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Optimized Adaptive Enrichment Designs for Multi-Arm

Trials: Learning which Subpopulations Benefit from

Different Treatments

Jon Arni Steingrimsson, Joshua Betz, Tianchen Qian, and Michael Rosenblum

January 27, 2018

1 Abstract

We consider the problem of designing a randomized trial for comparing two treatments ver-

sus a common control in two disjoint subpopulations. The subpopulations could be defined

in terms of a biomarker or disease severity measured at baseline. The goal is to determine

which treatments benefit which subpopulations. We develop a new class of adaptive en-

richment designs tailored to solving this problem. Adaptive enrichment designs involve a

preplanned rule for modifying enrollment based on accruing data in an ongoing trial. The

proposed designs have preplanned rules for stopping accrual of treatment by subpopulation

combinations, either for efficacy or futility. The motivation for this adaptive feature is that

interim data may indicate that a subpopulation, such as those with lower disease severity

at baseline, is unlikely to benefit from a particular treatment while uncertainty remains for

the other treatment and/or subpopulation. We optimize these adaptive designs to have the

minimum expected sample size under power and Type I error constraints. We compare
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the performance of the optimized adaptive design versus an optimized non-adaptive (single

stage) design. Our approach is demonstrated in simulation studies that mimic features of a

completed trial of a medical device for treating heart failure. The optimized adaptive design

has 25% smaller expected sample size compared to the optimized non-adaptive design; how-

ever, the cost is that the optimized adaptive design has 8% greater maximum sample size.

Open-source software that implements the trial design optimization is provided, allowing

users to investigate the tradeoffs in using the proposed adaptive versus standard designs.

Keywords: Randomized Clinical Trial, Treatment Effect Heterogeneity

2 Introduction

Our trial design problem is motivated by the SMART-AV trial (Ellenbogen et al., 2010),

a phase 4 randomized trial of patients with medically-refractive heart failure with severe

left ventricular systolic dysfunction. All the participants had an implanted cardiac resyn-

chronization therapy defibrillator. The trial aimed to investigate the effect of optimizing

the atrioventricular (AV) delay in this medical device. Two methods of optimizing the atri-

oventricular delay (called treatments) were compared to a fixed delay of 120 milliseconds

(called control). No statistically significant differences were found between the treatments

and control, for the primary outcome of left ventricular end-systolic volume.

Previous scientific knowledge had indicated that participants with short QRS duration,

defined as QRS ≤ 150 milliseconds, may be more likely to benefit from the treatments (Stein

et al., 2010). This raises the question of whether a design targeted to identify treatment

effects in subpopulations defined by QRS duration could have been more informative. To

address this question, we develop and evaluate a new class of adaptive enrichment designs

comparing two treatments to a common control in two disjoint subpopulations.

Adaptive enrichment designs have a preplanned rule for modifying enrollment criteria
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based on accruing data in an ongoing trial (Wang et al., 2009). The proposed designs can stop

accrual of treatment by subpopulation combinations for either efficacy or futility at the end

of each stage. We compare the performance of these adaptive designs versus standard designs

in determining which treatment by subpopulation combinations lead to improved outcomes.

Our proposed class of adaptive enrichment designs uses a multiple testing procedure that

combines advantageous features from the methods of Dunnett (1955), Maurer and Bretz

(2013), and Rosenblum et al. (2016).

The proposed adaptive designs have the following properties: they leverage correlations

between treatment effect estimators that share a common control; they allow for continued

accrual of remaining treatments/subpopulations after some null hypotheses are rejected in

order to continue testing the remaining null hypotheses; they improve power by lowering

the rejection threshold for the remaining null hypotheses after a null hypothesis has been

rejected; they strongly control the familywise Type I error rate, asymptotically; the multiple

testing procedure is a function of only minimal sufficient statistics, and therefore avoids

power losses that can affect some adaptive designs as described by Emerson (2006). We use

non-binding futility boundaries, which are generally preferred by the U.S. Food and Drug

Administration (Liu and Anderson, 2008).

