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Comparison of Adaptive Randomized Trial Designs for
Time-to-Event Outcomes that Expand Versus Restrict

Enrollment Criteria, to Test Non-Inferiority

Josh Betz, Jon Arni Steingrimsson, Tianchen Qian, Michael Rosenblum

September 20, 2017

1 Abstract

Adaptive enrichment designs involve preplanned rules for modifying patient enrollment cri-
teria based on data accrued in an ongoing trial. These designs may be useful when it is
suspected that a subpopulation, e.g., defined by a biomarker or risk score measured at base-
line, may benefit more from treatment than the complementary subpopulation. We compare
two types of such designs, for the case of two subpopulations that partition the overall pop-
ulation. The first type starts by enrolling the subpopulation where it is suspected the new
treatment is most likely to work, and then may expand inclusion criteria if there is early evi-
dence of a treatment benefit. The second type starts by enrolling from the overall population
and then may selectively restrict enrollment if sufficient evidence accrues that the treatment
is not benefiting a subpopulation. We construct two-stage designs of each type that guar-
antee strong control of the familywise Type I error rate, asymptotically. We then compare
performance of the designs from each type under different scenarios; the scenarios mimic key
features of a completed non-inferiority trial of HIV treatments. Performance criteria include
power, sample size, Type I error, estimator bias, and confidence inteval coverage probability.

Keywords: qualitative interaction, treatment effect heterogeneity, trial optimization

2 Introduction

Our trial design optimization problem is motivated by the Prospective Evaluation of An-
tiretrovirals in Resource Limited Settings (PEARLS) study of the AIDS Clinical Trials Group
(ACTG Trial A5175) Campbell et al. (2012). This was a randomized, non-inferiority trial
that enrolled 1,571 HIV positive participants, each randomized to one of three HIV treat-
ments: ATV+DDI+FTC, EFV+3TC-ZDV, or EFV+FTC-TDF, referred to as treatment
arms A, B, and C, respectively. The primary outcome was time to the composite endpoint
of virologic failure, HIV disease progression (AIDS), or death. The treatment in arm A had
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potential benefits over the other treatments for women, in that it did not require stopping
medication during pregnancy.

At an interim analysis, a comparison between overall event rates in arms A and B showed
evidence of inferiority of arm A, which was then stopped. However, there was evidence of a
difference in treatment effects for men and women, in the direction of arm A being worse for
men. This left open the question of whether the treatment in arm A, which as described above
has a potential advantage for women, may have been just as effective as arm B for women
only. This motivates exploring whether an adaptive enrichment design with subpopulation-
specific rules for early stopping could have better answered this question. We construct new
adaptive enrichment designs for non-inferiority trials tailored to answering this question and
evaluate these designs in simulations. Our focus is on arms A and B only.

Our approach may be relevant for problems where it is suspected that there is a qualitative
interaction; in the non-inferiority trial context, this means inferiority of treatment A versus
B for one subpopulation, but non-inferiority for the complementary subpopulation. We
assume throughout that there are two subpopulations of interest that partition the overall
population, and that these are prespecified in the study protocol.

Liu et al. (2010) present a two-stage adaptive design that enrolls one subpopulation in
the first stage; a decision is made after stage 1 to terminate the trial or to enroll both
subpopulations in stage 2. We build on this approach, where our novel contributions include
the following: optimizing such designs, comparing them to adaptive designs that start by
enrolling the combined population and that may restrict enrollment, and considering non-
inferiority trials.

Russek-Cohen and Simon (1997) consider two-stage designs for two subpopulations (men
and women). These designs start by enrolling both subpopulations in stage 1 and then may
stop the trial completely at the interim analysis or continue follow-up for both subpopulations
in stage 2. In contrast, our adaptive designs allow early stopping of accrual for the overall
population or for a single subpopulation.

Related work on optimizing adaptive enrichment designs includes, e.g., Graf et al. (2015),
Krisam and Kieser (2015), Götte et al. (2015), Rosenblum et al. (2016). These involved
optimizing over 2 or 3 design parameters; in contrast, we optimize over many more design
parameters. Our approach to handle this challenge is to optimize using simulated annealing.
Related work using simulated annealing for trial design optimization in different contexts
include Wason and Jaki (2012) and Fisher and Rosenblum (2016). The former consider multi-
arm trials involving a single population; the latter consider adaptive enrichment designs
for continuous or binary treatments in the context of superiority trials. In contrast, we
consider time-to-event outcomes and non-inferiority trials. We also compare designs that
start enrolling both subpopulations and potentially restrict enrollment versus designs that
start enrolling the favored subpopulation and potentially expand enrollment. Rosenblum
et al. (2017) optimize over two stage adaptive enrichment designs that do not have the
features in the previous two sentences.

