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SUPERVISED LEARNING TECHNIQUES AND
THEIR ABILITY TO CLASSIFY A CHANGE OF

DIRECTION TASK STRATEGY USING
KINEMATIC AND KINETIC FEATURES

Chris Richtera,∗, Enda Kinga,b, Eanna Falveya,c, Andrew Franklyn-Millera,d

aSports Surgery Clinic, Santry Demense, Dublin 9, Ireland
bDepartment of Life Sciences, University of Roehampton, United Kingdom

cDepartment of Medicine, University College Cork, Ireland
dCentre for Health, Exercise and Sports Medicine, University of Melbourne, Australia

Abstract

This study examines the ability of commonly used supervised learning tech-

niques to classify the execution of a maximum effort change of direction task

into predefined movement pattern as well as the influence of fuzzy executions

and the impact of selected features (e.g. peak knee flexion) towards classifi-

cation accuracy. The experiment utilized kinematic and kinetic data from 323

male subjects with chronic athletic groin pain. All subjects undertook a biome-

chanical assessment and had been divided previously into 3 different movement

strategies in an earlier paper. Examined supervised learning techniques were: a

decision tree, an ensemble of decision trees, a discriminant analysis model, a

naive Bayes classifier, a k-nearest-neighbour model, a multi-class model for

support vector machines, a stepwise forward regression model, a neural net-

work and a correlation approach. Performance (measured by comparing the

predefined and classified movement pattern) was highest for the correlation ap-

proach (82 % - CI 81 to 83 %) and support vector machine (80 % - CI 79 to

80 %). The percentage of fuzzy observations within the data was between

15 and 25 %. The most informative features for classification were: hip flexion
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angle, ankle rotation angle, a flexion moment [ankle and hip] and thorax flex-

ion. Findings of this study support the assumption that multiple patterns are

used to execute a movement task and demonstrate that classification models

can predict movement patterns with a high accuracy (83 %).

Keywords: movement classification, subgroup analysis, change of direction

manoeuvre

Word count: 4027

1. Introduction

It is believed that the underlying mechanism of musculoskeletal overuse

pathologies, may be the result of a repetitive and poorly controlled loading

of tissues rather than a single excessive movement or incident [6, 11]. Although

a variety of intrinsic and extrinsic factors can be identified [29] it is hypothesised5

that the lack of variability in movement strategies (e.g. continuous load of the

same structure) or the inappropriate execution of a movement are propagative

of overuse injury.

Studies in the field of biomechanics often aim to identify a casual mecha-

nism for musculoskeletal overuse pathologies and generally utilize a single group10

design [3], which proposes that a selection of individuals (with similar anthro-

pometric measures, gender or age) is homogeneous in executing a movement

task. However, studies highlight that differences exist within movement pat-

terns across individuals [4, 6, 8, 13, 14, 20, 26, 28]. Consequently, utilizing a

single group design has the potential to mask features that relate to a depen-15

dent variable (e.g. injury related factor; [3, 20, 24, 25]). An alternative to

this model is the single case design, which examines one individual assuming a

unique movement strategy with a unique injury related mechanism [3]. While

providing an insight into potential injury mechanism, findings are dependent

on the studied individual, their mental and physical condition during the data20

capture and the comparison of training interventions is difficult (as the ordering

of interventions might affect results; [12, 2]), while the number of trials can
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introduce fatigue potentially affecting findings [2]. Consequently, the general-

ization of findings is problematic. An alternative design that combines both

the generalizability of a single group and the flexibility of the single case design25

is the analysis of subgroups. The subgroup design presupposes that multiple

strategies (movement pattern) can be used to execute a movement task. The

number of strategies and the membership of a sample (subject or trial) to a

movement strategy (movement pattern) can be identified using clustering tech-

niques and the subsequent pattern specific analysis can identify injury related30

features for a specific movement strategy. In fact, a commonly employed version

of a subgroup analysis is the differentiation between genders or age in studies.