We optimize the multiple testing procedure and enrollment modification rule in order to

minimize expected sample size while satisfying power and Type I error constraints. As there

is no known optimization procedure that is guaranteed to converge to the global optimum

solution, we use simulated annealing, a general purpose optimization method. Fisher and

Rosenblum (ress) used simulated annealing to optimize over a class of designs evaluating the

effectiveness of a single treatment in two subpopulations. Our setting differs since it involves

two treatments versus control, a different class of adaptive designs, a different set of null

hypotheses, and a more complex set of power requirements.

Others have proposed adaptive designs for multi-arm trials for the overall population (but
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not considering subpopulations). Magirr et al. (2012) generalized the method of Dunnett

(1955) to such trials and show how to compute sample sizes under power constraints for the

least favorable configuration of treatment effects. Wason and Jaki (2012) used simulated

annealing to search for the efficacy boundaries that minimize expected sample size for trials

with multiple arms and stages. In both of the aforementioned references, the trial is stopped

when the first null hypothesis is rejected, unlike our approach. Several designs, e.g., Thall

et al. (1988); Kelly et al. (2005), have been proposed that pick only one treatment at the

interim analysis to continue to the later stages. Stallard and Friede (2008) proposed an

adaptive design with treatment selection at an interim analysis, but the number of treatments

allowed to continue after each stage must be prespecified. In contrast, our designs do not

a priori restrict how many treatment by subpopulation combinations will continue to later

stages. Posch et al. (2005), Koenig et al. (2008), and Bretz et al. (2010) propose adaptive

designs based on the p-value combination or conditional error function approaches; these

approaches allow more flexibility in the adaptation rule than those considered here, but at

the cost of not using data only through minimal sufficient statistics, which can lead to power

loss.

Urach and Posch (2016) optimize multi-arm, group sequential designs. Their designs

differ from ours in that they only consider the overall population, use a different form of effi-

cacy boundaries, and do not reallocate alpha between null hypotheses to improve power. The

search space of the optimization problem of Urach and Posch (2016) is substantially smaller

than ours. For example, Urach and Posch (2016) optimize over at most five parameters but

the optimized design presented in Section 6.3 involves over 24 parameters.

Section 3 describes the data structure, null hypotheses, and statistics. The proposed

class of adaptive enrichment designs is defined in Section 4. Section 5 defines the trial design

optimization problem. A simulation study that mimics features of the SMART-AV trial is

used to compare performance of optimized adaptive versus standard designs, in Section 6.
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The open-source software implementing our trial design optimization, which has a graphical

user-interface that runs on a web-browser, is described in Section 7. Directions for future

research are discussed in Section 8.

3 Problem Setup

3.1 Data Structure and Null Hypotheses

We are interested in comparing two treatments versus a common control in two disjoint

subpopulations that partition the overall population. Subpopulations must be defined by

measurements made before randomization, and this definition must be prespecified in the

study protocol. In our motivating example, these subpopulations consist of patients with

QRS ≤ 150ms (short QRS) and those with QRS > 150ms (long QRS).

Throughout, the subscript a ∈ {0, 1, 2} denotes the study arm, s ∈ {1, 2} denotes the

subpopulation, and k ≤ K denotes the stage of the trial. Let πs denote the proportion

of the combined population in subpopulation s ∈ {1, 2}. We assume these proportions are

known and π1 + π2 = 1. Let µa,s denote the mean outcome under assignment to study arm

a ∈ {0, 1, 2} for subpopulation s ∈ {1, 2}. We refer to arms a = 1, 2 as the treatment arms

and a = 0 as the control arm. The difference between the population mean of the outcome

under assignment to treatment a ∈ {1, 2} versus control for subpopulation s is defined as

δa,s = µa,s − µ0,s. Denote the vector of average treatment effects by δ = (δ1,1, δ2,1, δ1,2, δ2,2).

There are four null hypotheses of interest: Ha,s : δa,s ≤ 0, a ∈ {1, 2}, s ∈ {1, 2}, corre-

sponding to no average treatment benefit for each treatment by subpopulation combination.

Let σ2
a,s, a ∈ {0, 1, 2}, s ∈ {1, 2} denote the variance of the primary outcome in study arm

by subpopulation combination (a, s).