We next discuss limitations of our approach. Duration may be long, especially if hazard
rates are low relative to enrollment rates, since then there is a substantial delay between
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enrollment and information accrual. The same problem would occur if either subpopulation
is a relatively small proportion of the overall population. These problems would affect
almost any design that has a power requirement for such a subpopulation, since it would
take substantial time for sufficient information to accrue for that subpopulation. Another
limitation is that our trial design optimization problem is high dimensional (i.e., the number
of design parameters to be optimized is relatively large), and there does not yet exist a
computationally feasible algorithm for computing the global optimum design. Instead, we
apply the general purpose optimization method of simulated annealing to search over design
classes, with the goal of improving performance compared to standard designs.

3 Prospective Evaluation of Antiretrovirals in Resource

Limited Settings (PEARLS) Trial

The primary outcome, called the failure time, was time to the first of virologic failure,
HIV disease progression (AIDS), or death. The main efficacy result from Campbell et al.
(2012) regarding treatments A and B is the following: “Comparing ATV+DDI+FTC to
EFV+3TC+ZDV, during a median follow-up of 81 wk there were 108 failures (21%) among
526 participants assigned to ATV+DDI+FTC and 76 (15%) among 519 participants assigned
to EFV+3TC-ZDV (HR 1.51, CI 1.122.04; p=0.007).” However, when the same comparison
of treatments A and B was stratified by sex, according to Campbell et al. (2012), “Men
randomized to ATV+DDI+FTC had higher risk of treatment failure compared to men ran-
domized to EFV+3TC-ZDV (HR 2.14, CI 1.423.42) but a difference in regimen efficacy was
not detected in women.”

In addition to the above efficacy results, treatment A had a lower risk of the safety end-
point compared to treatment B. According to Campbell et al. (2012), “Women randomized
to ATV+DDI+FTC had lower risk of a safety endpoint compared to women randomized
to EFV+3TC-ZDV (HR 0.56, CI 0.42–0.74).” This supports the conjecture that treatment
A, if it is non-inferior to treatment B for women for the primary efficacy outcome, could
be preferable due to its better safety profile for women. This motivated our comparison of
different trial designs to learn about treatment effects in subpopulations, in the context of
non-inferiority trials.

4 Trial Design Optimization Problem

4.1 Assumptions

We let subpopulation 1 denote women and subpopulation 2 denote men. The trial is assumed
to be group sequential, that is, with predetermined interim analysis times. If the trial is not
stopped early, the study enrolls participants until a prespecified time c. Each participant
is followed until the first of the following occurs: failure or the end of study. We assume
that enrollment is uniform until it is stopped. We assume that the only form of censoring is
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administrative censoring, i.e., due to reaching the end of the study. For each subpopulation
s ∈ {1, 2} by treatment a ∈ {A,B} pair, we assume a constant hazard rate λsa over time.
The asymptotic, joint distribution of the statistics used by our designs (based on a propor-
tional hazards model defined in Section 5.2) is multivariate normal with the canonical mean
and covariance structure from Jennison and Turnbull (1999, Chapter 3.1); throughout, we
approximate the joint distribution of statistics using this limit distribution.

In our data generating distributions, we mimic key features from the PEARLS trial. We
use the observed proportions p1 = 0.47, p2 = 0.53 of the subpopulations of women and men,
respectively. To mimic the hazard rate under treatment B observed in the PEARLS trial, we
set λsB = 0.08 for each s ∈ {1, 2}. To mimic the observed enrollment rate for the combined
population (1571 participants over 2.17 years), we set the combined population enrollment
rate per year to be 1571/2.17 ≈ 724; we also consider the case where the enrollment rate
is half that from the PEARLS trial, i.e., 362 participants per year. We assume enrollment
in each subpopulation is proportional to the subpopulation size, i.e., enrollment for s = 1 is
0.47 ∗ 724 per year and for s = 2 is 0.53 ∗ 724 per year.

4.2 Null Hypotheses Tested

We test for non-inferiority of a single treatment (arm A) versus control (arm B) in each of
two disjoint subpopulations. The outcome of interest is time-to-event. The event of interest
is a failure time, and so lower event rates are desirable.

We define the two subpopulations to be women and men, denoted by s = 1, 2, respec-
tively. The non-inferiority margin is defined, as in the PEARLS trial, as a hazard ratio HR
(treatment A hazard rate divided by treatment B hazard rate) at most 1.35. Define the null
hypothesis of inferiority of treatment A to treatment B for each subpopulation as:

• H01: hazard ratio for subpopulation 1 (women) at least the non-inferiority margin 1.35.

• H02: hazard ratio for subpopulation 2 (men) at least the non-inferiority margin 1.35.

The alternative hypothesis for each subpopulation is non-inferiority at margin 1.35, i.e.,
hazard ratio < 1.35. Our goal is to construct a trial design, consisting of an accrual modi-
fication rule and multiple testing procedure for {H01, H02}, that minimizes expected sample
size under power and Type I error constraints.

