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Abstract
Purpose: Multiple computational studies have demonstrated that essentially all cur-
rent analytical approaches to determine effective connectivity perform poorly when 
applied to synthetic functional Magnetic Resonance Imaging (fMRI) datasets. In this 
study,	we	take	a	theoretical	approach	to	investigate	the	potential	factors	facilitating	
and hindering effective connectivity research in fMRI.
Materials and Methods:	 In	 this	 work,	 we	 perform	 a	 simulation	 study	 with	 use	 of	
Dynamic Causal Modeling generative model in order to gain new insights on the influ-
ence	of	factors	such	as	the	slow	hemodynamic	response,	mixed	signals	in	the	network	
and	short	time	series,	on	the	effective	connectivity	estimation	in	fMRI	studies.
Results:	First,	we	perform	a	Linear	Discriminant	Analysis	study	and	find	that	not	the	
hemodynamics itself but mixed signals in the neuronal networks are detrimental to the 
signatures of distinct connectivity patterns. This result suggests that for statistical 
methods	(which	do	not	involve	lagged	signals),	deconvolving	the	BOLD	responses	is	
not	necessary,	but	at	the	same	time,	functional	parcellation	into	Regions	of	Interest	
(ROIs)	 is	essential.	Second,	we	study	 the	 impact	of	hemodynamic	variability	on	 the	
inference with use of lagged methods. We find that the local hemodynamic variability 
provide	with	an	upper	bound	on	the	success	rate	of	the	lagged	methods.	Furthermore,	
we demonstrate that upsampling the data to TRs lower than the TRs in state- of- the- 
art datasets does not influence the performance of the lagged methods.
Conclusions: Factors such as background scale- free noise and hemodynamic variabil-
ity have a major impact on the performance of methods for effective connectivity re-
search in functional Magnetic Resonance Imaging.
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1  | INTRODUCTION

Studies on the communication in large- scale networks in fMRI were 
initiated as the functional connectivity (FC) research. FC quantifies the 
strength of communication between brain regions by means of cor-
relation and therefore without specification of directionality (van den 
Heuvel	&	Pol,	2010).

Extending network research in fMRI from functional to effective 
connectivity could provide a substantial advance to the understanding 
of	brain	dynamics	in	health	and	disease	(Bielczyk,	Buitelaar,	Glennon,	&	
Tiesinga,	2015;	Fornito,	Zalewsky,	&	Breakspear,	2015;	Friston,	2011;	
Sporns,	 2014).	 Effective	 connectivity	 in	 fMRI	 is	 a	 complex	 research	
problem that involves not only specification of the presence or absence 
of	connections,	but	also	the	directionality	of	the	information	flow.

There are two main classes of methods for effective connectiv-
ity	 research	 in	 fMRI.	On	one	hand,	we	have	 structural	 causal	mod-
els,	which	are	based	on	 the	dependencies	between	 the	BOLD	 time	
	series	in	different	nodes	in	the	networks,	without	taking	time	lags	into	
	account,	for	example,	Structural	Equation	Modeling,	SEM,	(Mclntosh	&	
Gonzalez-	Lima,	1994),	Linear	Non-	Gaussian	Acyclic	Models,	LiNGAM	
(Shimizu,	Hoyer,	Hyvärinen,	&	Kerminen,	2006)	or	Bayesian	Nets,	BNs	
(Frey	&	Jojic,	2005).	On	the	other	hand,	we	have	state-	space	models	
which infer effective connectivity on the basis of the temporal pat-
terns	in	the	dynamics	[e.g.,	Dynamic	Causal	Modeling,	DCM	(Friston,	
Harrison,	 &	 Penny,	 2003),	 Granger	 Causality,	 GC,	 (Granger,	 1969;	
Roebroeck,	 Formisano,	 &	 Goebel,	 2011;	 Seth,	 Barrett,	 &	 Barnett,	
2015;	 Solo,	 2016),	Transfer	Entropy,	TE	 (Lizier,	Heinzle,	Horstmann,	
Haynes,	&	Prokopenko,	2011;	Vicente,	Wibral,	Lindner,	&	Pipa,	2011)].	
There is an ongoing debate upon which class of models is better 
suited	for	this	research	problem	(Valdes-	Sosa,	Roebroeck,	Daunizeau,	
&	Friston,	2011).

Understanding factors influencing performance of methods for 
effective connectivity research has been a subject to multiple com-
putational studies. Previous work used the Dynamic Causal Modeling 
generative model (as the basis for the DCM inference procedure 
(Friston	et	al.,	2003))	 to	create	benchmark	synthetic	datasets	 (Smith	
et	al.,	 2011).	 Multiple	 methods	 for	 assessing	 effective	 connectiv-
ity	 were	 tested	 on	 this	 synthetic	 data,	 including	 GC	 (Roebroeck,	
Formisano,	&	Goebel,	2005),	Partial	Directed	Coherence	(PDC;	Baccalá	
&	Sameshima,	2001),	LiNGAM	(Shimizu	et	al.,	2006)	or	TE.	In	general,	

however,	the	methods	tested	in	the	study	did	not	perform	much	bet-
ter than chance even though the testing networks were sparse and 
relatively small.

In	this	work,	we	employ	a	generative	DCM	forward	model	as	im-
plemented	in	(Smith	et	al.,	2011).	We	then	perform	a	simulation	study	
in order to shed more light on the caveats of effective connectivity 
studies	 in	fMRI	datasets.	On	the	basis	of	these	simulations,	we	pro-
pose how certain problems can be overcome by a proper data prepro-
cessing and region definition.

In	Section	Materials	and	Methods:	The	generative	model,	we	intro-
duce the DCM generative model. In Sections Materials and Methods: 
Impact of the noise and the length of the signal on identifiability of 
causal structures in fMRI and Materials and Methods: Influence of 
hemodynamics	 on	 the	 inference	 of	 effective	 connectivity,	 we	 de-
scribe	in	detail	how	we	set	up	networks	in	order	to	perform	the	Linear	
Discriminant	Analysis	 (LDA)	study	and	to	compute	 lagged	cross	cor-
relations,	 respectively.	 In	the	Results	section,	we	present	the	results	
and	 in	 the	 Discussion,	 we	 discuss	 these	 results	 and	 their	 practical	
 implications on the effective connectivity research in fMRI.

