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A new discipline of “systems chemistry” is emerging, which aims to capture the complexity observed in natural systems within a

synthetic chemical framework. Living systems rely on complex networks of chemical reactions to control the concentration of mol-

ecules in space and time. Despite the enormous complexity in biological networks, it is possible to identify network motifs that lead

to functional outputs such as bistability or oscillations. To truly understand how living systems function, we need a complete under-

standing of how chemical reaction networks (CRNs) create function. We propose the development of a bottom-up approach to

design and construct CRNs where we can follow the influence of single chemical entities on the properties of the network as a

whole. Ultimately, this approach should allow us to not only understand such complex networks but also to guide and control their

behavior.

Review

Introduction

Natural phenomena, such as the earth’s climate, ecosystems,
animal group behavior, our brain, and living cells, are all
systems that display dynamic behavior marked by an apparent
complexity [1-5]. Some of the remarkable properties of com-
plex systems lie in their robustness (i.e., error tolerance),
resilience (i.e., restoration ability) and adaptive capacity (i.e., to
compete or to cooperate for resources) in response to changes in
environmental conditions [6-11]. Such system-level functions
represent the prerequisite in natural phenomena to prevent
abrupt climate shifts or the sudden diminishing of populations

in ecosystems and are, arguably, the key properties supporting

complex systems to transition from non-living to living [12-14].
Understanding the principles enabling transitions between
dynamically distinct but stable states will unravel the
predictability and perhaps the possibility to influence the dy-
namics of change, but science has yet to find an answer to this
complexity [15].

One of the ultimate aims for systems like a living cell, is to
understand how the interplay between molecular level events
and network topology determines the behavior that emerges

from complex networks of chemical reactions [16]. Vast meta-
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bolic and genetic networks of chemical reactions allow living
cells to sense their environment, react to stimuli, and use nutri-
ents for cell growth and division. In the past decades, complexi-
ty science has made tremendous progress in developing mathe-
matical tools that capture the key properties underlying such
networks [17-19]. Our in-depth knowledge of actual systems,
however, is often insufficient to precisely predict when, and by
how much, systems respond to changes in the environment.
This is especially true when those changes induce systems
beyond a critical value, where the resulting abrupt shifts or
phase transitions become unpredictable [20-22]. The analysis of
the structure and the dynamics of a complex web of intricate
interactions is a risk in removing the link between molecular
structure and function and network behavior. Hence, we need
new approaches that allow guidance and ultimately control of
unanticipated behavior of complex molecular systems.

Networks are daunting in complexity but do exhibit structural
patterns [23]. The reduction of a network into wiring diagrams
enables accurate modelling and has revealed fundamental fea-
tures that would otherwise be too difficult to comprehend [24].
It is generally accepted that complex molecular networks, like
electrical circuits, are constructed from simpler modules
(network motifs) and control the regulatory functions as well as
the system level behavior of larger networks [25]. In fact,
simple motifs with a few positive and negative feedback loops
create functionality, such as bistable switching, adaptation and
oscillations [26]. Such building blocks can be reconstructed,
and this has sparked enormous activity in the fields of synthetic
and systems biology as well as metabolic engineering [27].

We must now learn how to apply retrosynthesis to network
motifs, and we believe chemistry offers a unique opportunity to
the design of chemical reaction networks (CRNs) [28-30]. A
major challenge for systems chemistry is to translate the design
principles of biological systems into a practical “programming
language” and learn how to create functionality using chemical
reactions. Early work has resulted in numerous exciting exam-
ples, ranging from functional out-of-equilibrium systems that
can perform logic operations, to dissipative self-assembling
structures, creating new forms of smart materials [31-35]. Yet,
we are severely limited by too few examples of systems which
are both extensive enough to exhibit dynamics, and at the same
time, simple enough to be tunable [36].

