
Title Cross talk: the microbiota and neurodevelopmental disorders

Author(s) Kelly, John R.; Minuto, Chiara; Cryan, John F.; Clarke, Gerard; Dinan,
Timothy G.

Publication date 2017

Original citation Kelly, J. R., Minuto, C., Cryan, J. F., Clarke, G. and Dinan, T. G. (2017)
'Cross talk: the microbiota and neurodevelopmental disorders', Frontiers
in Neuroscience, 11, 490 (31pp). doi: 10.3389/fnins.2017.00490

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://www.frontiersin.org/articles/10.3389/fnins.2017.00490/full
http://dx.doi.org/10.3389/fnins.2017.00490
Access to the full text of the published version may require a
subscription.

Rights © 2017, Kelly, Minuto, Cryan, Clarke and Dinan. This is an open-
access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or
licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply
with these terms
https://creativecommons.org/licenses/by/4.0/

Item downloaded
from

http://hdl.handle.net/10468/4899

Downloaded on 2018-08-23T19:10:33Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cork Open Research Archive

https://core.ac.uk/display/130053148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/articles/10.3389/fnins.2017.00490/full
http://dx.doi.org/10.3389/fnins.2017.00490
https://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10468/4899


REVIEW
published: 15 September 2017
doi: 10.3389/fnins.2017.00490

Frontiers in Neuroscience | www.frontiersin.org 1 September 2017 | Volume 11 | Article 490

Edited by:

Antonio Benítez-Burraco,

University of Huelva, Spain

Reviewed by:

Andreas Martin Grabrucker,

University of Limerick, Ireland

Aaron Conrad Ericsson,

University of Missouri, United States

*Correspondence:

Timothy G. Dinan

t.dinan@ucc.ie

Specialty section:

This article was submitted to

Social and Evolutionary Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 31 May 2017

Accepted: 17 August 2017

Published: 15 September 2017

Citation:

Kelly JR, Minuto C, Cryan JF, Clarke G

and Dinan TG (2017) Cross Talk: The

Microbiota and Neurodevelopmental

Disorders. Front. Neurosci. 11:490.

doi: 10.3389/fnins.2017.00490

Cross Talk: The Microbiota and
Neurodevelopmental Disorders
John R. Kelly 1, 2, Chiara Minuto 1, 2, John F. Cryan 2, 3, Gerard Clarke 1, 2 and

Timothy G. Dinan 1, 2*

1Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland, 2 APC Microbiome Institute,

University College Cork, Cork, Ireland, 3Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland

Humans evolved within a microbial ecosystem resulting in an interlinked physiology.

The gut microbiota can signal to the brain via the immune system, the vagus nerve

or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan

metabolism andmicrobial metabolites such as short chain fatty acids (SCFA), to influence

brain development, function and behavior. Emerging evidence suggests that the gut

microbiota may play a role in shaping cognitive networks encompassing emotional

and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and

clinical evidence, we review the potential role of the gut microbiota in the origins and

development of social and emotional domains related to Autism spectrum disorders

(ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut

microbiota alterations in both ASD and schizophrenia compared to healthy controls.

However, we await the further development of mechanistic insights, together with large

scale longitudinal clinical trials, that encompass a systems level dimensional approach,

to investigate whether promising pre-clinical and initial clinical findings lead to clinical

relevance.

Keywords: microbiota, microbiome, gut-brain axis, immune system, social cognition, autism, schizophrenia,

psychobiotics

INTRODUCTION

From an evolutionary-based perspective, the host and its microbiome evolved as a cooperative
unit (Rosenberg et al., 2007; Zilber-Rosenberg and Rosenberg, 2008; Martin et al., 2015; Douglas
and Werren, 2016). All stages in the evolution of the human brain occurred within this microbial
ecosystem (McFall-Ngai et al., 2013; Bordenstein and Theis, 2015). The predominant theory to
account for the evolution of the enlargement of the human brain implicates social interaction.
Brain areas such as the prefrontal cortex and the amygdala have undergone pronounced changes
in the evolution of social mammals (Kolb et al., 2012; Janak and Tye, 2015). Brains of social
species exhibit a set of features that need to integrate for group living to become advantageous,
and the development of the complex neural circuitry underlying social and emotional cognition
is of fundamental importance to neurodevelopmental disorders, such as ASD and schizophrenia
(Adolphs, 2001; Lederbogen et al., 2011; Janak and Tye, 2015; Averbeck and Costa, 2017).

Neurodevelopment requires the intricate interplay of genetic expression, influenced by pre-and
post-natal environmental events. Critical periods or “windows” of brain development exist, during
which time neural circuits are particularly sensitive to, and require, the influence of appropriate
environmental inputs, in order to develop properly. Human brain development begins in the third
gestational week (Stiles and Jernigan, 2010) and at time of birth approximately 86 billion neurons
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(Azevedo et al., 2009) with up to 100 trillion connections
are produced. These connections form simple circuits, and
when reinforced through repeated use, under the influence of
environmental cues, formmore complex interconnected circuits,
leading to complex networks (Bassett and Sporns, 2017). The
developmental trajectory of social, emotional and cognitive brain
domains occur in parallel, though social cognition may be
linked to certain specific subnetworks (Dunbar, 2012; Sliwa and
Freiwald, 2017).

The development of this neural circuitry requires precise
regulation from molecular signaling pathways. Hormones, such
as oxytocin (Kirsch et al., 2005), neurotransmitters, such as
serotonin (Whitaker-Azmitia, 2001), and the immune system
(Bilbo et al., 2012), all play pivotal roles in sculpting the
neural circuitry underlying social cognition, emotion and
behavior. Many of the brain regions involved and the molecular
substrates subserving relevant functions are also responsive to
microbiome-gut-brain axis signaling (Clarke et al., 2013; Semple
et al., 2013; Montiel et al., 2014; Dinan et al., 2015; Erny
et al., 2015; Buffington et al., 2016; Vuong and Hsiao, 2017)
Figure 1.

The trajectory of early post-natal brain development overlaps
with the acquisition and reorganization of the gut microbiota
(Borre et al., 2014; Chu et al., 2017). The gut microbiota in the
initial days of life is unstable and of low diversity (Arrieta et al.,
2014). By age three, a stage by which verbal communication
and Theory of Mind develops (the ability to infer and reason
about the intentions, emotions and thoughts of others) (Grosse
Wiesmann et al., 2017), the gut microbiota composition stabilizes
into a pattern that more resembles an adult-like profile
(Voreades et al., 2014). These social, cognitive and emotional
domains, and their neurodevelopment, are compromised in
neurodevelopmental disorders, such as ASD and schizophrenia.
Deciphering the gut microbiota compositional trajectories and
profiles, corresponding metabolic output and precise signaling
pathways that play a pertinent role inmolding the neural circuitry
underlying the social-communicative domains of the brain, is
one of the great challenges of modern neuroscience (Chen et al.,
2013; Mayer et al., 2014a; Dinan and Cryan, 2017; Sherwin et al.,
2017).

AUTISM SPECTRUM DISORDERS (ASD)

ASD is a heterogeneous neurodevelopmental disorder, affecting
approximately 1 in 68 children (Christensen et al., 2016). It
is characterized by deficits in social communication, social
interaction and restricted/repetitive behavioral patterns. The
processing of emotional stimuli, be it language or facial
expressions is impaired in individuals with ASD (Dalton et al.,
2005; Preissler and Carey, 2005; Monk et al., 2010; Lartseva et al.,
2014; Neuhaus et al., 2016; Wang and Adolphs, 2017). Therefore,
deficits in social communication, together with emotional
processing, and a lack of social interest in communication can
result in language delay, and a proportion of children at the severe
end of the spectrum will not develop language abilities (Landry
and Loveland, 1988).

The heritability of ASD is estimated at between 64 and 91%
(Tick et al., 2016), and genes that encode proteins for synaptic
formation, microglial function, transcriptional regulation and
chromatin-remodeling pathways are implicated (De Rubeis et al.,
2014; Parikshak et al., 2016). New mutations contribute to the
risk, and a recent large scale study, showed that approximately
one third of spontaneous, non-inherited genetic mutations found
in people with ASD were also found in the general population
(Kosmicki et al., 2017). A recent study suggests that those ASD
children with de novomutations show relative strengths in verbal
and language abilities, including a smaller discrepancy between
non-verbal and verbal IQ and a greater likelihood of having
achieved fluent language, relative to those with no identified
genetic abnormalities (Bishop et al., 2017). Taken together,
these genetic studies in ASD highlight the neurodiversity of the
disorder (Baron-Cohen, 2017; Vorstman et al., 2017; Yuen et al.,
2017).

The origins of ASD are likely to occur during the prenatal
timeframe, a time window during which important connections
are formed (Willsey et al., 2013). A study, using a high-
resolution transcriptional atlas in primates, showed that many
ASD-related genes are activated in new-born neurons during
prenatal development, while schizophrenia related genes are
activated from infancy through adulthood (Bakken et al., 2016).
Maternal infections during pregnancy are associated with the
development of neurodevelopmental disorders (Atladottir et al.,
2010; Jiang et al., 2016; Careaga et al., 2017). Certain subtypes of
ASD are associated with increased levels of maternal peripheral
chemokines and cytokines during gestation (Goines et al.,
2011; Jones et al., 2017; Graham et al., in press). Moreover,
subgroups of children diagnosed with ASD have elevated levels
of peripheral cytokines (Ashwood et al., 2011), and microglial
activation in young adults with ASD has been demonstrated
using positron emission tomography (PET) imaging (Suzuki
et al., 2013). Progress is being made in diagnosing infants at
high risk of developing ASD, by utilizing imaging techniques
such as fMRI (Hazlett et al., 2017; Shen et al., 2017). A recent
structural and diffusionMRI study of 3 year old infants diagnosed
with Neurodevelopmental Disorders (32 ASD and 16 other
developmental disorders, including intellectual disability and
language disorder) reported an over-connectivity pattern in
ASD in networks primarily involving the fronto-temporal nodes,
known to be crucial for social-skill development (Conti et al.,
2017).

Risk factors such as advanced parental age (Durkin et al., 2008;
Sandin et al., 2016), low birth weight (Schendel and Bhasin, 2008)
and multiple births (Croen et al., 2002) have been identified,
while others such as mode of birth have been advanced. However,
epidemiological data suggests that C-section mode of delivery,
currently far in excess of WHO recommendations (WHO,
2015) and known to alter microbiome signatures (see below),
is associated only with a slightly increased risk of ASD and
that this may be due to familial confounds (Curran et al.,
2014, 2015, 2016; O’Neill et al., 2015). Identifying additional
modifiable environmental factors that play a causal role in ASD,
particularly during the prenatal and early post-natal period, is of
vital importance.
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FIGURE 1 | The microbiome-gut-brain axis in psychiatry. A number of factors have an influence on the assembly, composition and stability of the gut microbiota

including mode of birth, lifestyle factors such as diet and exercise, and stress. These factors could thus impact signaling along the microbiome-gut-brain axis, which

has been implicated in a variety of behavioral features relevant to schizophrenia and autism including anxiety and cognition. This impact may be underpinned by

microbial regulation of the host immune system, CNS BDNF expression and microglial activation states.

SCHIZOPHRENIA SPECTRUM DISORDERS
(SSD)

Schizophrenia is a heterogeneous neurodevelopmental disorder,
with a general population lifetime prevalence of approximately
0.87% (Perala et al., 2007), and an annual incidence of
approximately 0.20/1,000/year (Messias et al., 2007). There
is a slightly greater risk for males (Aleman et al., 2003)
and psychotic symptoms usually manifest clinically during the
adolescent period. This disorder can have a major detrimental
impact on functioning, and is associated with a reduced life
expectancy (Laursen et al., 2014; Schoenbaum et al., 2017;
Strati et al., 2017) and a suicide rate of 5% (Hor and Taylor,
2010). schizophrenia is classically characterized by positive
(delusions, hallucinations), negative (affective flattening, alogia,
and avolition), and cognitive symptoms (Aleman et al., 1999;
Kahn and Keefe, 2013; Schaefer et al., 2013). Social interaction
and communication deficiencies, including disorganized speech,
can be prominent, even early in the course of this disorder

(Sullivan et al., 2003; Roche et al., 2016; Morgan et al.,
2017).

Similar to ASD, the precise cause of schizophrenia is
unknown. A complex and dynamic bidirectional interaction
of genomic and environmental factors converge to shape
the trajectory of schizophrenia (O’Tuathaigh et al., 2017).
Prenatal and early post-natal environmental factors sensitize
the vulnerable brain. Although psychotic symptoms usually
manifest during the adolescent period, it has been established that
schizophrenia is associated with poor premorbid functioning,
cognitive impairment, and social deficits prior to the onset of
psychotic symptoms (Schenkel and Silverstein, 2004). Indeed,
previously considered distinct forms of psychopathology may in
fact have characteristics in common, and exhibit age adjusted
variations of common underlying dispositions (Casey et al., 2014;
Hommer and Swedo, 2015).

The immune system is an important player in the
pathophysiology of schizophrenia (Benros et al., 2012; Feigenson
et al., 2014; Muller, 2014). At the genetic level, genes related to
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B-lymphocyte lineages involved in acquired immunity (CD19
and CD20 lines) and major histocompatibility complex locus
have been linked to schizophrenia (Corvin and Morris, 2014;
Schizophrenia Working Group of the Psychiatric Genomics
Consortium., 2014). A recent translational study implicated
excessive complement activity, particularly the role of C4 in
mediating synapse elimination during post-natal development
(Sekar et al., 2016). Neuro-immune signaling also changes
during the adolescent period, regulating changes in synaptic
pruning, neurite outgrowth, and neurotransmitter release
via Blood Brain Barrier (BBB) dynamics and glial activity
(Brenhouse and Schwarz, 2016). It is established that subgroups
of patients with schizophrenia have elevated levels of peripheral
cytokines, including subgroups of medication free first-episode
psychosis individuals (Miller et al., 2011; Di Nicola et al., 2013;
de Witte et al., 2014; Upthegrove et al., 2014). There is also some
suggestion, though not well established, that schizophrenia is
associated with altered intestinal (Severance et al., 2013) and
blood brain barrier function (Pollak et al., 2017). This, taken
together with altered microglial activation in psychosis patients
(Bloomfield et al., 2016), highlights the key role of the immune
system, in at least subgroups of individuals with psychosis
(Al-Diwani et al., 2017).

Infections at different stages of brain development result in
varying degrees of lifelong changes in behavior and cognition
(Spencer and Meyer, 2017). Certain infections are known to
increase the risk of schizophrenia (Meyer et al., 2009; Brown,
2012). A large epidemiological study (n = 1,015,447), showed
that treatment with anti-infective agents (primarily driven by
infections treated with antibiotics), were associated with an
increased risk of schizophrenia by a hazard rate ratio of 1.37
(Kohler et al., 2017). However, an earlier study found an
increased risk for mood and anxiety disorders for antibiotic
exposure, but no change in risk for psychosis with any antibiotic
group (Lurie et al., 2015). An infection with a robust link
to psychosis is the protozoan Toxoplasma gondii (Torrey and
Yolken, 2003; Severance et al., 2016b). A meta-analysis of 16
studies demonstrated increased T. gondii IgM levels in patients
with acute psychosis (Monroe et al., 2015). The mechanism is
not completely understood, but a putative role of attenuated CD8
T-cell response in T. gondii seropositive individuals has been
suggested (Bhadra et al., 2013). It is known that T. gondii induces
the production of a variety of cytokines by microglia, astrocytes,
and neurons (Carruthers and Suzuki, 2007). Monocytes and
dendritic cells are the most important candidates for the
transport of T. gondii from the periphery to the immunologically
privileged sites of the brain (Feustel et al., 2012).