2  | MATERIALS AND METHODS

2.1 | The generative model

Over	 the	 past	 decade,	 multiple	 generative	 models	 have	 been	 pro-
posed	 in	 the	 context	 of	 the	 DCM	 (Friston,	 Kahan,	 Biswal,	 &	 Razi,	
2011;	 Friston	 et	al.,	 2003;	 Havlicek	 et	al.,	 2015;	 Kiebel,	 Kloppel,	
Weiskopf,	&	Friston,	2007;	Li	et	al.,	2011;	Marreiros,	Kiebel,	&	Friston,	
2008;	 Seth,	 Chorley,	 &	 Barnett,	 2013;	 Smith	 et	al.,	 2011;	 Stephan,	
Weiskopf,	Drysdale,	Robinson,	&	Friston,	2007;	Stephan	et	al.,	2008).	
In	 this	 study,	 we	 chose	 the	 original,	 single-	node	 per	 region	 DCM	
(Friston	 et	al.,	 2003;	 Smith	 et	al.,	 2011).	 This	model	 operationalizes	
the	generation	of	BOLD	response	from	the	neuronal	networks	across	
two levels: nonobservable neuronal level and the observable hemody-
namic level. The latent neuronal dynamics is described by the simple 
differential relationship:

 where z(t)	denotes	the	temporary	activity	across	all	nodes,	u(t)  denotes 
binary	inputs	(trains	of	on-		and	off-		states	in	our	case),	A denotes the 

(1)dz⃗(t)

dt
=Az⃗(t−𝜏)+Cu⃗(t)+ �⃗�(t)

F IGURE  1 The full pipeline for the 
Dynamic Causal Modeling forward model. 
The full parameter set for the network (i) 
includes	adjacency	matrix	(A)	and	inputs	to	
the nodes (C) (ii). The neuronal dynamics 
is generated from this network with use 
of ordinary differential equations (iii). The 
neuronal time series is then convolved with 
the hemodynamic response function (iv) to 
obtain	the	BOLD	response	(v),	which	may	
be then (vi) subsampled
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adjacency matrix of effective connectivity and C denotes connections 
from	(experimental)	 inputs	to	the	nodes,	τ denotes a lag in the neu-
ronal	communication,	and	σ(t) denotes the level of stochasticity on the 
neuronal	level.	[Correction	added	on	4	August	2017,	after	first	online	
publication:	in	Equations	1	and	2,	all	delta	symbol	“∂”	were	changed	
to	letter	“d”;	and	both	equations	have	been	reformatted	to	reflect	the	
correct	formulas.]	In	our	network	setup,	the	modulatory	connectivity	
does	not	play	a	 role	 for	 the	 research	question,	 therefore	we	set	all	
the modulatory connections B from the original DCM model (Friston 
et	al.,	2003)	to	zero.	The	connectivity	(a.k.a.	adjacency)	matrix	A con-
tains self- inhibition in every node (Figure 1i) as originally proposed in 
(Friston	et	al.,	2003).	Additionally,	we	use	small,	biologically	plausible	
time lags of 50 ms in the communication between areas throughout 
all	simulations	in	our	study	(as	also	implemented	in	Smith	et	al.,	2011).

Therefore the simulated network becomes a system of delayed 
differential	equations	in	fact	(Bocharov	&	Rihan,	2000).	Furthermore,	
effective connectivity matrix A	must	fulfill	a	few	additional	conditions,	
listed	in	the	Appendix	Constraints on the adjacency matrix.

In	this	context,	the	stochastic	term	σ(t) represents neuronal inno-
vations which are not the part of the communication between nodes 
of	the	investigated	network	(Daunizeau,	Stephan,	&	Friston,	2012).	It	
can either represent intrinsic dynamics in the given node (other than 
inhibition),	 or	 input	 from	 areas	 outside	 the	 investigated	 network.	
Strictly	 speaking,	 these	 innovations	 are	 not	 a	 “noise”	 (which	would	
mean stochasticity added to the neuronal time series on the top of 
the	simulated	dynamics),	but	rather	a	background	neuronal	dynamics	
which	cannot	be	explained	by	the	given	model.	However,	for	the	sake	
of simplicity we will refer to σ(t) as noise in the text below.

In	this	study,	we	use	two	versions	of	the	noise:	white	and	scale-	
free,	pink	noise.	Pink	noise	was	generated	from	white	noise	by	apply-
ing	a	Fourier	transform,	rescaling	the	spectrum	so	the	power	spectral	
density is proportional to the frequency by factor 1/f,	 and	 subse-
quently,	applying	inverse	Fourier	transform	and	normalization.

The observational level is given by the classic model for the hemo-
dynamic	response,	referred	to	as	Balloon–Windkessel	model	(Buxton,	
Wong,	&	Frank,	 1998;	 Friston	et	al.,	 2003),	 is	 described	node-	wide,	
and for every node i it is described by the dynamics of four biophysio-
logical variables as follows:

where si(t)—vasodilatory	signal,	fi(t)—inflow,	vi(t)—blood	volume,	qi(t)—
deoxyhemoglobin	content,	E(f, ρ) = 1 − (1 − ρ)1/f. The model involves 
five node- specific constants: κ—rate	of	signal	decay,	γ—rate of flow- 
dependent	 elimination,	 λ—hemodynamic	 transit	 time,	 α—Grubb’s	
exponent,	ρ—resting	oxygen	extraction	 fraction.	Then,	 the	 following	
expression	describes	the	outcome	BOLD	response:

where V0 = 0.02 denotes the resting blood volume fraction. Inputs to 
the	network	were	simulated	as	in	(Smith	et	al.,	2011):	as	independent	
trains of on-  and off- states with time resolution of TR = 5 ms. The 
probability of state switches was governed by a Poissonian process of a 
mean on- state duration of 2.5	s,	and	a	mean	off-	state	duration	of	7.5 s.

In order to simulate the natural variability in the human hemody-
namics,	we	sampled	the	parameters	independently	for	each	node,	and	
from	 the	 distributions	 described	 previously	 in	 (Friston	 et	al.,	 2003).	
Since	this	work	concerns	the	effects	of	the	neuronal	noise,	we	did	not 
add the thermal noise to the hemodynamic response as it refers to the 
quality of the scanning.

The simulations of the DCM generative model were performed 
with	a	step	of	5	ms.	At	the	end	of	the	modeling	pipeline,	we	subsa-
mpled	 the	 BOLD	 in	 order	 to	 emulate	 true	 restrictions	 of	 the	 fMRI	
datasets.	The	TR	was	one	of	the	parameters	in	our	study,	with	which	
we also controlled the length of the signal. In the typical fMRI experi-
ments,	the	range	of	TR	is	0.7 − 3.0	s,	but	we	made	a	step	beyond	this	
range in order to better understand the influence of the TR on pres-
ence	 of	 networks	 signatures	 in	 the	 dynamics,	 and	 reduced	 it	 down	
to 0.10 s. The whole pipeline for the data generation with use of the 
DCM forward model is presented in Figure 1.

2.2 | Impact of the noise and the length of the signal 
on identifiability of causal structures in fMRI

In order to investigate under what conditions the problem of effective 
connectivity	research	becomes	ill-	posed,	we	fixed	a	test	network	and	
perturbed the connectivity within this network in order to investigate 
under what circumstances this perturbation yields detectable effects 
in	the	outcome	BOLD	response.	Namely,	if	the	two	networks	of	dis-
tinct	connectivity	patterns	yield	indistinguishable	BOLD	response,	the	
effective connectivity problem is ill- posed.