5
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3.2 Sample Sizes Per Stage for Each Treatment by Subpopulation

Combination

Each participant is randomized to one of the two treatment arms or to the control arm, and

her/his arm assignment is never changed throughout the trial. In stage 1, both subpopu-

lations are enrolled and each participant is assigned with probability 1/3 to a study arm

a = 0, 1, 2. At the interim analysis after each stage, for each subpopulation, the preplanned

rule may decide to stop assigning new participants to one or both treatment arms a ∈ {1, 2}.

The decision can differ by subpopulation, e.g., subpopulation 1 may be stopped entirely

while subpopulation 2 continues enrollment and assignment to arms a = 0, 1.

Stopping accrual for a treatment by subpopulation combination (a, s) means that no

future participants enrolled from subpopulation s are assigned to arm a. If both treatment

arms a = 1, 2 have accrual stopped, then no more subpopulation s participants are en-

rolled. After stopping accrual of a treatment by subpopulation combination for futility, the

corresponding null hypothesis is no longer tested.

For any subpopulation and stage, if neither treatment arm a ∈ {1, 2} has been stopped

then the randomization ratio is 1:1:1 to each arm a ∈ {0, 1, 2}; if a single treatment arm

a ∈ {1, 2} has been stopped, then the randomization ratio is 1:1 to the other treatment

arm and control; if both treatment arms a = 1, 2 have been stopped, then the control arm

is stopped as well. This randomization method can be approximately achieved by block

randomization stratified by subpopulation.

A reason we use 1:1 randomization ratios is that different ratios at different stages could

lead to bias if the distribution of the primary outcome among subjects enrolled differs across

time. In a related setting, randomizing more participants to the common control arm has

been shown to lead only to minor power improvements (Wason et al., 2012). Also, a higher

allocation to the control arm might reduce the willingness of subjects to participate in the
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trial (Halpern et al., 2003).

The following design parameters need to be prespecified in the study protocol: the maxi-

mum number of stages K; the number of subpopulation s participants enrolled during stage

k assigned to arm a (denoted na,s,k), assuming enrollment has not been stopped for that

arm by subpopulation combination. Define nk =
∑2

a=0

∑2
s=1 na,s,k as the maximum num-

ber of participants that can be enrolled during stage k. By the above assumptions about

randomization ratios and the assumption that enrollment is uniform over time and propor-

tional to subpopulation size (which we assume throughout), we have na,s,k = πsnk/3 for each

a ∈ {0, 1, 2}, s ∈ {1, 2}, k ≤ K. Define the maximum sample size n =
∑K

k=1 nk, and the

vector of sample sizes N = (na,s,k : a = 0, 1, 2; s = 1, 2; k = 1, . . . , K). Complete prespec-

ification of the adaptive design is required by regulators such as the U.S. Food and Drug

Administration (FDA, 2010; FDA, 2016).

If no treatment arm has been stopped for subpopulation s at or before the end of stage

k − 1, then na,s,k = πsnk/3 newly enrolled participants from subpopulation s are assigned

to each arm a = 0, 1, 2 during stage k. If exactly one treatment arm a ∈ {1, 2} has been

stopped for subpopulation s ∈ {1, 2} at or before the end of stage k−1, then na,s,k = πsnk/3

newly enrolled participants from subpopulation s are assigned to the other treatment arm

(a′ = 3 − a) and to the control arm (for a total of 2πsnk/3 enrolled from subpopulation s)

during stage k.

The above rules ensure that the number enrolled during stage k for any arm by sub-

population combination (a, s) is either the prespecified na,s,k or 0. The impact is that the

statistics defined below have the canonical structure from Jennison and Turnbull (1999, Ch.

3.1), and so are asymptotically multivariate normal with mean vector and covariance matrix

that are straightforward to compute. This facilitates the computation of efficacy boundaries

in Section 4.2.
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3.3 Data Structure and Statistics

Let Si,k be a random variable taking values in {1, 2}, which indicates whether participant i

enrolled during stage k belongs to subpopulation 1 or 2. Let Ai,k ∈ {0, 1, 2} be the study arm

assignment of participant i at stage k. The outcome for participant i at stage k is denoted

by Yi,k, which can be continuous, binary, or integer valued. The data on participant i at

stage k in the trial consists of the vector (Si,k, Ai,k, Yi,k). We assume that conditioned on

(Si,k = s, Ai,k = a), the outcome Yi,k is an independent draw from an unknown distribution

Qa,s with mean µa,s and variance σ2
a,s.