Indeed, latent T. gondii infection is associated with an
upregulation of cerebral complement factor C1q (Xiao et al.,
2016). Furthermore, T. gondii infection can alter dopamine
metabolism (Prandovszky et al., 2011) and latent T. gondii is
associated with reduced psychomotor performance (Havlicek
et al., 2001). More recently, T. gondii has been shown to lead to
deficits in goal-directed behavior in healthy elderly individuals
(Beste et al., 2014). Interestingly, acute T. gondii infection can
affect the gut microbiota in mice (Molloy et al., 2013). Although
only a minor subset of T. gondii seropositive individuals develop

serious mental impairments, taken together, the example of
T. gondii, suggests that microbial agents contribute to the
vulnerability to the development of subgroups of schizophrenia
(Yolken and Torrey, 2008). Although we have focussed on
T. gondii, it is noteworthy that other infections, such as
Human Herpesvirus 2, Borna Disease Virus Human Endogenous
Retrovirus W, Chlamydophila pneumoniae, and Chlamydophila
psittaci are also associated with the disorder (Arias et al.,
2012). It remains an open question whether there is a common
mechanism through which these microbes exert their influence,
albeit, that one shared general feature in most examples cited is
an intracellular life stage.

Interestingly, urbanicity, known to affect microbial diversity
and impact the overall functionality of the gut microbiome
(Mancabelli et al., 2017), is also a risk factor for the development
of schizophrenia (Pedersen and Mortensen, 2001; Krabbendam
and van Os, 2005; Peen et al., 2010; Vassos et al., 2012; Newbury
et al., 2016). In healthy individuals, a negative correlation was
found between early-life urbanicity and gray matter volume in
the right dorsolateral prefrontal cortex in males and females, and
in perigenual anterior cingulate cortex volumes, a key region
for regulation of amygdala, in men only (Haddad et al., 2015).
Using fMRI, city living was associated with increased amygdala
activity (Lederbogen et al., 2011), known to be associated with
schizophrenia (Aleman and Kahn, 2005; Rasetti et al., 2009).
Stamper and colleagues postulate that differential exposure to
microbes in the urban compared to the rural environment
interact with differences in social stressors to alter social stress
neural circuitry (Stamper et al., 2016).

ASD AND MICROBIOTA

GI symptoms are a common comorbidity in ASD (Molloy
and Manning-Courtney, 2003; Buie et al., 2010; Berding and
Donovan, 2016). However, the underlying mechanism is not fully
known (Mayer et al., 2014b). The vast majority of human studies
show that ASD is associated with altered microbial profiles (see
Table 1). A systematic review of gut microbiota alterations in
ASD, verified alterations in gut microbiota, but highlighted the
heterogeneity of findings, and the limited quantity and quality
of studies (Cao et al., 2013). Studies investigating ASD, the
gut microbiota and SCFAs, showed significantly higher levels
of Desulfovibrio species and Bacteroides vulgatus and higher
levels of SCFA’s in the stools of autistic children compared to
controls (Finegold et al., 2010; Wang et al., 2012). Clostridium
Bolteae, another species that is reported to be over-represented
in the gut microbiota in ASD, and its capsular polysaccharide
consisting of rhamnose and mannose units, has been proposed
as a viable potential vaccine to reduce C. bolteae colonization of
the intestinal tract in autistic patients (Pequegnat et al., 2013).

Most studies conducted in ASD are non-interventional, and
many do not adequately record detailed dietary information
or medication use. Indeed, it is well established that ASD is
highly associated with atypical eating patterns (Cermak et al.,
2010). The interventional studies are few, and of small sample
size. An open labeled trial (n = 11), with no control group,
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TABLE 1 | Microbiota and ASD clinical studies.

Design Diagnosis, N, Age Measures Results References

Antibiotic—12-week

trial of open label oral

vancomycin

ASD, regressive-onset

autism (n = 11)

Age (43–84 months)

No control group

Childhood Autism Rating Scale

Developmental Profile II

Coded, paired videotapes scored by a clinical

psychologist blinded to treatment status

Behavioral improvement

Improvement at follow-up (2–8

months)—not sustained

Sandler et al., 2000

FMT—18 weeks in

total; 10 week open

label and 8 week

follow-up

ASD (n = 18)

Age (7–16 years)

Controls (n = 20)

Age and Gender matched

Gastrointestinal Symptom Rating Scale

Parent Global Impressions-III (PGI-II)

Childhood Autism Rating Scale (CARS)

Aberrant Behavior Checklist (ABC)

Social Responsiveness Scale (SRS)

Vineland Adaptive Behavior Scale II (VABS-II)

ASD-related behavior improved

(PGI-II) (CARS) (SRS) (ABC)

80% reduction of GI symptoms

(persisted for 8 weeks post-FMT)

Bifidobacterium, Prevotella, and

Desulfovibrio increased post-FMT

(persisted for 8 weeks post-FMT)

Kang et al., 2017

Cross-sectional ASD, regressive-onset

autism (n = 13)

Controls (n = 8)

All ASD had GI symptoms (diarrhea and

constipation)

Gastric and small-bowel specimens (7 ASD,

4 controls)

Limited dietary data: patients were on a

gluten-free (GF), casein-free (CF) diet

ASD—more Clostridial species and

non-spore-forming anaerobes and

microaerophilic bacteria

Finegold et al., 2002

Cross-sectional ASD (n = 20)

Age (6.7 ± 2.7 years)

20 neurotypical children

Age (8.3 ± 4.4 years)

Fecal samples

Autism Diagnostics Interview—Revised

(ADI-Revised)

Autism Diagnostics Observation Schedule

(ADOS)

Autism Treatment Evaluation Checklist (ATEC)

Pervasive Developmental Disorder Behavior

Inventory (PDD-BI)

Limited dietary data

Most ASD had GI symptoms

ASD—less diverse gut microbial

compositions with lower levels of

Prevotella, Coprococcus, and

unclassified Veillonellaceae

Autistic symptoms, rather than the

severity of GI symptoms, was

associated with less diverse gut

microbiota

Kang et al., 2013

Cross-sectional ASD patients (n = 58)

Age (3–16 years)

Two control groups (n = 22);

Non-autistic sibling group

(n = 12)

Age (2–10 years)

Unrelated healthy group

(n = 10)

Age (3–12 years of age)

91.4% of ASD had GI Symptoms

Limited dietary data; Most of the children

were on GF/CF diets and many were taking

probiotics/prebiotics/antibiotics

ASD—higher Clostridium histolyticum

group compared to controls

Non-autistic sibling group had an

intermediate level of the

C. histolyticum group – not

significantly different from ASD or

controls

Parracho et al., 2005

Cross-sectional ASD (n = 23)

Age (123 ± 9 months)

Controls (n = 31)

Age (136 ± 9 months)

SCFAs

Dietary intake of macro-nutrients

ASD—fecal acetic, butyric, isobutyric,

valeric, and isovaleric acid were all

significantly higher compared with

controls

Wang et al., 2012

Cross-sectional ASD (n = 40)

Age (11.1 ± 6.8 years)

Neurotypical controls

(n = 40)

Age (9.2 ± 7.9 years)

Childhood Autism Rating Scale (CARS)

Autism Diagnostic Observation Schedule and

Autism Behavior Checklist

Constipation defined according to Rome III

criteria

All subjects of in this study were on a

Mediterranean-based diet, and no antibiotics,

probiotics, or prebiotics taken in the 3

months prior to the sample collection

ASD—increase in the

Firmicutes/Bacteroidetes ratio due to

a reduction of the Bacteroidetes

relative abundance

ASD—at the genus level—decrease

in Alistipes, Bilophila, Dialister,

Parabacteroides, and Veillonella,

while Collinsella, Corynebacterium,

Dorea, and

Lactobacillus were significantly

increased

Constipated ASD—high levels of

bacterial taxa belonging to

Escherichia/Shigella and Clostridium

cluster XVIII

ASD—fungal genus Candida

increased

Strati et al., 2017

(Continued)
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TABLE 1 | Continued

Design Diagnosis, N, Age Measures Results References

Cross-sectional ASD (n = 23, without GI

symptoms)

ASD (n = 28, with GI

symptoms)

Age range (2–12 years)

Neurotypical siblings (n = 53)

Age range (2–12 years)

Childhood Autism Rating Scale (CARS)

Limited dietary data; Probiotics not excluded

No significant differences in

microbiota

Gondalia et al., 2012

Cross-sectional ASD (n = 15, with GI

symptoms)

Age (4.5 ± 1.3 years)

Controls (n = 7, with GI

symptoms)

Age (4.0 ± 1.1 years)

Autism Diagnostic Interview-Revised (ADI-R)

Intestinal biopsies

ASD with GI symptoms had a

decrease in disaccharidases and

hexose transporters, and decreases

in Bacteroidetes, increase in

Firmicutes/Bacteroidetes ratio, and

increase in Betaproteobacteria

compared with controls with GI

symptoms

Williams et al., 2011

Cross-sectional ASD (n = 15)

Control (n = 8)

Diet not recorded ASD—elevated levels of Clostridium

boltea and Clostridium group I and XI

Song et al., 2004

Cross-sectional ASD (n = 58, GI symptoms)

Age (6.91 ± 3.4 years)

Controls (n = 39)

Age (7.7 ± 4.4 years)

GI symptoms (assessed by the six-item GI

Severity Index (6-GSI) questionnaire)

Autism Treatment Evaluation Checklist

(ATEC)

Diet not recorded, ASD on probiotics

ASD—decreased fecal SCFAs,

acetate, proprionate, and valerate

ASD—lower levels of Bifidobacterium

and higher levels of Lactobacillus

GI symptoms were strongly

correlated with the severity of autism

Adams et al., 2011

Meta-analysis of 15

cross-sectional

studies

11 studies (n = 562) reported

significant gut microbiota differences

between ASD children and controls,

particularly in the Firmicutes,

Bacteroidetes and Proteobacteria

phyla

Substantial heterogeneity in

methodology and the often

contradictory results of different

studies—not possible to pool the

results into a meta-analysis

Cao et al., 2013

Cross-sectional ASD children (n = 23)

Age (123 ± 9 months)

Controls (n = 31);

Typically developing siblings

(n = 22)

Community controls (n = 9)

Age (136 ± 9 months)

Macronutrient intake determined from dietary

records kept by caregivers, did not differ

significantly between study groups

ASD—elevated fecal acetic, butyric,

isobutyric, valeric, isovaleric, and

caproic acids, ammonia

Wang et al., 2012

Cross-sectional ASD (n = 33, varying GI

symptoms)

Controls (n = 15);

7 sibling controls

8 non-sibling controls

Age (all ASD and controls

between 2 and 13 years)

No diet Bacteroidetes was found at high

levels in the severely autistic group

Firmicutes were more predominant in

the control group

Smaller, but significant, differences

also in the Actinobacterium and

Proteobacterium phyla

Desulfovibrio species and

Bacteroides vulgatus present in

significantly higher numbers in stools

of severely autistic children than in

controls

Finegold et al., 2010

(Continued)

Frontiers in Neuroscience | www.frontiersin.org 6 September 2017 | Volume 11 | Article 490

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kelly et al. Cross Talk: The Microbiota and Neurodevelopmental Disorders

TABLE 1 | Continued

Design Diagnosis, N, Age Measures Results References

Probiotic

Intervention—

“Children Dophilus”

oral capsule

containing 3 strains

of Lactobacillus

(60%), 2 strains of

Bifidumbacteria

(25%) and one strain

of Streptococcus

(15%), times a day for

4 months

ASD (n = 10)

Age (2–9 years)

Siblings (n = 9)

Age (5–17 years)

Controls (n = 10)

Age (2–11 years)

Autism Diagnostic Interview (ADI)

Childhood Autism Rating Scale (CARS)

ASD—decrease of the

Bacteroidetes/Firmicutes ratio and

elevation of the amount of

Lactobacillus

Desulfovibrio decreased postprobiotic

Desulfovibrio spp. associated with the

severity of autism (ADI)

restricted/repetitive behavior subscale

score

Probiotic significantly decreased fecal

TNFα levels in ASD

No correlation between plasma levels

of oxytocin, testosterone, DHEA-S

and fecal microbiota

Tomova et al., 2015

Cross-sectional Healthy children (n = 77)

Age (18–27 months)

Early Childhood Behavior Questionnaire

(ECBQ)

(18 dimensions of temperament, three

composite scales: Negative Affectivity,

Surgency/Extraversion, Effortful Control)

Greater surgency/extraversion was

associated greater phylogenetic

diversity

Boys only—subscales loading on this

composite scale were associated

with differences in phylogenetic

diversity, the Shannon Diversity index

(SDI), beta diversity, and differences in

abundances of Dialister,

Rikenellaceae, Ruminococcaceae,

and Parabacteroides

Higher effortful control was

associated with a lower SDI score

and differences in both beta diversity

and Rikenellaceae were observed in

relation to Fear

Associations between temperament

and dietary patterns were observed

Christian et al., 2015

Cross-sectional ASD (n = 17)

Asperger’s syndrome (n = 6)

Mean age (123 ± 9 months)

22 typically developing

siblings

Age (144 ± 12 months)

Community controls (n = 9)

Age (114 ± 15 months)

Functional gastrointestinal disorder (FGID)

questionnaire

Antibiotics/probiotics not excluded

Some on Gluten- and casein-free diet

ASD—Low Relative Abundances of

the Mucolytic Bacterium and

Akkermansia muciniphila and

Bifidobacterium spp. in

Feces

Wang et al., 2011

Cross-sectional ASD (n = 23, 3 without

siblings)

22 typically developing

siblings

Age (144 ± 12 months)

Community controls (n = 9)

Age (114 ± 15 months)

No diet ASD—Sutterella spp. elevated in

feces relative to controls and

Ruminococcus torques higher in the

children with ASD with a reported

functional gastrointestinal disorder

than those without such a disorder

Wang et al., 2013

Cross-sectional ASD (n = 10)

Pervasive Developmental

Disorder Not Otherwise

Specified (PDD-NOS)

(n = 10)

Healthy controls (HC) siblings

(n = 10)

Age (all 4–10 years)

Autism Diagnostic Interview-Revised (ADI-R)

Autistic Diagnostic Observation Schedule

(ADOS)

Childhood Autism Rating Scale (CARS)

Diet not recorded

No antibiotics, probiotics and prebiotics for at

least 1 month before sampling

ASD—highest microbial diversity

Faecalibacterium and Ruminococcus

were present at the highest level in

fecal samples of PDD-NOS and HC

children. Caloramator, Sarcina and

Clostridium genera were the highest

in ASD children

Except for Eubacterium siraeum, the

lowest level of Eubacteriaceae was

found in fecal samples of ASD

De Angelis et al., 2013

(Continued)
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TABLE 1 | Continued

Design Diagnosis, N, Age Measures Results References

Bifidobacterium species decreased in

AD—Compared to HC children

Altered levels of free amino acids and

volatile organic compounds of fecal

samples in ASD and PDD-NOS

Cross-sectional ASD probands (n = 66)

Neurotypical (NT) siblings

(n = 37)

Age (7–14 years)

Parent-completed ROME III questionnaire for

pediatric Functional gastrointestinal disorders

(FGIDs)

Child Behavior Check List (CBCL)

Targeted quantitative polymerase chain

reaction (qPCR) assays were conducted on

selected taxa implicated in ASD, including

Sutterella spp., Bacteroidetes spp., and

Prevotella spp.

