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Abstract
Purpose: Multiple computational studies have demonstrated that essentially all cur-
rent analytical approaches to determine effective connectivity perform poorly when 
applied to synthetic functional Magnetic Resonance Imaging (fMRI) datasets. In this 
study, we take a theoretical approach to investigate the potential factors facilitating 
and hindering effective connectivity research in fMRI.
Materials and Methods: In this work, we perform a simulation study with use of 
Dynamic Causal Modeling generative model in order to gain new insights on the influ-
ence of factors such as the slow hemodynamic response, mixed signals in the network 
and short time series, on the effective connectivity estimation in fMRI studies.
Results: First, we perform a Linear Discriminant Analysis study and find that not the 
hemodynamics itself but mixed signals in the neuronal networks are detrimental to the 
signatures of distinct connectivity patterns. This result suggests that for statistical 
methods (which do not involve lagged signals), deconvolving the BOLD responses is 
not necessary, but at the same time, functional parcellation into Regions of Interest 
(ROIs) is essential. Second, we study the impact of hemodynamic variability on the 
inference with use of lagged methods. We find that the local hemodynamic variability 
provide with an upper bound on the success rate of the lagged methods. Furthermore, 
we demonstrate that upsampling the data to TRs lower than the TRs in state-of-the-
art datasets does not influence the performance of the lagged methods.
Conclusions: Factors such as background scale-free noise and hemodynamic variabil-
ity have a major impact on the performance of methods for effective connectivity re-
search in functional Magnetic Resonance Imaging.
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1  | INTRODUCTION

Studies on the communication in large-scale networks in fMRI were 
initiated as the functional connectivity (FC) research. FC quantifies the 
strength of communication between brain regions by means of cor-
relation and therefore without specification of directionality (van den 
Heuvel & Pol, 2010).

Extending network research in fMRI from functional to effective 
connectivity could provide a substantial advance to the understanding 
of brain dynamics in health and disease (Bielczyk, Buitelaar, Glennon, & 
Tiesinga, 2015; Fornito, Zalewsky, & Breakspear, 2015; Friston, 2011; 
Sporns, 2014). Effective connectivity in fMRI is a complex research 
problem that involves not only specification of the presence or absence 
of connections, but also the directionality of the information flow.

There are two main classes of methods for effective connectiv-
ity research in fMRI. On one hand, we have structural causal mod-
els, which are based on the dependencies between the BOLD time 
series in different nodes in the networks, without taking time lags into 
account, for example, Structural Equation Modeling, SEM, (Mclntosh & 
Gonzalez-Lima, 1994), Linear Non-Gaussian Acyclic Models, LiNGAM 
(Shimizu, Hoyer, Hyvärinen, & Kerminen, 2006) or Bayesian Nets, BNs 
(Frey & Jojic, 2005). On the other hand, we have state-space models 
which infer effective connectivity on the basis of the temporal pat-
terns in the dynamics [e.g., Dynamic Causal Modeling, DCM (Friston, 
Harrison, & Penny, 2003), Granger Causality, GC, (Granger, 1969; 
Roebroeck, Formisano, & Goebel, 2011; Seth, Barrett, & Barnett, 
2015; Solo, 2016), Transfer Entropy, TE (Lizier, Heinzle, Horstmann, 
Haynes, & Prokopenko, 2011; Vicente, Wibral, Lindner, & Pipa, 2011)]. 
There is an ongoing debate upon which class of models is better 
suited for this research problem (Valdes-Sosa, Roebroeck, Daunizeau, 
& Friston, 2011).

Understanding factors influencing performance of methods for 
effective connectivity research has been a subject to multiple com-
putational studies. Previous work used the Dynamic Causal Modeling 
generative model (as the basis for the DCM inference procedure 
(Friston et al., 2003)) to create benchmark synthetic datasets (Smith 
et al., 2011). Multiple methods for assessing effective connectiv-
ity were tested on this synthetic data, including GC (Roebroeck, 
Formisano, & Goebel, 2005), Partial Directed Coherence (PDC; Baccalá 
& Sameshima, 2001), LiNGAM (Shimizu et al., 2006) or TE. In general, 

however, the methods tested in the study did not perform much bet-
ter than chance even though the testing networks were sparse and 
relatively small.

In this work, we employ a generative DCM forward model as im-
plemented in (Smith et al., 2011). We then perform a simulation study 
in order to shed more light on the caveats of effective connectivity 
studies in fMRI datasets. On the basis of these simulations, we pro-
pose how certain problems can be overcome by a proper data prepro-
cessing and region definition.

In Section Materials and Methods: The generative model, we intro-
duce the DCM generative model. In Sections Materials and Methods: 
Impact of the noise and the length of the signal on identifiability of 
causal structures in fMRI and Materials and Methods: Influence of 
hemodynamics on the inference of effective connectivity, we de-
scribe in detail how we set up networks in order to perform the Linear 
Discriminant Analysis (LDA) study and to compute lagged cross cor-
relations, respectively. In the Results section, we present the results 
and in the Discussion, we discuss these results and their practical 
implications on the effective connectivity research in fMRI.