A subgroup design has been advocated in a number of clinical studies in-

vestigating the aetiology of musculoskeletal pathologies [4, 8, 13, 14, 26, 28].

The subgroup design has also been reported to increase prediction accuracy by35

up to 11 % compared to a single group design when predicting jump height

in counter-movement jumps using ground reaction forces [20], while reducing

the amount of data (fewer features) used to predict jump height. As such a

subgroup of analysis may prove particularly useful for clinicians, trainers and

researchers as the identification of specific movement deficits may facilitate the40

development of individualized rehabilitation, injury prevention and performance

programs. Furthermore the ability to examine movement pattern selection may

also enhance the understanding of musculoskeletal pathologies.

Most recently, the subgroup design was used to evaluate movement patterns

during a maximum effort change of direction task in patients with athletic groin45

pain [6]. However, the practical use of this study is limited because no classifica-

tion guidelines or algorithms are provided and future studies have no ability to

classify a sample’s movement into the strategies defined by Franklyn-Miller et

al. [6]. The most objective way to decide on the membership of a sample / trial

to a predefined movement strategy is the use of a classification model that has50

been trained, using supervised learning, to recognize the relationship between

input features (e.g. max. knee abduction) and the target (predefined move-

ment strategy). The selection of the right learning technique can be challenging

3



  

as a number of learning techniques / theories exist with different abilities to

learn relationships between target and input features [7, 30]. In the past, linear55

models (e.g. regression models) have been proven to be very useful as they are

easy to interpret (indication of importance of a feature) and implement. How-

ever, regression models assume that the input features and target have a linear

relationship [7], the analysis of a mix of numerical and categorical features is

problematic and the number of features is limited because a ”input to obser-60

vations” ratio is required to generate a robust prediction model (1:10 to 1:15;

[1, 15]). If, for example, 12 features are fed into a regression model a minimum

of 120 to 180 samples is required to develop a robust prediction model. This

”input to observations” ratio can represent a problem in biomechanical studies

because a relatively low number of samples but large number of input features65

can generate an overfitted classification model. Techniques that are frequently

used outside the field of biomechanics are k-nearest-neighbour classifiers, naive

bayesian classifiers, decision trees, neural networks and support vector machines

(SVM). These techniques have different advantages and limitations, which are

briefly described in this paper1, and their performance is influenced by the char-70

acteristics of a dataset.

The k-nearest-neighbour classifier is similar to the regression model but is

more flexible, as it utilizes the distance of neighbouring samples to classify input

data, allowing non linear boundaries and continuous training. However, when

using a k-nearest-neighbour classifier, input features should be treated (e.g.75

normalized) [7], which necessitates a normalization approach. Compared to the

k-nearest-neighbour classifier, naive bayesian classifiers and decision trees use

more complex statistics when classifying a sample. An advantage of bayesian

classifiers is that they can be trained continuously and allow a easy interpreta-

tion2 of what the classifier has learned [23]. A shortcoming in bayesian classifiers80

1The interested reader is referred to [7, 10, 23] for a detailed description.
2Bayesian classifiers store probabilities of each feature - e.g. the ability of a feature to

divide the target. These probabilities can be examined to determine the impact of a feature

4



  

is the ability to learn predicting targets based on the interaction of features [10].

This is not a problem for decision trees, which can easily cope with interaction

between input features and also allow the interpretation of what the tree has

learned. However, decision trees can become extremely complex if the number

of branches is not limited. The most complex classifiers discussed here are neu-85

ral networks and SVM’s, which have been described to be extremely powerful as

they have the ability to learn very complex linear and non-linear relationships

[23]. However, it is difficult to understand what the model has learned for the

user, which represents a huge limitation - e.g. when trying to understand injury

mechanism.90

In addition to the difficulty of selecting a learning technique, it is important

to a) account for different membership types (fuzzy and logic) when examining

movement pattern and b) determine high impact features (features with a sig-

nificant impact to the prediction model) to give feedback to the user. The term

fuzzy indicates that a sample holds characteristics of two strategies, while logical95

membership indicates that a sample holds solely characteristics of one strategy.