No significant difference in

macronutrient intake between ASD

and NT siblings

There was no significant difference in

ASD severity scores between ASD

children with and without FGID

No significant difference in diversity or

overall microbial composition was

detected between ASD children with

NT siblings

Son et al., 2015

using the poorly absorbed oral antibiotic, vancomycin for 12
weeks, reportedly resulted in a short-term improvement in ASD
related behavioral symptomatology in a group of children with
regressive-onset autism (Sandler et al., 2000). Follow-up which
occurred between 2 and 8 months, showed that the improvement
was not sustained. More recently, a small (n = 18) open
label study of Fecal Microbiota Transfer (FMT) in children
with ASD reported an improvement in both GI symptoms
and behavioral symptoms after 8 weeks (Kang et al., 2017). In
this study, the abundance of Bifidobacterium, Prevotella, and
Desulfovibrio increased following the 8 weeks of FMT treatment
(see Table 1). Interestingly, in a cross sectional study, in healthy
prepubertal children (n = 65) dietary fiber was associated with
a better performance on a task measuring attentional inhibition
(Khan et al., 2015). Moreover, a study investigating microbial
composition at 1 year of age showed that a higher alpha diversity
was associated with lower scores on the Mullen scale, the visual
reception scale, and the expressive language scale at 2 years of age
(Carlson et al., in press).

SCHIZOPHRENIA SPECTRUM DISORDER
AND THE MICROBIOTA

As discussed below, data from pre-clinical studies indicate
that certain domains related to schizophrenia, such as social
cognition, are under the partial influence of the gut microbiota
(Dinan et al., 2014). However, pre-clinical models have many
limitations and translating promising pre-clinical findings into
discernible clinical benefits for patients can be challenging,
particularly for complex disorders such as schizophrenia.
Moreover, it is important to highlight that there are considerable
interpersonal differences in the gut microbiota profiles of
healthy individuals (Backhed et al., 2012; Falony et al., 2016;
Zhernakova et al., 2016). Consequently, there are multiple
possible configurations for a healthy gut microbiota and it is
also likely that some stable configurations are associated with
disorders (Relman, 2012). It is important also to appreciate that

the functional output of multiple microbiota configurations may
in fact be equivalent, given that concepts of redundancy and
pleiotropy can also be applied to specific microbial members of
the overall consortium (Falony et al., 2016).

Despite the significant challenges, several pilot clinical studies
investigating the microbiome in schizophrenia have emerged
(see Table 2). A recent study investigating the gut microbiota in
schizophrenia was conducted in First Episode Psychosis (FEP)
patients (n= 28) compared to healthy controls (n= 16) (Schwarz
et al., in press). There were five significant differences between the
groups at the family level; Lactobacillaceae, Halothiobacillaceae,
Brucellaceae, and Micrococcineae were increased, whereas
Veillonellaceaewere decreased in FEP patients. At the genus level,
Lactobacillus, Tropheryma, Halothiobacillus, Saccharophagus,
Ochrobactrum, Deferribacter, and Halorubrum were increased,
and Anabaena, Nitrosospira, and Gallionella were decreased in
FEP. Lactobacillus group bacterial numbers correlated positively
with severity of psychotic symptoms measured using the Brief
Psychiatric Rating Scale, and negatively with global assessment of
functioning (GAF) scale. A subgroup analysis of those classified
as less physically active, confirmed significant increases in
Lactobacillaceae and significant decreases in Veillonellaceae in
FEP. It is noteworthy that the vast majority of FEP patients
were prescribed antipsychotic medication, which can impact
gut microbiota composition (Davey et al., 2012, 2013; Bahra
et al., 2015; Bahr et al., 2015). A small study (n = 32) of the
oropharyngeal microbiome in schizophrenia also showed an
increased abundance of Lactobacillus in schizophrenia patients,
in addition to, Bifidobacterium and Ascomycota, compared to
healthy controls (Castro-Nallar et al., 2015). Another study of the
oral pharynx of 41 individuals with schizophrenia and 33 controls
demonstrated that one bacteriophage genome Lactobacillus
phage phiadh, was significantly more abundant in schizophrenia
patients than in controls after adjustment for multiple
comparisons and demographic covariates (Yolken et al., 2015).

Studies investigating the fungal composition of the
human gut—the Mycobiome—are also emerging (Suhr and
Hallen-Adams, 2015). A case-control cohort study that included
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TABLE 2 | Microbiota and clinical schizophrenia (SCZ) studies.

Design Diagnosis, N, Years Measures Results References

Cross-sectional Schizophrenia (n = 16)

Years (34.7 ± 4.8)

Controls (n = 16)

Years (34.3 ± 10.1)

Differences in smoking and

BMI between groups

Shotgun metagenomic analysis of the

oropharyngeal microbiome

SCZ—higher proportions of

Firmicutes, Ascomycota,

Bifidobacterium and Lactobacilli

(largest effect was observed in

Lactobacillus gasseri)

SCZ—increase Candida and

Eubacterium and reduction of

Neisseria, Haemophilus and

Capnocytophaga

SCZ—increased number of metabolic

pathways related to metabolite

transport systems including

siderophores, glutamate and vitamin

B12

Carbohydrate and lipid pathways and

energy metabolism were abundant in

controls

Castro-Nallar et al.,

2015

Cross-sectional Schizophrenia (n = 41)

Years (39.2 ± 9.9)

Controls (n = 33)

Years (30.9 ± 8.8)

Differences in smoking, BMI

and age

Metagenomic analysis to characterize

bacteriophage genomes in oral pharynx

SCZ—increased Lactobacillus phage

phiadh (controlling for age, gender,

race, socioeconomic status, or

smoking)

Yolken et al., 2015

Two case-control

cohorts (n = 947)

Schizophrenia (n = 261),

including;

First-episode schizophrenia

(n = 139, 78 antipsychotic

naïve)

Years (37.71 ± 13.69)

Bipolar (n = 270)

Years (34.08 ± 13.15)

Controls (n = 277)

Years (32.02 ± 11.31)

Repeatable Battery for the Assessment of

Neuropsychological Status (RBANS)

No differences in C. albicans

exposures were found until diagnostic

groups stratified by sex

SCZ—in males, C. albicans

seropositivity conferred increased

odds (OR 2.04–9.53) for a SCZ

diagnosis

SCZ—in females, C. albicans

seropositivity conferred increased

odds (OR 1.12) for lower cognitive

scores on RBANS with significant

decreases on memory modules

C. albicans IgG levels were not

impacted by antipsychotic

medications

Gastrointestinal (GI) disturbances

were associated with elevated

C. albicans in males with SCZ and

females with bipolar

Severance et al., 2016a

14 week

double-blind,

placebo controlled

.Lactobacillus

rhamnosus strain GG

and Bifidobacterium

animalis subsp. lactis

Bb12 (109 cfu)

Schizophrenia (n = 56)

Probiotic (n = 30)

Placebo (n = 26)

Years (44.66 + 11.4)

Biweekly Positive and Negative Syndrome

Scale (PANSS)

Self-reported—bowel score (scale of 1–4)

SCZ—in males—reduced C. albicans

antibodies

S. cerevisiae were not altered

Trends toward improvement in

positive psychiatric symptoms in

males

treated with probiotics who were

seronegative for C. albicans

Severance et al., 2017

Lactobacillus

rhamnosus strain GG

and Bifidobacterium

animalis subsp. lactis

Bb12 (109 cfu) 14

week double-blind,

placebo controlled

Schizophrenia (n = 65)

33 probiotic

Years (44.4 ± 11.0)

32 placebo

Years (48.1 ± 9.4)

All on antipsychotic

medication

Positive and Negative Syndrome Scale

(PANSS) every 2 weeks

Self-reported—bowel score (scale of 1–4)

No significant differences in the

PANSS

Probiotic group—significantly less

likely to develop severe bowel

difficulty

Dickerson et al., 2014

(Continued)
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TABLE 2 | Continued

Design Type, N, Years Measures Results References

Longitudinal (12

months)

First Episode Psychosis

(FEP) (n = 28)

Years (25.9 ± 5.5)

Most on antipsychotics

Healthy controls (n = 16)

Years (27.8 ± 6.0)

Brief Psychiatric Rating Scale (BPRS) Global

assessment of functioning (GAF) scale

Diet adapted from “Health Behavior and

Health among the Finnish Adult Population”

survey

FEP—at family level;

Lactobacillaceae,

Halothiobacillaceae, Brucellaceae and

Micrococcineae were increased

whereas Veillonellaceae were

decreased

FEP—at genus level; Lactobacillus,

Tropheryma, Halothiobacillus,

Saccharophagus, Ochrobactrum,

Deferribacter and Halorubrum were

increased, and Anabaena,

Nitrosospira and Gallionella were

decreased

Lactobacillus group bacterial

numbers correlated positively with

severity of psychotic symptoms

measured using the BPRS and

negatively with GAF scale

Schwarz et al., in press

261 individuals with schizophrenia, 270 with bipolar disorder,
and 277 non-psychiatric controls, found no differences in C.
albicans exposure when analyzed at the group level. However,
when stratified by sex, there was a reported increase in the
odds for schizophrenia in males (Severance et al., 2016a). The
same group conducted a randomized, double-blind, placebo-
controlled, probiotic trial over a 14-week period, and showed that
probiotic treatment significantly reduced C. albicans antibodies
in males only, and a trend toward improvement in positive
psychiatric symptoms in seronegative males (Severance et al.,
2017). Both groups were prescribed antipsychotic medication,
but antipsychotic regimes were not different between probiotic
and placebo groups.

COMMUNICATION PATHWAYS OF
BRAIN-GUT-MICROBIOTA AXIS

The human body contains as many bacterial cells as human
cells (Sender and Fuchs, 2016), the majority of which reside in
the gut, with bacterial concentrations ranging from 101 to 103

cells per gram in the upper intestines to 1011–1012 bacteria per
gram in the colon (O’Hara and Shanahan, 2006; Derrien and van
Hylckama Vlieg, 2015). With over 1,000 species and 7,000 strains
the microbiota is an ecosystem dominated by bacteria, mainly
strict anaerobes, but also includes viruses and bacteriophages,
protozoa, archaea and fungi (Lankelma et al., 2015). In terms
of bacterial phyla found in the gut, Firmicutes (species such
as Lactobacillus, Clostridium, Enterococcus) and Bacteroidetes
(species such as Bacteroides) account for the majority (Dethlefsen
et al., 2007), though the other phyla such as Actinobacteria
(Bifidobacteria), Proteobacteria (Escherichia coli), Fusobacteria,
Verrucomicrobia, and Cyanobacteria are also present in relatively
low abundance (Eckburg et al., 2005; Qin et al., 2010; Lankelma
et al., 2015).

Although the functional significance of the gut microbiota has
yet to be fully determined (Franzosa et al., 2014; Cani, 2017), it

is clear that an intricate and interlinked symbiotic relationship
exists between host and microbe (Ley et al., 2008), and there are
a number of bidirectional signaling pathways by which the gut
microbiota, acting via the brain-gut axis, can impact the brain.
A key signaling pathway involves modulation of the immune
system (Erny et al., 2015), though other pathways include the
hypothalamic-pituitary-adrenal (HPA) axis (Sudo et al., 2004;
Mudd et al., 2017), tryptophan metabolism (O’Mahony et al.,
2015), the production of bacterial metabolites, such as SCFA
(Tan et al., 2014) and via the vagus nerve (Bravo et al., 2011).
Although much progress has been made, the precise signaling
pathways mediating the influence of microbial products derived
from gut microbiota on the brain remain largely unknown.
Epigenetic factors may also play a role (Dalton et al., 2014; Stilling
et al., 2014a,b; Thaiss et al., 2016). Recently, a novel signaling
pathway has been advanced, that involves bacterial peptidoglycan
(PGN) derived from the commensal gut microbiota (Arentsen
et al., 2017). PGN was shown to translocate into the brain
to activate specific pattern-recognition receptors (PRRs) of the
innate immune system, and this could occur in both physiological
and pathological conditions (Arentsen et al., 2017).

In addition, pre-clinical evidence from germ-free (GF) mice
suggests that the microbiota can modulate the Blood Brain
Barrier (BBB). Exposure of GF adult mice to the fecal microbiota
from pathogen-free donors decreased BBB permeability (Braniste
et al., 2014). Moreover, monocolonization of the intestine of GF
adult mice with SCFA-producing bacterial strains normalized
BBB permeability, whilst sodium butyrate was associated with
increased expression of the tight junction protein occludin in the
frontal cortex and hippocampus (Braniste et al., 2014). Together
with a study that showed antibiotic-induced gut dysbiosis
reduced the expression of tight junction proteins (claudin
and occludin) mRNA in the hippocampus, and increased the
expression of tight junction protein 1 and occludin mRNA in the
amygdala (Frohlich et al., 2016), suggests that the BBB may be
partially modulated by changes in the gut microbiota.
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MICROBIOTA AND THE IMMUNE SYSTEM

A bidirectional communication system exists between the
immune system and the CNS. Neuroimmune signaling during
the prenatal or early post-natal developmental stages can have
long lasting effects on the brain, and is an important determinant
of cognitive function and emotional behavior (Dantzer et al.,
2008; Bilbo et al., 2012; Filiano et al., 2017; Freytag et al.,
2017). Peripheral cytokine signaling can modulate astrocytes,
microglia and neurons in the CNS (Kohman and Rhodes,
2013). This occurs through leaky regions in the BBB such as
circumventricular organs, active transport through transport
molecules, activation of cells lining the cerebral vasculature
(endothelial cells and perivascular macrophages), binding to
cytokine receptors associated with the vagus nerve, stimulating
the HPA axis at the anterior pituitary or hypothalamus and
recruitment of activated cells such as monocytes/macrophages
from the periphery to the brain (Haroon et al., 2012). In
addition, functional lymphatic vessels lining the dural sinuses
have been discovered, which serve as a route by which immune
cells can communicate with the CNS (Louveau et al., 2015).
Consequently, peripheral cytokines can modulate neurogenesis,
synapse formation and plasticity (Hodes et al., 2015). It is
established that cytokines can impact cognition and mood
(Dowlati et al., 2010; Udina et al., 2012; Valkanova et al.,
2013; Khandaker et al., 2014). Brain regions affected by
administration of inflammatory stimuli include the basal ganglia
and the dorsal anterior cingulate cortex (dACC), part of the
limbic system, involved in cognitive and emotional processing
(Harrison et al., 2009; Slavich et al., 2010; Capuron et al.,
2012; Felger and Miller, 2012; Felger et al., 2013; Miller et al.,
2013).