2  | MATERIALS AND METHODS

2.1 | The generative model

Over the past decade, multiple generative models have been pro-
posed in the context of the DCM (Friston, Kahan, Biswal, & Razi, 
2011; Friston et al., 2003; Havlicek et al., 2015; Kiebel, Kloppel, 
Weiskopf, & Friston, 2007; Li et al., 2011; Marreiros, Kiebel, & Friston, 
2008; Seth, Chorley, & Barnett, 2013; Smith et al., 2011; Stephan, 
Weiskopf, Drysdale, Robinson, & Friston, 2007; Stephan et al., 2008). 
In this study, we chose the original, single-node per region DCM 
(Friston et al., 2003; Smith et al., 2011). This model operationalizes 
the generation of BOLD response from the neuronal networks across 
two levels: nonobservable neuronal level and the observable hemody-
namic level. The latent neuronal dynamics is described by the simple 
differential relationship:

 where z(t) denotes the temporary activity across all nodes, u(t) denotes 
binary inputs (trains of on- and off- states in our case), A denotes the 

(1)dz⃗(t)

dt
=Az⃗(t−𝜏)+Cu⃗(t)+ 𝜎⃗(t)

F IGURE  1 The full pipeline for the 
Dynamic Causal Modeling forward model. 
The full parameter set for the network (i) 
includes adjacency matrix (A) and inputs to 
the nodes (C) (ii). The neuronal dynamics 
is generated from this network with use 
of ordinary differential equations (iii). The 
neuronal time series is then convolved with 
the hemodynamic response function (iv) to 
obtain the BOLD response (v), which may 
be then (vi) subsampled
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adjacency matrix of effective connectivity and C denotes connections 
from (experimental) inputs to the nodes, τ denotes a lag in the neu-
ronal communication, and σ(t) denotes the level of stochasticity on the 
neuronal level. [Correction added on 4 August 2017, after first online 
publication: in Equations 1 and 2, all delta symbol “∂” were changed 
to letter “d”; and both equations have been reformatted to reflect the 
correct formulas.] In our network setup, the modulatory connectivity 
does not play a role for the research question, therefore we set all 
the modulatory connections B from the original DCM model (Friston 
et al., 2003) to zero. The connectivity (a.k.a. adjacency) matrix A con-
tains self-inhibition in every node (Figure 1i) as originally proposed in 
(Friston et al., 2003). Additionally, we use small, biologically plausible 
time lags of 50 ms in the communication between areas throughout 
all simulations in our study (as also implemented in Smith et al., 2011).

Therefore the simulated network becomes a system of delayed 
differential equations in fact (Bocharov & Rihan, 2000). Furthermore, 
effective connectivity matrix A must fulfill a few additional conditions, 
listed in the Appendix Constraints on the adjacency matrix.

In this context, the stochastic term σ(t) represents neuronal inno-
vations which are not the part of the communication between nodes 
of the investigated network (Daunizeau, Stephan, & Friston, 2012). It 
can either represent intrinsic dynamics in the given node (other than 
inhibition), or input from areas outside the investigated network. 
Strictly speaking, these innovations are not a “noise” (which would 
mean stochasticity added to the neuronal time series on the top of 
the simulated dynamics), but rather a background neuronal dynamics 
which cannot be explained by the given model. However, for the sake 
of simplicity we will refer to σ(t) as noise in the text below.

In this study, we use two versions of the noise: white and scale-
free, pink noise. Pink noise was generated from white noise by apply-
ing a Fourier transform, rescaling the spectrum so the power spectral 
density is proportional to the frequency by factor 1/f, and subse-
quently, applying inverse Fourier transform and normalization.

The observational level is given by the classic model for the hemo-
dynamic response, referred to as Balloon–Windkessel model (Buxton, 
Wong, & Frank, 1998; Friston et al., 2003), is described node-wide, 
and for every node i it is described by the dynamics of four biophysio-
logical variables as follows:

where si(t)—vasodilatory signal, fi(t)—inflow, vi(t)—blood volume, qi(t)—
deoxyhemoglobin content, E(f, ρ) = 1 − (1 − ρ)1/f. The model involves 
five node-specific constants: κ—rate of signal decay, γ—rate of flow-
dependent elimination, λ—hemodynamic transit time, α—Grubb’s 
exponent, ρ—resting oxygen extraction fraction. Then, the following 
expression describes the outcome BOLD response:

where V0 = 0.02 denotes the resting blood volume fraction. Inputs to 
the network were simulated as in (Smith et al., 2011): as independent 
trains of on- and off-states with time resolution of TR = 5 ms. The 
probability of state switches was governed by a Poissonian process of a 
mean on-state duration of 2.5 s, and a mean off-state duration of 7.5 s.

In order to simulate the natural variability in the human hemody-
namics, we sampled the parameters independently for each node, and 
from the distributions described previously in (Friston et al., 2003). 
Since this work concerns the effects of the neuronal noise, we did not 
add the thermal noise to the hemodynamic response as it refers to the 
quality of the scanning.

The simulations of the DCM generative model were performed 
with a step of 5 ms. At the end of the modeling pipeline, we subsa-
mpled the BOLD in order to emulate true restrictions of the fMRI 
datasets. The TR was one of the parameters in our study, with which 
we also controlled the length of the signal. In the typical fMRI experi-
ments, the range of TR is 0.7 − 3.0 s, but we made a step beyond this 
range in order to better understand the influence of the TR on pres-
ence of networks signatures in the dynamics, and reduced it down 
to 0.10 s. The whole pipeline for the data generation with use of the 
DCM forward model is presented in Figure 1.