Fuzzy memberships can influence the accuracy measures of prediction models (if

they have not been considered in the cluster generation) as the membership of

a fuzzy sample can change. Regarding the impact of a feature to the prediction

process, studies have shown that a professional trainer and researcher are able100

judge risk of injury during a movement task due to experience and knowledge

of a injury mechanism [16, 17]. Consequently, reporting features that impact

the model most may allow the classification or screening outside the laboratory.

The primary aim of this study was to assess and compare the performance

of commonly used supervised learning techniques to classify previously defined105

movement patterns using kinematic and kinetic input features during a max-

imal effort change of direction task. The secondary aim was to examine the

influence of samples with fuzzy memberships and to explore how to ”spot” a

fuzzy membership. The third aim was to report which features have greatest

towards classification.
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impact when classifying movement patterns of a change of direction in athletic110

groin pain patients.

2. Methods

Data Set. This study used a data set that has been published previously in

Falvey et al. [5] and Franklyn-Miller et al. [6]. The data contained three

hundred and twenty-three male subjects aged 27.6 (± 7.6) years old, 180 (±115

6.0) cm tall and 81.9 (± 9.4) kg with athletic groin pain and a median time of

36 (IQR 16 to 75) weeks between onset of symptoms and presentation to the

Sports Surgery Clinic. The Sports Surgery Clinic Hospital Ethics Committee

approved the study (Ref 25EF011) and all subjects signed informed consent.

The study was registered at Clinicaltrials.gov (NCT02437942).120

Data Analysis. The methods used in this study can be described in 3 steps: (1)

detection of movement strategies, (2) the selection of a classification model and

(3) the identification of high impact features (see table 1).

Detection of Movement Strategies. The following paragraphs briefly describes

the steps used to detect movement strategies within the data, while a detailed125

description is reported in Franklyn-Miller et al. [6]. A motion analysis system,

including eight infra-red cameras (Bonita-B10, Vicon Motion Systems Ltd, UK)

and two force platforms (BP400600, AMTI, USA), was used to capture trajec-

tories of 24 markers that were attached to the subjects (according to Plug-In-

Gait) and the forces applied to the ground. Both systems were synchronized and130

controlled simultaneously by the software package Nexus (Nexus 1.8.5, Vicon

Motion Systems Ltd, Oxford, UK). Prior to data collection, every participant

performed a standard warm-up routine, including two sub-maximal repetitions

of a planned 110 degree high speed change of direction manoeuvre (left and

right) before three change of direction manoeuvres were captured on each leg.135

Before applying inverse dynamics (to calculate tri-planar joint kinematics and

kinetics [31]) the captured trajectories (200 Hz) and ground reaction forces (1000
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Hz) were filtered using a fourth-order Butterworth filter (cut-off frequency of 15

Hz; [9]). Only the best trial of a subject’s painful side (by clinical palpation)

was used for analysis. The start and end of the change of direction manoeuvre140

was defined by the ground reaction force (>5 N). Curves were normalized to

101 frames and to bodyweight (only joint moments). To eliminate variations in

the timing of the start of the acceleration phase, ensuring the comparability of

physical conditions throughout the movement cycle, all curves were landmark

registered to the start of the acceleration phase (first instance of forward ground145

reaction forces; [18]).