A critical function of the gut microbiota is to prime
the development of the neuroimmune system (Round and
Mazmanian, 2009; Olszak et al., 2012; Chistiakov et al., 2014;
Francino, 2014). Alterations in the gut microbiota signature early
in life can predispose to immune disorders (Penders et al., 2007;
Fujimura et al., 2016) and the luminal surface of the gut is a key
interface in this process (O’Hara and Shanahan, 2006). Indeed,
the hygiene hypothesis first proposed in the late 1980’s (Strachan,
1989; Patel and Gruchalla, 2017) and reconceptualized as the
“old friends hypothesis” (Rook et al., 2003; Williamson et al.,
2015) proposes that encountering less microbial biodiversity may
contribute to the increase in chronic inflammatory disorders
(Klerman and Weissman, 1989; Guarner et al., 2006; Rook and
Lowry, 2008; Turnbaugh et al., 2009; Hidaka, 2012; Rook et al.,
2013, 2014; Kostic et al., 2015; Stein et al., 2016). An intriguing
strategy of “reintroducing” old friends has been suggested by
a pre-clinical study using heat-killed Mycobacterium vaccae, an
immunoregulatory environmental microorganism. Mice given
this vaccine exhibited reduced subordinate, flight, and avoiding
behavioral responses to a dominant aggressor in a murine model
of chronic psychosocial stress when tested 1–2 weeks following
the final immunization, compared to the control group (Reber
et al., 2016). Depletion of regulatory T cells negated the protective
effects of immunization with M. vaccae on anxiety-like or fear
behaviors.

MECHANISTIC INFLUENCES OF
MICROBIOTA ON BRAIN FUNCTION AND
DEVELOPMENT

Toll-Like Receptors (TLRs)
Structural components of bacteria interact with the immune
system via TLRs (McCusker and Kelley, 2013). Different
TLRs recognize specific bacterial structures, for example; TLR2
recognizes structures from Gram positive bacteria whereas TLR4
mediates responses to structures such as lipopolysaccharide
(LPS) primarily from Gram negative bacteria (Marteau and
Shanahan, 2003). In the CNS, neurons and glial cells can
express various TLRs (Bsibsi et al., 2002; Kielian, 2006; Trudler
et al., 2010). Activation of TLRs trigger the induction of pro
and anti-inflammatory cytokines (Takeda and Akira, 2005)
and, as mentioned above, there are a number of routes by
which peripheral cytokines can impact the brain (Haroon et al.,
2012; Miller et al., 2013; Louveau et al., 2015). Dysregulation
of this process, or excessive TLR activation, can result in
chronic inflammatory and over-exuberant repair responses.
Consequently, TLRs may serve as molecular communication
channels between gut microbiota alterations and immune system
homeostasis (Rogier et al., 2015). Indeed, TLR2 and TLR4
knockout mice showed subtle impairments in behavior and
cognitive functions (Park et al., 2015; Too et al., 2016). A clinical
study in subjects diagnosed with psychotic disorders showed
specific alterations in TLR agonist-mediated cytokine release
compared to healthy controls (McKernan et al., 2011), and more
recently it has been shown that abnormal expression of TLRs can
be modulated by antipsychotics (Kéri et al., 2017). Moreover, in
post-mortem prefrontal cortex samples from subjects diagnosed
with psychosis, alterations in TLR4 have been shown, which were
dependent on antipsychotic treatment status at time of death
(García-Bueno et al., 2016).

Microbiota and Microglia
Microglia, central to the inflammatory process (Facci et al.,
2014) are emerging as playing key roles in brain development,
plasticity and cognition (Tay et al., 2017). These phagocytic innate
immune cells account for approximately 10% of cells in the brain
(Prinz et al., 2014), contribute to the plasticity of neural circuits
by modulating synaptic architecture and function (Graeber
and Streit, 2010) and can be modulated by glutamatergic and
GABAergic neurotransmission (Fontainhas et al., 2011). Pre-
clinical studies have shown that acute stress results in microglia
activation and increased levels of proinflammatory cytokines
in areas such as the hippocampus (Frank et al., 2007) and
hypothalamus (Blandino et al., 2009; Sugama et al., 2011). Most
studies show increases in activated microglia in response to
chronic stress (Tynan et al., 2010; Hinwood et al., 2011, 2012;
Bollinger et al., 2016).

Preliminary changes in the microenvironment of the
microglia may result in a susceptibility to a secondary
inflammatory stimulus (Perry and Holmes, 2014). This concept
of microglia priming may be of relevance to neurodevelopmental
disorders, such as ASD and schizophrenia, which often require
multiple environmental “hits” (Feigenson et al., 2014; Fenn et al.,
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2014). In an environmental two-hit rodent model in which the
first experimental manipulation targeted pregnant dams, and
the second manipulation was given to the resulting offspring,
exposure to prenatal immune challenge and peripubertal
stress synergistically induced pathological effects on adult
behavioral functions and neurochemistry (Giovanoli et al., 2013,
2015). Thus, early-life stress may prime microglia, leading to a
potentiated response to subsequent stress (Calcia et al., 2016).

In human studies, microglial dysregulation has been
demonstrated in several psychiatric disorders. In medication free
depressed patients, microglial activation has been demonstrated
in the prefrontal cortex, ACC, and insula, using translocator
protein density measured by distribution volume in a PET
study positron emission tomography (PET) study (Setiawan
et al., 2015). Using a different tracer, (11)[C]PBR28, subjects
at high risk of psychosis, and those with schizophrenia also
showed evidence of altered microglial activation compared to
healthy controls (van Berckel et al., 2008; Bloomfield et al., 2016).
However, not all studies are consistent and no clear consensus
exists (Holmes et al., 2016; Narendran and Frankle, 2016; Collste
et al., 2017; Notter and Meyer, 2017).

The gut microbiota, emerging as an important
neuroimmunomodulator (Foster, 2016; Rea et al., 2016), is
also involved in the maturation and activation of microglia
(Cryan and Dinan, 2015; Erny et al., 2015). Interestingly, GF
mice display underdeveloped and immature microglia in the
cortex, corpus callosum, hippocampus, olfactory bulb, and
cerebellum (Erny et al., 2015). There was an upregulation of
microglia transcription and survival factors, and downregulation
of cell activation genes and genes for type 1 IFN receptor
signaling compared with those isolated from conventionally
colonized control mice. These defects were partially restored by
recolonization with a complex microbiota, and SCFAs reversed
the defective microglia in the absence of complex microbiota
(Erny et al., 2015). Collectively, these studies suggest that subtle
alterations in gut microbiota acquisition and development, by
regulating neuro-inflammatory processes, may act as additional
vulnerability factors that predispose to neurodevelopmental
disorders such as ASD and schizophrenia.

MICROBIOTA AND NEUROCHEMISTRY

At the cellular level, brain development and function requires
a complex and coordinated birth, migration and differentiation
of both neurons and glia, followed by synaptic integration
and neural circuit formation. Both ASD and schizophrenia
are associated with dysregulation of synaptic function and
structure (McGlashan and Hoffman, 2000; Faludi and Mirnics,
2011; Spooren et al., 2012; Habela et al., 2016). The gut
microbiota plays a role in developmental programming of
the brain, specifically, synapse maturation and synaptogenesis
(Diaz Heijtz et al., 2011) Figure 2. Synaptophysin, a marker
of synaptogenesis, and PSD 95, a marker of excitatory synapse
maturation, were decreased in the striatum in GF animals
compared to specific-pathogen-free (SPF) animals. This suggests
that the gut microbiota may programme certain brain circuits

when colonized by maternal microbiota. However, the authors
point out that exposure to gut microbiota metabolites during
embryogenesis may also be a possible mechanism. Interestingly,
reduced levels of synaptophysin have been demonstrated in
the cerebral cortex of post-mortem samples from schizophrenia
subjects (Hu et al., 2015).

Brain-Derived Neurotrophic Factor (BDNF)
A key regulator of synaptic plasticity and neurogenesis in the
brain, throughout life, is the neurotrophin, BDNF (Monteggia
et al., 2004). Given the role of BDNF in the regulation of
synaptic strengthening and pruning, maintaining appropriate
levels of BDNF and other neurotrophins, especially during
critical neurodevelopmental windows is vital for both ASD
and schizophrenia (Nieto et al., 2013). Meta-analysis showed
reduced blood levels in both medication naïve and medicated
adult individuals diagnosed with schizophrenia (Green et al.,
2011). Conversely, children with ASD have increased levels of
blood BDNF (Qin et al., 2016; Saghazadeh and Rezaei, 2017).
In GF rodents, levels of BDNF were reduced in the cortex and
hippocampus in GF mice (Sudo et al., 2004). In a study by Clarke
et al. this finding was replicated, but in male mice only (Clarke
et al., 2013). However, not all studies are consistent; Neufeld
et al. (2011) confirmed a decreased level of anxiety like behavior
in GF animals, but found an increase in BDNF mRNA in the
hippocampus in female mice. Prebiotics can alter BDNF levels
(Savignac et al., 2013) and increase BDNF gene expression in
the hippocampus (Burokas et al., in press). Collectively, these
pre-clinical studies suggest that certain neurotransmitters and
neuromodulators of relevance to the pathophysiology of ASD
and schizophrenia are under the influence of the gut microbiota
Figure 2.

γ-Aminobutyric Acid (GABA) and
Glutamate
At the neurotransmitter level, several signaling pathways have
been shown to be dysfunctional in ASD and schizophrenia.
Glutamatergic and GABAergic dysfunction and the
consequences on excitatory to inhibitory cortical activity is
one hypothesis to account for the similarities in the social and
cognitive disturbances in ASD and schizophrenia (Canitano
and Pallagrosi, 2017). GABA is an important inhibitory
neurotransmitter in the brain, and GABA dysfunction has been
implicated in ASD and schizophrenia (Schmidt and Mirnics,
2015). Although not a central source, it is interesting to note
that certain bacteria can produce neuroactive metabolites
(Wikoff et al., 2009; Lyte, 2011, 2013), for example specific
strains of Lactobacillus and Bifidobacteria can produce GABA by
metabolizing dietary glutamate (Barrett et al., 2012). Indeed, L.
rhamnosus (JB-1) was shown to reduce anxiety and depression
related behavior inmice and increase GABA receptor levels in the
hippocampus (Bravo et al., 2011). Interestingly, in vagotomized
mice, these effects were not found, further supporting the
concept that the vagus nerve is an important neural signaling
pathway between the microbiota and brain. A pre-clinical
magnetic resonance spectroscopy study adds further evidence to
support the concept that oral L. rhamnosus can increase central
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FIGURE 2 | The gut microbiome and the neurobiology of schizophrenia and autism. Autism and schizophrenia are associated with a number of alterations in the CNS

including altered availability of neuroactive precursors. Studies in germ free animals indicate a substantial overlap between these neurobiological characteristics and

the scope of influence of the gut microbiome in the CNS.

GABA levels (Janik et al., 2016). In a recent study, prebiotics,
fructo-oligosaccharide (FOS) and galacto-oligosaccharide
(GOS), increased GABA-B1 and GABA-B2 receptor gene
expression in the hippocampus (Burokas et al., in press).

The glutamate hypothesis of schizophrenia, has suggested that
hypofunction of signaling through NMDA receptors (NMDARs)
plays a causal role in schizophrenia (Gonzalez-Burgos and
Lewis, 2012). The glutamatergic system appears to contribute to
certain cognitive deficits in schizophrenia (Thomas et al., 2017).
Similarly, glutamatergic dysfunction has been implicated in ASD
(Rojas, 2014). In GF mice Neufeld and colleagues demonstrated
a decrease in the NMDAR subunit NR2B mRNA expression in
the amygdala (Neufeld et al., 2011) Figure 2. Although a review
of post-mortem studies of subjects with schizophrenia found
consistent evidence of morphological alterations of dendrites
of glutamatergic neurons in the cerebral cortex, there were
no consistent alterations of mRNA expression of glutamate
receptors (Hu et al., 2015).

Serotonin
Serotonin (5-HT) has a wide range of physiological functions,
and is involved in the modulation of anxiety, conditioned
fear, stress responses, reward, and social behavior (Lucki, 1998;
Dayan and Huys, 2008; Asan et al., 2013). A meta-analysis of

post-mortem studies found an elevation in prefrontal 5-HT1A
receptors and a reduction in prefrontal 5-HT2A receptors in
schizophrenia (Selvaraj et al., 2014). Serotonin, and its pre-cursor
tryptophan, are critical signaling molecules in the brain-gut-
microbiota axis (O’Mahony et al., 2015). In GF mice decreased
5-HT1A in hippocampus has been shown (Neufeld et al., 2011).
In the gastrointestinal tract (GI), 5-HT plays an important
role in secretion, sensing and signaling (Mawe and Hoffman,
2013). The largest reserve of 5-HT is located in enterochromaffin
cells (Berger et al., 2009). Emerging evidence also suggests that
the serotonergic system may be under the influence of gut
microbiota, especially, but not limited to, periods prior to the
emergence of a stable adult-like gut microbiota (Desbonnet et al.,
2008; El Aidy et al., 2012; Clarke et al., 2013). A metabolomics
study demonstrated that the gut microbiota has a significant
impact on blood metabolites and showed an almost three-fold
increase in plasma serotonin levels when GF mice are colonized
by gut microbiota (Wikoff et al., 2009). The gut microbiota itself
is also an important regulator of 5-HT synthesis and secretion.
For example, colonic tryptophan hydroxylase 1 (Tph1) mRNA
and protein were increased in humanized GF and conventionally
raised mice. Bacterial metabolites have also been demonstrated
to influence Tph1 transcription in a human enterochromaffin
cell model (Reigstad et al., 2015). Others have demonstrated
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that distinct microbial metabolites produced by spore forming
bacteria increase colonic and blood 5-HT in chromaffin cell
cultures (Yano et al., 2015).

Kynurenine
The regulation of circulating tryptophan availability, and the
distribution and subsequent kynurenine pathway metabolism, in
the periphery and CNS, is tightly regulated during all stages of life
(Ruddick et al., 2006; Badawy, 2017). The enzyme indoleamine
2,3-dioxygenase (IDO) found in macrophages andmicroglia cells
is the first and rate limiting step in the kynurenine pathway
of tryptophan catabolism. The expression of tryptophan-2,3-
dioxygenase (TDO) can be induced by circulating glucocorticoids
(O’Connor et al., 2009) and has been reported to be regulated
by the gut microbiota during colonization (El Aidy et al., 2014).
Under normal physiological conditions, approximately 99% of
tryptophan is metabolized to kynurenine in the liver by TDO.
However, proinflammatory cytokines such as IFN-γ, CRP, IL-1,
IL-6, and TNF-α can induce IDO resulting in the metabolism of
tryptophan along the kynurenine pathway (Schwarcz et al., 2012).
Kynurenine, tryptophan and 3-hydroxykynurenine (3-HK) can
cross the BBB and tryptophan’s conversion to kynurenine and
3-HK in the peripheral circulation can therefore contribute
to CNS levels (Schwarcz et al., 2012; Myint and Kim, 2014).
In the brain, kynurenine metabolism occurs in all cells,
though the two kynurenine pathway branches are physically
segregated into distinct cell types. Astrocytes contain kynurenine
aminotransferases (KATs), not kynurenine 3-monooxygenase
(KMO) and therefore cannot produce 3-hydroxykynurenine (3-
HK) from Kynurenine (Guidetti et al., 2007). The end result
of the metabolic pathway in astrocytes is the neuroprotective
Kynurenic acid (KYNA) (Gramsbergen et al., 1997), whereas,
in microglia, it is the neurotoxic metabolite quinolinic acid
(Alberati-Giani et al., 1996).