2.2 | Impact of the noise and the length of the signal 
on identifiability of causal structures in fMRI

In order to investigate under what conditions the problem of effective 
connectivity research becomes ill-posed, we fixed a test network and 
perturbed the connectivity within this network in order to investigate 
under what circumstances this perturbation yields detectable effects 
in the outcome BOLD response. Namely, if the two networks of dis-
tinct connectivity patterns yield indistinguishable BOLD response, the 
effective connectivity problem is ill-posed.

In this work, we restricted ourselves to network design comparable 
to networks investigated in typical fMRI DCM papers. These studies 
typically involve comparing between small, literature-informed mod-
els of 3–4 nodes. We also chose for simple Directed Acyclic Graphs 
(DAGs; Thulasiraman & Swamy, 1992) presented in Figure 2. This ar-
chitecture facilitated following the feed-forward distribution of infor-
mation throughout the hierarchical connectivity pattern. In Figure 2, 
the three connectivity patterns proposed in this study are presented. 
The original network (N1) contains the projections 1→2, 1→3, 2→3, 
3→4. We perturbed this original connectivity pattern in two ways:

1.	 “flip”: exchanging the connection 2→3 into 3→2 (Figure 2, N2)
2.	 “split”: substituting the connection 3→ 4 into two connections 1→ 

4 and 2→ 4 (Figure 2, N3)

Here, we fixed the connectivity strength to 0.15 which refers to 
connection strengths typically found in the DCM studies (Li et al., 
2014; Volza, Eickhoff, Pool, Fink, & Grefkes, 2015).

In this study, we concentrated on the neuronal noise, or “innova-
tions” zσ(t): other neuronal activity within a node which is either re-
lated to intrinsic dynamics of the brain region represented by that node, 
or to inflow of activity from other regions lying outside this particular 

dsi(t)

dt
= zi(t)−�isi(t)−�i(fi(t)−1)

dfi(t)

dt
= si(t)

�i
dvi(t)

dt
= fi(t)−vi

1

� (t)

�i
dqi(t)

dt
= fi(t)

E(fi(t),�i)

�i
−v

1

�
−1

i (t)qi(t)

(3)y(t) = V0(7ρi(1 − qi(t)) + 2(1 − qi(t)∕vi(t)) + (2ρi − 0.2)(1 − vi(t)))

(2)
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network. In a previous study by (Smith et al., 2011), this noise was set 
to very low levels (namely, to the Gaussian white noise of a standard 
deviation equal to 0.05 of the high input value), whereas in our study, 
the magnitude of this noise is the variable of interest. We varied this 
parameter in the simulations between 0.01 and 2 times the value of the 
high input state (which corresponds to signal-to-noise ratio, SNR = 100 
and SNR = 0.50, respectively). Also, as we were interested in quanti-
fying the strength of the effect of mixed signals in the network on the 
effective connectivity research, we emulated mixed signals with scale-
free, pink noise in the neuronal communication σ(t), and compared 
against the usual Gaussian white noise of the same magnitude. Since 
the DCM generative model was stochastic in our study, we performed 
500 instantiations of the network dynamics for each parameter set.

In order to find out under what circumstances one can properly 
distinguish the original and perturbed networks, we performed a LDA 
study (Fisher, 1936). In LDA, a classifier supplied with a labeled train-
ing dataset, learns a linear combination of features that best separates 
the data into given classes. That performance can be then validated 
on a separate testing dataset. In our study, we first compressed the 
four-node time series into six pairwise Pearson correlations. We chose 
correlations as features because multiple methods for effective con-
nectivity research utilize correlations between the time series. The 
classification performance was evaluated by cross validation: for each 
set of 500 instantiations of the networks, the data were randomly as-
signed to the training- (400 networks) and the testing set (100 net-
works), a 100 times. We then computed the mean performance and 
the standard deviation over all the random assignments.

Then, we investigated the impact of the magnitude and spectral 
properties of the noise on the neuronal level and the length of the time 
series, on the classification accuracy.

2.3 | Influence of hemodynamics on the inference of 
effective connectivity

Second, we studied the particular case of lagged methods for effec-
tive connectivity. Lagged methods such as GC, TE and other, new 
approaches (Hyvärinen, Shimizu, & Hoyer, 2008) assume that there 
is information preserved in the sequence of the BOLD samples. 

Therefore, we were testing the limitations of the lagged methods for 
effective connectivity research with respect to the variability in the 
underlying dynamics and the properties of the local hemodynamic 
responses. With use of the DCM generative model (Section Materials 
and Methods: The generative model), we simulated the dynamics of 
a simple, two-node system (Figure 3a). Then, we adapted the lagged 
cross correlation (as proposed in El-Gohary & McNames, 2007), and 
proposed a simple quantity ∆ based on asymmetry of the lagged 
cross correlation (Figure 3b), in order to quantify the amount of infor-
mation preserved on effective connectivity contained in the sequence 
of the samples. Since in our simple model, node 2 received informa-
tion from node 1 and the neuronal dynamics was delayed by 50 ms, 
in the absence of hemodynamic variability the BOLD time series in 
node 2 was delayed with respect to the BOLD time series in node 1. 
Let us now define correlation between the activity in node 1, z1(t), 
and activity in node 2 shifted one sample forward in time, z2(t + 1), as 
r1 (Figure 3b, middle row). Similarly, let us define correlation between 
the activity in node 1, z1(t), and activity in node 2 shifted one sample 
backwards in time, z2(t − 1), as r−1 (Figure 3b, bottom row).