In	this	work,	we	restricted	ourselves	to	network	design	comparable	
to networks investigated in typical fMRI DCM papers. These studies 
typically	 involve	comparing	between	small,	 literature-	informed	mod-
els of 3–4	nodes.	We	also	chose	for	simple	Directed	Acyclic	Graphs	
(DAGs;	Thulasiraman	&	Swamy,	1992)	presented	in	Figure	2.	This	ar-
chitecture facilitated following the feed- forward distribution of infor-
mation	throughout	the	hierarchical	connectivity	pattern.	 In	Figure	2,	
the three connectivity patterns proposed in this study are presented. 
The original network (N1) contains the projections 1→2,	1→3,	2→3,	
3→4. We perturbed this original connectivity pattern in two ways:

1. “flip”:	exchanging	the	connection	2→3 into 3→2	(Figure	2,	N2)
2. “split”:	substituting	the	connection	3→ 4 into two connections 1→ 

4 and 2→	4	(Figure	2,	N3)

Here,	we	fixed	the	connectivity	strength	to	0.15 which refers to 
connection	 strengths	 typically	 found	 in	 the	 DCM	 studies	 (Li	 et	al.,	
2014;	Volza,	Eickhoff,	Pool,	Fink,	&	Grefkes,	2015).

In	this	study,	we	concentrated	on	the	neuronal	noise,	or	“innova-
tions”	 zσ(t): other neuronal activity within a node which is either re-
lated	to	intrinsic	dynamics	of	the	brain	region	represented	by	that	node,	
or to inflow of activity from other regions lying outside this particular 

dsi(t)

dt
= zi(t)−�isi(t)−�i(fi(t)−1)

dfi(t)

dt
= si(t)

�i
dvi(t)

dt
= fi(t)−vi

1

� (t)

�i
dqi(t)

dt
= fi(t)

E(fi(t),�i)

�i
−v

1

�
−1

i (t)qi(t)

(3)y(t) = V0(7ρi(1 − qi(t)) + 2(1 − qi(t)∕vi(t)) + (2ρi − 0.2)(1 − vi(t)))

(2)
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network.	In	a	previous	study	by	(Smith	et	al.,	2011),	this	noise	was	set	
to	very	low	levels	(namely,	to	the	Gaussian	white	noise	of	a	standard	
deviation equal to 0.05	of	the	high	input	value),	whereas	in	our	study,	
the magnitude of this noise is the variable of interest. We varied this 
parameter in the simulations between 0.01 and 2 times the value of the 
high	input	state	(which	corresponds	to	signal-to-noise	ratio,	SNR	=	100	
and	SNR	=	0.50,	 respectively).	Also,	as	we	were	 interested	 in	quanti-
fying the strength of the effect of mixed signals in the network on the 
effective	connectivity	research,	we	emulated	mixed	signals	with	scale-	
free,	 pink	 noise	 in	 the	 neuronal	 communication	 σ(t),	 and	 compared	
against	the	usual	Gaussian	white	noise	of	the	same	magnitude.	Since	
the	DCM	generative	model	was	stochastic	in	our	study,	we	performed	
500  instantiations of the network dynamics for each parameter set.

In order to find out under what circumstances one can properly 
distinguish	the	original	and	perturbed	networks,	we	performed	a	LDA	
study	(Fisher,	1936).	In	LDA,	a	classifier	supplied	with	a	labeled	train-
ing	dataset,	learns	a	linear	combination	of	features	that	best	separates	
the data into given classes. That performance can be then validated 
on	a	separate	testing	dataset.	 In	our	study,	we	first	compressed	the	
four- node time series into six pairwise Pearson correlations. We chose 
correlations as features because multiple methods for effective con-
nectivity	 research	 utilize	 correlations	 between	 the	 time	 series.	 The	
classification performance was evaluated by cross validation: for each 
set	of	500	instantiations	of	the	networks,	the	data	were	randomly	as-
signed to the training-  (400 networks) and the testing set (100 net-
works),	a	100	times.	We	then	computed	the	mean	performance	and	
the standard deviation over all the random assignments.

Then,	we	 investigated	the	 impact	of	 the	magnitude	and	spectral	
properties of the noise on the neuronal level and the length of the time 
series,	on	the	classification	accuracy.

2.3 | Influence of hemodynamics on the inference of 
effective connectivity

Second,	we	studied	the	particular	case	of	lagged	methods	for	effec-
tive	 connectivity.	 Lagged	methods	 such	 as	GC,	 TE	 and	other,	 new	
approaches	(Hyvärinen,	Shimizu,	&	Hoyer,	2008)	assume	that	there	
is	 information	 preserved	 in	 the	 sequence	 of	 the	 BOLD	 samples.	

Therefore,	we	were	testing	the	limitations	of	the	lagged	methods	for	
effective connectivity research with respect to the variability in the 
underlying dynamics and the properties of the local hemodynamic 
responses. With use of the DCM generative model (Section Materials 
and	Methods:	The	generative	model),	we	simulated	the	dynamics	of	
a	simple,	two-	node	system	(Figure	3a).	Then,	we	adapted	the	lagged	
cross	correlation	(as	proposed	in	El-	Gohary	&	McNames,	2007),	and	
proposed	 a	 simple	 quantity	 ∆	 based	 on	 asymmetry	 of	 the	 lagged	
cross	correlation	(Figure	3b),	in	order	to	quantify	the	amount	of	infor-
mation preserved on effective connectivity contained in the sequence 
of	the	samples.	Since	in	our	simple	model,	node	2	received	informa-
tion	from	node	1	and	the	neuronal	dynamics	was	delayed	by	50	ms,	
in	the		absence	of	hemodynamic	variability	the	BOLD	time	series	 in	
node	2	was	delayed	with	respect	to	the	BOLD	time	series	in	node	1.	
Let	us	now	define	correlation	between	the	activity	 in	node	1,	z1(t),	
and	activity	in	node	2	shifted	one	sample	forward	in	time,	z2(t + 1),	as	
r1	(Figure	3b,	middle	row).	Similarly,	let	us	define	correlation	between	
the	activity	in	node	1,	z1(t),	and	activity	in	node	2	shifted	one	sample	
backwards	in	time,	z2(t − 1),	as	r−1	(Figure	3b,	bottom	row).