As mentioned above, regulation of the kynurenine pathway
is important throughout life, but especially during sensitive
periods of early neurodevelopment. KYNA is an NMDA and
alpha7 nicotinic (α7nACh) receptor antagonist, both important
in modulating brain development (Myint and Kim, 2014).
Administration of kynurenine, starting during embryogenesis,
reduced the expression of α7nACh receptor and mGluR2
expression, and induced deficits in prefrontal cortex mediated
cognition in adult rats (Pershing et al., 2015). Indeed,
prenatal, but not adolescent, kynurenine treatment caused
significant impairments in hippocampal-mediated behavioral
tasks (Pocivavsek et al., 2014). Combining perinatal choline-
supplementation, with embryonic kynurenine manipulation, to
potentially increase activation of α7nACh receptors during
development, can attenuate cognitive impairments in adult rat
offspring (Notarangelo and Pocivavsek, 2017). Furthermore,
prenatal kynurenine induces age-dependent changes in NMDA
receptor expression (NR2A, NR1) (Pershing et al., 2016).
This study also showed that juvenile rats that were given
kynurenine performed better in a trace fear conditioning
task, whereas the adults showed deficits. Prenatal inhibition
of kynurenine pathway, using the kynurenine-3-monoxygenase
inhibitor (Ro61-8048), results in altered synaptic transmission

and protein expression in the brains of adult offspring (Forrest
et al., 2013; Khalil et al., 2014; Pisar et al., 2014), and also changes
hippocampal plasticity (Forrest et al., 2015). Using a kynurenine
3-monooxygenase knockout mouse model (Kmo−/−), which
increased brain KYNA levels, showed impairments in contextual
memory, social behavior, and increased anxiety-like behavior
(Erhardt et al., in press). Interestingly, administering D-
amphetamine to Kmo−/− mice showed potentiated horizontal
activity in the open field paradigm.

In schizophrenia, increased KYNA levels in CSF, including in
drug naïve patients (Nilsson et al., 2005), and in post-mortem
brain samples have been shown (Erhardt et al., 2001; Plitman
et al., 2017). In a clinical study, patients with schizophrenia
(n = 64) were more intolerant to a psychological stress
challenge than healthy controls, and while salivary KYNA levels
increased significantly between baseline and 20 min following
the stressor in both patients and controls, patients who were
unable to tolerate the stressful tasks showed significantly higher
levels of KYNA than patients who tolerated the psychological
stressor or healthy controls (Chiappelli et al., 2014). A recent
pre-clinical study showed that restraint stress in pregnant
mice caused significant elevations of KYNA levels in the
maternal plasma, placenta, and fetal brain (Notarangelo and
Schwarcz, 2017). Furthermore, the kynurenine/tryptophan ratio
was significantly higher in patients diagnosed with psychotic
disorder (Barry et al., 2009). Collectively, these pre-clinical and
clinical studies highlight the importance of the kynurenine
pathway during neurodevelopment, and there is a growing
appreciation that integrating these important insights with the
emerging importance of microbial regulation of this pathway will
be an important research objective (Kennedy et al., 2017).

Zinc Signaling
The essential micronutrient Zinc plays an important role in
immune function and GI development and function (Kau et al.,
2011; Vela et al., 2015). Multiple independent factors affect Zinc
status, including diet, prenatal and early life stress, immune
system dysregulation, and impaired GI function (Vela et al.,
2015). Zinc deficiency, particularly during the prenatal phase,
has been proposed as an environmental risk factor for ASD.
Indeed, in rats, acute Zinc deficiency can result in hyperactivity
and over-responsivity, whereas prenatal deficiency can impair
vocalizations and social behavior (Grabrucker et al., 2014). It
has been suggested that the post-synaptic protein Shank3, which
is localized at synapses in the brain and is associated with
neuro-developmental disorders such as ASD and schizophrenia,
is an important component of zinc-sensitive signaling system
that regulates excitatory synaptic transmission, and may lead
to cognitive and behavioral abnormalities in infants with ASD
(Grabrucker et al., 2014; Arons and Lee, 2016). In clinical
studies, Zinc deficiency has been reported in infants with ASD
(Yorbik et al., 2004; Yasuda et al., 2011; Li et al., 2014).
However, studies investigating Zinc levels in schizophrenia have
yielded inconsistent results (Cai et al., 2015). The impact of
micronutrient imbalances on the gut microbiota are beginning
to emerge (Hibberd et al., 2017). In a study using chicks, Zinc
deficiency induced gut microbiota alterations and decreased
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species richness and diversity (Reed et al., 2015). Excess dietary
Zinc significantly altered the gut microbiota and in turn reduced
the threshold of antibiotics needed to confer susceptibility to C.
difficile infection in mice (Zackular et al., 2016).

Epigenetic Influences
Dietary factors can result in epigenetic alterations that lead
to disease susceptibility (Jirtle and Skinner, 2007). It has been
established that prenatal malnutrition increases the risk of
schizophrenia (Susser and Lin, 1992; St Clair et al., 2005;
Xu et al., 2009). Furthermore, it has been suggested that the
microbiota is an important mediator of gene–environment
interactions (Stilling et al., 2014b). SCFAs (butyrate, acetate and
propionate) are neurohormonal signalingmolecules produced by
certain classes of bacteria such as Bacteroides, Bifidobacterium,
Propionibacterium, Eubacterium, Lactobacillus, Clostridium,
Roseburia, and Prevotella (Macfarlane and Macfarlane, 2012).
SCFAs are transported by monocarboxylate transporters, which
notably are expressed at the BBB (Steele, 1986; Vijay and
Morris, 2014). A pre-clinical imaging study demonstrated that
microbiota-derived acetate can cross the BBB where it can
subsequently alter hypothalamic gene expression (Frost et al.,
2014). Butyrate has been shown to be associated with increased
expression of the tight junction protein occludin in the frontal
cortex and hippocampus (Braniste et al., 2014). Butyrate, which
acts as a potent inhibitor of Histone deacetylase (HDAC),
is also a ligand for a subset of G protein-coupled receptors
(Bourassa et al., 2016). It is clear that supra-physiological levels
do have marked behavioral consequences (MacFabe et al., 2007;
Macfabe, 2012; Thomas et al., 2012). However, the ability of
physiological levels of SCFAs to substantially effect behavior via
central mechanism are likely to be subtle, though cumulative
chronic delivery may produce long-lasting stable effects on gene
expression.

Microbiota and Social Behavior and
Cognition
Neuronal activity in the amygdala is altered in GF mice
(Stilling et al., 2015). In these mice, expression of immediate
early response genes such as Fos, Fosb, Egr2, or Nr4a1 were
increased in the amygdala, in conjunction with increased
signaling of the transcription factor CREB (Stilling et al., 2015).
Differential expression and recoding of several genes involved in
fundamental brain processes ranging from neuronal plasticity,
metabolism, neurotransmission and morphology were identified
and a significant downregulation was noted for immune system-
related genes (Stilling et al., 2015). In addition to an altered
transcriptional profile in the amygdala, GF mice have recently
been shown to exhibit reduced freezing behavior during a
cued memory retention test, while colonized GF mice were
behaviorally comparable to conventionally raisedmice during the
retention test (Hoban et al., 2017). Furthermore, adult GF mice
have distinct dendritic morphological changes in the amygdala
and hippocampus (Luczynski et al., 2016) and myelination of
the prefrontal cortex has also been shown to be under the
influence of the gut microbiota (Hoban et al., 2016b). Using
GF mice, Desbonnet et al. (2014) showed that the microbiota is

crucial for the development of normal social behaviors, including
social motivation and preference for social novelty, while also
being an important regulator of repetitive behaviors (Arentsen
et al., 2015; Buffington et al., 2016). This decreased sociability
has also been demonstrated in rats (Crumeyrolle-Arias et al.,
2014). Interestingly, the peptidoglycan (PGN)-sensing molecule,
Pglyrp2, has been shown to modulate the development of social
behavior in mice and alterations in the expression of the ASD risk
gene c-Met (Arentsen et al., 2017).

Oxytocin, a neuropeptide produced in the paraventricular
nucleus (PVN) of the hypothalamus, is important for sociability
(Teng et al., 2013). Offspring of mothers fed a high-fat diet
showed reduced levels of oxytocin PVN neurons, in addition
to behavioral and gut microbiota alterations (Buffington et al.,
2016). L. reuteri treatment restored oxytocin levels and social
behaviors. A recent study, using low dose penicillin, administered
to dams in late pregnancy and early post-natal life showed
that this antibiotic induced gut microbiota alterations, increased
cytokine expression in frontal cortex, modified BBB integrity and
decreased anxiety-like and social behaviors, in offspring (Leclercq
et al., 2017). Interestingly, concurrent supplementation with L.
rhamnosus (JB-1) attenuated the penicillin induced decrease in
social novelty.

The maternal immune activation (MIA) model serves as a
useful model for neurodevelopmental disorders such as ASD
and schizophrenia, and it is well established that prenatal
infection can act as "neurodevelopmental disease primer," the
consequences of which are dependent on precise timing of MIA
(Meyer et al., 2006; Smith et al., 2007; Knuesel et al., 2014; Meyer,
2014; Coiro et al., 2015;Meehan et al., 2016; Pendyala et al., 2017).
MIA rodents display all three of the core features of human ASD,
including limited social interactions, a tendency toward repetitive
behavior and reduced communication (Patterson, 2011). A
recent study showed that MIA induces dysregulation of fetal
brain transcriptome by downregulating genes related to ASD
(Lombardo et al., 2017). MIA has been associated with altered
gut microbiota. Furthermore, the commensal Bacteroides fragilis
reversed the deficits in communicative, stereotypic, anxiety-like
and sensorimotor behaviors (Hsiao et al., 2013).

Autistic like behavior and neurochemical alterations have also
been demonstrated in a mouse model of food allergy (de Theije
et al., 2014b). The same author showed an altered gut microbiota
profile in an autism model, using valproic acid (VPA) (de Theije
et al., 2014a). Interestingly, VPA, a medication used as a mood
stabilizer in bipolar affective disorder and as an antiepileptic,
functions as a HDAC inhibitor and has a similar structure to
the SCFA propionic acid. It is well established that VPA acid use
during pregnancy increases the risk of autism (Jacob et al., 2013),
and propionic acid can also modulate mitochondrial function in
autism and control cell lines (Frye et al., 2016).

As indicated above, multiple cognitive domains are impacted
in ASD and schizophrenia and the gut microbiota has been
implicated in a number of relevant cognitive functions. The
combination of acute stress and infection can impact cognition.
Citrobacter rodentium infected C57BL/6 mice that were exposed
to acute stress exhibited memory dysfunction (Gareau et al.,
2011). Moreover, GF Swiss-Webster mice displayed memory
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impairment at baseline, in the absence of acute stress (Gareau
et al., 2011). In male C57BL/6 mice, higher percentages of
Clostridiales and lower levels of Bacteroidales in high-energy diets
were related to poorer cognitive flexibility (Magnusson et al.,
2015). In BALB/c mice, treatment with B. Longum resulted in an
improvement in stress related behavior and cognition (Savignac
et al., 2015). Hippocampal neurogenesis, a pivotal process in
learning and memory consolidation (Deng et al., 2010; Levone
et al., 2015; Anacker and Hen, 2017; Hueston et al., 2017)
has been shown to be regulated by the gut microbiota. GF
mice exhibit increased adult hippocampal neurogenesis in the
dorsal hippocampus, and post-weaning microbial colonization
failed to reverse the changes in adult hippocampal neurogenesis
(Ogbonnaya et al., 2015). Furthermore, exercise or probiotics
were able to ameliorate deficits in neurogenesis and behavior
in antibiotic-treated mice (Mohle et al., 2016). A recent
study showed that L. johnsonii CJLJ103 attenuated colitis and
memory impairment in mice by inhibiting gut microbiota
lipopolysaccharide production and NF-κB activation (Lim et al.,
2017).

Using an antibiotic (ampicillin, metronidazole, vancomycin,
ciprofloxacin, imipenem) treated rat model, gut microbiota
depletion during adulthood resulted in deficits in spatial
memory as measured by Morris water maze (Hoban et al.,
2016a). In another pre-clinical study, that used ampicillin,
bacitracin, meropenem, neomycin, and vancomycin, novel object
recognition, but not spatial memory, was impaired in antibiotic-
treated mice and this cognitive deficit was associated with
brain region-specific changes in the expression of cognition-
relevant signaling molecules, notably BDNF, N-methyl-D-
aspartate receptor subunit 2B, serotonin transporter and
neuropeptide Y system. The authors concluded that circulating
metabolites and the cerebral neuropeptide Y system play an
important role in the cognitive impairment and dysregulation
of cerebral signaling molecules due to antibiotic-induced gut
alterations (Frohlich et al., 2016). Furthermore, in a pre-clinical
rodent model of diabetes, L. acidophilus, B. lactis, and L.
fermentum, improved diabetes-induced impairment of cognitive
function in the Morris water maze and synaptic activity in
rats (Davari et al., 2013). The N-methyl-D-aspartate (NMDA)
receptor antagonist, phencyclidine causes hyperlocomotion,
social withdrawal, and cognitive impairment in rodents, and
serves as a useful pharmacological rodent model of schizophrenia
(Jones et al., 2011). A study investigating the effect of
subchronic phencyclidine (subPCP) treatment on cognition and
gut microbiota, found that the microbiota altered immediately
after subPCP washout. Administration of ampicillin abolished
the subPCP-induced memory deficit (Pyndt Jorgensen et al.,
2015).

Microbiota and Stress
The brain interprets perceived stressors to determine
physiological and behavioral responses. This process can
promote adaptation (allostasis), but when responses are
exaggerated or overused (allostatic overload), pathology can
ensue (McEwen, 2017). The immune system and HPA axis
are pivotal to the stress response and act as mediators to alter

neural circuitry and function, particularly in the hippocampus,
amygdala, and prefrontal cortex (McEwen et al., 2016). Stressful
life events can precipitate psychotic symptoms (Day et al., 1987),
and increased sensitivity to minor stressful events are associated
with more intense psychotic experiences in first episode
psychosis (FEP) (Reininghaus et al., 2016b). In addition early life
event stressors, such as childhood trauma (Varese et al., 2012)
and social adversity/defeat stressors, such as migration/ethnic
minority status can increase the risk of psychosis (Elizabeth
Cantor-Graae and Jean-Paul Selten, 2005; Selten and Cantor-
Graae, 2005; Fusar-Poli et al., 2017). As mentioned above,
schizophrenia is a highly heterogenous disorder, and commonly
co-morbid with anxiety and depressive disorders (Buckley et al.,
2009; Achim et al., 2011). Similarly, approximately 40% of young
people with ASD have at least one comorbid DSM-IV anxiety
disorder (van Steensel et al., 2011) and there are higher levels of
depression (Ghaziuddin et al., 2002; Magnuson and Constantino,
2011; Strang et al., 2012).

Stress can reshape gut microbiota composition (Wang and
Wu, 2005; O’Mahony et al., 2009; Galley et al., 2014a,b; Golubeva
et al., 2015; Frohlich et al., 2016). For example, early life maternal
separation resulted in a significant decrease in fecal Lactobacillus
numbers on day 3 post-separation which was correlated with
stress related behaviors in rhesus monkeys (Bailey and Coe,
1999). In a mouse model of social disruption, stress altered
the gut microbial profile and increased the levels of the pro-
inflammatory cytokine IL-6 (Bailey et al., 2011). Interestingly,
it was possible to transfer an anxious behavioral phenotype
between two strains of mice via fecal microbiota transfer (Bercik
et al., 2011). More recently, it has been shown that mice
that received an obesity associated microbiota exhibit more
anxiety-like behaviors associated with increased evidence of
neuroinflammation compared to controls (Bruce-Keller et al.,
2015).