Therefore, the BOLD time series in node 2 shifted one sam-
ple forward in time z2(t + 1) (r1, middle row) correlated with the 
BOLD time series z1(t) higher than the BOLD time series in node 
2 shifted one sample backwards in time z2(t − 1) (r−1, bottom row). 
On the basis of this expected difference, we proposed the vari-
able ∆ = r1 − r−1, and we expected this quantity to be positive for 
the connection 1→2. Now, since in the absence of hemodynamic 
variability between the upstream and the downstream node, we ex-
pected r1 > r−1, the value of ∆ for the connection 1→2 should be 
positive. We then introduced the variability in the hemodynamic 
lags and investigated whether the positive sign of ∆ still holds. We 
also investigated how the TR influences the performance of effec-
tive connectivity research with use of ∆, and whether or not further 
improving the TR to levels lower than 0.70 s as implemented in the 
state-of-the-art HCP data (van Essen et al., 2013) would improve 
the performance of the lagged based methods. Therefore, we com-
pared the results for TR = 0.70 s with TR = 0.10 s.

Since in this part of the study, we were only focused on the variabil-
ity in the hemodynamic lags as a confound to the effective connectivity 

F IGURE  2 The test network and its two perturbations. The original network (N1) contains projections 1→2, 1→ 3, 2→ 3, 3→ 4. The 
connectivity flip involves exchanging the connection 2→3 into 3→2 (N2, red). The connectivity split involves substituting the connection 3→4 
into two weaker connections 1→4 and 2→4 (N3, red). This is an extension of the two-node setup presented in Figure 3 to four nodes (inputs 
and background noise are skipped form the picture for simplicity). The dynamics generated from these networks is presented in Supplementary 
Material The dynamics for the four-node DAG with perturbations
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research, we have set the level of neuronal noise to low magnitudes 
in both nodes (standard deviation, STD = 0.01, white Gaussian noise), 
we have set the connectivity strength to a very high value of w = 0.9 
and we performed a single but long simulation (T = 3, 600 s) of the 
neuronal dynamics of this two-node system. Then, we convolved the 
neuronal time series in the upstream node [z1(t)] with a fixed BOLD 
response (hemodynamic parameters at the mean of the distributions 
given in (Friston et al., 2003), which gives a hemodynamic lag of 3.14 s. 
We used 60,000 different BOLD responses to convolve the down-
stream neuronal time series z2(t) with. We then derived the ∆ value for 
all pairs of BOLD time series while assuming TR = 0.70 s (which refers 
to the state-of-the-art Human Connectome Project datasets), and a 
very high time resolution of TR = 0.10 s for comparison.

3  | RESULTS

3.1 | Impact of the noise, the hemodynamics and the 
length of the signal on the presence of the network 
signatures in the BOLD

The results of the classification study with LDA are presented in 
Figure 4a,b. In panel a, we present the results for the flipped connec-
tion: the neuronal time series, BOLD and BOLD subsampled with two 
different TRs (3.0 s and 10.0 s), for the white noise (gray) and the pink 
noise (red) case. We present the classification accuracy in the y-axis 
against the SNR in the x-axis. In panel b, we present the results for 
the split connection, accordingly. In panel c, we present an example 
demonstrating the dependence of the LDA results on the TR and the 
number of samples in the time series. In panel d, we present the preci-
sion of the six pairwise correlations in the function of the TR and the 
number of samples.

First, we observe that the split of connection in the network is 
easier to detect than the flip. This result is intuitive because perturbing 
the network with a flip involves direct manipulation of one pairwise 
correlation (pair 2–3), whereas perturbing the network with a split in-
volves direct manipulation of three pairwise correlations (pairs 1–4, 
2–3, and 3–4).

Second, the dropout in the accuracy of LDA classifier in a function 
of SNR is similar for the neuronal time series and for the full length 

BOLD time series. This result suggests that, while using the methods 
of effective connectivity that are based on correlations between sig-
nals, deconvolving BOLD into the neuronal time series might not be 
necessary to perform the inference. The hemodynamic response can 
even be beneficial to effective connectivity research as it removes 
noise-related higher frequencies while leaving experiment-related 
lower frequencies intact.

However, this effect does not hold for the scale-free pink noise: 
the hemodynamic convolution can no longer filter out the noise 
which has high power in the slow frequency range. Importantly, sub-
sampling BOLD time series from very low time step used in the simu-
lations of the generative model (5 ms, which gives a total of 120,000 
samples for the 10 min of simulation) into the low TR = 3.0 s reso-
lution (which gives only 200 samples) does not effectively blur the 
network signatures contained in the pairwise correlations, since LDA 
performs classification with almost identical accuracy for the BOLD 
time series subsampled with TR = 3.0 s as for the full-length BOLD 
time series obtained from convolving the fast neuronal time series 
(Figure 4, middle columns). This result can be explained by plotting 
the success rate of LDA classification for fixed set of parameters: the 
full BOLD time series, pink noise of SNR = 0.5, split, in the function 
of the TR (Figure 4c). In this case, TR = 3.0 s is the critical value of 
TR which gives performance comparable to the full BOLD time se-
ries. This TR relates to the total of 200 samples. For the TRs longer 
than 3.0 s, however, the performance of LDA gradually drops. This 
can be explained by two factors. First, the precision in (all six) pair-
wise correlations over 500 instantiations of the network in a function 
of TR (Figure 4d)—which is in fact the function of the length of the 
time series. All the six precision functions are constant until the TR 
reaches a critical value of TR = 3.0 s, and above that value, the preci-
sion in pairwise correlations drops. Second, TRs longer than 3.0 s give 
a sampling rate below the Nyquist frequency for the hemodynamic 
response, which also influences the amount of information contained 
in the time series. To sum up, given the small network of four nodes 
with connectivity weights in the range of 0.15, the BOLD time se-
ries of about 200 samples should be long enough to estimate pairwise 
correlations between the nodes, and as these are the features fed 
into the classifier, it is long enough to distinguish between different 
connectivity patterns.