In this perspective, we will attempt to lay out a general strategy
for the design and implementation of CRNs that operate under
out-of-equilibrium conditions and show complex behavior. We
believe that new approaches are needed to build molecular
networks, firmly rooted in (synthetic) chemistry but incorporat-

ing mathematical modelling and borrowing principles from
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chemical engineering [37]. Isolating the influence of molecular
structure on network function and dynamics will reveal the
rules governing CRNs, as well as the complexity in systems like
the cell.

Minimal chemical reaction networks

Network motifs assembled from feedback loops
Much of our inspiration for constructing CRNs comes from the
living cell [38-41]. The biochemical network that governs the
dynamic properties of physiological responses such as growth,
division and death, can be depicted as a wiring diagram [42,43].
Despite the large number of possible connections, certain
patterns of interconnections, so-called “network motifs”, are
relatively common [23]. Hence, underneath the complexity,
local regulation based on minimal systems comprises a fairly

simple set of basic events (i.e., activation and inhibition).

Minimal network motifs have the advantage of being simple
enough (i.e., analytically solvable) and are therefore well-suited
for approaches viewed in the framework of rates of chemical
reactions. Figure 1a shows more detail on how a simple phos-
phorylation and dephosphorylation system can influence the
rates of its own formation creating either a positive and/or a
negative feedback loop [24,26] Through feedback loops, even
simple systems composed from minimal motifs can display
dynamic behavior. A minimum of one positive feedback struc-
turally promotes bistability in networks [44] but additional
interactions linking of the activation and inhibition provide the
necessary nonlinearity to stabilize the on/off state [45-48].
Figure 1b depicts several examples of motifs that are consid-
ered responsible for the regulatory functions that generate

discontinuous bistable dynamics or oscillations [49].

Network motifs are dynamic building blocks

Network motifs, like bistable switches and oscillators, form the
basic building blocks of dynamic behavior. A common ap-
proach to understand the underlying biological phenomena uses
a mathematical model that consists of coupled nonlinear ordi-
nary differential equations (ODEs) [50-53]. Feedback loops, in
fact, are simply interactions based upon elementary mono- and
bimolecular chemical reactions that are subject to the same
chemical laws as classical reactions [54]. As such, the motifs
summarized in Figure 1b can be translated into stoichiometric
reaction schemes. Under the assumption of spatially homoge-
neous conditions, the dynamics can be fully described by the
rate equations in the subsequent column [49,55].

The practical realization of dynamic properties in such reaction
schemes is daunting in part because it also requires the systems
to operate far from equilibrium [56,57]. A venture beyond the
confines of equilibrium, however, does not require deeper
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Figure 1: Network motifs. (a) Examples of network motifs composed from different feedback loops. Each design can turn a universal signaling cycle
into a bistable switch and relaxation oscillator. Adapted with permission from [24], copyright 2006 Nature Publishing Group. (b) Minimal network motifs
that describe the dynamics of minimal bistable or oscillatory systems using mass-action kinetics [49].

understanding of the thermodynamic laws in nonequilibrium
systems. Open systems allow environmental conditions to influ-
ence the accessibility or stability of the final state, marking the
key difference between systems in and out of equilibrium [58].
Although their behavior is only predictable by a full under-
standing of the exact ensemble of rate equations, the steady
state solutions satisfy the same algebraic equation that controls
equilibrium state solutions: 0 = dx/d¢ = dy/d¢ (= dz/d¢) [59]. To
keep the chemical system from reaching equilibrium (i.e., in a
thermodynamically open system), the implementation of CRNs
often suffices with the assumption of an excess of a source (S)
combined with a product (P) that acts as a sink. In such dissipa-
tive conditions, reactions do not necessarily settle for the state
with the highest entropy but instead are drawn towards a steady
state.