4.3 Scenarios

The performance criterion (minimizing expected sample size) and power constraints are with
respect to the four scenarios defined as follows:

1. Treatment A is equivalent to treatment B (hazard ratio 1) for each subpopulation
(women and men).

2. Treatment A is equivalent to treatment B (hazard ratio 1) for subpopulation 1 (women),
but A is inferior to B (hazard ratio 1.35) for subpopulation 2 (men).
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3. Treatment A is equivalent to treatment B (hazard ratio 1) for subpopulation 1 (women),
but A is highly inferior to B (hazard ratio 2.14) for subpopulation 2 (men).

4. Treatment A is inferior to treatment B (hazard ratio 1.35) for each subpopulation
(women and men).

We chose the hazard ratio 1.35 since this is the preplanned, non-inferiority margin in the
PEARLS trial. The hazard ratio 2.14 is the estimated hazard ratio comparing treatments A
to B in men, from the PEARLS trial. We think both are relevant to consider.

4.4 Type I Error and Power Constraints

Familywise Type I error constraints: We require strong control of the familywise Type
I error rate, that is, the probability of rejecting one or more true null hypotheses must be at
most α = 0.05, asymptotically. This must hold regardless of the hazard rates in each arm
for each subpopulation. In scenario 1, both null hypotheses are false, so it is not possible to
make a Type I error; in scenarios 2 and 3 only H02 is true, so the Type I error constraint
is that the probability of rejecting H02 is at most 0.05; in scenario 4, both null hypotheses
are true, so the Type I error constraint is that the probability of rejecting one or more null
hypotheses is at most 0.05. Strong control of the familywise Type I error rate means that
not only should the familywise Type I error be at most 0.05 in the above 4 scenarios, but
also that this must hold for any possible values of the hazard rates.

Power Constraints: The following are the power constraints required of each design:

1. In scenario 1, power at least 0.8 to reject H01 and power at least 0.8 to reject H02.

2. In scenarios 2 and 3, power at least 0.8 to reject H01.

3. Scenario 4: no constraints (since both null hypotheses are true).

4.5 Objective Function

Our performance goal is represented by an objective function, which is the expected sample
size. Expectation is defined with respect to the distribution that assigns equal weight to each
scenario 1-4. This distribution can be informally thought of as a prior. However, it is only
used in defining the objective functions below, and is not used otherwise; in particular, the
familywise Type I error constraints are not with respect to this distribution, since they are
required to hold regardless of the hazard rates for each subpopulation by arm combination.

Expectation is over two sources of randomness: the scenario and the statistics conditioned
on the scenario. The former is drawn from the equal weight distribution on scenarios 1-4; the
latter, asymptotically, has multivariate normal distribution with mean vector and covariance
matrix depending on the scenario and the information accrued at each analysis.
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4.6 Statement of Trial Design Optimization Problem

For a given class of trial designs (defined in the next section), the trial design optimization
problem is to minimize expected sample size under the familywise Type I error and power
constraints from Section 4.4. Three classes of designs are defined below; we optimize over
each class of designs and then compare the optimal design from each class.

5 Classes of Trial Designs Optimized Over

5.1 Overview

We consider the following three classes of designs:

1. DONE−STAGE: Standard (non-adaptive) designs consisting of a single stage

2. DADAPTIV E,START−BOTH : Adaptive enrichment design that starts enrolling both sub-
populations

3. DADAPTIV E,START−SUBPOP.1: Adaptive enrichment design that starts enrolling only
subpopulation 1 (women); enrollment of the complementary subpopulation (men)
starts (if it gets started at all) immediately after the first interim analysis.

Each enrolled participant is randomized to treatment A or B with probability 1/2. Each
participant is followed until they experience an event or until information accrual is stopped
for their subpopulation. Stopping enrollment and stopping information accrual are different;
the former means that no new participants (from a given subpopulation) are enrolled in the
trial, while the latter means enrollment is stopped (if not stopped previously) and follow-up
is stopped.

The primary reason for stopping information accrual of a subpopulation before the trial is
completed is ethical: if treatment A is demonstrated to be inferior to arm B in subpopulation
2, then the treatment should be switched to arm B for all subpopulation 2 participants in the
inferior arm. In the PEARLS trial (which did not have rules for stopping subpopulations),
the entire arm A was stopped early for inferiority and the participants in that arm were
switched to treatment B. We use simulations that mimic features of the PEARLS trial to
explore the tradeoffs involved in using adaptive versus standard designs to achieve the goals
in Section 4.

Each design is defined by the following parameters, each of which must be preplanned in
the study protocol:

1. Number of stages K. We set K = 2 throughout.

2. Analysis times t1 < · · · < tK .

3. Maximum number Ns to enroll from each subpopulation s ∈ {1, 2}.
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4. Rule for terminating each subpopulation’s accrual (which can only occur at the pre-
planned interim analyses).

5. For the class of designs that starts by enrolling only subpopulation 1, the rule that de-
termines if subpopulation two enrollment will start just after the first interim analysis.