Therefore,	 the	 BOLD	 time	 series	 in	 node	 2	 shifted	 one	 sam-
ple forward in time z2(t + 1) (r1,	 middle	 row)	 correlated	 with	 the	
BOLD	 time	 series	 z1(t) higher	 than	 the	BOLD	 time	 series	 in	 node	
2 shifted one sample backwards in time z2(t − 1) (r−1,	bottom	row).	
On	 the	 basis	 of	 this	 expected	 difference,	 we	 proposed	 the	 vari-
able	∆	=	r1 − r−1,	 and	we	expected	 this	 quantity	 to	 be	positive	 for	
the connection 1→2.	Now,	 since	 in	 the	 absence	of	 hemodynamic	
variability	between	the	upstream	and	the	downstream	node,	we	ex-
pected r1 > r−1,	 the	value	 of	∆	 for	 the	 connection	1→2 should be 
positive. We then introduced the variability in the hemodynamic 
lags	and	investigated	whether	the	positive	sign	of	∆	still	holds.	We	
also investigated how the TR influences the performance of effec-
tive	connectivity	research	with	use	of	∆,	and	whether	or	not	further	
improving the TR to levels lower than 0.70 s as implemented in the 
state-	of-	the-	art	HCP	 data	 (van	 Essen	 et	al.,	 2013)	would	 improve	
the	performance	of	the	lagged	based	methods.	Therefore,	we	com-
pared the results for TR = 0.70 s with TR = 0.10 s.

Since	in	this	part	of	the	study,	we	were	only	focused	on	the	variabil-
ity in the hemodynamic lags as a confound to the effective connectivity 

F IGURE  2 The test network and its two perturbations. The original network (N1)	contains	projections	1→2,	1→	3,	2→	3,	3→	4.	The	
connectivity	flip	involves	exchanging	the	connection	2→3	into	3→2	(N2,	red).	The	connectivity	split	involves	substituting	the	connection	3→4	
into	two	weaker	connections	1→4	and	2→4	(N3,	red).	This	is	an	extension	of	the	two-	node	setup	presented	in	Figure	3	to	four	nodes	(inputs	
and background noise are skipped form the picture for simplicity). The dynamics generated from these networks is presented in Supplementary 
Material	The	dynamics	for	the	four-	node	DAG	with	perturbations



     |  5 of 13BIELCZYK Et aL.

research,	we	have	set	the	level	of	neuronal	noise	to	low	magnitudes	
in	both	nodes	(standard	deviation,	STD	=	0.01,	white	Gaussian	noise),	
we have set the connectivity strength to a very high value of w = 0.9 
and we performed a single but long simulation (T = 3, 600 s) of the 
neuronal	dynamics	of	this	two-	node	system.	Then,	we	convolved	the	
neuronal time series in the upstream node [z1(t)]	with	a	 fixed	BOLD	
response (hemodynamic parameters at the mean of the distributions 
given	in	(Friston	et	al.,	2003),	which	gives	a	hemodynamic	lag	of	3.14 s. 
We	used	 60,000	 different	 BOLD	 responses	 to	 convolve	 the	 down-
stream neuronal time series z2(t)	with.	We	then	derived	the	∆	value	for	
all	pairs	of	BOLD	time	series	while	assuming	TR	=	0.70 s (which refers 
to	 the	 state-	of-	the-	art	Human	Connectome	Project	datasets),	 and	a	
very high time resolution of TR = 0.10 s for comparison.

3  | RESULTS

3.1 | Impact of the noise, the hemodynamics and the 
length of the signal on the presence of the network 
signatures in the BOLD

The	 results	 of	 the	 classification	 study	 with	 LDA	 are	 presented	 in	
Figure	4a,b.	In	panel	a,	we	present	the	results	for	the	flipped	connec-
tion:	the	neuronal	time	series,	BOLD	and	BOLD	subsampled	with	two	
different TRs (3.0 s and 10.0	s),	for	the	white	noise	(gray)	and	the	pink	
noise (red) case. We present the classification accuracy in the y- axis 
against	the	SNR	 in	the	x-	axis.	 In	panel	b,	we	present	the	results	for	
the	split	connection,	accordingly.	 In	panel	c,	we	present	an	example	
demonstrating	the	dependence	of	the	LDA	results	on	the	TR	and	the	
number	of	samples	in	the	time	series.	In	panel	d,	we	present	the	preci-
sion of the six pairwise correlations in the function of the TR and the 
number of samples.

First,	we	 observe	 that	 the	 split	 of	 connection	 in	 the	 network	 is	
easier to detect than the flip. This result is intuitive because perturbing 
the network with a flip involves direct manipulation of one pairwise 
correlation (pair 2–3),	whereas	perturbing	the	network	with	a	split	in-
volves direct manipulation of three pairwise correlations (pairs 1–4,	
2–3,	and	3–4).

Second,	the	dropout	in	the	accuracy	of	LDA	classifier	in	a	function	
of	SNR	is	similar	for	the	neuronal	time	series	and	for	the	full	 length	

BOLD	time	series.	This	result	suggests	that,	while	using	the	methods	
of effective connectivity that are based on correlations between sig-
nals,	deconvolving	BOLD	into	the	neuronal	time	series	might	not	be	
necessary to perform the inference. The hemodynamic response can 
even be beneficial to effective connectivity research as it removes 
noise- related higher frequencies while leaving experiment- related 
lower frequencies intact.

However,	this	effect	does	not	hold	for	the	scale-	free	pink	noise:	
the hemodynamic convolution can no longer filter out the noise 
which	has	high	power	in	the	slow	frequency	range.	Importantly,	sub-
sampling	BOLD	time	series	from	very	low	time	step	used	in	the	simu-
lations	of	the	generative	model	(5	ms,	which	gives	a	total	of	120,000	
samples for the 10 min of simulation) into the low TR = 3.0 s reso-
lution (which gives only 200 samples) does not effectively blur the 
network	signatures	contained	in	the	pairwise	correlations,	since	LDA	
performs	classification	with	almost	identical	accuracy	for	the	BOLD	
time series subsampled with TR = 3.0	s	as	 for	 the	full-	length	BOLD	
time series obtained from convolving the fast neuronal time series 
(Figure	4,	middle	columns).	This	 result	 can	be	explained	by	plotting	
the	success	rate	of	LDA	classification	for	fixed	set	of	parameters:	the	
full	BOLD	time	series,	pink	noise	of	SNR	=	0.5,	split,	in	the	function	
of	 the	TR	 (Figure	4c).	 In	 this	 case,	TR	=	3.0 s is the critical value of 
TR	which	gives	performance	comparable	to	the	full	BOLD	time	se-
ries. This TR relates to the total of 200 samples. For the TRs longer 
than 3.0	s,	 however,	 the	performance	of	 LDA	gradually	 drops.	This	
can	be	explained	by	two	factors.	First,	the	precision	in	(all	six)	pair-
wise correlations over 500 instantiations of the network in a function 
of TR (Figure 4d)—which is in fact the function of the length of the 
time	series.	All	the	six	precision	functions	are	constant	until	the	TR	
reaches a critical value of TR = 3.0	s,	and	above	that	value,	the	preci-
sion	in	pairwise	correlations	drops.	Second,	TRs	longer	than	3.0 s give 
a	sampling	rate	below	the	Nyquist	 frequency	for	the	hemodynamic	
response,	which	also	influences	the	amount	of	information	contained	
in	the	time	series.	To	sum	up,	given	the	small	network	of	four	nodes	
with connectivity weights in the range of 0.15,	 the	BOLD	time	se-
ries of about 200 samples should be long enough to estimate pairwise 
correlations	 between	 the	 nodes,	 and	 as	 these	 are	 the	 features	 fed	
into	the	classifier,	it	is	long	enough	to	distinguish	between	different	
connectivity patterns.