From network motifs to dissipative systems
Classical example of a chemical dissipative system
Network motifs can guide the design of CRNs, but first, we
need to develop an intuition for the components that make up a
network motif. The Belousov—Zhabotinsky (BZ) oscillating
reaction is arguably the best-known chemical network
(Figure 2a) [60]. As a prototypical out-of-equilibrium system,
the BZ reaction provided the fundamental and experimental
basis for nonlinear chemistry [61-64]. Studies as diverse as
synchronization in coupled systems, oscillatory Turing patterns,
and spatio-temporal chaos show that the rich dynamics depend
solely on how energy dissipates from the system, initiated by
local instabilities [65-67].

We must learn how to apply retrosynthesis to chemical reaction
networks such as the BZ reaction. The reaction scheme in
Figure 2b shows that the BZ network comprises five reactions
that can be translated into three inorganic processes in acidic
conditions: (1) autocatalytic production of HOBr, (X) in the
presence of Br™ (Y), (2) oxidation of the cerium catalyst,
Ce3" — Ce*" (2), and (3) the regeneration of Br~ and Ce>"
fueled by the oxidation of malonic acid (MA) [68,69]. Transla-
tion from the reaction scheme or equations (back) to the
network motif, however, is far from intuitive. Hence, despite its
beauty and obvious potential for making exciting discoveries,
the BZ reaction (and similar classical chemical systems [70-73])
lack bottom-up design opportunities. Furthermore, the
incorporation of a wider range of (organic) chemical reactions
is challenging due to the aggressive nature of the medium and
reactants.

Chemical dissipative systems based on tunable
organic structures

The more recent work is focused on building chemical dissipa-
tive networks from organic structures. This has resulted in nu-
merous exciting examples, ranging from functional out-of-equi-
librium systems that can perform logic operations to dissipative
self-assembling structures, creating new forms of smart materi-
als (Figure 3a—d) [31-35,74-77]. The underlying principle of
compartmentalization, dynamic combinatorial chemistry, and
hydrogelation also appears in different types of networks [78-
84]. Chemical networks can be readily made from tunable

organic structures, holding considerable potential in the chemi-
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Figure 2: Belousov—Zhabotinsky (BZ) reaction. (a) Classical example of pattern formation in the BZ reaction when perturbed with a silver thread.
Adapted with permission from [60], copyright 1970 Nature Publishing Group. (b) The multitude of reactions in the BZ reaction can be reduced to the
Oregonator, a three-variable scheme (with key species X = HBrOy, Y = Br™, and Z = Ce**) [68,69].

a System cools b
to T < LCST
T>LCST: Microstructure up T<LCST
C off, heat dissipation C on, heat generation
R Feedback loop: Products + heat
eagents . talvet ' ' '
atalys M b !
H,O @ Ky
R e \\}% H @O@ Temperature-

© responsive hydrogel

System heats ) o
to T>LCST 10um

Microstructure bent

C Fuel (Mel) d

" =N == o D

Energy

(o] o)
dissipation O\)L Ohte :
ey o ;L
dissipation Energy Fuel (Me!

CH

diggipation

Self-Assembl =
-_:'I- Y] DME " - N -
— < L |
fn] OH R T T N
“activated” U LU
builging Dok

Figure 3: Examples of synthetic dissipative systems. (a) Feedback cycle of a bilayer network composed of the mechanical action of a temperature-
responsive gel coupled with various exothermic reactions. Reprinted with permission from [34], copyright 2012 Nature Publishing Group. (b) Small
dynamic combinatorial library made from dithiol building blocks. Adapted with permission from [75], copyright 2013 American Chemical Society.

(c) Self-assembly fibrous structures fueled by molecular gelators. Reprinted with permission from [76], copyright 2010 Wiley-VCH Verlag GmbH & Co.
(d) Biocatalytic self-assembly in the presence of chymotrypsin (green) forming hydrogelators that can be modified by the choice of amino acids
depicted in the bottom right side. Reprinted with permission from [77], copyright 2013 American Chemical Society.
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cal sciences for the development of a new approach to the con-

struction of out-of-equilibrium molecular networks.