Before clustering the captured kinematic and kinetic measures, Franklyn-

Miller et al. [6] reduced the data to its main components (capturing the be-

haviour of a samples trial using multiple features) using the idea of analysis of

characterizing phases [22]. Analysis of characterizing phases detects phases of150

variation within a waveform, using VARIMAX rotated principal

components3 that together described 99 % of the variances in the waveform

[21]. Subsequently, a score (feature) was generated to capture the samples

behaviour for every identified phase (k) as the summed difference between a

subject’s waveform (p) and the average waveform (q) within every time point155

(i) between the start (n) and end (m) of a phase. This was completed for every

kinematic and kinetic measure (j) creating a feature matrix (rows = number of

phases across each measure; columns = number of subjects; see Equation 1).

featurej,k =
m∑

i=n

p(i)− q(i) (1)

To maximize the ability to identify movement strategies this feature matrix

was transformed into its correlation matrix to change the proximity measure160

from a distance to a relationship measure [20]. Gap statistic4 was then used to

3The VARIMAX rotation can be used to increase the interpretability of principal compo-

nents by revealing more meaningful components of variation [19].
4Gap statistic is a method that can be used to determine how many classes or clusters

are within a dataset by comparing the within-cluster dispersion of a data set for a number
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identify number of movement strategies within the data set [27] - detecting 3

clusters in the data. Subsequently, hierarchical clustering was used to cluster

each sample into three movement strategies (distribution: cluster 1 = 19 %;

cluster 2 = 41 % and cluster 3 = 40 %). The assigned movements strategies of165

this methods were used as the target variable in this study for the classification

techniques and treated as ground truth.

Classification Model Selection. To generate and validate a classification model,

the dataset consisting of ankle, knee, hip, pelvis and thorax angles as well as

ankle, knee and hip moments was divided into training (75 %) and test data170

(25 %). When dividing the data set, the differences in cluster distribution were

considered. Input features were calculated based on the phases of variation

within the training data as described in Equation 1. The reader should note that

no transformation of the proximity measures was applied during the classifier

selection as the aim was to classify not to cluster.175

This study used learning techniques included in the statistical toolbox of

MatLab (R2015a, MathWorks Inc., USA) as well as a correlation approach.

Tested were the classification performance of a decision tree (fitctree), an en-

semble of decision trees (n trees = 50; TreeBagger), a discriminant analy-

sis model (fitcdiscr), a naive bayesian classifier (fitcnb), a k-nearest-neighbour180

model (fitcknn), a multiclass model for support vector machines (fitcecoc), a re-

gression model (mnrfit; in stepwise forward) and a neural network (patternnet).

In addition to the techniques included within the statistical toolbox, a corre-

lation method (Corr2Mean) was also tested. This method classified a sample

based on its correlation to the cluster average (determined from the training185

data). For example, a sample within the test data might be correlated to the

mean of the training data samples of cluster 1 with r = .04, r = .58 for cluster 2

of requested cluster solution (e.g. 2 to 25) to the average within-cluster dispersion cluster

solution computed from x reference data sets (uniform copy of the real data) that hold a null

distribution (e.g. no underpinning pattern). The interested reader is referred to the text of

Tibshirani et al. [27] or Martinez et al. [10] for further information.
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and r = .95 for cluster 3, in which case the sample would be classified as cluster

3.

Each supervised classification technique was trained using the non-190

transformed feature matrix and previously defined movements strategy of the

training data - as defined by Franklyn-Miller et al. [6]. The generated model

was then used to predict the movement pattern of the samples within the test

data, based on the fed feature vector of the sample. The predicted and pre-

defined membership was compared to determine the accuracy of classification.195

The described process was repeated 100 times using different training and test

datasets (subjects were randomly assigned into training and test data in every

iteration) to achieve a robust measure of the expected accuracy. It should be

noted that the features calculated from phases of variation may change during

the simulation as they are dependent on the variations within the training data200

set (as illustrated in figure 4).

To allow the identification and examination of fuzzy samples, the following

variables were stored throughout every repetition of the model training pro-

cess: frequency of the selection of a sample as test data, predicted cluster and

the probabilities / decision criteria to judge the cluster membership5. The fre-205

quency of selection of a sample as test data and predicted movement pattern

were used to calculate the percentage of misclassification rate of each sample

(n misclassified / n selected). Based on the misclassification rate was a zone

of logic, fuzzy and potentially miss clustered observations defined (< 15; 15 -

85 %; > 85 % misclassified respectively). The reader should note that these210

ranges are subjective and where pick in a post hoc manner. The probabilities /

decision criteria to assign membership were carried on to judge the strength of

membership to a movement pattern of a sample and to allow the generation of

an equation of how to ”spot” a fuzzy samples.