F IGURE  3 Defining ∆ for the two-node noisy system. (a) The upstream node [z1(t)] is sending information to the downstream node [z2(t)] 
through a single connection of weight A12. Both regions received a binary signal ui(t) and neuronal noise σi(t). (b) Computing cross correlation 
between the two time series. Correlation between two time series can be computed without a lag (upper panel), with time series generated in 
the downstream region shifted one sample ahead in time (r1, middle panel), or backwards in time (r−1, lower panel)



6 of 13  |     BIELCZYK et al.

3.2 | Influence of hemodynamics on effective 
connectivity research

In Figure 5, we demonstrate the results of testing ∆ on the two-node 
system with varying hemodynamic lags in the downstream region. 
Hemodynamic lags are operationalized as the time to peak of the 
hemodynamic response.

In Figure 5a, the histogram of ∆ values over 500 instantiations of 
the neuronal dynamics of a two-node network with one connection 
(Figure 3) is presented. Indeed, all values are positive. In Figure 5b, 
values of ∆ for all TRs between 50 ms and 3 s and over 500 instantia-
tions of the neuronal dynamics are presented. As expected, both the 

mean value and precision of ∆ drop toward zero along with growing 
TR (black line). At the point of TR = 0.70 s (green line), 90% of ∆ values 
are still positive (magenta curve). This means that in the absence of 
any hemodynamic lags and at the TR = 0.70 s, ∆ would have empirical 
accuracy rate of 90%.

In Figure 5c, the results for the analysis on the hemodynamic level 
are presented: ∆ is expressed as the function of the difference between 
hemodynamic lags in the upstream and the downstream region (re-
ferred to as a “relative lag”). The plot presents scatter plot over 60,000 
different convolutions with hemodynamic parameters independently 
sampled from the distributions given in (Friston et al., 2003). Since the 
hemodynamic lag in the downstream node can be either higher or lower 

F IGURE  4 Results of the classification study with the Linear Discriminant Analysis. (a) Neuronal time series, BOLD and BOLD subsampled 
with two different TRs for the flipped connection. Gray line: white Gaussian noise in the neuronal communication. Red line: pink noise in 
the neuronal communication. Shaded error bars denote the standard deviation of the Linear Discriminant Analysis (LDA) results over 500 
simulations. (b) The same for the split connection. (c) An example demonstrating the dependence of the LDA results on the TR and the number 
of samples, for fixed combination of parameters: full BOLD time series, pink noise of SNR = 0.5, split connection. TR = 3.0 s is the critical value 
of TR which gives performance comparable to the full BOLD time series. (d) Precision of the six pairwise correlations in the function of the TR 
and the number of samples, for fixed combination of parameters: the original network connectivity pattern N1, the full length BOLD time series, 
pink noise of SNR = 0.5. The precision in correlation decreases along with decreasing length of the time series
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than the reference hemodynamic lag in the upstream node, the rela-
tive lags have positive and negative values (equal lags are marked with 
orange line). We divided the whole set of relative lags into 30 inter-
vals, and computed the mean for relative lags lying within each interval 
(Figure 5c, light blue curve). For each of the intervals, we also computed 
the cut-off for the bottom 10% of all the values (magenta curve).

First, for positive relative lags ∆ becomes highly indicative for the 
connection as the vast majority of the ∆ values are positive. This is 
because in this case, next to the neuronal dynamics in the downstream 
region following the dynamics in the upstream region, the slower he-
modynamics further increases the lag in the downstream BOLD time 
series. The upper 90% of the ∆ values (magenta curve) at the relative 
lag of zero (orange line) is positive (yellow line), which corresponds with 
the previous results for the underlying neuronal dynamics (Figure 5b).

The negative relative lags on the other hand make this statistic 
worse: the lower the value of the relative lag, the higher the percentage 

of ∆ values that become negative, the higher the chance of inferring 
wrong directionality of the link between the two nodes. Figure 5d 
demonstrates this relationship. For the critical value of the relative lag of 
around −0.22 s, the percentage of positive ∆ values drops below 50%.

To conclude, we consider the impact of the TR on these results. 
In Figure 6a, we demonstrate a reproduction of Figure 5c but with a 
low TR = 0.10 s. Despite much faster temporal sampling, the results of 
the lag differences are almost identical, and the main difference being 
the range of absolute values of ∆ (on the y axis). Therefore, the dif-
ference is quantitative rather than qualitative. This effectively means 
that at TR = 0.70 s, the hemodynamics is captured sufficiently well 
so that lowering TR further does not add any extra information that 
could be utilized with lagged methods for effective connectivity repre-
sented by ∆. This effect is explained in Figure 6b, where an exemplary 
cross-correlation function between the BOLD response between the 
upstream and the downstream region is presented (blue curve). Both 