A remaining key challenge encountered in the experimental re-
alization of robust steady-state output in such systems is to
balance the reaction rates between various feedback loops in the
network. Despite the advances made, the behavior in reactions
while approaching equilibrium (Figure 3c,d) is transient and not
a reflection of a dynamic steady state. Hence, the bottom-up
construction of chemical reaction networks requires more than

convenient chemical components. A general methodology is
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needed that integrates the thorough appreciation of reaction

rates in the design of chemical networks.

Learning from the design principles applied in
synthetic biology

Genetic and small DNA-oligonucleotide networks provide an
ideal test bed to address the basic principles of designing
(bio)chemical complex systems [85-87]. Figure 4a shows the
successful translation of an earlier discussed network motif into
a molecular predator (P)—prey (N) network [88,89]. The infor-
mation concerning the predator and prey growth and degrada-
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Figure 4: Design principles applied in synthetic biology. (a) Network topology, mechanism, and the clockwise-rotating spiral of the prey in the molecu-
lar predator—prey network. Adapted with permission from [88], copyright 2013 American Chemical Society. (b) The gene regulation pathway and of an
oscillator based on a positive and delayed negative feedback motif, with experimentally observed oscillations shown to be in good agreement with the
simulations. Adapted with permission from [90], copyright 2011 the authors. (c) Oscillations in the dual-feedback motif. (d) lllustration of the explicit
intermediate processes required for accurate simulations in the mathematical modelling of genetic reaction networks. Adapted with permission from
[91], copyright 2008 Nature Publishing Group.
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tion is stored in single-stranded DNA (ssDNA). Importantly, the
reaction scheme and rate equations could be approximated
based on the predictability in the thermodynamics of DNA
binding. In presence of an excess of the source ssDNA (denoted
by G for “Grass”), traveling waves of a predator—prey molecu-
lar network (similar to the spatio-temporal patterns in the BZ
reaction) were obtained. In stark contrast to the BZ reaction,
however, the use of DNA or DNA-enzyme-based in vitro

systems are amenable to rational design.

Other approaches in synthetic biology use gene regulatory
networks. Gene regulations provide both conceptual simplicity
and modularity to design networks exhibiting oscillatory behav-
ior. Within this framework, Figure 4b shows an in vitro imple-
mentation of an oscillator comprising a positive and a delayed
negative feedback loop [90]. The canonical gene regulation
pathway uses the information encoded in DNA templates
T1—Ts. Similarly, a genetic oscillator can be engineered in
Escherichia coli [85-87]. Figure 4c shows the network
composed of AraC, Lacl and yemGFP genes [91]. The addition-
al yemGFP gene serves as a read-out component and is not

depicted in the regulatory network motif.

Together, the examples in Figure 4 demonstrate that complex
dynamics could be achieved by transcription and translation
processes. Dissipation arises from an approximated constant
supply of nucleotides, amino acids, and enzymes among other
cellular machinery (see Figure 4d) [92]. Arguably, the ability to
rationally assemble test tube CRNs lags behind that for in vivo
systems due to difficulties faced in mimicking such cellular
composition [93]. Consequently, in molecular “circuits” based
on DNA as building blocks, certain reaction rates are often not

known, cannot be known, or cannot be tuned easily.

Blueprint for the construction of chemical

complex systems

A chemical approach, in contrast to synthetic biology, might
involve the construction of a network of individual reactions
that are well-characterized where the key kinetic parameters can
all be experimentally verified. We recently showed that a chem-
ical reaction network can be designed using enzymatic reac-
tions combined with the tuning of the reaction rates in (small)
molecules [94]. The initial point of the design was to select a
network motif for which the steady state output is known. Our
network combines a positive and a delayed negative feedback
loop (Figure 5a) that is built around a key enzyme E;*. In the
reaction network, trypsin (Tr) catalyzes its own formation from
the precursor trypsinogen (Tg). Opposed to this positive feed-
back, Tr is inhibited by the negative feedback that is composed
of three sequential steps (Figure 5b). In the activation step, Tr

converts a pro-inhibitor into an intermediate inhibitor (Int-Inh),
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which consists of a glutamine (Gln) residue attached to a potent
inhibitor for Tr. Another enzyme, aminopeptidase N (Ap),
controls the release of the inhibitor moiety by cleaving off Gln
in the delay step. In the final step, Tr recognition of the active
inhibitor (Inh) closes the negative feedback loop.