5The probabilities or decision criteria refer to a probability estimate rather than hard

classifications to a cluster, similar as the r values in the Corr2Mean approach.
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Identification High Impact Features. To identify features with a high impact to-215

ward classification, two steps were performed: a) identification of robust phases

of variation to calculate features and b) utilizing a stepwise forward approach

to determine the importance of a feature towards classification.

To identify robust phases of variation, start and end points of phases of

variation were recorded during the trainings process. A phase was considered220

”robust” if it occurred in at least 95 % of the repetitions of the trainings process

and spanned over at least 5 % of the data.

The phases of variation satisfying these criteria were used to calculate fea-

tures describing the behaviour of a sample (as described previously). Then every

generated feature was individually used to train a classification model and to225

predict the movement pattern of the test data. This process was repeated 100

times for every feature separately using different training and test dataset (sub-

jects were randomly assigned into training and test data) to achieve a robust

measure of the expected accuracy. The feature with the highest mean accu-

racy was judged to be the first high impact feature and considered as ”model-230

base”. Before identifying other high impact features, all features that correlated

greater than 0.7 with the model-base were excluded to increase interpretabil-

ity. Subsequently, the same process was performed using every non-model-base

in combination with the model-base feature. The ”add-on-feature” with the

highest mean accuracy was judged to be a high impact feature and added to235

the model base. Again all features that correlated greater than 0.7 with the

identified feature were excluded. The process was repeated until every feature

was added to the model base or excluded due to multicollinearity to a model-

base feature. The combination of features that first resulted in a classification

accuracy plateau was considered high impact. All processing and analysis as240

performed using MatLab (R2015a, MathWorks Inc., USA).
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3. Results

Performance of Approaches. The classification models differed in their perfor-

mance, when using all features within the features matrix, to classify the ob-

servations in the test sample (figure 1) and were ranked, based on their overall245

average accuracy as follow (decreasing accuracy): Corr2Mean (82 %; Range 76

to 89 %; CI 81 to 83 %), SVM (80 %; Range 69 to 87 %; CI 79 to 80 %),

stepwise regression (72 %; Range 57 to 84 %; CI 71 to 73 %), naive bayesian

(72 %; Range 55 to 79 %; CI 71 to 73 %), k-nearest neighbour (67 %; Range 55

to 79 %; CI 66 to 69 %), neural network (67 %; Range 49 to 78 %; CI 65 to 69250

%), decision tree (63 %; Range 53 to 70 %; CI 62 to 64 %), random forest (61

%; Range 53 to 70 %; CI 61 to 62 %), discriminant analysis (53 %; Range 42 to

64 %; CI 51 to 54 %).

Fuzzy Observations. Only the models that performed best using all features

within the features matrix are presented (Corr2Mean and SVM). For Corr2Mean,255

11 % of the samples were included in the miss class zone, 15 % were within the

fuzzy zone, while 74 % of the samples were located in the logic zone. Based

on the stored membership decision criteria, throughout the simulations, the fol-

lowing equation was derived subjectively in a post hoc manner to best separate

fussy and logic samples: difference = distance2ndchoice−distancechosen. Sam-260

ples with a ratio between 0.876 and 0.954 can be considered fuzzy (6 % error:

18 logic samples were defined fuzzy while 3 fuzzy samples were defined logic;

figure 2).