F IGURE  5  Impact of the relative hemodynamic lags computed as a difference between time to peak of the hemodynamic response in 
the upstream and downstream region on ∆. (a) The histogram of ∆ values over 500 instantiations of the neuronal dynamics, for the optimal 
TR = 50 ms matching the true delay in the neuronal communication, gives only positive values as expected. (b) ∆ over 500 instantiations of the 
neuronal dynamics and in a function of the TR. At TR = 0.70 s, the percentage of positive ∆ values drops down to 90%, which is still high over 
the chance level. (c) ∆ in the function of the difference between hemodynamic lags in the upstream and the downstream region (“relative lag”). 
(d) The relationship between the percentage of positive ∆ values and the relative lags
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time series are convolved with the identical, canonical hemodynamic 
response. The cross-correlation peaks at 50 ms and then declines as 
expected. We mirrored the cross-correlation function around zero (red 
curve), and ∆ can be computed as the difference between the origi-
nal value of cross-correlation and its mirror counterpart (yellow area). 
TRs of 0.10 and 0.70 s are marked with vertical black lines. In this low 
range, the TR has an impact on the absolute value of ∆, but not on its 
sign.

4  | DISCUSSION

As a summary, our findings suggest that

1.	 In effective connectivity research with use of methods based 
on correlations, deconvolution of BOLD time series into neuronal 
time series might not be necessary. As opposed to the distri-
bution-based methods, in lagged methods the variability in the 
local hemodynamic response can inverse the direction of a 
connection, therefore deconvolution of BOLD time series into 
the neuronal time series is recommended

2.	 Scale-free, pink noise induced by misparcellation is detrimental to 
the signatures of distinct connectivity patterns in the BOLD time 
series, therefore functional parcellation into ROIs (e.g., by Bayesian 
clustering or hierarchical ICA) is recommended

3.	 Decreasing the TR from 0.7 s (as is implemented in HCP datasets 
(van Essen et al., 2013), would not improve the performance of the 
lagged methods

Our LDA prediction study sheds the light on the factors influencing 
effective connectivity research in fMRI. One remark is that LDA does 
not indicate how to establish the causal relations between the nodes in 
the network: it just uses the distinct features in the data and therefore, 

determines when it is theoretically possible. In our study, we chose pair-
wise correlations as features because Pearson correlation is nonparamet-
ric and in multiple methods for effective connectivity research in fMRI, 
it serves as the basis for the effective connectivity research (Hyvärinen 
& Smith, 2013; Patel, Bowman, & Rilling, 2006). Having that in mind, we 
compared the impact of the presence of slow hemodynamic response, 
short time series and mixed signals on the LDA results.

The results of our LDA study suggest that the fixed hemodynam-
ics is not detrimental to the network signatures based on pairwise 
correlations: the LDA classifier distinguishes networks as easily on 
the basis on the neuronal time series as on the basis of the BOLD. 
Moreover, the hemodynamic response can work as a denoiser for the 
white noise (Figure 4a,b, gray lines). This result is intuitive once we 
take the spectrum of the white noise into account: a big portion of 
the power is carried within the high-frequency range which is easily 
denoised with the hemodynamic response. This result demonstrates 
that, in some cases (namely, when the signal has low frequency, and 
at the same time a good portion of the power of the noise is in the 
high-frequency range, and the hemodynamic response is fixed), the 
BOLD response is not necessarily a detrimental factor to the effective 
connectivity research. Therefore, according to our results, deconvolv-
ing the BOLD time series is not necessary while using methods for 
effective connectivity based on correlations.

We also obtain an intuitive result linking to the success rate of 
the LDA classifier to the precision in features estimation. Due to our 
results, at certain length of the BOLD time series, the precision in es-
timating pairwise correlations saturates, therefore further increasing 
the length of the time series does not improve the classification accu-
racy any further. This is a different characteristic from the relationship 
between the length of the time series and the accuracy of signal detec-
tion, where increasing the length of the time series tends to improve 
the performance, as it was found in a theoretical study by Murphy, 
Bodurka, & Bandettini (2007).