As previously mentioned, the developmental trajectory of
the gut microbiota is compatible with concepts of the early-
life period as a vulnerable phase for the subsequent emergence
of neurodevelopmental disorders (O’Mahony et al., 2009, 2017;
Borre et al., 2014). Pre-clinical evidence suggests that the gut
microbiota signature acquired and maintained during these
pivotal stages may also affect stress reactivity. GF rodents
demonstrate abnormal behavioral and neuroendocrine responses
to stress (Sudo et al., 2004; Nishino et al., 2013; Crumeyrolle-
Arias et al., 2014; Moloney et al., 2014) and the normal
development of the HPA axis is contingent on microbiota
colonization at specific neurodevelopmental time points (Sudo
et al., 2004).

Furthermore, the expression of anxiety like behavior in a
mouse model of early life stress is partially dependent on the
gut microbiota (De Palma et al., 2015). Evidence suggests that
prenatal stress also impacts the gut microbiota with implications
for physiological outcomes in the offspring (Golubeva et al.,
2015). In a mouse model of prenatal stress, maternal stress
decreased the abundance of vaginal Lactobacillus, resulting in
decreased transmission of this bacterium to offspring, which
corresponded with changes in metabolite profiles involved in
energy balance, and with disruptions of amino acid profiles in
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the developing brain (Jasarevic et al., 2015). Human infants
of mothers with high self-reported stress and high salivary
cortisol concentrations during pregnancy had significantly
higher relative abundances of Proteobacterial groups known to
contain pathogens and lower relative abundances of lactic acid
bacteria (Lactobacillus) and Bifidobacteria (Zijlmans et al., 2015).
In addition, those infants with altered microbiota composition
exhibited a higher level of maternally reported infant GI
symptoms and allergic reactions, highlighting the functional
consequences of aberrant colonization patterns.

The stress related disorder, depression, commonly co-morbid
with ASD and schizophrenia, has been associated with alterations
in gut microbiota profiles (Naseribafrouei et al., 2014; Jiang
et al., 2015) and altered metabolomic output (Yu et al., 2017).
Fecal Microbiota Transfer (FMT) from depressed patients to
GF mice (Zheng et al., 2016) and antibiotic treated rats
(Kelly, 2016; Kelly et al., 2016a) resulted in the transfer of
certain depressive and anxiety like behaviors in the recipient
rodents. The first study investigating the gut microbiota in
bipolar affective disorder patients (n = 115), showed levels of
Faecalibacterium were decreased, after adjusting for age, sex, and
BMI, compared to healthy control subjects (n = 64). Moreover,
Faecalibacterium was associated with better self-reported health
outcomes based on the Short Form Health Survey, the Patient
Health Questionnaire, the Pittsburg Sleep Quality Index, the
Generalized Anxiety Disorder scale, and the Altman Mania
Rating Scale (Evans et al., 2017). Interestingly, reduced levels
of Faecalibacterium were reported in the study by Jiang and
colleagues, which negatively correlated with severity of depressive
symptoms (Jiang et al., 2015).

Fecal microbiota signatures in patients with diarrhea-
predominant Irritable Bowel Syndrome (IBS), a stress related
GI disorder, were shown to be similar to those patients with
depression (Liu et al., 2016). Moreover, FMT from IBS patients to
rats, induced anxiety related behaviors in the rats (De Palma and
Lynch, 2017). In a double blind RCT of IBS patients, 6 weeks of B.
longum NCC3001 reduced depression scores as measured by the
Hospital Anxiety and Depression scale, and responses to negative
emotional stimuli in amygdala and fronto-limbic regions, using
fMRI, compared to placebo (Pinto-Sanchez et al., 2017). A
recent study, using structural MRI, showed that gut microbial
composition correlated with sensory and salience-related brain
regions (Labus et al., 2017).

Translational Approaches
In pre-clinical studies, both prebiotic (Burokas et al., in press)
and probiotic treatment can reduce stress related behaviors
(Abildgaard et al., 2017; Moya-Pérez et al., 2017). In a recent
study, L. reuteri was reported to reduce despair like behavior
in mice by inhibition of intestinal Indoleamine 2,3-dioxygenase
(IDO1) and decrease peripheral levels of kynurenine (Marin
et al., 2017). The profusion of pre-clinical data indicating a
role for the brain-gut-microbiota axis in brain development,
function and behavior, prompted the growing need to translate
these findings into human populations (Kelly et al., 2015).
“Psychobiotics,” originally defined as live bacteria that when
ingested in adequate amounts could produce a positive mental

health benefit, in terms of anxiety, mood and cognition (Dinan
et al., 2013), has more recently been expanded to encompass
“any substance that exerts a microbiome-mediated psychological
effect” (Sarkar et al., 2016; Allen et al., 2017).

The process of translating psychobiotics from bench to
bedside is not without significant challenges (Arrieta et al.,
2016; Kelly, 2016; Kelly et al., 2016b; Cani, 2017), but a
growing number of small studies with healthy individuals
suggest that prolonged pre- and probiotic consumption can
positively affect aspects of mood and anxiety in healthy
controls (Messaoudi et al., 2011; Mohammadi et al., 2015;
Steenbergen et al., 2015; Allen et al., 2016) and modulate HPA
axis function (Messaoudi et al., 2011; Schmidt et al., 2015;
Allen et al., 2016). Importantly, a fermented milk containing
B. animalis, Streptococcus thermophiles, L. bulgaricus, and L.
lactis, administered for 4 weeks to healthy women, reduced
the task-related response of a distributed functional network
containing affective, viscerosensory and somatosensory cortices,
independent of self-reposted GI symptoms (Tillisch et al., 2013).

In humans, studies investigating the potential cognitive
enhancing effects of microbial based therapies are starting
to emerge (Allen et al., 2016). In this study, 4 weeks of
treatment with the probiotic B. longum 1714 modestly improved
performance in a hippocampal dependent memory task in
healthy volunteers. However, this effect is likely strain specific
since this subtle cognitive enhancing effect was not evident
following administration of L. rhamnosus (JB-1) (Kelly et al.,
2017a). In a randomized, double-blind, placebo-controlled trial
involving healthy human participants (n = 76), the tetracycline
antibiotic doxycycline (200 mg), a matrix metalloproteinase
inhibitor, resulted in reduced fear memory retention, measured
with fear-potentiated startle, 7 days post-acquisition compared
to participants that received placebo (Bach et al., 2017).
Doxycycline can alter the composition of the gut microbiota
and its metabolomic output (Angelakis et al., 2014; Behr et al.,
2017). Considering the recent pre-clinical data suggesting a
role for the gut microbiota in the behavioral response during
amygdala-dependent memory retention (Hoban et al., 2017),
it would be a compelling prospect to ascertain if alterations
in gut microbiota played a physiological role in this antibiotic
human study. A cross sectional MRI study comparing 20 obese
individuals to 19 age and sex matched non-obese controls,
reported that the relative abundance of Actinobacteria phylum
was associated with magnetic diffusion tensor imaging variables
in the thalamus, hypothalamus, and amygdala and also with to
cognitive test scores related to speed, attention, and cognitive
flexibility (Fernandez-Real et al., 2015). Although preliminary,
these studies, and others (Pinto-Sanchez et al., 2017), are
beginning to merge microbiome research with neuroimaging to
further delineate the role of the gut microbiota on cognition and
neural circuitry.

To date, there are two interventional studies investigating
potential psychobiotics in clinical depression, with conflicting
results. In the first study, 8 weeks of a multispecies probiotic
containing L. acidophilus, L. casei, and B. bifidum, added to an
SSRI, reportedly reduced depressive symptoms in moderately
depressed patients compared to placebo (Akkasheh et al., 2016).
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The other study, conducted in antidepressant free depressed
subjects, failed to show superiority of L. helveticus and B. longum
over placebo, in an 8-week double blind randomized controlled
trial (Romijn et al., 2017). A Mediterranean diet, suggested as
protective for depression, has been associated with beneficial
microbiome-related metabolomic profiles (De Filippis et al.,
2015) and there is increasing awareness of the role of a healthy
diet in reducing the risk of depression (Jacka et al., 2010, 2017;
Opie et al., 2017). Collectively, these studies suggest that the
gut microbiota may play a pathophysiological role in stress-
related disorders. However, given the small sample sizes and
lack of a standardized approach in these studies, a robust and
consistent gut microbiota signature in stress-related disorders,
remains elusive. Moreover, a systematic review found very
limited evidence for the efficacy of psychobiotics in psychological
outcomes (Romijn and Rucklidge, 2015). Similarly, even in GI
disorders, gut microbiota analysis as a diagnostic or prognostic
tool has not transitioned into routine clinical practice (Quigley,
2017).

There has been one clinical interventional study investigating
probiotics in patients diagnosed with schizophrenia. This
randomized, double-blind, placebo-controlled trial (n = 65),
used Lactobacillus rhamnosus strain GG and Bifidobacterium
animalis subsp. lactis strain Bb12, improved GI symptoms,
but failed to impact positive or negative symptoms (Dickerson
et al., 2014). A number of small studies have shown that the
antibiotic minocycline, notwithstanding a complex mechanism
of action, is known to modulate the brain-gut-microbiota axis,
(Wong et al., 2016), and may improve negative and cognitive
symptoms in schizophrenia (Miyaoka et al., 2008; Levkovitz
et al., 2010; Jhamnani et al., 2013; Khodaie-Ardakani et al.,
2014). This raises the question of whether microbiome based
therapies could play a role in the amelioration of cognitive
or negative symptoms in subgroups of psychosis spectrum
disorder.

Schizophrenia Spectrum Disorder and
Stratified Psychiatry
The full neuropsychiatric implications of specific aberrations
in the gut microbiota at early developmental stages or during
adolescence have not been fully explored. It is an intriguing
prospect that these aberrations may serve as additional risk
factors or mediators for the development of psychotic disorders.
It remains an unanswered question whether the gut microbiota
is a state or trait marker and whether it plays a role, in
conjunction with for example, stress, as a trigger factor for a
psychotic relapse. The role of psychobiotics in schizophrenia
remains under investigated (see Table 2). It would be interesting
to explore whether a microbial based therapy could be a useful
preventative strategy, or as an adjunctive agent in subgroups or
whether it could reduce conversion to psychosis in subgroups
at risk of developing the disorder. Well powered, longitudinal
studies, encompassing neuroimaging markers would be required
to definitively answer these questions.

In recent years, the categorical diagnostic system in clinical
psychiatry has been challenged. Even the term schizophrenia

has been disputed (van Os, 2016), with evidence showing
that renaming the disorder can reduce stigma and benefit
communication between clinicians, patients and families
(George and Klijn, 2013; Lasalvia et al., 2015). There is growing
momentum toward a more precise, dimensional approach,
designed to uncover the biological mechanisms of these complex
disorders. Functional dimensional constructs grouped into
domains such as negative valance (acute threat (fear), potential
threat (anxiety), sustained threat, loss, frustrative non-reward),
positive valence (approach motivation, initial responsiveness
to reward attainment, sustained/longer term responsiveness to
reward attainment, reward learning, habit), cognitive (attention,
perception, declarative memory, language, cognitive control,
working memory), social processing (affiliation and attachment,
social communication, perception, and understanding of
self/others), and arousal/regulatory systems (arousal, circadian
rhythms, sleep-wakefulness) examined across units of analysis
from genes, molecules, cells, circuits, physiology, neuroimaging,
behavior and self-report have been proposed (Insel et al., 2010).
This dimensional approach is more difficult in disorders such
as psychosis, compared to mood disorders, but this exciting
process has begun (Reininghaus et al., 2016a; Cohen et al., 2017;
Joyce et al., 2017). By deconstructing heterogenous systems-
disorders (Öngür, 2017; Silbersweig and Loscalzo, 2017), such
as schizophrenia into transdiagnostic constructs, and stratifying
subgroups of patients based on similar pathophysiology, such
as microbiome alterations and related signaling pathways, this
opens up the possibility to advance personalized and precision
treatments options (Kaiser and Feng, 2015).

Additionally, by removing the constraints of classical
psychiatric disease diagnosis it has the potential to better
align pre-clinical and clinical studies to build a common
framework of comparable neurobiological abnormalities. Clearly,
it is impossible to fully mimic a complex neuropsychiatric
disorder such as schizophrenia or ASD in non-human animals.
Hallucinations, delusions, thought disorder, and language
impairments cannot be modeled. Thus, rather than modeling
an entire disorder, the focus should be aimed at more precise
constructs such those mentioned above, with the addition of
the gut microbiota. Most currently used behavioral models
do not include the gut microbiota as a factor. Clearly
demonstrating causality in microbiome research is challenging
(Hanage, 2014; Cani, 2017). The humanized FMT model is
an integral component to demonstrate cause and effect in gut
microbiota studies involving neurodevelopmental disorders such
as schizophrenia, and provided a reliable and reproducible
model can be developed, the precise temporal dynamics of the
emergence and possible persistence of the behavioral alterations
post FMT could be further delineated.

Furthermore, whether different human donor symptom
profiles can be transferred via FMT may further disentangle the
contribution of the gut microbiota to the pathophysiology of
aspects of psychosis, by attempting to transfer sub-categories
of psychotic subjects, including medication free subjects, with
different constructs such as negative valance, positive valence,
cognitive, social processing and arousal/regulatory systems.
While it must be acknowledged that significant neuroscientific
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advances have frequently been lost in translation and not had
appreciable benefits for psychiatric patients as yet, an evolving
dimensional framework, consolidating multiple disciplines, and
encompassing the gut microbiota as an additional environmental
construct linked to other constructs, offers potential to
identify sub-groups of patients that may be more likely to
respond to a microbiome-based therapeutic approach at specific
neurodevelopmental time points (Kelly, 2016; Severance et al.,
2016c; Kelly et al., 2017b).

CONCLUSIONS AND PERSPECTIVES

Highly complex neurodevelopmental disorders such as ASD
and schizophrenia require a systems level approach. The human
brain develops and functions within the context of a complex
network of lifelong microbial signaling pathways from gut to
brain. Pre-clinical studies are beginning to provide mechanistic
insights into these signaling pathways as they relate to the social,
emotional and cognitive domains of the brain. Furthermore,
they suggest that psychobiotics can ameliorate certain defects.
However, translating these promising pre-clinical benefits
to human neurodevelopment disorders is challenging. The
majority of clinical studies investigating the gut microbiota
in ASD are cross sectional and underpowered, and there is
insufficient evidence of solid clinical relevance. In schizophrenia,
there is emerging preliminary evidence of an altered gut
microbiota. An intriguing prospect would be to focus on
different neurodevelopmental time points, for example during
adolescence, in subgroups at risk of developing neuropsychiatric
symptoms, and to encompass a dimensional construct approach.
Larger prospective interventional clinical studies, with central
markers of brain function, utilizing therapeutic modulation of
the gut microbiota or its metabolites are required. Furthermore,

exploration of the interaction of the gut microbiota and
nutritional modification, at different neurodevelopmental
stages, including pre-conception, warrants exploration as a
preventative strategy for neurodevelopmental disorders in
addition to stress-related disorders (Jacka, 2017). Although it is
premature to draw firm conclusions about the clinical utility of
microbiome based treatment strategies in neurodevelopmental
disorders at this point, it is an exciting frontier in psychiatry
research.
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S., et al. (in press). Analysis of microbiota in first episode psychosis identifies
preliminary associations with symptom severity and treatment response.
Schizophr. Res. doi: 10.1016/j.schres.2017.04.017

Sekar, A., Bialas, A. R., de Rivera, H., Davis, A., Hammond, T. R., Kamitaki, N., et al.
(2016). Schizophrenia risk from complex variation of complement component
4. Nature 530, 177–183. doi: 10.1038/nature16549

Selten, J. P., and Cantor-Graae, E. (2005). Social defeat: risk factor for
schizophrenia? Br. J. Psychiatry 187, 101–102. doi: 10.1192/bjp.187.2.101

Selvaraj, S., Arnone, D., Cappai, A., and Howes, O. (2014). Alterations in the
serotonin system in schizophrenia: a systematic review and meta-analysis
of postmortem and molecular imaging studies. Neurosci. Biobehav. Rev. 45,
233–245. doi: 10.1016/j.neubiorev.2014.06.005

Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., and Noble-Haeusslein, L.
J. (2013). Brain development in rodents and humans: identifying benchmarks
of maturation and vulnerability to injury across species. Prog. Neurobiol.
106–107, 1–16. doi: 10.1016/j.pneurobio.2013.04.001

Sender, R., and Fuchs, S. (2016). Revised estimates for the number
of human and bacteria cells in the body. PLoS Biol. 14:e1002533.
doi: 10.1371/journal.pbio.1002533

Setiawan, E., Wilson, A. A., Mizrahi, R., Rusjan, P. M., Miler, L., Rajkowska,
G., et al. (2015). Role of translocator protein density, a marker of
neuroinflammation, in the brain during major depressive episodes. JAMA

Psychiatry 72, 268–275. doi: 10.1001/jamapsychiatry.2014.2427
Severance, E. G., Gressitt, K. L., Stallings, C. R., Katsafanas, E., Schweinfurth, L.

