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ABSTRACT
The availability of reliable predictions for cellular throughput would
offer a fundamental change in theway applications are designed and
operated. Numerous cellular applications, including video stream-
ing and VoIP, embed logic that attempts to estimate achievable
throughput and adapt their behaviour accordingly. We believe that
providing applications with reliable predictions several seconds
into the future would enable profoundly better adaptation deci-
sions and dramatically benefit demanding applications like mobile
virtual and augmented reality. The question we pose and seek to
address is whether such reliable predictions are possible. We con-
duct a preliminary study of throughput prediction in a cellular
environment using statistical machine learning techniques. An ac-
curate prediction can be very challenging in large scale cellular
environments because they are characterized by highly fluctuating
channel conditions. Using simulations and real-world experiments,
we study how prediction error varies as a function of prediction
horizon, and granularity of available data. In particular, our simula-
tion experiments show that the prediction error for mobile devices
can be reduced significantly by combining measurements from the
network with measurements from the end device. Our results indi-
cate that it is possible to accurately predict achievable throughput
up to 8 sec in the future where 50th percentile of all errors are less
than 15% for mobile and 2% for static devices.
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1 INTRODUCTION
The achievable throughput for devices in cellular networks can
fluctuate by an order of magnitude over a span of a few seconds for
a variety of reasons. There can be rapid changes in the underlying
radio channel conditions and system load as devices move and new
devices enter and existing devices leave the network. Scheduling
algorithms used in cellular networks cause burstiness in the cel-
lular channel. In an end-to-end flow, data to a mobile device is
regulated by protocols that operate at very short time scales (e.g.
radio retransmissions at millisecond level) as well as congestion
control protocols (e.g. TCP) at much larger time scales (hundreds
of milliseconds to seconds) that are challenged by channel varia-
tions [12].

Some applications, including video streaming and VoIP, use em-
bedded logic to adapt their behavior, such as encoding bitrate, based
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on local estimates of perceived throughput. Evidence, however, sug-
gests that these applications would make significantly better adap-
tation decisions if they were provided with accurate Throughput
Guidance (TG) [13]. We believe that TG would also dramatically
benefit demanding applications like virtual and augmented reality.
It would also open up new opportunities for sophisticated energy
management on mobile devices, based on intelligent scheduling
techniques matched to communication needs.

There exists recent work that shows promising results in terms
of sub-second predictions of cellular throughput based on selected
radio metrics [5, 8, 9]. Since radio conditions greatly impact the
achievable throughput, there has been an effort to understand the
impact more deeply and use Radio Access Network (RAN) data for
TG [5, 10], focusing on prediction horizons of under one second. The
IETF has also recently examined protocol changes to inform servers
using TCP of the available throughput in cellular networks [2].
The horizon of all these predictions, however, is insufficient for
applications video.

In contrast, in this paper, we seek to examine the limits of pre-
diction; specifically, whether reliable forecasts are feasible several
seconds into the future. We examine the challenges in producing
accurate TG in cellular LTE networks. We explore the complex
multi-dimensional parameter space, including different measure-
ment data sources (device or network Key Performance Indicators
(KPI)), feature engineering, mobile or static cases, various cell load
indicators, cell sector clustering, prediction look-ahead horizons,
number and time-granularity of past data samples. Our efforts focus
only on the RAN KPIs, omitting geolocation or diurnal patterns.
We conjecture that Machine Learning (ML) techniques are ideally
suited to understand this ‘non-linear’ multi-dimensional space. We
highlight some of the challenges in throughput prediction in the
said context and provide some key takeaways.

Using a combination of simulations and real network data, we at-
tempt to predict up to 8 seconds into the future, thus going beyond
the state of the art which has mainly focused on sub-second predic-
tion. Our preliminary results indicate that it is possible to accurately
predict throughput over such future horizons; 50th percentile of all
prediction errors were less than 15% and 2% for mobile and static
devices respectively. Further, our results show that that prediction
error can be reduced significantly by combining measurements
from the network with measurements from the end device. With
this level of accuracy, we believe that deployment of TG capability
would have a disruptive effect on the design and operation of both
existing as well as emerging mobile applications.

https://doi.org/10.1145/0000


2 MULTI-DIMENSIONAL PARAMETER SPACE
Providing throughput guidance to each mobile device in a real-
world cellular network is a complex systems challenge. For the
predictions to be useful, the response has to be timely. Given that
the typical round-trip time in LTE networks is a few tens of mil-
liseconds, the time budget available to compute a response will
typically be in the order of tens to hundreds of milliseconds. While
this in itself may not be hard, scaling this to potentially millions of
devices requesting for such predictions is a huge challenge.