F IGURE  6  Impact of TR on ∆. (a) A reproduction of Figure 5c but with a small TR = 0.10 s. The absolute values of ∆ change into narrower 
range than for TR = 0.70 s, but the sign of ∆ stays the same. (b) Dependence of ∆ on low TRs. The difference between cross-correlation function 
(blue curve) and its version mirrored around zero (red curve) for t = TR equals ∆ (yellow area). As we decrease TR from 0.70 s to 0.10 s (black 
lines), we can observe that TR has impact on the absolute value, but not on the sign of ∆
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Furthermore, unlike slow hemodynamics and short time series, mix-
ing signals represented in our simulations by the transition from white 
to scale-free (pink) noise, hinders the effective connectivity research 
in fMRI. For this reason, studying scale-free noise and its role for the 
inference with the DCM—as opposed to the Wiener process typically 
implemented in the stochastic DCM (Daunizeau et al., 2012)—is worth 
considering. Furthermore, the effect of mixed signals can to some ex-
tent be controlled. There are two sources of signal mixing which partly 
can be addressed by the researcher during data preprocessing and be-
fore applying any method for effective connectivity research to the 
fMRI data. The first source is associated with the background neuronal 
activity in the networks. In order to control for this possible confound 
effect, one can partial out the signal coming from outside the chosen 
pair of ROIs as an initial step to the effective connectivity study. The 
second source of the scale-free noise is a possible misparcellation into 
arbitrary brain areas during the preprocessing pipeline. From the per-
spective of network analysis, mixing signals of various frequencies is 
equivalent to inducing a pink noise in the underlying neuronal dynam-
ics (Bak, Tang, & Wiesenfeld, 1987). Therefore, one should pursue ef-
forts aiming at functional (as opposed to anatomical) segregation into 
ROIs. Most of the recent open-source fMRI datasets such as Human 
Connectome Project, ADHD-200 or ABIDE, already support the func-
tional parcellation of the data (Craddock, James, Holtzheimer, Hu, & 
Mayberg, 2012; Glasser et al., 2016; Rosenberg et al., 2016). Multiple 
functional parcellations are available in the field of fMRI (Bellec et al., 
2006; Bellec, Rosa-Neto, Lyttelton, Benali, & Evans, 2010; Blumensath 
et al., 2013; Chen et al., 2013; Craddock et al., 2012; Eickhoff et al., 
2011; Flandin et al., 2002; Glasser et al., 2016; Golland, Golland, & 
Malach, 2007; Janssen, Jylänki, Kessels, & van Gerven, 2015; Janssen, 
Jylänki, & van Gerven, 2016; Kahnt, Chang, Park, Heinzle, & Haynes, 
2012; Lashkari et al., 2012; Lashkari, Vul, Kanwisher, & Golland, 2010; 
Michel et al., 2012; Orban et al., 2014; Thirion et al., 2006; Tucholka 
et al., 2008; van den Heuvel, Mandl, & Pol, 2008; Yeo et al., 2011), 
and the issue of optimal functional parcellation is broadly discussed 
in the field (Stanley et al., 2013). In particular, in cognitive paradigms, 
the ROIs can be built in a data-driven way and on the basis of the 
patterns of activation only (task localizers, Fedorenko, Hsieh, Nieto-
Castañón, Whitfield-Gabrieli, & Kanwisher, 2010; Heinzle, Wenzel, & 
Haynes, 2012).

Second, once we chose ROIs, the effect of mixing signals can be 
further reduced by a proper signal extraction from ROIs. One possibil-
ity is to consider only the first eigenvariate within the anatomical ROIs 
as proposed by Sato et al. (2010) (and as is implemented in the original 
version of the DCM inference procedure (Friston et al., 2003) instead 
of averaging activity over the voxels within an ROI.

Finally, our results suggest that once the effect of mixed signals is 
under control (so that only white noise is present in the neuronal dy-
namics), the signatures of distinct connectivity patterns are present in 
the BOLD time series even in a high noise regime. This may encourage 
further endeavors in the search for new markers of directed connec-
tions between brain regions from fMRI data.

In the second part of our study, we utilize lagged cross correla-
tion in order to determine under what conditions the effective 

connectivity-related information is preserved in the sequence of the 
samples and could be retrieved with the lagged methods. The main dif-
ference between our implementation of the hemodynamic variability 
and the previous studies is that we concentrate on the time to peak of 
the hemodynamic response as the representation of the hemodynamic 
lag, as opposed to the time to onset of the hemodynamic response as in 
(Smith et al., 2011). If the only difference between two hemodynamic 
responses was the time to onset, then a lag of 50 ms in the underlying 
neuronal communication would imply that the time to onset in the 
hemodynamic response in the upstream region 50 ms later than the 
time to onset in the hemodynamic response in the downstream re-
gion would automatically flip the sign of ∆ and therefore also the out-
come of the inference. However, this definition of the hemodynamic 
lags contains an assumption that hemodynamic response is equal to 
zero for the initial period of time. Such response profiles, however, 
are not biophysically plausible as in reality, the hemodynamic response 
has a positive derivative already at the start (Figure 1C, see Section 
Materials and Methods: The generative model for equations). In our 
study we employed the classic Balloon–Windkessel model (Buxton 
et al., 1998; Friston et al., 2003) in order to generate a natural distribu-
tion of the hemodynamic responses derived from neurophysiological 
experiments, and we operationalized hemodynamic lags as the time 
to peak instead. We found that within certain range of the relative he-
modynamic lags, the asymmetry in the lagged cross correlation carries 
information about effective connectivity that can be derived from two 
BOLD time series.

In our setup, we use a fixed neuronal delay of 50 ms, whereas in 
another computational study on the influence of hemodynamic re-
sponse on GC by (Witt & Meyerand, 2009), this variable was a param-
eter of interest. In our study, neuronal lags higher than 50 ms would 
increase the asymmetry of the ∆ in a function of relative lags on behalf 
of the positive relative lags. However, we motivate this small neuronal 
lag by experimental evidence suggesting that the axonal transmission, 
as the slowest phase of the neuronal transmission, involves time de-
lays in the range of dozens of milliseconds (Sabatini & Regehr, 1999).