For the SVM technique, 5 % of the samples were located in the miss class

zone, 25 % were included within the fuzzy zone, while that rest (70 %) was within265

the logic zone. Based on the stored membership decision criteria, the following

equation was derived subjectively in a post hoc manner to be best to separate

fussy and logic samples: difference = distance2ndchoice − distancechosen. The

used equation and differences between -0.407 and -0.098 can be considered fuzzy

(18 % error: 54 logic samples were defined fuzzy while 3 fuzzy samples were270

defined logic; figure 3).
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High Impact Features. Sixty-seven key phases met the pre-set criteria to be

a robust key phase (figure 4). Phases of variance were consistent across the

randomly chosen training data for most joint angles, except of phases in knee

and hip rotation angles as well as pelvis flexion and abduction angles. While275

moment data was stable in variability, only a few key phases spanned over 5 %

of the movement (figure 4).

When using only a subset of features both the Corr2Mean and SVM ap-

proach reached classification accuracies within the confidence intervals observed

before (when utilising all the features of the features matrix). The Corr2Mean280

generated even higher accuracies then using a subset of 17 features (+ 4%).

High impact factors for the Corr2Mean, in order of selection, were (phase &

mean accuracy): hip flexion angle (27 to 41 & 20 %), ankle rotation angle (77

to 86 & 53 %), ankle flexion moment (19 to 24 & 78 %), pelvic drop (94 to 100

& 79 %), and thorax flexion (92 to 100 & 81 %; figure 5). High impact factors285

for the SVM were (in order of selection; phase mean accuracy): hip flexion

angle (27 to 41 & 69 %), ankle rotation angle (77 to 86 & 76 %), hip flexion

moment (19 to 24 & 77 %) and thorax flexion (92 to 100 & 78 %; figure 6).

4. Discussion

The findings of this study indicate that the executed movement pattern290

during a maximal effort change of direction task can be classified using a simple

correlation approach, which demonstrated the highest classification accuracy

and the better ability to identify fuzzy memberships. The mean features of the

cluster 1, 2, and 3 defined by Franklyn-Miller et al. [6] are reported in table 3

and can be used to estimate movement strategy in other studies that examine295

a 110 degree change of direction.

This allows the analysis of maximal effort change of direction data from new

perspectives and the development of movement specific rehabilitation, injury

prevention and performance programs. The generated information about fuzzy

membership and their detection post classification can help build personalized300

12



  

training program based on the deficits described within a movement pattern.

Further, variability (e.g. changes in used movement pattern) can be examined

using the findings to understand if an inability to switch between different move-

ment strategies is responsible for an overload of tissues or if there is a save zone

for every strategy.305

The identification of stable key phases highlights a consistency in variation

of waveforms and may assist the establishment and interpretation of continuous

analysis as well as feature generation in future studies. Furthermore, findings

demonstrated that kinematic measures do follow an consistent variability pat-

tern, while kinetic variables may present a challenge when trying to compare310

findings of studies using continuous analysis as phases of variation / neuromus-

cular capacities may be represented over a short period of time (5 %) or at

multiple short phases (possibly due to multi modal shapes a the first 30 % of

the movement cycle).

Performance of Approaches. The classification models examined differed in315

their accuracy when classifying the randomly chosen test samples. The

Corr2Mean approach and the SVM demonstrated the highest abilities (82 and

80 %, respectively) to classify observations in the test data. In comparison naive

bayes, stepwise regression, neural network, k-nearest neighbour demonstrated a

slightly lower ability (74 to 68 %) to classify the test samples, while the decision320

tree, random forest and discriminant analysis were outperformed by up to 24

%. Further, it should be noted that the variability in prediction accuracy was

lowest in Corr2Mean and SVM. While it might not be surprising that the SVM

model outperformed other techniques (because of it ability to learn very com-

plex linear and non-linear relationships), it was surprising that the Corr2Mean325

approach did - the Corr2Mean did not receive any training and is compared

to other used techniques rather simple. Potential reasons for the differences

in accuracy between the classifiers are: non-linear relationships, sample size,

13



  