There are many dimensions to how one can create a prediction
model and the choices here offer different trade-offs. E.g., very fine-
grain data can improve the accuracy of the prediction but there is a
cost to gathering data at such a high frequency, and we would like
to find the optimal price-performance sweet spot. Other trade-offs
are even harder to guess without comprehensive evaluation. For
example, we can create a separate model for each device or we
can create a single model for all devices or something in-between.
The first option (one model per device) is attractive because it is
capturing the unique characteristics of the associated user behavior.
On the other hand, combining multiple devices in a single model
makes it more robust and less prone to over-fitting. Below we
outline some of these design factors.

Length and frequency of past history: Instead of using just
the current KPIs, we explore using historical samples of these KPIs.
Havingmultiple samples makes us immune to short-term variations
plus there is a tantalizing possibility of being able to capture ’trends’
in KPIs. Also, capturing these trends plays a key role in indirectly
inferring a scheduler that runs in eNB, as achievable throughput
is not only dependent on radio conditions. Other users competing
for resources from the same eNB will have a significant impact on
predicted throughput. Scheduler implementation is vendor specific
and for our experiments, represents a black box. A natural question
is how much and how frequently should we collect these samples.
Higher frequency translates into higher operator cost. With length
of history, there may be a point beyond which it no longer repre-
sents the current or future conditions. A related question is how
to summarize historical information. E.g., for each KPI, we can use
all samples, take exponential weighted average, or take a few key
metric such as median and mean.

Length of horizon: Different applications may need through-
put guidance of different time lengths. E.g., a video rate adaptation
algorithm trying to decide on the quality of an 8 second chunk
would want to know the available throughput for the next 8 sec-
onds whereas other applications may benefit more by throughput
predictions in the very short or long term. Do we need fundamen-
tally different techniques for these different types of predictions or
can a single algorithm (with some tuning of parameters) be applied
to all the cases.

How many devices per prediction model: As outlined earlier,
we can either create one prediction model per device or create a
model for a group of devices.With the former, we have the challenge
of dealing with new devices where we do not have enough of a
learning history to be able to make a prediction. With the latter, we
need to find the right way to group the devices – by eNodeB, by
eNodeB vendor, edge vs. center, static vs mobile, or something else.

Network Information: Can providing network related infor-
mation help in throughput prediction? In device prediction model,
a device does not have direct access to information such as the
number of users connected to the same cell, the load on the cell,
and channel conditions of other users. These features give a more
direct assessment of eNB scheduler. Adding this information as
new features can improve prediction accuracy.

Most previous research on throughput prediction learns some
of this indirectly by observing history. E.g., if an eNodeB region is
the environment we are trying to deduce, historical observations
enable us to (indirectly) learn scheduling algorithm and connected
users behaviour. Directly accessing that information can lower the
amount of history we need, while also improving the prediction
accuracy.

Algorithm Selection: In our work, we use machine learning
algorithms for throughput prediction. We are exploring various
ML techniques such as ensemble methods (Random Forest, Ada
Boost, Gradient Boosting), Support Vector Machines (SVM), Gauss-
ian Process (GP), Neural Networks and others. To compare these
algorithms, we optimize each algorithm by tuning all their parame-
ters via grid-search techniques on medium-scale horizons.

Error Analysis: Through our experiments, we get a better un-
derstanding of situations where prediction is particularly challeng-
ing. From our initial study, we observed that accuracy decreases
when a user moves from one base station to another (handover
scenario). A few possible hypothesis include the use of “invalid”
history samples (user moving to new cell uses a history samples
from the old cell), change of cell environment (number of active
users, load), edge channel conditions.

3 METHODOLOGY
We conduct a large scale simulation using the ns-3 framework1
as well as real world field experiments to validate some of the
simulation results.