6. Multiple testing procedure for the null hypotheses {H01, H02}.

5.2 Common Features of the Three Design Classes

The decision rules we consider can make the following modification at any interim analysis:
for each subpopulation s ∈ {1, 2} whose accrual has continued until the current analysis
time, accrual can be allowed to continue into the next stage or can be stopped. We do not
allow restarting enrollment or accrual for a subpopulation once it has already been stopped.
For the design that delays the start of subpopulation s = 2 enrollment until stage 2, this is
the only opportunity to start this subpopulation’s enrollment; the decision rule can decide
at the first interim analysis to never start this subpopulation’s enrollment.

For each subpopulation s ∈ {1, 2}, each design prespecifies the maximum number Ns

that can be enrolled. If subpopulation s enrollment is stopped before Ns have enrolled, then
all accrual (follow-up) is stopped for subpopulation s as well.

The decision rule for modifying accrual and the multiple testing procedure use a Wald
test statistic from a proportional hazards model computed separately for each subpopulation
based on cumulative data available at a given analysis. Let Zs,k denote the Wald statistic
corresponding to subpopulation s ∈ {1, 2} based on all of that subpopulation’s data accrued
up through the end of stage k. This Wald statistic, on the z-score scale, is defined as the
standardized difference between the natural log of the non-inferiority margin 1.35 and the
estimated coefficient on the indicator of assignment to arm A in a Cox proportional hazards
model with intercept and a main term for this indicator. Ceteris paribus, large, positive
values of the Wald statistic are more likely for smaller hazard ratios (the hazard rate for
treatment A divided by that for treatment B), which favor the alternative hypothesis (of non-
inferiority) compared to the null hypothesis (of inferiority). The reason for this choice (which
has positive and negative reversed compared to typical usage for non-inferiority designs) is so
that efficacy and futility boundaries on the z-scale can be more easily interpreted (analogous
to the case of continuous or binary outcomes). Formal definitions of the statistics Zs,k are
given in Section B of the Appendix.

Each decision rule for modifying accrual at interim analysis k has the following form: if
the cumulative statistic Zs,k for subpopulation s is above an efficacy boundary es,k (in which
case H0s is rejected) or below a futility boundary fs,k (in which case we fail to reject H0s),
accrual for that subpopulation is stopped; otherwise, accrual continues. The main challenge
is to determine the interim analysis times and efficacy/futility boundaries {es,k, fs,k} for
which the corresponding design satisfies the requirements on power and Type I error at the
minimum cost in terms of expected sample size.
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All of our designs use error-spending functions (G. Lan and DeMets, 1983) to determine
the efficacy boundaries at each stage. These error-spending functions are allowed to be quite
general; they are not restricted to standard families of error spending functions such as the
power family described by Jennison and Turnbull (1999).

All futility boundaries are non-binding. That is, even if these boundaries are not adhered
to, the familywise Type I error rate is controlled (in the strong sense) at level 0.05. Non-
binding futility boundaries have the advantage of often being preferred by regulators (Liu
and Anderson, 2008); a disadvantage is that power may be increased by instead using binding
futility boundaries.

We restrict the duration of all of our trial designs to be at most 8 years. The reason for
imposing this restriction is that once enrollment has been completed, a longer trial duration
will only lead to more information accrual (i.e., more events occurring) with no cost in terms
of added sample size; therefore, if duration were not restricted, the optimal design (in terms
of expected sample size) in any of our classes would set duration equal to infinity. We set
the maximum duration to be 8 years since that is sufficient for each class of designs to meet
all of the power and Type I error constraints. It is an area for future research to solve
our optimization problem at different values of maximum duration, to determine tradeoffs
between expected sample size and duration within each design class.

Let the design parameter tMAX−ENROLL denote the maximum time at which enrollment is
allowed to proceed for each subpopulation. We optimize over this parameter (as well as other
parameters) within each of the three design classes. In each of the first two design classes,
we set the subpopulation s maximum sample size Ns equal to the product of tMAX−ENROLL,
the subpopulation proportion ps, and the combined population enrollment rate (defined in
Section 4.1). The definition is similar for the third design class, except that for N2 we
replace tMAX−ENROLL in the previous sentence by tMAX−ENROLL minus the time t1 of the
first interim analysis (which is the time when subpopulation 2 enrollment can be started).

5.3 Class of Standard (Non-Adaptive) Designs DONE−STAGE

This class of designs consists of a single stage. The multiple testing procedure is based on the
Bonferroni multiplicity correction with α partitioned between the two null hypotheses. We
allow α to be split unequally between the two null hypotheses, which may be useful due to
the asymmetry of the problem (e.g., in subpopulation proportions). The design parameters
to be optimized are tMAX−ENROLL (which determines the sample size in each subpopulation)
and the partitioning of α between the two null hypotheses.

5.4 Adaptive Enrichment Designs Enrolling Both Subpopulations
in Stage 1: DADAPTIV E,START−BOTH

This class of designs is defined by the following actions. At the start of the trial, enroll
participants from both subpopulations. At the analysis after each stage k, for each subpopu-
lation s the statistic Zs,k is used to test for efficacy and futility. If Zs,k > es,k for the efficacy
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boundary es,k, then the null hypothesis H0s is rejected and accrual from subpopulation s is
stopped. If Zs,k < fs,k for the futility boundary fs,k, then accrual from subpopulation s is
stopped and the procedure fails to reject H0s. If a null hypothesis is rejected at an interim
analysis, it stays rejected throughout the trial.