F IGURE  3 Defining	∆	for	the	two-	node	noisy	system.	(a)	The	upstream	node	[z1(t)]	is	sending	information	to	the	downstream	node	[z2(t)]	
through a single connection of weight A12. Both regions received a binary signal ui(t) and neuronal noise σi(t). (b) Computing cross correlation 
between	the	two	time	series.	Correlation	between	two	time	series	can	be	computed	without	a	lag	(upper	panel),	with	time	series	generated	in	
the downstream region shifted one sample ahead in time (r1,	middle	panel),	or	backwards	in	time	(r−1,	lower	panel)
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3.2 | Influence of hemodynamics on effective 
connectivity research

In	Figure	5,	we	demonstrate	the	results	of	testing	∆	on	the	two-	node	
system with varying hemodynamic lags in the downstream region. 
Hemodynamic	 lags	 are	 operationalized	 as	 the	 time	 to	 peak	 of	 the	
hemodynamic response.

In	Figure	5a,	the	histogram	of	∆	values	over	500	instantiations	of	
the neuronal dynamics of a two- node network with one connection 
(Figure	3)	 is	 presented.	 Indeed,	 all	 values	 are	 positive.	 In	 Figure	5b,	
values	of	∆	for	all	TRs	between	50	ms	and	3	s	and	over	500	instantia-
tions	of	the	neuronal	dynamics	are	presented.	As	expected,	both	the	

mean	value	and	precision	of	∆	drop	toward	zero	along	with	growing	
TR	(black	line).	At	the	point	of	TR	=	0.70	s	(green	line),	90%	of	∆	values	
are still positive (magenta curve). This means that in the absence of 
any hemodynamic lags and at the TR = 0.70	s,	∆	would	have	empirical	
accuracy	rate	of	90%.

In	Figure	5c,	the	results	for	the	analysis	on	the	hemodynamic	level	
are	presented:	∆	is	expressed	as	the	function	of	the	difference between 
hemodynamic lags in the upstream and the downstream region (re-
ferred	to	as	a	“relative	lag”).	The	plot	presents	scatter	plot	over	60,000	
different convolutions with hemodynamic parameters independently 
sampled	from	the	distributions	given	in	(Friston	et	al.,	2003).	Since	the	
hemodynamic lag in the downstream node can be either higher or lower 

F IGURE  4 Results	of	the	classification	study	with	the	Linear	Discriminant	Analysis.	(a)	Neuronal	time	series,	BOLD	and	BOLD	subsampled	
with	two	different	TRs	for	the	flipped	connection.	Gray	line:	white	Gaussian	noise	in	the	neuronal	communication.	Red	line:	pink	noise	in	
the	neuronal	communication.	Shaded	error	bars	denote	the	standard	deviation	of	the	Linear	Discriminant	Analysis	(LDA)	results	over	500	
simulations.	(b)	The	same	for	the	split	connection.	(c)	An	example	demonstrating	the	dependence	of	the	LDA	results	on	the	TR	and	the	number	
of	samples,	for	fixed	combination	of	parameters:	full	BOLD	time	series,	pink	noise	of	SNR	=	0.5,	split	connection.	TR	=	3.0 s is the critical value 
of	TR	which	gives	performance	comparable	to	the	full	BOLD	time	series.	(d)	Precision	of	the	six	pairwise	correlations	in	the	function	of	the	TR	
and	the	number	of	samples,	for	fixed	combination	of	parameters:	the	original	network	connectivity	pattern	N1,	the	full	length	BOLD	time	series,	
pink	noise	of	SNR	=	0.5. The precision in correlation decreases along with decreasing length of the time series
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than	 the	 reference	hemodynamic	 lag	 in	 the	upstream	node,	 the	 rela-
tive lags have positive and negative values (equal lags are marked with 
orange line). We divided the whole set of relative lags into 30 inter-
vals,	and	computed	the	mean	for	relative	lags	lying	within	each	interval	
(Figure	5c,	light	blue	curve).	For	each	of	the	intervals,	we	also	computed	
the	cut-	off	for	the	bottom	10%	of	all	the	values	(magenta	curve).

First,	for	positive	relative	lags	∆	becomes	highly	indicative	for	the	
connection	as	 the	vast	majority	of	 the	∆	values	are	positive.	This	 is	
because	in	this	case,	next	to	the	neuronal	dynamics	in	the	downstream	
region	following	the	dynamics	in	the	upstream	region,	the	slower	he-
modynamics	further	increases	the	lag	in	the	downstream	BOLD	time	
series.	The	upper	90%	of	the	∆	values	(magenta	curve)	at	the	relative	
lag	of	zero	(orange	line)	is	positive	(yellow	line),	which	corresponds	with	
the previous results for the underlying neuronal dynamics (Figure 5b).

The negative relative lags on the other hand make this statistic 
worse:	the	lower	the	value	of	the	relative	lag,	the	higher	the	percentage	

of	∆	values	 that	become	negative,	 the	higher	 the	chance	of	 inferring	
wrong directionality of the link between the two nodes. Figure 5d 
demonstrates this relationship. For the critical value of the relative lag of 
around −0.22	s,	the	percentage	of	positive	∆	values	drops	below	50%.

To	conclude,	we	consider	the	 impact	of	 the	TR	on	these	results.	
In	Figure	6a,	we	demonstrate	a	reproduction	of	Figure	5c	but	with	a	
low TR = 0.10	s.	Despite	much	faster	temporal	sampling,	the	results	of	
the	lag	differences	are	almost	identical,	and	the	main	difference	being	
the	range	of	absolute	values	of	∆	 (on	the	y	axis).	Therefore,	 the	dif-
ference is quantitative rather than qualitative. This effectively means 
that at TR = 0.70	s,	 the	 hemodynamics	 is	 captured	 sufficiently	well	
so that lowering TR further does not add any extra information that 
could	be	utilized	with	lagged	methods	for	effective	connectivity	repre-
sented	by	∆.	This	effect	is	explained	in	Figure	6b,	where	an	exemplary	
cross-	correlation	function	between	the	BOLD	response	between	the	
upstream and the downstream region is presented (blue curve). Both 

F IGURE  5  Impact of the relative hemodynamic lags computed as a difference between time to peak of the hemodynamic response in 
the	upstream	and	downstream	region	on	∆.	(a)	The	histogram	of	∆	values	over	500	instantiations	of	the	neuronal	dynamics,	for	the	optimal	
TR	=	50	ms	matching	the	true	delay	in	the	neuronal	communication,	gives	only	positive	values	as	expected.	(b)	∆	over	500	instantiations	of	the	
neuronal	dynamics	and	in	a	function	of	the	TR.	At	TR	=	0.70	s,	the	percentage	of	positive	∆	values	drops	down	to	90%,	which	is	still	high	over	
the	chance	level.	(c)	∆	in	the	function	of	the	difference	between	hemodynamic	lags	in	the	upstream	and	the	downstream	region	(“relative	lag”).	
(d)	The	relationship	between	the	percentage	of	positive	∆	values	and	the	relative	lags
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time	series	are	convolved	with	the	identical,	canonical	hemodynamic	
response. The cross- correlation peaks at 50 ms and then declines as 
expected.	We	mirrored	the	cross-	correlation	function	around	zero	(red	
curve),	and	∆	can	be	computed	as	the	difference	between	the	origi-
nal value of cross- correlation and its mirror counterpart (yellow area). 
TRs of 0.10 and 0.70 s are marked with vertical black lines. In this low 
range,	the	TR	has	an	impact	on	the	absolute value	of	∆,	but	not	on	its	
sign.