proximity measure or fuzzy memberships 6. Non-linear relationships are likely

to have not impacted the prediction accuracy hugely because the neural net-330

work, which has been reported to be able to cope with these issues, was ranked

lower than the regression model (table 2). The sample size, which is important

for a good training of the neural network, might be a reason for the decreased

accuracy of the neural network. One possible explanation for the good per-

formance of Corr2Mean might be the proximity measure (relationship rather335

than distance). When clustering movement strategies it has been reported that

differences in magnitude between samples are not as effective as their interde-

pendence at maximizing the ability to predict a dependent variable [20]. In

this study, the Corr2Mean approach was the only technique that directly used

interdependence of a sample to a cluster mean. Including such a measure to340

the feature matrix might have increased the ability to learn the relationship of

input features and target for other techniques. Another factor that may have

an impact to the accuracy is the influence of fuzzy memberships. An additional

analysis of the distribution of membership types supports this assumption (see

table 2). It is likely that the Corr2Mean and the SVM have performed better345

than other techniques as they handled ”weak” fuzzy observations better.

Fuzzy Observations. Findings highlight the importance of considering fuzzy

memberships. While samples with fuzzy memberships accounted for 15 to 25

% in the data, they are also likely to have impacted the classification accu-

racy of the examined learning techniques. The importance of accounting for350

fuzzy memberships becomes even more important when reporting / describing

a movement strategy. For example, mean values the movement strategies can

change by an average of 21 % when only considering logic samples. Further, the

influence of fuzzy observations to the mean values seems also to have influenced

6While it could be argued that the landmark registration of the data has affected the

performance of the classification approaches, it is not listed here because the landmark reg-

istration has a methodological reason and because the registered time domain was fed into

each approach as features.
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the selected high impact features. Only features were selected that were little355

influenced by fuzzy observations. As such differences in calculated mean values,

using only logic or both fuzzy and logic observations, differed less than 8 %

(mean = 3.4 %), except of the angle rotation angles (20 to 39 %). The selection

of ankle rotation is very likely related to high ankle rotation angles in cluster 1,

which was about 17 degree greater than in cluster 2 and 3.360

When estimating the fuzziness of an observation, calculating the ratio be-

tween decision criteria for the chosen and second most likely movement pattern

separated fuzzy from logic observation (error 6 %) for the Corr2Mean approach

(0.867 < ratio > 0.945 = logic), while using the SVM decision criteria (differ-

ence) resulted in an 18 % error. This suggests that the Corr2Mean approach365

should be used when judging the kind of a membership for an observation.

High Impact Features. To identify features with high impact towards classifi-

cation accuracy, this study first identified phases that consistently described

variance in the data. Findings, suggest that most variances in joint angles are

stable over 5 % of the movement cycle, while in moment data variances were370

stable but only over a short period of the cycle. Further generating a classifica-

tion model utilizing only a few selected features, calculated from stable phases,

can to repeat or even outperform a classification model using every computed

feature. This suggests that a subset of the identified robust phases of varia-

tion can capture the movement pattern / strategy. Additionally, when using375

the stepwise forward approach kinematic data was chosen more frequently than

kinetic data to classify. This indicates that movement pattern could be judged

solely on kinematic data. However, this does not mean that kinetic data can be

omitted when examining injury related factors. Further, Corr2Mat and SVM

selected very similar variables (hip flexion angle, ankle rotation angle, flexion380

moment [ankle and hip] and thorax flexion), indicating their importance for

classifying the data into the predefined clusters.

Practical Implications. In conclusion, correlating hip flexion angle, ankle rota-

tion angle, ankle flexion moment and thorax flexion of a sample to predefined
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values of movement strategies can be used to estimate membership to a strategy,385

as a correlation approach appears to be the most suitable technique for clas-

sification of a maximum effort change of direction task in groin pain patients.

Support vector machines also showed a high level of suitability. Further, when

classifying unknown samples into movement strategies, it is extremely impor-

tant to consider the possibility of fuzzy memberships as they can present 15 to390

25 % of the captured data. This is an important finding as it could have a huge

impact to future research. If for example a classification technique can differ-

entiate between 75 % of a healthy and injured population, the correct classified

samples could be used to represent a truly healthy and unhealthy behaviour.