The efficacy boundaries are calculated using an error spending approach. Define the
alpha allocation across subpopulations and stages as {αs,k ≥ 0 : s = 1, 2; k = 1, . . . , K}
satisfying

∑2
s=1

∑K
k=1 αs,k = α, where α = 0.05 is the familywise Type I error rate. The

alpha allocation will be optimized (along with other design parameters described below).
Let H0 denote the global null hypothesis that the hazard ratio for subpopulation s equals

the non-inferiority margin 1.35, for each s ∈ {1, 2}. Under H0, the statistics {Zs,k : s =
1, 2; k = 1, . . . , K} are asymptotically, multivariate normal with mean 0 and covariance
matrix derived in the Appendix. We are not interested in testing H0; the only reason for
defining it is for use below in computing the efficacy boundaries es,k.

For each subpopulation s ∈ {1, 2}, the efficacy boundaries {es,k : k = 1, . . . , K} are
calculated sequentially. First es,1 is calculated by finding the smallest es,1 satisfying

PH0(Zs,1 > es,1) ≤ αs,1.

The efficacy boundaries {es,k : 1 < k ≤ K} are then calculated sequentially. The efficacy
boundary es,k is defined as the smallest es,k satisfying

PH0(Zs,k > es,k and for all k′ < k,Zs,k′ ≤ es,k′) = αs,k. (1)

We use the convention that es,k =∞ if αs,k = 0.
To improve power, we use alpha reallocation to lower the efficacy boundaries for one

subpopulation if the null hypothesis for the other subpopulation gets rejected, using ideas
similar to those in Liu and Anderson (2008); Maurer and Bretz (2013). Specifically, if the
null hypothesis H0s is rejected at any stage k ≤ K, then to calculate the stage K efficacy
boundary es′,K for the other subpopulation s′ 6= s, replace the final stage value αs′,K on

the right side of (1) by α̃s′,k = αs′,K +
∑K

k′=1 αs,k′ . Reallocation of alpha from one null
hypothesis to the other is only done after rejection of the former; no reallocation occurs
when a subpopulation is stopped for futility. The above multiple testing procedure strongly
controls the familywise Type I error rate asymptotically; this follows since the statistics
{Zs,k : s = 1, 2; k = 1, . . . , K} have asymptotic joint distribution equal to the canonical joint
distribution (Jennison and Turnbull, 1999, p.49).

The set of design parameters for the class DADAPTIV E,START−BOTH that are optimized
include the following for K = 2:

1. the analysis times t1 < · · · < tK ;

2. the maximum enrollment time tMAX−ENROLL;

3. the alpha allocation {αs,k ≥ 0 : s = 1, 2; k = 1, . . . , K} that sums to α = 0.05;

4. the futility boundaries {fs,k ∈ R : s = 1, 2; k = 1, . . . , K − 1}.
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We restrict the search space by requiring t1 ≥ 0.5 and t2 = 8. The reason was that
we wanted to avoid a decision with too little information accrued, and also there is no loss
(in terms of the objective function of expected sample size) to continuing follow-up of all
enrolled participants to the maximum allowed duration of 8 years.

5.5 Adaptive Enrichment Designs Enrolling Only Subpopulation
1 in Stage 1: DADAPTIV E,START−SUBPOP.1

The decision rule for accrual modification and multiple testing procedure are similar in
structure to those in Section 5.4, except that only subpopulation 1 is enrolled in stage
1; enrollment for subpopulation 2 can only be started at interim analysis 1. The alpha
allocation, efficacy boundary construction, and rule for alpha reallocation are defined exactly
as in Section 5.4 except that we require α2,1 = 0 since there is not yet any data from
subpopulation 2 at analysis 1; the impact is that e2,1 = ∞, i.e., there is no early stopping
of subpopulation 2 for efficacy at the first interim analysis. For the same reason, we set the
futility boundary f2,1 = −∞.

At the analysis after each stage k = 1, . . . , K in which subpopulation 1 accrual has
continued, the statistic Z1,k is used to test for efficacy and futility exactly as described above
for DADAPTIV E,START−BOTH . Specifically, if Z1,k > e1,k then the null hypothesis H01 is
rejected and accrual from subpopulation 1 is stopped, while if Z1,k < f1,k then accrual from
subpopulation 1 is stopped and the procedure fails to reject H01; otherwise accrual continues.

At the first interim analysis, enrollment of subpopulation 2 is started if Z1,1 > θ, where
θ is a predefined threshold; otherwise, if Z1,1 ≤ θ then subpopulation 2 enrollment is never
started. If subpopulation 2 enrollment is started at analysis 1, then at each analysis k > 1
where subpopulation 2 accrual has continued, the statistic Z2,k is used to test for efficacy and
futility. The null hypothesis H02 is rejected if Z2,k > e2,k, while if Z2,k < f2,k then accrual
for subpopulation 2 is stopped for futility; otherwise accrual continues.