A., Savage, C. L., et al. (2016a). Candida albicans exposures, sex specificity
and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr.
2:16018. doi: 10.1038/npjschz.2016.18

Severance, E. G., Gressitt, K. L., Stallings, C. R., Katsafanas, E., Schweinfurth, L.
A., Savage, C. L., et al. (2017). Probiotic normalization of Candida albicans
in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study.
Brain Behav. Immun. 62, 41–45. doi: 10.1016/j.bbi.2016.11.019

Severance, E. G., Gressitt, K. L., Stallings, C. R., Origoni, A. E., Khushalani, S.,
Leweke, F. M., et al. (2013). Discordant patterns of bacterial translocation
markers and implications for innate immune imbalances in schizophrenia.
Schizophr. Res. 148, 130–137. doi: 10.1016/j.schres.2013.05.018

Severance, E. G., Xiao, J., Jones-Brando, L., Sabunciyan, S., Li, Y., Pletnikov, M.,
et al. (2016b). “Chapter seven - Toxoplasma gondii—a gastrointestinal pathogen
associated with human brain diseases,” in International Review of Neurobiology,

eds J. F. Cryan and G. Clarke (Academic Press), 143–163.
Severance, E. G., Yolken, R. H., and Eaton, W. W. (2016c). Autoimmune

diseases, gastrointestinal disorders and the microbiome in schizophrenia: more
than a gut feeling. Schizophr. Res. 176, 23–35. doi: 10.1016/j.schres.2014.
06.027

Shen, M. D., Kim, S. H., McKinstry, R. C., Gu, H., Hazlett, H. C.,
Nordahl, C. W., et al. (2017). Increased extra-axial cerebrospinal fluid in
high-risk infants who later develop autism. Biol. Psychiatry 82, 186–193.
doi: 10.1016/j.biopsych.2017.02.1095

Sherwin, E., Dinan, T. G., and Cryan, J. F. (2017). Recent developments in
understanding the role of the gut microbiota in brain health and disease. Ann.
N. Y. Acad. Sci. doi: 10.1111/nyas.13416. [Epub ahead of print].

Silbersweig, D., and Loscalzo, J. (2017). Precision psychiatry meets
network medicine: network psychiatry. JAMA Psychiatry 74, 665–666.
doi: 10.1001/jamapsychiatry.2017.0580

Slavich, G. M., Way, B. M., Eisenberger, N. I., and Taylor, S. E. (2010).
Neural sensitivity to social rejection is associated with inflammatory
responses to social stress. Proc. Natl. Acad. Sci. U.S.A. 107, 14817–14822.
doi: 10.1073/pnas.1009164107

Sliwa, J., and Freiwald, W. A. (2017). A dedicated network for social
interaction processing in the primate brain. Science 356, 745–749.
doi: 10.1126/science.aam6383

Smith, S. E. P., Li, J., Garbett, K., Mirnics, K., and Patterson, P. H. (2007). Maternal
immune activation alters fetal brain development through interleukin-6. J.
Neurosci. 27, 10695–10702. doi: 10.1523/JNEUROSCI.2178-07.2007

Son, J. S., Zheng, L. J., Rowehl, L. M., Tian, X., Zhang, Y., Zhu, W., et al.
(2015). Comparison of fecal microbiota in children with autism spectrum
disorders and neurotypical siblings in the simons simplex collection. PLoS ONE
10:e0137725. doi: 10.1371/journal.pone.0137725

Song, Y., Liu, C., and Finegold, S. M. (2004). Real-time PCR quantitation of
clostridia in feces of autistic children. Appl. Environ. Microbiol. 70, 6459–6465.
doi: 10.1128/AEM.70.11.6459-6465.2004

Spencer, S. J., and Meyer, U. (2017). Perinatal programming by inflammation.
Brain Behav. Immun. 63, 1–7. doi: 10.1016/j.bbi.2017.02.007

Spooren, W., Lindemann, L., Ghosh, A., and Santarelli, L. (2012). Synapse
dysfunction in autism: a molecular medicine approach to drug discovery
in neurodevelopmental disorders. Trends Pharmacol. Sci. 33, 669–684.
doi: 10.1016/j.tips.2012.09.004

Stamper, C. E., Hoisington, A. J., Gomez, O. M., Halweg-Edwards, A. L., Smith,
D. G., Bates, K. L., et al. (2016). “Chapter fourteen - the microbiome of the
built environment and human behavior: implications for emotional health

Frontiers in Neuroscience | www.frontiersin.org 29 September 2017 | Volume 11 | Article 490

https://doi.org/10.1017/S1462399406000068
https://doi.org/10.1007/s10803-016-3024-x
https://doi.org/10.1038/mp.2015.70
https://doi.org/10.1177/088307380001500701
https://doi.org/10.1016/j.tins.2016.09.002
https://doi.org/10.1016/j.neuint.2013.10.006
https://doi.org/10.1016/j.bbr.2015.02.044
https://doi.org/10.1016/j.schres.2013.07.009
https://doi.org/10.1542/peds.2007-1049
https://doi.org/10.3200/MONO.130.3.241-272
https://doi.org/10.1038/nature13595
https://doi.org/10.1007/s00213-014-3810-0
https://doi.org/10.1038/npp.2014.95
https://doi.org/10.1093/schbul/sbx009
https://doi.org/10.1038/nrn3257
https://doi.org/10.1016/j.schres.2017.04.017
https://doi.org/10.1038/nature16549
https://doi.org/10.1192/bjp.187.2.101
https://doi.org/10.1016/j.neubiorev.2014.06.005
https://doi.org/10.1016/j.pneurobio.2013.04.001
https://doi.org/10.1371/journal.pbio.1002533
https://doi.org/10.1001/jamapsychiatry.2014.2427
https://doi.org/10.1038/npjschz.2016.18
https://doi.org/10.1016/j.bbi.2016.11.019
https://doi.org/10.1016/j.schres.2013.05.018
https://doi.org/10.1016/j.schres.2014.06.027
https://doi.org/10.1016/j.biopsych.2017.02.1095
https://doi.org/10.1111/nyas.13416
https://doi.org/10.1001/jamapsychiatry.2017.0580
https://doi.org/10.1073/pnas.1009164107
https://doi.org/10.1126/science.aam6383
https://doi.org/10.1523/JNEUROSCI.2178-07.2007
https://doi.org/10.1371/journal.pone.0137725
https://doi.org/10.1128/AEM.70.11.6459-6465.2004
https://doi.org/10.1016/j.bbi.2017.02.007
https://doi.org/10.1016/j.tips.2012.09.004
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kelly et al. Cross Talk: The Microbiota and Neurodevelopmental Disorders

and well-being in postmodern western societies,” in International Review of

Neurobiology, eds J. F. Cryan and G. Clarke (Academic Press), 289–323.
St Clair, D., Xu,M.,Wang, P., Yu, Y., Fang, Y., Zhang, F., et al. (2005). Rates of adult

schizophrenia following prenatal exposure to the Chinese famine of 1959-1961.
JAMA 294, 557–562. doi: 10.1001/jama.294.5.557

Steele, R. D. (1986). Blood-brain barrier transport of the alpha-keto acid analogs of
amino acids. Fed. Proc. 45, 2060–2064.

Steenbergen, L., Sellaro, R., van Hemert, S., Bosch, J. A., and Colzato, L. S. (2015).
A randomized controlled trial to test the effect of multispecies probiotics
on cognitive reactivity to sad mood. Brain Behav. Immun. 48, 258–264.
doi: 10.1016/j.bbi.2015.04.003

Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S. E., et al.
(2016). Innate immunity and asthma risk in amish and hutterite farm children.
N. Engl. J. Med. 375, 411–421. doi: 10.1056/NEJMoa1508749

Stiles, J., and Jernigan, T. L. (2010). The basics of brain development.Neuropsychol.
Rev. 20, 327–348. doi: 10.1007/s11065-010-9148-4

Stilling, R. M., Bordenstein, S. R., Dinan, T. G., and Cryan, J. F. (2014a).
Friends with social benefits: host-microbe interactions as a driver of
brain evolution and development? Front. Cell. Infect. Microbiol. 4:147.
doi: 10.3389/fcimb.2014.00147

Stilling, R. M., Dinan, T. G., and Cryan, J. F. (2014b). Microbial genes, brain and
behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav. 13,
69–86. doi: 10.1111/gbb.12109

Stilling, R. M., Ryan, F. J., Hoban, A. E., Shanahan, F., Clarke, G., Claesson,
M. J., et al. (2015). Microbes and neurodevelopment–Absence of microbiota
during early life increases activity-related transcriptional pathways in
the amygdala. Brain Behav. Immun. 50, 209–220. doi: 10.1016/j.bbi.2015.
07.009

Strachan, D. P. (1989). Hay fever, hygiene, and household size. BMJ 299,
1259–1260. doi: 10.1136/bmj.299.6710.1259

Strang, J. F., Kenworthy, L., Daniolos, P., Case, L., Wills, M. C., Martin, A., et al.
(2012). Depression and anxiety symptoms in children and adolescents with
autism spectrum disorders without intellectual disability. Res. Autism Spectr.

Disord. 6, 406–412. doi: 10.1016/j.rasd.2011.06.015
Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., et al.

(2017). New evidences on the altered gut microbiota in autism spectrum
disorders.Microbiome 5:24. doi: 10.1186/s40168-017-0242-1

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al.
(2004). Postnatal microbial colonization programs the hypothalamic-pituitary-
adrenal system for stress response in mice. J. Physiol. 558, 263–275.
doi: 10.1113/jphysiol.2004.063388

Sugama, S., Takenouchi, T., Fujita, M., Kitani, H., and Hashimoto, M. (2011).
Cold stress induced morphological microglial activation and increased IL-
1beta expression in astroglial cells in rat brain. J. Neuroimmunol. 233, 29–36.
doi: 10.1016/j.jneuroim.2010.11.002

Suhr, M. J., and Hallen-Adams, H. E. (2015). The human gut mycobiome:
pitfalls and potentials–a mycologist’s perspective. Mycologia 107, 1057–1073.
doi: 10.3852/15-147

Sullivan, P. F., Kendler, K. S., and Neale, M. C. (2003). Schizophrenia as a complex
trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60,
1187–1192. doi: 10.1001/archpsyc.60.12.1187

Susser, E. S., and Lin, S. P. (1992). Schizophrenia after prenatal exposure to
the Dutch Hunger Winter of 1944-1945. Arch. Gen. Psychiatry 49, 983–988.
doi: 10.1001/archpsyc.1992.01820120071010

Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi,
K., et al. (2013). Microglial activation in young adults with autism
spectrum disorder. JAMA Psychiatry 70, 49–58. doi: 10.1001/jamapsychiatry.
2013.272

Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int.
Immunol. 17, 1–14. doi: 10.1093/intimm/dxh186

Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., andMacia, L.
(2014). The role of short-chain fatty acids in health and disease. Adv. Immunol.

121, 91–119. doi: 10.1016/B978-0-12-800100-4.00003-9
Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K., and Tremblay, M.-È. (2017).

Microglia across the lifespan: from origin to function in brain development,
plasticity and cognition. J. Physiol. 595, 1929–1945. doi: 10.1113/JP272134

Teng, B. L., Nonneman, R. J., Agster, K. L., Nikolova, V. D., Davis, T. T.,
Riddick, N. V., et al. (2013). Prosocial effects of oxytocin in two mouse

models of autism spectrum disorders. Neuropharmacology 72, 187–196.
doi: 10.1016/j.neuropharm.2013.04.038

Thaiss, C. A., Levy, M., Korem, T., Dohnalová,á, L., Shapiro, H., Jaitin, D. A.,
et al. (2016). microbiota diurnal rhythmicity programs host transcriptome
oscillations. Cell 167, 1495-1510.e12. doi: 10.1016/j.cell.2016.11.003

Thomas, E. H. X., Bozaoglu, K., Rossell, S. L., and Gurvich, C. (2017). The influence
of the glutamatergic system on cognition in schizophrenia: a systematic
review. Neurosci. Biobehav. Rev. 77, 369–387. doi: 10.1016/j.neubiorev.2017.
04.005

Thomas, R. H., Meeking, M. M., Mepham, J. R., Tichenoff, L., Possmayer, F.,
Liu, S., et al. (2012). The enteric bacterial metabolite propionic acid alters
brain and plasma phospholipid molecular species: further development of
a rodent model of autism spectrum disorders. J. Neuroinflammation 9:153.
doi: 10.1186/1742-2094-9-153

Tick, B., Bolton, P., Happe, F., Rutter, M., and Rijsdijk, F. (2016). Heritability of
autism spectrum disorders: a meta-analysis of twin studies. J. Child Psychol.

Psychiatry 57, 585–595. doi: 10.1111/jcpp.12499
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., et al. (2013).