For each a ∈ {0, 1, 2}, s ∈ {1, 2}, k ∈ {1, . . . , K}, define Ȳa,s,k as the (cumulative) average

of all primary outcomes from study arm a and subpopulation s observed prior to analysis

k. The statistic used to test null hypothesis Ha,s at analysis k is the following standardized

difference between sample means of the outcome comparing treatment arm a versus control:

Za,s,k =
(
Ȳa,s,k − Ȳ0,s,k

){ σ2
a,s + σ2

0,s∑k
k′=1

∑nk′
i=1 I(Si,k′ = s, Ai,k′ = a)

}−1/2

, (1)

where I(X) is the indicator variable taking value 1 if X is true and 0 otherwise. If treatment

by subpopulation combination (a, s) is not enrolled through stage k, then Za,s,k is unde-

fined. We assume the joint distribution of the statistics Z = {Za,s,k : a = 1, 2; s = 1, 2; k =

1, . . . , K} has the canonical form of Jennison and Turnbull (1999, Chapter 3.1), which holds

asymptotically for many types of outcomes and statistics. This joint distribution is mul-

tivariate normal with mean and covariance matrix given in Supplementary Web Appendix

S.1.

For binary outcomes, the vector of statistics Z depends on the data only through minimal

sufficient statistics (Rosenblum et al., 2016); this also holds for normally distributed outcomes

if the variance terms in the display above are replaced by sample variances. The decision rules

for the adaptive enrichment design below depend only on the data through these statistics.
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It is therefore exempt from the criticism of some adaptive designs that test statistics are not

a function of minimal sufficient statistics (Emerson, 2006).

When outcomes are measured with delay, some participants may be enrolled but not yet

have their outcomes observed at an interim analysis. These participants do not contribute

to the statistics at that analysis, but they do count toward the sample size enrolled (which

is important since our goal is to minimize expected sample size).

4 Adaptive Enrichment Designs

4.1 Overview

We describe our proposed class of adaptive enrichment designs, denoted by DADAPT . Each

such design consists of a multiple testing procedure for the four null hypotheses Ha,s, a =

1, 2, s = 1, 2, and an enrollment modification rule. The enrollment modification rule has

the following form: for each subpopulation, enrollment continues until both treatment arms

(a = 1, 2) in that subpopulation have been stopped. Stopping can be for efficacy or futility,

and can only occur at the analysis following each stage. The multiple testing procedure

defined below involves efficacy and futility boundaries on the z-scale, and is designed to ensure

strong control of the familywise Type I error rate, asymptotically. We next describe the

construction of efficacy boundaries, followed by how they are applied to determine whether

to stop each treatment by subpopulation combination for efficacy at each analysis.

4.2 Efficacy and Futility Boundaries

Efficacy boundaries, denoted (us,k, zs,k), are constructed using an error spending approach

(Lan and DeMets, 1983). Let α denote the desired familywise Type I error rate, e.g., α =

0.05. Let αs,k > 0, s ∈ {1, 2}, 1 ≤ k ≤ K denote the prespecified alpha allocation associated
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with each subpopulation s at stage k. These are required to satisfy
∑2

s=1

∑K
k=1 αs,k = α. The

value of each αs,k (along with other design parameters) will be determined using optimization

as described in Section 5. There is no treatment-specific subscript a in the alpha allocations

αs,k since for each subpopulation s and stage k, the efficacy boundaries for rejecting Ha,s are

the same for each a ∈ {1, 2}.

For each subpopulation s ∈ {1, 2}, we compute the efficacy boundaries {(us,k, zs,k) : k =

1, . . . , K} sequentially. For stage k = 1, (us,1, zs,1) are the solutions to

P0 {max(Z1,s,1, Z2,s,1) > us,1} = αs,1 and P0(Z1,s,1 > zs,1) = αs,1,

where P0 denotes the global null hypothesis δ = (0, 0, 0, 0) of zero average treatment effect

for every treatment by subpopulation combination, which implies each Za,s,k has mean 0.