The network displays complex behavior in an open system. In
contrast to earlier examples, we used a continuous flow of the
reactants (Tg, Ap, and Pro-I) to create out-of-equilibrium condi-
tions (Figure 5c) [95]. A poly(dimethylsiloxane) (PDMS)-based
microfluidic continuous stirred tank reactor (CSTR) was conve-
niently prepared in which the flow (i.e., the reciprocal of the
residence time defined by the ratio of the outflux and the reactor
volume) maintained out-of-equilibrium conditions for the
system (Figure 5d). The response of the system is determined
by the concentration of the time course of Tr. Figure 5e demon-
strates that the CRN is capable of producing sustained oscilla-
tions.

We further processed the oscillating enzyme activity by cou-
pling the multiple reactor modules, each with a specific chemi-
cal reaction. Figure 6 shows the feed forward designs that use
an enzyme or a substrate with a high affinity to Tr in a subse-
quent CSTR. Figure 6a demonstrates that the initial oscillating
signal can be used to create an identical timing in a subsequent
enzymatic reaction. Depending on the feed concentration of
chymotrypsinogen (ChTg), the initial oscillations are amplified.
Similarly, the design is used to create an analog-to-digital
output by introducing a trypsin inhibitor (soybean trypsin
inhbitor (STI)) in the second CSTR (Figure 6b). The STI effec-
tively thresholds the local minima in the initial oscillations,
converting the initial signal into a switch-like output, creating a
binary signal. Finally, we used oppositely charged polyelec-
trolytes to form complex coacervates in Figure 6¢. Coacervates
are formed in the second CSTR only in the absence of Tr, as Tr
catalyzes the lysine-functionalized polycation. This demon-
strates that the relatively long oscillation periods enable the
construction of more complex systems capable of dynamical
self-assembly. In this case, it is a dynamic self-assembly that is
exactly out-of-phase with the initial oscillations.

Correlating the molecular structure to network
behavior

This design strategy enables the chemist to exploit the full
power of chemical synthesis. Figure 7a depicts the synthetic
sites at which the pro-inhibitor can be altered (R'-R*). In
general, this allows us to create a “Swiss army knife” out of the
source molecule that controls the negative feedback [30]. The
possibility to make small synthetic variations provides the
controllability to influence the precise rates in feedback loops.

Essentially, this flexibly helped us enormously at the stage of
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(1) retrosynthetic screening, as well as (2) in studies correlating
the molecular interactions to the behavior in networks at both

regulatory as well as at the systems level.

As the networks are “synthesized”, it is in principle possible to
fully know all the components and reactions in the network. We
unambiguously determined the state of the system by measuring
the variation in the intermediate inhibitor and the inhibitor in
addition to Tr [94]. Such a molecular level understanding of
networks ultimately allows us to ask questions about the rela-
tionship between individual molecules or reactions and the
robustness or resilience of the network that cannot otherwise be
asked in other systems [97,98].

Mathematical modelling

Our network is inherently nonlinear, and like most artificial
complex systems, analytically unsolvable. The construction of
the network combined the design of small molecules with a
mathematical simulation of the complete network. Nonlinear
mathematical problems that comprise more than three variables
are typically difficult, if not impossible, to solve without the
reduction of variables [99]. To avoid loss in chemical informa-

tion, we implemented the full set of rate equations in MATLAB
and COPASI that could simulate the trajectory of the individual
species by the stepwise numerical integration in time. Impor-
tantly, all rate constants were determined from kinetic studies in
isolated individual reactions, allowing accurate simulations to
test specific details of the experiments.