3.1 Simulation Setup
Using ns-3, we create a typical seven-cell hexagonal layout con-
figuration with three sectors per cell, with 100 users randomly
positioned across a cluster. Half of the users are downloading with
maximum speed, and remaining users are uploading content. In
addition, all users are moving with the constant speed of 50 mph
(we use Gauss-Markov mobility model). We fix the inter cell-site
distance to 500 m and cell transmission power to 44 dBm. The path
loss model is log-distance, and carrier bandwidth is 10 MHz (50RBs).

3.2 Field Experiment Setup
We conduct static and mobile experiments in a real cellular network
of a U.S. mobile operator using a laptop with an LTE dongle and
QXDM2 diagnostic software for collecting data and radio-level
information. Each test run consists of downloading a large file,
repeated under static and high-speed mobile conditions (between
25 and 60 mph). Run duration of collected traces is 35 minutes per
trace.
1https://www.nsnam.org/
2https://www.qualcomm.com/



3.3 Data Preparation
We process logs from ns-3 for all simulations and QXDM log files
for all field experiments in a similar fashion. We first time-align the
data of all measurements by binning the data into five sampling
intervals: 250ms, 500ms, 1s, 2s, and 4s. For each bin, we average the
collected measurements. Here we only present results for 250ms
sampling interval.

We consider various durations for data history and predicted
future horizon in our evaluation. We define the horizon as the
average value for throughput over given number of seconds in the
future. For data history, a number of samples corresponding to the
past duration are used as individual features.

3.3.1 Device and Network Prediction Features. We collect the
following device-side metrics from both real and simulated data:
SINR, CQI, PDCP delay, PDCP throughput, TBLER, RSRP, RSRQ,
HARQ, and Application Throughput. In addition, we collect follow-
ing network level metrics (simulation only): Competing Throughput
(average throughput of all clients connected to the same base sta-
tion), Competing CQIs (CCQI: average CQI of all clients connected
to the same base station), Competing SINR (similar to CCQI, this
value is average SINR for all clients at the same base station), Cell
Load (number of users connected to the same base station).

3.4 Evaluation Metrics
To evaluate our methodology, we compare predicted throughput
obtained from our trained model with the actual measured through-
put. We compute the absolute prediction error (APE) as the ratio of
absolute residual error and actual throughput, where the residual
error is the difference between actual and predicted throughput.
We show the 25, 50, and 75 percentiles and mean value in a box plot.
The R2 score is a measure of the goodness of the model compared
to a naïve model.

4 RESULTS
4.1 Real-Data
In this section, we explore the performance of prediction algorithms
using real traces collected from amajor USmobile operator.We start
by exploring whether ML techniques such as Random Forest (RF)
with user KPI data offer any real benefits over prediction methods
that rely only on past samples of throughput values. For ease of
notation, Fx denotes a future horizon of x seconds. Similarly, Py
denotes using y seconds of historical data for this prediction. So
PyFx means that we are predicting average throughput for next x
seconds using historical data from last y seconds.

4.1.1 Static Case. Future horizons: Fig. 1 shows the APE for
different future horizons. Exponential weighted moving average
(EWMA) and Autoregressive Integrated Moving Average (ARIMA)
make their predictions based only on past samples of throughput
values whereas RF creates a model out of user KPIs listed in sec-
tion 3.3.1. It shows that RF technique provides the best performance
for all future horizons, followed by ARIMA, then EWMA. RF re-
duces the 75th percentile APE by 21.5% and 5% with respect to
EWMA and ARIMA, respectively. The accuracy of both RF and
ARIMA improves noticeably as the prediction horizon increases but
RF still outperforms ARIMA. Specifically, for an 8-second future

horizon (F8), the 75th percentile APE drops to 9% and 14% for RF
and ARIMA, respectively. Such improvement is due to the reduced
variability observed in longer throughput samples averaged over
larger interval.

We reran this experiment by reducing sampling frequency.While
the APE went up with less frequent sampling, RF still outperformed
ARIMA and EWMA. This shows that there is value in usingMachine
learning techniques with KPIs.