At the end of each stage k > 1, (us,1, zs,1) . . . , (us,k−1, zs,k−1) have already been calculated

and zs,k is calculated by finding the smallest value zs,k satisfying

P0(Z1,s,k′ ≤ zs,k′ for all k′ < k, and Z1,s,k > zs,k) ≤ αs,k, (2)

and then us,k is calculated by finding the minimum value us,k ∈ [zs,k,∞) such that

P0

{
max(Z1,s,k′ , Z2,s,k′) ≤ us,k′ for all k′ < k, and max(Z1,s,k, Z2,s,k) > us,k

}
≤ αs,k. (3)

The efficacy boundaries zs,k, k = 1, . . . , K could equivalently be calculated using treatment

a = 2 instead of treatment a = 1, which follows from the canonical covariance structure of

the statistics Za,s,k given in the Supplementary Web Appendix S.1 and the 1:1 randomization

ratio between each treatment and control arm. The probability in (2) involves the covariance

structure among statistics for the same treatment and subpopulation but at different stages.

The probability in (3) uses the correlation among statistics for the same subpopulation but
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different treatment arms and stages.

We use alpha reallocation to improve power at the last stage K for a subpopulation if the

null hypotheses corresponding to both treatments a = 1, 2 for the other subpopulation have

been rejected. For any subpopulation s′ ∈ {1, 2}, if both H1,s′ , H2,s′ have been rejected at or

before final analysis K, then we recompute both zs,K and us,K for the other subpopulation

s 6= s′ by replacing αs,K on the right sides of (2) and (3) by αs,K +
∑K

k=1 αs′,k. Denote the

updated values by z̃s,K and ũs,K . Each is less or equal to the corresponding value without

the alpha reallocation.

Probabilities that involve multivariate normal distributions such as those appearing in

equations (2) and (3) can quickly and reliably be calculated using the R package mvtnorm

(Genz et al., 2017). Binary search can then be used to calculate the smallest efficacy bound-

aries satisfying inequalities (2) and (3).

The futility boundaries F = (fa,s,k ∈ R : a = 1, 2; s = 1, 2; k ≤ K − 1) are unrestricted

and, like the alpha allocations αs,k, will be optimized as described in Section 5.

4.3 Class of Adaptive Enrichment Designs

A generic adaptive enrichment design in the class DADAPT is denoted by D = (K, E ,F ,N ),

and consists of the following design parameters (which are specified before the trial starts):

the maximum number of stages K, the alpha allocations E = (αs,k : s = 1, 2; k ≤ K), the

futility boundaries F , and the sample sizes N . We next define the enrollment modification

rule and multiple testing procedure for each D ∈ DADAPT . At the analysis taking place at

the end of each stage k ≤ K, for each subpopulation s ∈ {1, 2} where at least one treatment

arm continued accrual through stage k, the following sequence of actions is taken:

1. If exactly one treatment arm a ∈ {1, 2} had accrual stopped for subpopulation s at

a previous analysis k′ < k, then do the following: If treatment arm a ∈ {1, 2} was
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previously stopped for efficacy in subpopulation s and Za′,s,k ≥ zs,k for the other

treatment arm a′ = 3 − a, then reject Ha′,s. Otherwise, if treatment arm a was

previously stopped for futility in subpopulation s and Za′,s,k ≥ us,k for a′ = 3−a, then

reject Ha′,s.

2. If neither treatment arm a = 1, 2 had accrual stopped for subpopulation s at a previous

analysis k′ < k: If both max(Z1,s,k, Z2,s,k) ≥ us,k and min(Z1,s,k, Z2,s,k) ≥ zs,k, then re-

ject both subpopulation s null hypotheses H1,s, H2,s. Otherwise, if max(Z1,s,k, Z2,s,k) ≥

us,k, then reject the null hypothesis Ha,s corresponding to the larger statistic.

3. For each null hypothesis Ha,s rejected in (1) or (2), accrual for the corresponding

treatment by subpopulation combination (a, s) is stopped for efficacy. For each null

hypothesis Ha,s that has not been rejected, the corresponding treatment by subpopu-

lation combination (a, s) has accrual stopped for futility if Za,s,k ≤ fa,s,k.