We used the model to vary the rate constant that is induced by
the changes to the molecular structure. First we show in
Figure 7b that the tuning of R! alters the steady state behavior
of the CRN under identical conditions. The qualitative changes
in the final state shown here are called bifurcations and show
that the subtle changes in the small molecules influence the out-
of-equilibrium behavior of the CRN. This analysis is expanded
in Figure 7c to find the range of intrinsic (initial concentration
of Ap and Pro-I), as well as a global parameters (flow rates),
that we can start the experiments with. The grey volume shows
the parameter space in which sustained oscillations can be
found (i.e., the oscillatory regime). Typically, the CRN is robust
to variations in the screened parameters but that there are difter-
ences in the size of the oscillatory regime when, for example,
the feed concentration of the Pro-I ([x]o) is changed. Repeating
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Figure 7: Influence of molecular structure on the properties of CRNs. (a) Molecular “Swiss army knives” showing the opportunities for tunability in dif-
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Society.

this analysis for the different substituents depicted in Figure 7a
reveals that both the size of the oscillatory regime as well as the
optimal [x]o for 1-4 differs significantly (Figure 7d) [96].
Hence, the use of mathematical modelling is an imperative tool
that allows guidance to the appropriate conditions to produce
sustained oscillations with 1-4.

Conclusion

Natural phenomena are enormously complex networks.
Nonetheless, such systems remain an ensemble of smaller
networks of molecules. Historically, our (dis)ability to compre-
hend the apparent complexity pushes science to develop theo-
ries to solve problems which were thought to be analytically
unsolvable (e.g., classical or quantum mechanics) [100].
The development of the field of complex systems science
will most likely follow a similar pattern, where we will
get a grip on systems of increasing complexity. In this
development, the rapid progress of computational methods
will most probably allow us to tackle ever-larger complex

systems.

This perspective, however, urges an approach using a synthetic
strategy based on the stepwise build-up of complex molecular
systems. We envision the development of a toolbox that allows
us to go beyond describing and understanding systems,
extending to the rational design of function arising from a
collection of molecular network motifs. In this respect, we
believe that the complexity of future complex and functional
molecular systems is by no means restricted to the network
motifs and the organic chemistry we have introduced here. We
conveniently made use of the specificity as well as the high
turnover numbers in enzymatic reactions as a starting point to
test the implementation of our design strategy. A more recent
example of a chemical network capable of auto-amplification
using thiols and thioesters (Figure 8) provides the ultimate
proof that complex molecular systems can be designed “from
scratch” [101].

Future “synthetic moves”

We hope that the method developed here allows researchers,

and especially chemists, to address important features of self-
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organization in complex systems. We briefly showed how the
tuning of molecular structures allows one to explore the robust-
ness of CRNs. From this perspective, other intriguing questions
that still remain to be answered on the transition from non-
living to living systems are: which molecules should we select
from the vast pool of molecules available? Which structures
allow networks to gain greater robustness and resilience? How
do these systems find their steady state behavior? What trajecto-
ries do these systems take when they transition from one state to
another? We fully expect these questions could move our focus
from “how to build a complex system?” to “how can they
emerge in a competitive or a fluctuating environment?” to “how
could we employ control over a network in the presence of

other networks?”.

The interactions among individual components in CRNs can
change over time and space [103-107], enabling regulatory
functions to emerge that are dynamic and have limited
predictability. The major challenge for systems chemistry is to
translate the design principles of living systems into a practical
“programming language”. Computer-assisted approaches will
undoubtedly aid the future plan for “synthetic moves” for com-
plex systems [102]. Altogether, the syntheses in the context of
complexity could provide a truly molecular-level insight into
how chemical reactions create functionality, and ultimately,

how molecules create life.
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