4  | DISCUSSION

As	a	summary,	our	findings	suggest	that

1. In effective connectivity research with use of methods based 
on	correlations,	deconvolution	of	BOLD	time	series	into	neuronal	
time	 series	 might	 not	 be	 necessary.	 As	 opposed	 to	 the	 distri-
bution-based	 methods,	 in	 lagged	 methods	 the	 variability	 in	 the	
local hemodynamic response can inverse the direction of a 
connection,	 therefore	 deconvolution	 of	 BOLD	 time	 series	 into	
the neuronal time series is recommended

2. Scale-free,	pink	noise	induced	by	misparcellation	is	detrimental	to	
the	signatures	of	distinct	connectivity	patterns	 in	the	BOLD	time	
series,	therefore	functional	parcellation	into	ROIs	(e.g.,	by	Bayesian	
clustering	or	hierarchical	ICA)	is	recommended

3. Decreasing the TR from 0.7	s	(as	is	implemented	in	HCP	datasets	
(van	Essen	et	al.,	2013),	would	not	improve	the	performance	of	the	
lagged methods

Our	LDA	prediction	study	sheds	the	light	on	the	factors	influencing	
effective	connectivity	 research	 in	 fMRI.	One	 remark	 is	 that	LDA	does	
not indicate how to establish the causal relations between the nodes in 
the	network:	it	just	uses	the	distinct	features	in	the	data	and	therefore,	

determines	when	it	is	theoretically	possible.	In	our	study,	we	chose	pair-
wise correlations as features because Pearson correlation is nonparamet-
ric	and	in	multiple	methods	for	effective	connectivity	research	in	fMRI,	
it	serves	as	the	basis	for	the	effective	connectivity	research	(Hyvärinen	
&	Smith,	2013;	Patel,	Bowman,	&	Rilling,	2006).	Having	that	in	mind,	we	
compared	the	impact	of	the	presence	of	slow	hemodynamic	response,	
short	time	series	and	mixed	signals	on	the	LDA	results.

The	results	of	our	LDA	study	suggest	that	the	fixed hemodynam-
ics is not detrimental to the network signatures based on pairwise 
correlations:	 the	 LDA	 classifier	 distinguishes	 networks	 as	 easily	 on	
the	basis	on	 the	neuronal	 time	 series	as	on	 the	basis	of	 the	BOLD.	
Moreover,	the	hemodynamic	response	can	work	as	a	denoiser	for	the	
white	 noise	 (Figure	4a,b,	 gray	 lines).	This	 result	 is	 intuitive	 once	we	
take the spectrum of the white noise into account: a big portion of 
the power is carried within the high- frequency range which is easily 
denoised with the hemodynamic response. This result demonstrates 
that,	in	some	cases	(namely,	when	the	signal	has	low	frequency,	and	
at the same time a good portion of the power of the noise is in the 
high-	frequency	 range,	 and	 the	hemodynamic	 response	 is	 fixed),	 the	
BOLD	response	is	not	necessarily	a	detrimental	factor	to	the	effective	
connectivity	research.	Therefore,	according	to	our	results,	deconvolv-
ing	 the	BOLD	 time	 series	 is	not	necessary	while	using	methods	 for	
effective connectivity based on correlations.

We also obtain an intuitive result linking to the success rate of 
the	LDA	classifier	to	the	precision	in	features	estimation.	Due	to	our	
results,	at	certain	length	of	the	BOLD	time	series,	the	precision	in	es-
timating	pairwise	correlations	saturates,	 therefore	 further	 increasing	
the length of the time series does not improve the classification accu-
racy any further. This is a different characteristic from the relationship 
between the length of the time series and the accuracy of signal detec-
tion,	where	increasing	the	length	of	the	time	series	tends	to	improve	
the	performance,	 as	 it	was	 found	 in	 a	 theoretical	 study	by	Murphy,	
Bodurka,	&	Bandettini	(2007).

F IGURE  6  Impact	of	TR	on	∆.	(a)	A	reproduction	of	Figure	5c	but	with	a	small	TR	=	0.10	s.	The	absolute	values	of	∆	change	into	narrower	
range than for TR = 0.70	s,	but	the	sign	of	∆	stays	the	same.	(b)	Dependence	of	∆	on	low	TRs.	The	difference	between	cross-	correlation	function	
(blue	curve)	and	its	version	mirrored	around	zero	(red	curve)	for	t = TR	equals	∆	(yellow	area).	As	we	decrease	TR	from	0.70 s to 0.10 s (black 
lines),	we	can	observe	that	TR	has	impact	on	the	absolute	value,	but	not	on	the	sign	of	∆
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Furthermore,	unlike	slow	hemodynamics	and	short	time	series,	mix-
ing signals represented in our simulations by the transition from white 
to	scale-	free	(pink)	noise,	hinders	the	effective	connectivity	research	
in	fMRI.	For	this	reason,	studying	scale-	free	noise	and	its	role	for	the	
inference with the DCM—as opposed to the Wiener process typically 
implemented	in	the	stochastic	DCM	(Daunizeau	et	al.,	2012)—is	worth	
considering.	Furthermore,	the	effect	of	mixed	signals	can	to	some	ex-
tent be controlled. There are two sources of signal mixing which partly 
can be addressed by the researcher during data preprocessing and be-
fore applying any method for effective connectivity research to the 
fMRI data. The first source is associated with the background neuronal 
activity in the networks. In order to control for this possible confound 
effect,	one	can	partial out the signal coming from outside the chosen 
pair of ROIs as an initial step to the effective connectivity study. The 
second source of the scale- free noise is a possible misparcellation into 
arbitrary brain areas during the preprocessing pipeline. From the per-
spective	of	network	analysis,	mixing	signals	of	various	frequencies	is	
equivalent to inducing a pink noise in the underlying neuronal dynam-
ics	(Bak,	Tang,	&	Wiesenfeld,	1987).	Therefore,	one	should	pursue	ef-
forts aiming at functional (as opposed to anatomical) segregation into 
ROIs.	Most	of	the	recent	open-	source	fMRI	datasets	such	as	Human	
Connectome	Project,	ADHD-	200	or	ABIDE,	already	support	the	func-
tional	parcellation	of	the	data	 (Craddock,	James,	Holtzheimer,	Hu,	&	
Mayberg,	2012;	Glasser	et	al.,	2016;	Rosenberg	et	al.,	2016).	Multiple	
functional	parcellations	are	available	in	the	field	of	fMRI	(Bellec	et	al.,	
2006;	Bellec,	Rosa-	Neto,	Lyttelton,	Benali,	&	Evans,	2010;	Blumensath	
et	al.,	2013;	Chen	et	al.,	2013;	Craddock	et	al.,	2012;	Eickhoff	et	al.,	
2011;	 Flandin	 et	al.,	 2002;	Glasser	 et	al.,	 2016;	Golland,	Golland,	&	
Malach,	2007;	Janssen,	Jylänki,	Kessels,	&	van	Gerven,	2015;	Janssen,	
Jylänki,	&	van	Gerven,	2016;	Kahnt,	Chang,	Park,	Heinzle,	&	Haynes,	
2012;	Lashkari	et	al.,	2012;	Lashkari,	Vul,	Kanwisher,	&	Golland,	2010;	
Michel	et	al.,	2012;	Orban	et	al.,	2014;	Thirion	et	al.,	2006;	Tucholka	
et	al.,	 2008;	van	den	Heuvel,	Mandl,	&	Pol,	 2008;	Yeo	et	al.,	 2011),	
and the issue of optimal functional parcellation is broadly discussed 
in	the	field	(Stanley	et	al.,	2013).	In	particular,	in	cognitive	paradigms,	
the ROIs can be built in a data- driven way and on the basis of the 
patterns	of	activation	only	 (task	 localizers,	Fedorenko,	Hsieh,	Nieto-	
Castañón,	Whitfield-	Gabrieli,	&	Kanwisher,	2010;	Heinzle,	Wenzel,	&	
Haynes,	2012).