Comparison of ML algorithms: Generally, in most cases, RF out-
performs SVM and GP with GP performing the worst. We discuss
the comparative performance of SVM and RF in detail for the mo-
bile case (Fig. 3a and Fig. 3b) but do not report any results for GP
algorithm because of its significantly higher APE values.

4.1.2 Mobile Case. Similar to the static case, we start by investi-
gating performance for EWMA, ARIMA and ML approaches. Fig. 2
compares APEs for three techniques. For the shorter horizon values
(0.5s) ARIMA slightly outperforms RF in terms of 75th percentile
APE. As we extend our future horizon, RF gains more ground, re-
sulting in 18% for 75th percentile compared to 40% and 50% for the
ARIMA and EWMA, respectively. Increasing the sampling interval
leads to higher APE overall, similar to the static case.

Fig. 3a and 3b show comparison along three dimensions. First,
they compare RF and SVM algorithms for multiple combinations
of (future) horizon and past history. RF outperforms SVM in most
cases. Compared with static case, the overall APE increases 10-20%
depending on the chosen algorithm, which is intuitive, as the impact
of environment change (including channel and number of users) is
more pronounced.

Second, Fig. 3a compares different lengths of history for a fixed
horizon. Increasing how far do we look into the past has no sig-
nificant impact on APE until we cross certain threshold (4s). This
threshold is half of the horizon duration, indicating that we need at
least that amount to start inferring a trend. In the future work, we’ll
explore this assumption in greater detail. Comparing case P0.25F8
and P8F8 we observe a decrease of the 75th percentile of 5% on
average for both, SVM and RF algorithms.

Finally Fig. 3b shows the overall trend as we fix history but
predict further and further into the future. The 75th percentile of
APE drops by 50% and 25%, from P2F0.5 to P2F8, for SVM and RF
respectively. Again, smoothing out throughput variations helps in
reducing overall APE.

Figure 1: Comparison between different approaches for pre-
diction of future throughput value (real data, static case



Figure 2: Comparison between different approaches for pre-
diction of future throughput value (real data,mobile case)

(a) Fixed horizon (8s) and various
history span

(b) Fixed history (2s) and various
horizon values

Figure 3: Comparison between SVM and RF for particular
arrangements (real data, mobile case)

4.2 Simulation data
In this section, we explore how network-related information can
help to boost the prediction accuracy of the network throughput.

We start our analysis with pure static case, and evaluate the
impact of integrating network information on the APE.We conclude
that integrating network information would not introduce any
significant benefits in a fully static environment due to its high
predictability. We omit the figures due to space limitation.

However adding the network information in the prediction en-
gine for the mobile case results in a noticeable reduction in the
APE for all history-horizon combinations. Fig. 4 illustrates this by
showing the actual throughput together with the predicted time
series with device-based and device+network predictors. As an
example, P8F8 APE drops by 15% after considering the additional
network information. The benefits of adding network information
varies among scenarios. For shorter horizons, it appears that the
incremental gains are less significant. However for short history,
adding network information results in less pronounced variations
in predicted throughput and “faster” response to an abrupt change
of throughput, compared to device only prediction. This result
confirms our assumption that shorter history limitations can be
alleviated with network information.

5 RELATEDWORK
Existing solutions present several shortcomings. There are different
strategies or heuristics that have been applied depending on the
prediction horizon. For example, some studies have proposed to
perform active measurements by sending a sequence of short data
packets to estimate the current throughput, Round Trip Time (RTT)

Figure 4: Time-series prediction for device based and de-
vice+network approach (short history)

and the packet loss rate [3]. This approach requires exchanging
data before making a decision. Other studies rely only on a device’s
instantaneous radio channel quality indicator (CQI) and base its
future decision on that estimate [9]. However, these are targeted
for very short time intervals of the order of 500 msec.

Xu et al. propose a framework for forecasting packet loss, delay,
and throughput [11]. Based on cellular traces, throughput predic-
tion is obtained for 0.5 second based on a history of 20 seconds
using a time-series with regression trees. CQIC [5] proposes another
time-series based solution for predicting throughput up to 0.5 sec
into the future. They use a product of CQI and discontinuous trans-
mission ratio (DTX) to bit rate mapping function for throughput
prediction. The 90th percentile for the average absolute error is less
than 30%. Our prediction model has similar error values, but note
that all the ML algorithms are tuned for larger horizons as we focus
on medium time-scale. Sayeed et al. use an auto-regressive ARIMA
based time-series model taking very specific parameters such as
SINR and MCS as inputs to first predict the number of received
bits per PRB and then translate that to effective throughput [8].
Their experiments are evaluated for a stationary device under dif-
ferent channel configurations. Note that network behaviour over
long periods (hours, days, months) has been explored as well, with
different types of data and techniques [7].