Further, findings of this study highlight the existence of multiple patterns to ex-395

ecute a movement task and demonstrate that classification models can predict

movement strategy with a high accuracy (83 %).
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Figures

Figure 1: Box plots of the accuracy of each tested learning technique. It should be noted
that for visualization purposes only 25 randomly selected instances are shown.
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Figure 2: Illustration of Corr2Mean model, its misclassification rate (black line) and the
ratio between the decision criteria for the chosen and second most likely movement pattern
(x; ratio = (r2ndchoice + 1)/(rchosen + 1)). The red x is a sample that is likely to be fuzzy,
based on the post hoc determined range of 0.876 to 0.954 (blue area). Each position
on the x-axis represents a subjects, who have been sorted based in the magnitude of
misclassification.
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Figure 3: Illustration of SVM model, its misclassification rate (black line) and the differ-
ence between the decision criteria for the chosen and second most likely movement pattern
(x; difference = distance2ndchoice − distancechosen). The red x is a sample that is likely
to be fuzzy, based on the post hoc determined range of -0.407 and -0.098 (blue area). Each
position on the x-axis represents a subjects, who have been sorted based in the magnitude
of misclassification.
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Figure 4: Illustrates the location and frequency of phases of variation that have been
identified throughout the repeated model process. The color bar on the right represents
the percentage of occurrence of a specific point in time within a phase of variation. The red
boxes indicates that a phase has been identified as a stable phase of variation - e.g. a phase
that represented variation in 95 % of simulations and spanned over 5 % of the movement
cycle. The abbreviations: fle, abd and rot indicate the movement plane (sagittal, frontal
and transversal) of the joint.
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Figure 5: Illustration of the classification accuracy for the Corr2Mean model, when using
a stepwise forward approach adding the most meaningful features to the model. The table
within the figure can be decoded as: Step X - Joint - Joint plane (phase of variation used)
- classification accuracy. The abbreviations: fle, abd and rot indicate the movement plane,
sagittal, frontal and transversal of the joint.
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Figure 6: Illustration of the classification accuracy for the SVM model, when using a
stepwise forward approach adding the most meaningful features to the model. The table
within the figure can be decoded as: Step X - Joint - Joint plane (phase of variation used)
- classification accuracy. The abbreviations: fle, abd and rot indicate the movement plane,
sagittal, frontal and transversal of the joint.
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Table 1: Illustration of the workflow for the clustering, classifier selection and identification 
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Table 2: Description of the distribution of defined zones. 

 

Technique Rank Accuracy (in %) % Miss Class % Fuzzy 

Corr2Mean 1 82 11 15 

SVM 2 80 5 25 

Naive Bayesian 3 72 5 36 

Regression 4 72 11 24 

Neural Network 5 67 8 32 

K-Nearest-Neighbour 6 67 9 31 

Decisions Tree 7 63 7 46 

Random Forest 8 61 21 13 

Discriminant 9 53 6 83 

 

 

 

 

  



  

Table 3: Descriptive mean features (logic members only) of cluster 1, 2 and 3. 

 

Feature Mean Cluster1 Cluster2 Cluster3 

Sample 323 (208) 63 (34) 132 (90) 128 (84) 

Hip Flexion Angle (27 - 41 %) 51.7 (50.7) 52.2 (51.1) 60.7 (61.9) 41.3 (38.5) 

Ankle Rotation Angle (77 - 86 %) -14.4 (-12.1) -27.1 (-29.1) -10.8 (-9.0) -11.7 (-8.4) 

Ankle Flexion Moment (19 - 24 %) 13.6 (13.3) 16.5 (16.0) 10.7 (9.9) 15.1 (15.9) 

Pelvic Drop (94 - 100 %) 22.2 (22.3) 20.2 (20.2) 20.1 (19.6) 25.4 (26.0) 

Thorax Flexion (92 - 100 %) 37.1 (37.1) 31.4 (31.8) 41.9 (43.4) 34.9 (32.6) 

 

 

 

 