Consumption of fermented milk product with probiotic modulates brain
activity. Gastroenterology 144, 1394–1401. doi: 10.1053/j.gastro.2013.02.043

Tomova, A., Husarova, V., Lakatosova, S., Bakos, J., Vlkova, B., Babinska, K., et al.
(2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiol.
Behav. 138, 179–187. doi: 10.1016/j.physbeh.2014.10.033

Too, L. K., McGregor, I. S., Baxter, A. G., andHunt, N. H. (2016). Altered behaviour
and cognitive function following combined deletion of Toll-like receptors 2 and
4 in mice. Behav. Brain Res. 303, 1–8. doi: 10.1016/j.bbr.2016.01.024

Torrey, E. F., and Yolken, R. H. (2003). Toxoplasma gondii and schizophrenia.
Emerging Infect. Dis. 9, 1375–1380. doi: 10.3201/eid0911.030143

Trudler, D., Farfara, D., and Frenkel, D. (2010). Toll-like receptors
expression and signaling in glia cells in neuro-amyloidogenic diseases:
towards future therapeutic application. Mediators Inflamm. 2010:497987.
doi: 10.1155/2010/497987

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R.
E., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457,
480–484. doi: 10.1038/nature07540

Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V.,
et al. (2010). Chronic stress alters the density and morphology of microglia in a
subset of stress-responsive brain regions. Brain Behav. Immun. 24, 1058–1068.
doi: 10.1016/j.bbi.2010.02.001

Udina, M., Castellvi, P., Moreno-Espana, J., Navines, R., Valdes, M., Forns,
X., et al. (2012). Interferon-induced depression in chronic hepatitis C:
a systematic review and meta-analysis. J. Clin. Psychiatry 73, 1128–1138.
doi: 10.4088/JCP.12r07694

Upthegrove, R., Manzanares-Teson, N., and Barnes, N. M. (2014). Cytokine
function in medication-naive first episode psychosis: a systematic review and
meta-analysis. Schizophr. Res. 155, 101–108. doi: 10.1016/j.schres.2014.03.005

Valkanova, V., Ebmeier, K. P., and Allan, C. L. (2013). CRP, IL-6 and depression:
a systematic review and meta-analysis of longitudinal studies. J. Affect. Disord.
150, 736–744. doi: 10.1016/j.jad.2013.06.004

van Berckel, B. N., Bossong, M. G., Boellaard, R., Kloet, R., Schuitemaker, A.,
Caspers, E., et al. (2008). Microglia activation in recent-onset schizophrenia:
a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol.
Psychiatry 64, 820–822. doi: 10.1016/j.biopsych.2008.04.025

van Os, J. (2016). “Schizophrenia” does not exist. BMJ 352, i375.
doi: 10.1136/bmj.i375

van Steensel, F. J. A., Bögels, S. M., and Perrin, S. (2011). Anxiety disorders in
children and adolescents with autistic spectrum disorders: a meta-analysis.
Clin. Child Fam. Psychol. Rev. 14:302. doi: 10.1007/s10567-011-0097-0

Varese, F., Smeets, F., Drukker, M., Lieverse, R., Lataster, T., Viechtbauer, W., et al.
(2012). Childhood adversities increase the risk of psychosis: a meta-analysis
of patient-control, prospective- and cross-sectional cohort studies. Schizophr.
Bull. 38, 661–671. doi: 10.1093/schbul/sbs050

Vassos, E., Pedersen, C. B., Murray, R. M., Collier, D. A., and Lewis, C. M. (2012).
Meta-Analysis of the Association of Urbanicity With Schizophrenia. Schizophr.
Bull. 38, 1118–1123. doi: 10.1093/schbul/sbs096

Vela, G., Stark, P., Socha, M., Sauer, A. K., Hagmeyer, S., and Grabrucker, A.
M. (2015). Zinc in gut-brain interaction in autism and neurological disorders.
Neural Plast. 2015:15. doi: 10.1155/2015/972791

Frontiers in Neuroscience | www.frontiersin.org 30 September 2017 | Volume 11 | Article 490

https://doi.org/10.1001/jama.294.5.557
https://doi.org/10.1016/j.bbi.2015.04.003
https://doi.org/10.1056/NEJMoa1508749
https://doi.org/10.1007/s11065-010-9148-4
https://doi.org/10.3389/fcimb.2014.00147
https://doi.org/10.1111/gbb.12109
https://doi.org/10.1016/j.bbi.2015.07.009
https://doi.org/10.1136/bmj.299.6710.1259
https://doi.org/10.1016/j.rasd.2011.06.015
https://doi.org/10.1186/s40168-017-0242-1
https://doi.org/10.1113/jphysiol.2004.063388
https://doi.org/10.1016/j.jneuroim.2010.11.002
https://doi.org/10.3852/15-147
https://doi.org/10.1001/archpsyc.60.12.1187
https://doi.org/10.1001/archpsyc.1992.01820120071010
https://doi.org/10.1001/jamapsychiatry.2013.272
https://doi.org/10.1093/intimm/dxh186
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
https://doi.org/10.1113/JP272134
https://doi.org/10.1016/j.neuropharm.2013.04.038
https://doi.org/10.1016/j.cell.2016.11.003
https://doi.org/10.1016/j.neubiorev.2017.04.005
https://doi.org/10.1186/1742-2094-9-153
https://doi.org/10.1111/jcpp.12499
https://doi.org/10.1053/j.gastro.2013.02.043
https://doi.org/10.1016/j.physbeh.2014.10.033
https://doi.org/10.1016/j.bbr.2016.01.024
https://doi.org/10.3201/eid0911.030143
https://doi.org/10.1155/2010/497987
https://doi.org/10.1038/nature07540
https://doi.org/10.1016/j.bbi.2010.02.001
https://doi.org/10.4088/JCP.12r07694
https://doi.org/10.1016/j.schres.2014.03.005
https://doi.org/10.1016/j.jad.2013.06.004
https://doi.org/10.1016/j.biopsych.2008.04.025
https://doi.org/10.1136/bmj.i375
https://doi.org/10.1007/s10567-011-0097-0
https://doi.org/10.1093/schbul/sbs050
https://doi.org/10.1093/schbul/sbs096
https://doi.org/10.1155/2015/972791
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kelly et al. Cross Talk: The Microbiota and Neurodevelopmental Disorders

Vijay, N., and Morris, M. E. (2014). Role of monocarboxylate transporters
in drug delivery to the brain. Curr. Pharm. Des. 20, 1487–1498.
doi: 10.2174/13816128113199990462

Voreades, N., Kozil, A., and Weir, T. L. (2014). Diet and the development
of the human intestinal microbiome. Front. Microbiol. 5:494.
doi: 10.3389/fmicb.2014.00494

Vorstman, J. A. S., Parr, J. R., Moreno-De-Luca, D., Anney, R. J. L., Nurnberger, J.
I. Jr., and Hallmayer, J. F. (2017). Autism genetics: opportunities and challenges
for clinical translation. Nat. Rev. Genet. 18, 362–376. doi: 10.1038/nrg.2017.4

Vuong, H. E., and Hsiao, E. Y. (2017). Emerging roles for the gut
microbiome in autism spectrum disorder. Biol Psychiatry 81, 411–423.
doi: 10.1016/j.biopsych.2016.08.024

Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., and
Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium
Akkermansia muciniphila and Bifidobacterium spp. in feces of children with
autism. Appl. Environ. Microbiol. 77, 6718–6721. doi: 10.1128/AEM.05212-11

Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., and
Conlon, M. A. (2012). Elevated fecal short chain fatty acid and ammonia
concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 57,
2096–2102. doi: 10.1007/s10620-012-2167-7

Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T.,
and Conlon, M. A. (2013). Increased abundance of Sutterella spp. and
Ruminococcus torques in feces of children with autism spectrum disorder.Mol.

Autism. 4:42. doi: 10.1186/2040-2392-4-42
Wang, S., and Adolphs, R. (2017). Reduced specificity in emotion judgment

in people with autism spectrum disorder. Neuropsychologia 99, 286–295.
doi: 10.1016/j.neuropsychologia.2017.03.024

Wang, S. X., and Wu, W. C. (2005). Effects of psychological stress on small
intestinal motility and bacteria and mucosa in mice.World J. Gastroenterol. 11,
2016–2021. doi: 10.3748/wjg.v11.i13.2016

Whitaker-Azmitia, P. M. (2001). Serotonin and brain development:
role in human developmental diseases. Brain Res. Bull. 56, 479–485.
doi: 10.1016/S0361-9230(01)00615-3

WHO (2015). Statement on caesarean section rates. Reprod. Health Matt. 23,
149–150. doi: 10.1016/j.rhm.2015.07.007

Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C.,
et al. (2009). Metabolomics analysis reveals large effects of gut microflora on
mammalian blood metabolites. Proc. Natl. Acad. Sci. U.S.A. 106, 3698–3703.
doi: 10.1073/pnas.0812874106

Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Cho Paik, M., Wick, I., et al.
(2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis
in the intestines of children with autism and gastrointestinal disturbances. PLoS
ONE 6:e24585. doi: 10.1371/journal.pone.0024585

Williamson, L. L., McKenney, E. A., Holzknecht, Z. E., Belliveau, C., Rawls, J.
F., Poulton, S., et al. (2015). Got worms? Perinatal exposure to helminths
prevents persistent immune sensitization and cognitive dysfunction induced
by early-life infection. Brain Behav. Immun. 51, 14–28. doi: 10.1016/j.bbi.2015.
07.006

Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle,
R. A., et al. (2013). Coexpression networks implicate human midfetal deep
cortical projection neurons in the pathogenesis of autism. Cell 155, 997–1007.
doi: 10.1016/j.cell.2013.10.020

Wong, M. L., Inserra, A., Lewis, M. D., Mastronardi, C. A., Leong, L., Choo,
J., et al. (2016). Inflammasome signaling affects anxiety- and depressive-
like behavior and gut microbiome composition. Mol. Psychiatry 21, 797–805.
doi: 10.1038/mp.2016.46

Xiao, J., Li, Y., Gressitt, K. L., He, H., Kannan, G., Schultz, T. L., et al.
(2016). Cerebral complement C1q activation in chronic Toxoplasma

infection. Brain Behav. Immun. 58, 52–56. doi: 10.1016/j.bbi.2016.
04.009

Xu,M.-Q., Sun,W.-S., Liu, B.-X., Feng, G.-Y., Yu, L., Yang, L., et al. (2009). Prenatal
malnutrition and adult schizophrenia: further evidence from the 1959-1961
chinese famine. Schizophr. Bull. 35, 568–576. doi: 10.1093/schbul/sbn168

Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al.
(2015). Indigenous bacteria from the gut microbiota regulate host serotonin
biosynthesis. Cell 161, 264–276. doi: 10.1016/j.cell.2015.02.047

Yasuda, H., Yoshida, K., Yasuda, Y., and Tsutsui, T. (2011). Infantile zinc
deficiency: association with autism spectrum disorders. Sci. Rep. 1:129.
doi: 10.1038/srep00129

Yolken, R. H., Severance, E. G., Sabunciyan, S., Gressitt, K. L., Chen, O., Stallings,
C., et al. (2015). Metagenomic sequencing indicates that the oropharyngeal
phageome of individuals with schizophrenia differs from that of controls.
Schizophr. Bull. 41, 1153–1161. doi: 10.1093/schbul/sbu197

Yolken, R. H., and Torrey, E. F. (2008). Are some cases of psychosis caused
by microbial agents? A review of the evidence. Mol Psychiatry 13, 470–479.
doi: 10.1038/mp.2008.5

Yorbik, Ö., Akay, C., Sayal, A., Cansever, A., Söhmen, T., and O. Çavdar, A.
(2004). Zinc status in autistic children. J. Trace Elements Exp. Med. 17, 101–107.
doi: 10.1002/jtra.20002

Yu, M., Jia, H., Zhou, C., Yang, Y., Zhao, Y., Yang, M., et al. (2017). Variations
in gut microbiota and fecal metabolic phenotype associated with depression by
16S rRNA gene sequencing and LC/MS-basedmetabolomics. J. Pharm. Biomed.

Anal. 138, 231–239. doi: 10.1016/j.jpba.2017.02.008
Yuen, R. K. C., Merico, D., Bookman, M., Howe, J. L., Thiruvahindrapuram, B.,

Patel, R. V., et al. (2017). Whole genome sequencing resource identifies 18
new candidate genes for autism spectrum disorder. Nat. Neurosci. 20, 602–611.
doi: 10.1038/nn.4524

Zackular, J. P., Moore, J. L., Jordan, A. T., Juttukonda, L. J., Noto, M. J., Nicholson,
M. R., et al. (2016). Dietary zinc alters themicrobiota and decreases resistance to
clostridium difficile infection. Nat. Med. 22, 1330–1334. doi: 10.1038/nm.4174

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., et al. (2016).
Gut microbiome remodeling induces depressive-like behaviors through a
pathway mediated by the host’s metabolism. Mol. Psychiatry. 21, 786–796
doi: 10.1038/mp.2016.44

Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M.,
Vatanen, T., et al. (2016). Population-based metagenomics analysis reveals
markers for gut microbiome composition and diversity. Science 352, 565–569.
doi: 10.1126/science.aad3369

Zijlmans, M. A. C., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M.,
and de Weerth, C. (2015). Maternal prenatal stress is associated with
the infant intestinal microbiota. Psychoneuroendocrinology 53, 233–245.
doi: 10.1016/j.psyneuen.2015.01.006

Zilber-Rosenberg, I., and Rosenberg, E. (2008). Role of microorganisms in the
evolution of animals and plants: the hologenome theory of evolution. FEMS

Microbiol. Rev. 32, 723–735. doi: 10.1111/j.1574-6976.2008.00123.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Kelly, Minuto, Cryan, Clarke and Dinan. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 31 September 2017 | Volume 11 | Article 490

https://doi.org/10.2174/13816128113199990462
https://doi.org/10.3389/fmicb.2014.00494
https://doi.org/10.1038/nrg.2017.4
https://doi.org/10.1016/j.biopsych.2016.08.024
https://doi.org/10.1128/AEM.05212-11
https://doi.org/10.1007/s10620-012-2167-7
https://doi.org/10.1186/2040-2392-4-42
https://doi.org/10.1016/j.neuropsychologia.2017.03.024
https://doi.org/10.3748/wjg.v11.i13.2016
https://doi.org/10.1016/S0361-9230(01)00615-3
https://doi.org/10.1016/j.rhm.2015.07.007
https://doi.org/10.1073/pnas.0812874106
https://doi.org/10.1371/journal.pone.0024585
https://doi.org/10.1016/j.bbi.2015.07.006
https://doi.org/10.1016/j.cell.2013.10.020
https://doi.org/10.1038/mp.2016.46
https://doi.org/10.1016/j.bbi.2016.04.009
https://doi.org/10.1093/schbul/sbn168
https://doi.org/10.1016/j.cell.2015.02.047
https://doi.org/10.1038/srep00129
https://doi.org/10.1093/schbul/sbu197
https://doi.org/10.1038/mp.2008.5
https://doi.org/10.1002/jtra.20002
https://doi.org/10.1016/j.jpba.2017.02.008
https://doi.org/10.1038/nn.4524
https://doi.org/10.1038/nm.4174
https://doi.org/10.1038/mp.2016.44
https://doi.org/10.1126/science.aad3369
https://doi.org/10.1016/j.psyneuen.2015.01.006
https://doi.org/10.1111/j.1574-6976.2008.00123.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Cross Talk: The Microbiota and Neurodevelopmental Disorders
	Introduction
	Autism Spectrum Disorders (ASD)
	schizophrenia Spectrum Disorders (SSD)
	ASD and Microbiota
	schizophrenia Spectrum Disorder and the Microbiota
	Communication Pathways of Brain-Gut-Microbiota Axis
	Microbiota and the Immune System
	Mechanistic Influences of Microbiota on Brain Function and Development
	Toll-Like Receptors (TLRs)
	Microbiota and Microglia

	Microbiota and Neurochemistry
	Brain-Derived Neurotrophic Factor (BDNF)
	γ-Aminobutyric Acid (GABA) and Glutamate
	Serotonin
	Kynurenine
	Zinc Signaling
	Epigenetic Influences
	Microbiota and Social Behavior and Cognition
	Microbiota and Stress
	Translational Approaches
	Schizophrenia Spectrum Disorder and Stratified Psychiatry

	Conclusions and Perspectives
	Author contributions
	Acknowledgments
	References