Second,	once	we	chose	ROIs,	the	effect	of	mixing	signals	can	be	
further reduced by a proper signal extraction from ROIs. One possibil-
ity is to consider only the first eigenvariate within the anatomical ROIs 
as proposed by Sato et al. (2010) (and as is implemented in the original 
version	of	the	DCM	inference	procedure	(Friston	et	al.,	2003)	instead	
of averaging activity over the voxels within an ROI.

Finally,	our	results	suggest	that	once	the	effect	of	mixed	signals	is	
under control (so that only white noise is present in the neuronal dy-
namics),	the	signatures	of	distinct	connectivity	patterns	are	present	in	
the	BOLD	time	series	even	in	a	high	noise	regime.	This	may	encourage	
further endeavors in the search for new markers of directed connec-
tions between brain regions from fMRI data.

In	 the	 second	part	of	our	 study,	we	utilize	 lagged	cross	 correla-
tion in order to determine under what conditions the effective 

connectivity- related information is preserved in the sequence of the 
samples and could be retrieved with the lagged methods. The main dif-
ference between our implementation of the hemodynamic variability 
and the previous studies is that we concentrate on the time to peak of 
the hemodynamic response as the representation of the hemodynamic 
lag,	as	opposed	to	the	time to onset of the hemodynamic response as in 
(Smith	et	al.,	2011).	If	the	only	difference	between	two	hemodynamic	
responses	was	the	time	to	onset,	then	a	lag	of	50	ms	in	the	underlying	
neuronal communication would imply that the time to onset in the 
hemodynamic response in the upstream region 50 ms later than the 
time to onset in the hemodynamic response in the downstream re-
gion	would	automatically	flip	the	sign	of	∆	and	therefore	also	the	out-
come	of	the	inference.	However,	this	definition	of	the	hemodynamic	
lags contains an assumption that hemodynamic response is equal to 
zero	 for	 the	 initial	 period	 of	 time.	 Such	 response	 profiles,	 however,	
are	not	biophysically	plausible	as	in	reality,	the	hemodynamic	response	
has	a	positive	derivative	already	at	 the	start	 (Figure	1C,	see	Section	
Materials and Methods: The generative model for equations). In our 
study	we	 employed	 the	 classic	 Balloon–Windkessel	 model	 (Buxton	
et	al.,	1998;	Friston	et	al.,	2003)	in	order	to	generate	a	natural	distribu-
tion of the hemodynamic responses derived from neurophysiological 
experiments,	 and	we	operationalized	hemodynamic	 lags	as	 the	 time 
to peak instead. We found that within certain range of the relative he-
modynamic	lags,	the	asymmetry	in	the	lagged	cross	correlation	carries	
information about effective connectivity that can be derived from two 
BOLD	time	series.

In	our	setup,	we	use	a	fixed	neuronal	delay	of	50	ms,	whereas	in	
another computational study on the influence of hemodynamic re-
sponse	on	GC	by	(Witt	&	Meyerand,	2009),	this	variable	was	a	param-
eter	of	interest.	In	our	study,	neuronal	lags	higher	than	50	ms	would	
increase	the	asymmetry	of	the	∆	in	a	function	of	relative	lags	on	behalf	
of	the	positive	relative	lags.	However,	we	motivate	this	small	neuronal	
lag	by	experimental	evidence	suggesting	that	the	axonal	transmission,	
as	the	slowest	phase	of	the	neuronal	transmission,	involves	time	de-
lays	in	the	range	of	dozens	of	milliseconds	(Sabatini	&	Regehr,	1999).