The design parameters for the class DADAPTIV E,START−SUBPOP.1 to be optimized are the
same as for DADAPTIV E,START−BOTH except that we have the additional parameter θ ∈ R
and we set α2,1 = 0 and f2,1 = −∞.

6 Results

6.1 Description of Optimal Designs from Each Class and Their
Performance: Enrollment Rate 724 Per Year

For each class of adaptive enrichment designs, we solved the optimization problem from
Section 4.6 using enrollment rate 724 participants per year. We consider the case of 362
participants per year in the next subsection. The optimization algorithms we used, including
simulated annealing, are described in Section A of the Appendix. We present the results of
these optimizations below. We refer to the design returned by the optimization algorithm
that has the smallest expected sample size among those that satisfy the power and Type I
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error constraints as the optimal design in a given class. These may be local optima rather
than the global optimum solution; finding the global optimum is an open problem in our
context, due to the objective function and constraints being nonconvex functions of the
design parameters.

For the classDONE−STAGE, the optimal design set tMAX−ENROLL = 1.97, α1,1 = 0.88, α2,1 =
0.12. The expected sample size is 1426. The optimal design from each of the classes
DADAPTIV E,START−BOTH and DADAPTIV E,START−SUBPOP.1 had expected sample size no lower
than 1426. We were not able to detect any value added from our adaptive designs for this
problem.

6.2 Description of Optimal Designs from Each Class and Their
Performance: Enrollment Rate 362 Per Year

We also solved the above optimization problem where we set the enrollment rate to be
724/2=362 participants per year. The reason was to show the impact of a slower enrollment
rate, which gives more opportunity for adaptation later in the trial to impact the expected
sample size. The results are given below.

For the classDONE−STAGE, the optimal design set tMAX−ENROLL = 4.70, α1,1 = 0.88, α2,1 =
0.12. The familywise type I error under each scenario 2, 3, 4 is 0.041, 0.000, 0.050, respec-
tively. The power to reject H01 under each scenario 1, 2, 3 is 0.81, 0.80, 0.80, respectively.
The power to reject H02 under scenario 1 is 0.80. The sample size is 1702.

For the class DADAPTIV E,START−BOTH , the optimal design at K = 2 had the following
design parameters:

1. the analysis times (t1, t2) = (3.4, 8).

2. the maximum enrollment time tMAX−ENROLL = 4.97;

3. the alpha allocation α1,1 = 0.15, α2,1 = 0.01,α1,2 = 0.74, α2,2 = 0.10.

4. the futility boundaries f1,1 = −2.1,f2,1 = −0.74.

The expected sample size is 1660 and the maximum sample size is 1799. The familywise type
I error under each scenario 2, 3, 4 is 0.041, 0.000, 0.051, respectively. The power to reject
H01 under each scenario 1, 2, 3 is 0.81, 0.80, 0.80, respectively. The power to reject H02

under scenario 1 is 0.80. For estimation of the subpopulation 1 hazard ratio, the bias was at
most 0.02 and the coverage probability of each nominal 95% confidence interval (constructed
ignoring the adaptive nature of the trial design and using all data available at the end of the
trial) was at least 0.93, for each scenario. The analogous quantities for subpopulation 2 are
0.08 for bias and 92% for confidence interval coverage. We conjecture that the performance
degradation for subpopulation 2 is due to the corresponding futility boundary being closer to
0, which results in early stopping of this subpopulation with probability approximately 4%,
23%, 96%, 23% in scenarios 1, 2, 3, 4, respectively. This leads to the reduction in expected
sample size compared to the single stage design described above, but also induces bias.
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For the class DADAPTIV E,START−SUBPOP.1, the optimal design at K = 2 had the following
design parameters:

1. the analysis times (t1, t2) = (0.5, 8).

2. the maximum enrollment time tMAX−ENROLL = 5.39;

3. the alpha allocation α1,1 = 0.02, α1,2 = 0.75, α2,2 = 0.23.

4. the futility boundary f1,1 = −2.8

5. The threshold θ = −2.8 to start enrollment of subpopulation 2 just after interim
analysis 1.

The expected sample size is 1850 and the maximum sample size is 1951. The familywise
type I error under each scenario 2, 3, 4 is 0.042, 0.000, 0.049, respectively. The power to
reject H01 under scenarios 1, 2, 3 is 0.83, 0.81, 0.81, respectively. The power to reject H02

under scenario 1 is 0.80.
In summary, for the enrollment rate 362 per year, the optimal design fromDADAPTIV E,START−BOTH

has 42 fewer expected participants compared to the optimal 1-stage design, but at the cost
of having 97 more participants in the worst-case (maximum sample size). There was no
advantage provided by the class DADAPTIV E,START−SUBPOP.1.