In many applications, lagged methods for effective connectivity in 
fMRI are applied to the deconvolved BOLD time series, with an ex-
ample of GC (David et al., 2008; Goodyear et al., 2016; Hutcheson 
et al., 2015; Ryali, Supekar, Chen, & Menon, 2011; Ryali et al., 2016; 
Sathian, Deshpande, & Stilla, 2013; Wheelock et al., 2014). However, 
as demonstrated in Figure 5b, the natural variability in the neuronal 
dynamics results with an upper bound on the accuracy of the lagged 
based methods: even assuming a perfect deconvolution (which is never 
the case in practice), which would allow for perfect retrieval of the neu-
ronal time series from the BOLD time series, for the TR = 0.70 s, the 
accuracy rate of ∆ would be <100% (for the parameter space we are 
exploring in this study, this accuracy would be on the level of 90%). 
This result suggests that it might be worth considering to perform 
the GC analysis voxel-wise, and to average the resulting GC over the 
whole ROI instead of computing the GC ROI-wise as is often done in 
the GC studies (Chen et al., 2017; Deshpande, Hu, Stilla, & Sathian, 
2008; Goodyear et al., 2016; Regner et al., 2016; Yang et al., 2017). 
After voxel-wise application of GC, the result can be averaged over 
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all voxel-wise GC scores between the two regions. This voxel-wise 
application of GC can be performed in multiple ways: the GC score 
can be averaged with LASSO regularization (Tang, Bressler, Sylvester, 
Shulman, & Corbetta, 2012), through a multivoxel pattern-based cau-
sality mapping as proposed by Kim, Kim, Ahmad, & Park (2013), or 
through hierarchical clustering as proposed by Deshpande, LaConte, 
James, Peltier, & Hu (2009). This strategic twist is already being used 
in some studies (Katwal, Gore, Gatenby, & Rogers, 2013; Zhao et al., 
2016), however, it is not the most common approach in the field yet 
[voxel-wise modeling is, however, increasingly popular for finding acti-
vation patterns in cognition from fMRI data (Huth, de Heer, Griffiths, 
Theunissen, & Gallant, 2016)]. Applying GC voxel-wise has two major 
advantages. First, computing the final value of GC as a mean value over 
GC values derived from a large number of voxels should reduce the 
natural inaccuracy of the lagged methods when applied to the stochas-
tic neuronal dynamics (Figure 5b). Second, it neutralizes the bias com-
ing from possible inaccuracies in the blind deconvolution algorithms.

We also discuss the influence of the local distribution of the he-
modynamic lags present in the investigated networks on the perfor-
mance of the lagged methods for effective connectivity (Figure 5c,d). 
This part of the analysis refers to the studies in which the lagged meth-
ods are applied to the unconvolved BOLD, which is often a practice in 
GC research (Chen et al., 2017; Regner et al., 2016; Zhao et al., 2016). 
In such case, the utility of lagged methods in fMRI research depends 
on the variability in the hemodynamic lags. According to our results, 
under the assumption that the lag in the neuronal communication is 
in the range of 50 ms, any inference with lagged methods is possible 
only if the mean hemodynamic lag between all the voxels within the 
upstream region are no more than 200 ms higher than the mean he-
modynamic lag between all the voxels within the downstream region.

In the work by Handwerker, Ollinger, & D’Esposito (2004), it was 
found that the variability in the hemodynamic lags between subjects 
is higher than the variability within subjects. Furthermore, a study by 
Menon (2012) has demonstrated a large variation in hemodynamics 
depending on the vessel sizes in the voxels. Even vasculature changes 
across cortical layers have been shown to cause around 400 ms differ-
ences in hemodynamic time-to-peak (Silva & Koretsky, 2002).

This experimentally determined local variability in the hemody-
namic lags is higher than the “safe range” found in our study (200 ms). 
Therefore, further neurophysiological studies on the variability in 
hemodynamic response across the human brain are necessary to ad-
vance our ability to characterize causal interactions from BOLD fMRI 
data, especially with use of the lagged methods such as GC.

Lastly, our results from this part of the study demonstrate that 
upsampling the BOLD time series to as little as TR = 0.10 s would 
not significantly improve the ability to retrieve the directionality of 
a connection with use of the lagged methods as the results differ 
from the results obtained for TR = 0.70 s only quantitatively, but not 
qualitatively. Our conclusions are concordant with recent theoretical 
considerations by Solo (2016), but differ from conclusions derived by 
Seth et al. (2013), Barnett & Seth (2017)) and Lin et al. (2014), who 
conclude that GC estimation improves with upsampling. The design 
of our study is also different than the previous studies. The novelty 

in our study is that we reduced the effective connectivity research 
with lagged methods to the simplest possible case. First, we quan-
tify the amount of asymmetry in the lagged cross-correlation func-
tion between two time series, which is a model-free and probably the 
simplest lagged method for effective connectivity research (and is 
precise at picking on the time lag of the interaction, as demonstrated 
in Supplementary Material Comparison between lagged cross correlation 
and Granger Causality, Figure S1A). Second, we reduce the setup to 
the simplest, two-node neural mass model with a single connection, 
and with neuronal dynamics modeled with ordinary differential equa-
tions, as in the standard DCM generative model (Seth et al., 2013), by 
comparison, use much more complex design, involving a few nodes 
with more complex, spiking neuronal dynamics). Therefore, we believe 
that our results give insights into how, in general, a lagged method for 
rendering effective connectivity can be affected by the neuronal and 
hemodynamic variability, as well as by the TR.

One last remark is that in this study, we performed a simulation in 
order to approach the research questions posed in this article, as done 
in e.g. in Smith et al. (2011). One reason for this choice is that still, lit-
tle is known about the effective connectivity structures in the human 
brain, as they are by definition dynamic and context dependent. 
Multiple ongoing projects aim at establishing effective connectivity 
in the brain on the basis of TMS and EEG (Esser, 2008) procedures, 
therefore extending our investigations to experimental fMRI data 
might be feasible in the future.

Altogether, our results suggest that neither the slow hemodynam-
ics, a relatively short time series of a few hundred samples, nor TR as 
high as 0.7 s can affect the effective connectivity research in fMRI 
to a large extent. On the other hand, a proper region definition can 
facilitate the inference, therefore a good choice of the preprocessing 
pipeline improves chances for success in the effective connectivity 
study in fMRI.
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