–171. Springer, 2003.

7. Eli Biham. A fast new DES implementation in software. In Eli Biham, edi-
tor, Fast Software Encryption, volume 1267 of LNCS, pages 260–272. Springer,
1997. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997

/CS/CS0891.pdf.

8. Joan Boyar and René Peralta. A new combinational logic minimization technique
with applications to cryptology. In Paola Festa, editor, Experimental Algorithms,
volume 6049 of LNCS, pages 178–189. Springer, 2010. http://eprint.iacr.org/

2009/191/.

13

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cryptojedi.org/users/peter/#aesspeed
http://cryptojedi.org/users/peter/#aesspeed
https://cryptojedi.org/papers/#neoncrypto
https://cryptojedi.org/papers/#neoncrypto
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1997/CS/CS0891.pdf
http://eprint.iacr.org/2009/191/
http://eprint.iacr.org/2009/191/


9. D. Canright. A very compact S-box for AES. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume
3659 of LNCS, pages 441–455. Springer, 2005.

10. Cryptovia. AES algorithms for ARM CPU. http://www.cryptovia.com/ARM_

AES.html.

11. Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, version 2, 1999.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf.

12. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – the Advanced
Encryption Standard. Springer, 2013.

13. Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the Internet of Things.
Cryptology ePrint Archive, Report 2015/209, 2015. http://eprint.iacr.org/20

15/209/.

14. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in
software? Cryptology ePrint Archive, Report 2016/264, 2016. http://eprint.ia

cr.org/2016/264/.

15. Mike Hamburg. Accelerating AES with vector permute instructions. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems –
CHES 2009, volume 5747 of LNCS, pages 18–32. Springer, 2009. http://mikeha

mburg.com/papers/vector_aes/vector_aes.pdf.

16. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology – CRYPTO
2003, volume 2729 of LNCS, pages 463–481. Springer, 2003. https://www.cs.be

rkeley.edu/~daw/papers/privcirc-crypto03.pdf.

17. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded
Systems – CHES 2009, volume 5747 of LNCS, pages 1–17. Springer, 2009.
https://cryptojedi.org/papers/#aesbs.

18. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer, 1996. http://www.cryptography.

com/public/pdf/TimingAttacks.pdf.

19. Robert Könighofer. A fast and cache-timing resistant implementation of the AES.
In Tal Malkin, editor, Topics in Cryptology – CT-RSA 2008, volume 4964 of LNCS,
pages 187–202. Springer, 2008.

20. Mitsuru Matsui. How far can we go on the x64 processors? In Matthew Robshaw,
editor, Fast Software Encryption, volume 4047 of LNCS, pages 341–358. Springer,
2006. http://www.iacr.org/archive/fse2006/40470344/40470344.pdf.

21. Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation
on Intel Core2 processor. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
LNCS, pages 121–134. Springer, 2007.

22. Lauren May, Lyta Penna, and Andrew Clark. An implementation of bitsliced DES
on the Pentium MMXTM processor. In E. P. Dawson, A. Clark, and Colin Boyd,
editors, Information Security and Privacy, volume 1841 of LNCS, pages 112–122.
Springer, 2000.

23. NXP Semiconductors N.V. AN11241: AES encryption and decryption software on
LPC microcontrollers. https://www.lpcware.com/content/nxpfile/an11241-

aes-encryption-and-decryption-software-lpc-microcontrollers.

14

http://www.cryptovia.com/ARM_AES.html
http://www.cryptovia.com/ARM_AES.html
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://eprint.iacr.org/2015/209/
http://eprint.iacr.org/2015/209/
http://eprint.iacr.org/2016/264/
http://eprint.iacr.org/2016/264/
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
https://www.cs.berkeley.edu/~daw/papers/privcirc-crypto03.pdf
https://www.cs.berkeley.edu/~daw/papers/privcirc-crypto03.pdf
https://cryptojedi.org/papers/#aesbs
https://cryptojedi.org/papers/#aesbs
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
https://www.lpcware.com/content/nxpfile/an11241-aes-encryption-and-decryption-software-lpc-microcontrollers
https://www.lpcware.com/content/nxpfile/an11241-aes-encryption-and-decryption-software-lpc-microcontrollers


24. Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast soft-
ware AES encryption. In Seokhie Hong and Tetsu Iwata, editors, Fast Software
Encryption, volume 6147 of LNCS, pages 75–93. Springer, 2010.

25. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of AES. In David Pointcheval, editor, Topics in Cryptology – CT-RSA
2006, volume 3860 of LNCS, pages 1–20. Springer, 2006. http://eprint.iacr.

org/2005/271/.
26. ARM Holdings plc. mbed TLS v2.3.0. https://tls.mbed.org/.
27. ARM Holdings plc. ARM’s Cortex-M and Cortex-R embedded processors,

2015. http://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ia

n_Johnson.pdf.
28. RealTimeLogic. SharkSSL/RayCrypto v2.4 crypto library – benchmarks with ARM

Cortex-M3. https://realtimelogic.com/products/sharkssl/Cortex-M3/.
29. STMicroelectronics. RM0038 reference manual, 2015. http://www2

.st.com/content/ccc/resource/technical/document/reference_manua

l/cc/f9/93/b2/f0/82/42/57/CD00240193.pdf/files/CD00240193.pdf/jcr:

content/translations/en.CD00240193.pdf.
30. STMicroelectronics. RM0090 reference manual, 2015. http://www2

.st.com/content/ccc/resource/technical/document/reference_manua

l/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:

content/translations/en.DM00031020.pdf.
31. Ko Stoffelen. Instruction scheduling and register allocation on ARM Cortex-

M. In Software performance enhancement for encryption and decryption, and
benchmarking – SPEED-B, 2016. http://ccccspeed.win.tue.nl/papers/armsc

heduler-final.pdf.
32. Elena Trichina. Combinational logic design for AES SubByte transformation

on masked data. Cryptology ePrint Archive, Report 2003/236, 2003. http:

//eprint.iacr.org/2003/236/.
33. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,

and countermeasures. Journal of Cryptology, 23(1):37–71, 2010. http://people

.csail.mit.edu/tromer/papers/cache-joc-official.pdf.

15

http://eprint.iacr.org/2005/271/
http://eprint.iacr.org/2005/271/
https://tls.mbed.org/
http://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
http://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
https://realtimelogic.com/products/sharkssl/Cortex-M3/
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/cc/f9/93/b2/f0/82/42/57/CD00240193.pdf/files/CD00240193.pdf/jcr:content/translations/en.CD00240193.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/cc/f9/93/b2/f0/82/42/57/CD00240193.pdf/files/CD00240193.pdf/jcr:content/translations/en.CD00240193.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/cc/f9/93/b2/f0/82/42/57/CD00240193.pdf/files/CD00240193.pdf/jcr:content/translations/en.CD00240193.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/cc/f9/93/b2/f0/82/42/57/CD00240193.pdf/files/CD00240193.pdf/jcr:content/translations/en.CD00240193.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www2.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://ccccspeed.win.tue.nl/papers/armscheduler-final.pdf
http://ccccspeed.win.tue.nl/papers/armscheduler-final.pdf
http://eprint.iacr.org/2003/236/
http://eprint.iacr.org/2003/236/
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf

	All the AES You Need on Cortex-M3 and M4