In	many	applications,	lagged	methods	for	effective	connectivity	in	
fMRI	are	applied	 to	 the	deconvolved	BOLD	time	series,	with	an	ex-
ample	 of	 GC	 (David	 et	al.,	 2008;	 Goodyear	 et	al.,	 2016;	 Hutcheson	
et	al.,	2015;	Ryali,	Supekar,	Chen,	&	Menon,	2011;	Ryali	et	al.,	2016;	
Sathian,	Deshpande,	&	Stilla,	2013;	Wheelock	et	al.,	2014).	However,	
as	 demonstrated	 in	 Figure	5b,	 the	natural	variability	 in	 the	neuronal	
dynamics results with an upper bound on the accuracy of the lagged 
based methods: even assuming a perfect deconvolution (which is never 
the	case	in	practice),	which	would	allow	for	perfect	retrieval	of	the	neu-
ronal	time	series	from	the	BOLD	time	series,	for	the	TR	=	0.70	s,	the	
accuracy	rate	of	∆	would	be	<100%	(for	the	parameter	space	we	are	
exploring	 in	 this	study,	 this	accuracy	would	be	on	the	 level	of	90%).	
This result suggests that it might be worth considering to perform 
the	GC	analysis	voxel-	wise,	and	to	average	the	resulting	GC	over	the	
whole	ROI	instead	of	computing	the	GC	ROI-	wise	as	is	often	done	in	
the	GC	 studies	 (Chen	et	al.,	 2017;	Deshpande,	Hu,	 Stilla,	&	Sathian,	
2008;	Goodyear	 et	al.,	 2016;	Regner	 et	al.,	 2016;	Yang	 et	al.,	 2017).	
After	voxel-	wise	 application	of	GC,	 the	 result	 can	be	 averaged	over	
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all	 voxel-	wise	 GC	 scores	 between	 the	 two	 regions.	 This	 voxel-	wise	
application	of	GC	can	be	performed	 in	multiple	ways:	 the	GC	 score	
can	be	averaged	with	LASSO	regularization	(Tang,	Bressler,	Sylvester,	
Shulman,	&	Corbetta,	2012),	through	a	multivoxel	pattern-	based	cau-
sality	mapping	 as	 proposed	 by	 Kim,	 Kim,	Ahmad,	 &	 Park	 (2013),	 or	
through	hierarchical	 clustering	as	proposed	by	Deshpande,	LaConte,	
James,	Peltier,	&	Hu	(2009).	This	strategic	twist	is	already	being	used	
in	some	studies	(Katwal,	Gore,	Gatenby,	&	Rogers,	2013;	Zhao	et	al.,	
2016),	however,	it	is	not	the	most	common	approach	in	the	field	yet	
[voxel-	wise	modeling	is,	however,	increasingly	popular	for	finding	acti-
vation	patterns	in	cognition	from	fMRI	data	(Huth,	de	Heer,	Griffiths,	
Theunissen,	&	Gallant,	2016)].	Applying	GC	voxel-	wise	has	two	major	
advantages.	First,	computing	the	final	value	of	GC	as	a	mean	value	over	
GC	values	derived	 from	a	 large	number	of	voxels	 should	 reduce	 the	
natural inaccuracy of the lagged methods when applied to the stochas-
tic	neuronal	dynamics	(Figure	5b).	Second,	it	neutralizes	the	bias	com-
ing from possible inaccuracies in the blind deconvolution algorithms.

We also discuss the influence of the local distribution of the he-
modynamic lags present in the investigated networks on the perfor-
mance	of	the	lagged	methods	for	effective	connectivity	(Figure	5c,d).	
This part of the analysis refers to the studies in which the lagged meth-
ods are applied to the unconvolved	BOLD,	which	is	often	a	practice	in	
GC	research	(Chen	et	al.,	2017;	Regner	et	al.,	2016;	Zhao	et	al.,	2016).	
In	such	case,	the	utility	of	lagged	methods	in	fMRI	research	depends	
on	the	variability	in	the	hemodynamic	lags.	According	to	our	results,	
under the assumption that the lag in the neuronal communication is 
in	the	range	of	50	ms,	any	inference	with	lagged	methods	is	possible	
only if the mean hemodynamic lag between all the voxels within the 
upstream region are no more than 200 ms higher than the mean he-
modynamic lag between all the voxels within the downstream region.

In	the	work	by	Handwerker,	Ollinger,	&	D’Esposito	(2004),	it	was	
found that the variability in the hemodynamic lags between subjects 
is higher than the variability within	subjects.	Furthermore,	a	study	by	
Menon (2012) has demonstrated a large variation in hemodynamics 
depending	on	the	vessel	sizes	in	the	voxels.	Even	vasculature	changes	
across cortical layers have been shown to cause around 400 ms differ-
ences	in	hemodynamic	time-	to-	peak	(Silva	&	Koretsky,	2002).

This experimentally determined local variability in the hemody-
namic	lags	is	higher	than	the	“safe	range”	found	in	our	study	(200	ms).	
Therefore,	 further	 neurophysiological	 studies	 on	 the	 variability	 in	
hemodynamic response across the human brain are necessary to ad-
vance	our	ability	to	characterize	causal	interactions	from	BOLD	fMRI	
data,	especially	with	use	of	the	lagged	methods	such	as	GC.

Lastly,	 our	 results	 from	 this	 part	 of	 the	 study	 demonstrate	 that	
upsampling	 the	 BOLD	 time	 series	 to	 as	 little	 as	 TR	=	0.10 s would 
not significantly improve the ability to retrieve the directionality of 
a connection with use of the lagged methods as the results differ 
from the results obtained for TR = 0.70	s	only	quantitatively,	but	not	
qualitatively. Our conclusions are concordant with recent theoretical 
considerations	by	Solo	(2016),	but	differ	from	conclusions	derived	by	
Seth	et	al.	 (2013),	Barnett	&	Seth	 (2017))	and	Lin	et	al.	 (2014),	who	
conclude	 that	GC	estimation	 improves	with	upsampling.	The	design	
of our study is also different than the previous studies. The novelty 

in our study is that we reduced the effective connectivity research 
with	 lagged	methods	 to	 the	 simplest	 possible	 case.	 First,	we	 quan-
tify the amount of asymmetry in the lagged cross- correlation func-
tion	between	two	time	series,	which	is	a	model-	free	and	probably	the	
simplest lagged method for effective connectivity research (and is 
precise	at	picking	on	the	time	lag	of	the	interaction,	as	demonstrated	
in Supplementary Material Comparison between lagged cross correlation 
and Granger Causality,	 Figure	S1A).	 Second,	we	 reduce	 the	 setup	 to	
the	simplest,	two-	node	neural	mass	model	with	a	single	connection,	
and with neuronal dynamics modeled with ordinary differential equa-
tions,	as	in	the	standard	DCM	generative	model	(Seth	et	al.,	2013),	by	
comparison,	use	much	more	complex	design,	 involving	a	 few	nodes	
with	more	complex,	spiking	neuronal	dynamics).	Therefore,	we	believe	
that	our	results	give	insights	into	how,	in	general,	a	lagged	method	for	
rendering effective connectivity can be affected by the neuronal and 
	hemodynamic	variability,	as	well	as	by	the	TR.

One	last	remark	is	that	in	this	study,	we	performed	a	simulation	in	
order	to	approach	the	research	questions	posed	in	this	article,	as	done	
in	e.g.	in	Smith	et	al.	(2011).	One	reason	for	this	choice	is	that	still,	lit-
tle is known about the effective connectivity structures in the human 
brain,	 as	 they	 are	 by	 definition	 dynamic	 and	 context	 dependent.	
Multiple ongoing projects aim at establishing effective connectivity 
in	the	brain	on	the	basis	of	TMS	and	EEG	(Esser,	2008)	procedures,	
therefore extending our investigations to experimental fMRI data 
might be feasible in the future.

Altogether,	our	results	suggest	that	neither	the	slow	hemodynam-
ics,	a	relatively	short	time	series	of	a	few	hundred	samples,	nor	TR	as	
high as 0.7 s can affect the effective connectivity research in fMRI 
to	a	 large	extent.	On	the	other	hand,	a	proper	region	definition	can	
facilitate	the	inference,	therefore	a	good	choice	of	the	preprocessing	
pipeline improves chances for success in the effective connectivity 
study in fMRI.
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