7 Discussion

The added value, if any, from our adaptive designs can be highly dependent on the enrollment
rate versus the event rate. In general, we expect that slower enrollment rates and higher
event rates will lead to more value added from the adaptive designs compared to single stage
(non-adaptive) designs. This is because the adaptive designs require sufficient information
(which is roughly proportional to the total number of events pooling both arms) to have
accrued in order to make an informed decision about modifying enrollment criteria before
enrollment ends.

There was no benefit to the adaptive designs in terms of expected sample size for the
original optimization problem, i.e., the problem where the enrollment rate was 724 par-
ticipants per year. However, for the problem with half that enrollment rate, there was a
benefit to adaptation in terms of reduced expected sample size; the cost is an increase in
the maximum sample size. Such a tradeoff between expected sample size and maximum
sample size also occurs when comparing group sequential designs (for a single population) to
single stage designs. There is also a tradeoff in that adaptation leads to increased bias and
a reduction in confidence interval coverage compared to the standard design, for one of the
subpopulations. It may be possible to reduce bias and increase confidence interval coverage
by adapting methods from, e.g., Posch et al. (2005); Rosenblum (2013); Kunzmann et al.
(2017).
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For both optimization problems, the class of adaptive designsDADAPTIV E,START−SUBPOP.1
provided no added value. We conjecture that if other optimization criteria are considered,
such as the total participant-time, then this class may provide advantages. This is an open
area for future research.

Limitations of our adaptive enrichment designs include that they only allow enrichment
to a single subpopulation and they do not incorporate adaptations such as sample size re-
assessment for a given stage or adaptation of randomization probabilities. We assumed that
the subpopulation definitions were determined before the trial started; this requires both
prior data and domain-specific knowledge as to who is more likely to benefit from treatment.
In cases where these are not available, the proposed adaptive enrichment designs would not
be appropriate.

We assumed proportional hazards and that the hazard rate for each subpopulation by
arm combination does not change over time. An area of future research is to examine the
robustness of our results to deviations from these assumptions. Similarly, we only considered
administrative censoring; an area for future research is to consider different censoring dis-
tributions, e.g., differential censoring by study arm and subpopulation, and censoring that
changes over time. Another area for future research is to consider estimators that leverage
information in prognostic baseline variables to improve precision, e.g., Lu and Tsiatis (2011).
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A Optimization Method

We describe the algorithm used for optimizing each design class. For each of the classes
DADAPTIV E,START−BOTH and DADAPTIV E,START−SUBPOP.1, there are multiple parameters to
optimize over. We used the generic optimization algorithm of simulated annealing imple-
mented in the R package optim. This is not guaranteed to find the global optimum solution;
computing the global optimum for our problems is currently an open problem.

For a given value of K, the initial values of the design parameters (used to start the
search conducted by simulated annealing) were set as follows:

1. the analysis time tk = 8k/K for each k ≤ K.

2. the maximum enrollment time tMAX−ENROLL = 8.

3. the alpha allocation {αs,k ≥ 0 : s = 1, 2; k = 1, . . . , K} set all αs,k to a common value
such that they sum to 0.05 forDADAPTIV E,START−BOTH . ForDADAPTIV E,START−SUBPOP.1,
where we set α2,1 = 0, all other αs,k are set to a common value such that they sum to
0.05.

4. the futility boundaries {fs,k ∈ R : s = 1, 2; k = 1, . . . , K − 1} are set to −3, except
that for DADAPTIV E,START−SUBPOP.1 we set f2,1 = −∞.

5. for DADAPTIV E,START−SUBPOP.1, we set θ = −3.

For the class of standard (non-adaptive) designs DONE−STAGE from Section 5.3, there
are only 2 parameters to optimize over: tMAX−ENROLL and the partition of α between the
two null hypotheses. We applied simulated annealing to optimize over these 2 parameters.
Another approach for these simple designs would be to use a binary search.

B Definitions of null hypotheses and statistics

For each subpopulation s = 1, 2 and treatment arm a = A,B, the corresponding hazard
rate is denoted λsa. The inferiorty null hypothesis H0s : λsA/λsB ≥ NI where NI denotes
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the non-inferiority margin. This null hypothesis can equivalently be written as log(NI) −
log(λsA/λsB) ≤ 0.

Let β̂s,k denote the estimated coefficient on the indicator of assignment to arm A in a
proportional hazards model with intercept and a main term for this indicator, based on all
data at analysis k for subpopulation s. Under the proportional hazards assumption and
appropriate regularity conditions, β̂s,k is a consistent, asymptotically normal estimator for
log(λsA/λsB). The Wald statistic for subpopulation s at interim analysis k is defined as

Zs,k =
log(NI)− β̂s,k√

V ar(β̂s,k)
. (2)

For each subpopulation s, the vector of statistics Zs,k has, asymptotically, the canonical
joint distribution described in (Jennison and Turnbull, 1999, Ch. 3.1). That is, asymptoti-
cally, the vector (Zs,1, . . . , Zs,k) converges in distribution to a multivariate normal with mean

(log(NI) − log(λsA/λsB))
√
Is,k and covariance Cov(Zs,k, Zs,k′) =

√
Is,kI−1s,k′ with k ≤ k′,

where Is,k is the information for subpopulation s at analysis k. As the two subpopulations
are disjoint, we have Cov(Z1,k, Z2,k′) = 0 for all k, k′. This fully specifies the asymptotic
distribution of the test statistics. When the number of participants at risk is approximately
equal in each treatment arm at each time, the information Is,k can be approximated by 1/4
the number of events in subpopulation s at analysis k; we use this approximation throughout.
Below, we give formulas calculating the expected number of events.