All these techniques rely on very specific selected device and
network parameters for a short prediction horizon of 500 millisec-
ond. However, certain applications, like video streaming, relies on
prediction horizon of a couple of seconds. It is not at all clear if
these techniques provide the best mechanism for prediction under
a wide variety of device and network conditions for a range of dif-
ferent prediction horizons. Throughput prediction is inherently a
‘non-linear’ problem. We conjecture that throughput prediction for
‘all’ horizons can only be learnt using sophisticated ML techniques
that model this complex multi-dimensional parameter space.

There are also proposals that are very application specific (e.g.
video streaming). For example, Zou et al [13] propose an algorithm
for HTTP adaptive streaming that relies on accurate forecast of av-
erage throughput. Their solution leads to significant improvement
in video QoE compared to other state-of-the-art approaches [1, 4].
In a similar vein, Mangla et al. design an adaptation algorithm that
takes prediction errors into account when making a decision for
the next chunk [6]. Some solutions look for patterns of similarity
between sessions to predict what QoE will the new session have,



where similarity is determined through coarse-grained geographic
and network features, not precise network performance measure-
ments [9].

6 DISCUSSION
While we have provided some preliminary answers to cellular
throughput prediction using ML, there are several open questions
that need to be explored.

Feasibility (scalability) of having eNode prediction model vs. re-
gional prediction model.

In theory, we could have the prediction based on data from each
eNB separately. However, the architecture of present day cellular
networks where user traffic tunnels via a packet core makes this
infeasible. Clustering groups of cells into regions also results in less
overhead of handling mobile users that move between cells.

Are ML algorithms robust enough to learn this time-varying non-
linear multi-dimensional space or is our prediction accuracy biased
towards collected traces?

We conducted initial experiments in the simulation environment,
where we first wanted to explore how much value do they add. We
did a very controlled experiment in the simulation environment by
trying different reporting frequency to seewhat is the right trade-off
point in “difficulty of reporting data” vs. prediction accuracy. There
are many degrees of freedom that need to be explored carefully
such that we can perform prediction along multiple time horizons
accurately.

We are assuming that we can separate dataset based on mobility
pattern (static vs. moving). Does the network have this information
or do we need more clever approach to know this?

Classifying users based on mobility is not trivial. There can be
multiple layers of classification. How do we know that we are not
under fitting or over fitting the learning models?

How accurately can we make a prediction for users who have just
entered a new cell or have recently connected to the network?

While we seek to build prediction region to minimize mobility
of users from one region to another, it is still possible that such
transitions do happen. Even assuming we carry over the models
from one region to another, there will still be a brief period where
we do not have accurate predictions in the new region. As part of
our future work, we plan to explore approaches such as maintaining
an average throughput for each prediction region (esp. cell-edge)
and briefly use this as an estimate of future throughput.

Our initial results look promising. But maximum error (90th
percentile) is still too high indicating a presence of outliers. Iden-
tification of situation that causes these spikes in error is needed.
Further exploration of data abstraction and tuning of machine learn-
ing algorithms need to be further explored.

7 CONCLUSION
We posed the question howwell can cellular throughput be predicted?,
the answer to which can be useful for numerous applications that
make decisions based on expected network performance over a fu-
ture time horizon. To answer this question, we set a task to conduct
a thorough quantitative study in which we systematically applied
ML techniques to holistically examine this multi-dimensional pa-
rameter space. Using real and simulated network data, we want to

explore the feasibility and effectiveness of TG. Our initial findings
suggest that a predictor using machine learning can significantly
reduce the prediction error (especially for mobile users) compared
to a naive predictor. As part of future work, we plan to further
investigate the multi-dimensional space, focusing more on feature
engineering, as we feel that better abstraction of feature history
values can capture trend and variation in data more accurately.
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