C Calculating the Expected Number of Events

As stated in Section 4.1, we assume that the failure time distribution in each subpopulation
s = 1, 2 and treatment arm a = A,B is exponential with mean λ−1sa > 0. The corresponding
hazard rate is given by λsa. Hence, the log hazard ratio for subpopulation s is HRs =
log(λsA/λsB) for each s ∈ {1, 2}.

For simplicity of presentation, we consider one subpopulation at a time and suppress the
subpopulation indicator. Let τ denote the maximum follow-up time for a participant; in the
main paper we assumed that τ equals the study duration (so that each enrolled participant
who does not experience the failure event is followed until the end of the study); however, we
present our results in greater generality below where it is possible to set τ less than the study
duration, e.g., each participant is followed for 1 year after her/his enrollment. The expected
number of events is the expected number of participants enrolled before time t multiplied by
the probability of experiencing an event before time t. The expected number of participants
enrolled before time t is calculated as the accrual rate multiplied by min(t, c).

We next derive formulas for the probability of an event occurring before time t for a
randomly selected participant who is enrolled before time t, drawn from a hypothetical
population with constant hazard rate λ > 0. These formulas can then be used to determine
the expected number of events for each arm by subpopulation combination at each analysis
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time tk, which determines the corresponding information Is,k used in the previous section
(for computing the asymptotic means and covariances of the statistics Zs,k).

We consider six different cases.

• Assume that c > t > τ . Let R denote the enrollment time, then by the uniform
enrollment assumption R ∼ unif[0, t]. As each individual is followed for a maximum of
τ time units the follow-up time for the individual at time t is given by min(τ, t − R).
For a participant that has been followed up for τ time units at time t the probability of
experiencing an event is 1−e−λτ . For a participant that has been in the study less than
τ time-units the length in the study, denoted by K, follows an uniform distribution on
[0, τ ]. We have that

P (T < K) =

∫ τ

0

1

τ
(1− e−λx)dx

= 1− (1− e−λτ )
λτ

Therefore we have for an interim analysis at time t that the probability of an event is
given by

P (event) = P (t−R > τ)(1− e−λτ ) + P (t−R ≤ τ)

(
1− (1− e−λτ )

λτ

)
=
t− τ
t

(1− e−λτ ) +
τ

t

(
1− (1− e−λτ )

λτ

)
• Assume that c > τ > t. Here the analysis is performed before the maximum follow-

up. Hence by previous calculations,

P (event) = 1− (1− e−λt)
λt

.

• Assume that t ≥ c > τ . Define k as the number of time-units after end of enrollment
that the analysis takes place, that is, k = t− c. By the assumptions made 0 < k ≤ τ .
For participants enrolled in the interval [0, c+k− τ ] the follow up time is τ time-units.
The probability of being followed up for τ time-units is by the uniform enrollment
assumption c+k−τ

c
. For participants enrolled for τ time-units P (event) = 1− e−λτ .

For participants enrolled in the time-interval [c + k − τ, c] the follow-up time follows
an uniform distribution on [k, τ ]. Therefore for participants in that group

P (event) = 1− e−λk − e−λτ

(τ − k)λ
.

Combining the above gives

P (event) =
c+ k − τ

c
(1− e−λτ ) +

τ − k
c

(
1− e−λk − e−λτ

(τ − k)λ

)
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• Assume that τ ≥ c > t. All participants have been in the study for less than τ units.
Hence, as before we have

P (event) = 1− (1− e−λt)
λt

.

• Assume that τ > t ≥ c. Follow up time is uniform on [t− c, t]. Similar calculations
to before give that

P (event) = 1− e−λ(t−c) − e−λt

cλ
.

• Assume that τ + c ≥ t ≥ τ > c. For participants enrolled in [0, t − τ ] the time in
study is τ time-units so P (event) = 1− e−λτ . The probability of having follow-up time
of τ years is (t − τ)/c. For other participants the follow-up time is uniform on the
interval [t− c, τ ], and the probability of having follow-up time in that time-interval is
(c − t + τ)/c. Similar calculations to before give that for participants enrolled in the
interval ]t− τ, c] we have

P (event) = 1− e−λ(t−c) − e−λτ

(τ − t+ c)λ
.

Combining this gives

P (event) =
t− τ
c

(1− e−λτ ) +
c− t+ τ

c

(
1− e−λ(t−c) − e−λτ

(τ − t+ c)λ

)
.
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