4. If accrual for both treatment arms a ∈ {1, 2} in subpopulation s are stopped (either

for efficacy or futility) or k = K, then stop all accrual of subpopulation s. Otherwise,

continue subpopulation s accrual in the next stage with random assignment to the

arms a ∈ {0, 1, 2} that have not been stopped.

The trial continues until every treatment by subpopulation combination is stopped for

efficacy/futility or the final analysis K is reached. If the trial continues to the end of

stage K, then the following extra step is conducted (after conducting steps 1-4 above for

each subpopulation at analysis K): If both null hypotheses for a subpopulation s′ ∈ {1, 2}

were rejected at or before analysis K, then the efficacy thresholds (us,K , zs,K) are replaced

by (ũs,K , z̃s,K) for the other subpopulation s 6= s′ and steps 1-4 are conducted again for

subpopulation s. This extra step can only improve power or leave it unchanged since each

of ũs,K , z̃s,K is less or equal to the corresponding efficacy boundary without the tilde.
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Rejecting any null hypothesis implies that the null hypothesis is rejected at all future

stages. For any subpopulation s ∈ {1, 2} and stage k ≤ K, only one of steps 1 and 2 can

be applied (depending on which treatment by subpopulation combinations were stopped at

previous analyses). The above procedure leads to the same decisions regardless of whether

1-4 are applied first to subpopulation s = 1 or s = 2. The above steps can be applied in the

special case of a single stage design (K = 1), where only the multiple testing procedure is

used.

The above multiple testing procedure incorporates features from previous work. Dunnett

(1955) uses tests based on the maximum of different statistics to control the familywise

Type I error rate, as we do in (3). Maurer and Bretz (2013) and Rosenblum et al. (2016)

reallocate alpha from rejected null hypotheses to the remaining null hypotheses, leading to

lower rejection thresholds and greater power. Our procedure does this through the lower

rejection thresholds z̃s,K and ũs,K . The way that we combine the above features to construct

the multiple testing procedure and enrollment modification rule in 1-4 above, is tailored to

our specific trial design problem.

4.4 Familywise Type I Error Rate

Control of the familywise Type I error rate at level α means that the probability of rejecting

at least one true null hypothesis is at most α. Strong control means that this holds for any

mean treatment effect vector δ ∈ R4. We assume non-binding futility boundaries (Liu and

Anderson, 2008), i.e., we require the familywise Type I error rate to be strongly controlled

even if futility boundaries are ignored. The following theorem is proved in the Supplementary

Web Appendix:

Theorem 4.1. For any K ≥ 1, sample sizes N satisfying the assumptions in Section 3.2,

futility boundaries F , and positive-valued αs,k that sum to α, the corresponding adaptive

13
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enrichment design D ∈ DADAPT strongly controls the familywise Type I error rate at level

α, asymptotically.

5 Trial Design Optimization: Search Space, Objective

Function, and Optimization Method

5.1 Optimization Problem

Let θ = (µa,s, σ
2
a,s, πs : a = 0, 1, 2; s = 1, 2) denote the population parameters. The joint

distribution of statistics Z is determined by the population parameters θ and design param-

eters D. For given θ, D, let ESS(θ, D) denote the expected sample size for design D under

population parameters θ. The expectation is with respect to the distribution on Z induced

by θ and D.

We next define our optimization goal, called the objective function, which maps each

design D to a real value (with smaller values being more desirable). The objective function

is defined as ESSΛ(D) =
∫
θ
ESS(θ, D)dΛ(θ), where Λ is a distribution on the population

parameters θ. An example of Λ that consists of a discrete set of point masses on scenarios of

interest is given in Section 6. Our optimization problem is formulated in the decision theory

framework and the only role of Λ is in defining the objective function.

The optimization problem is to search for the design D ∈ DADAPT that minimizes ex-

pected sample size ESSΛ(D) under prespecified power constraints. (By Theorem 4.1, all

designs D ∈ DADAPT are guaranteed to strongly control the asymptotic, familywise Type I

error rate.) The power constraints in our problem consist of M scenarios, i.e., population

parameter vectors denoted θ(1), . . . ,θ(M). These are chosen by the clinical investigator to

represent scenarios of interest. The power constraints corresponding to each scenario θ(m)

are that for each pair (a, s) : a ∈ {1, 2}, s ∈ {1, 2} for which the average treatment effect

14
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δ
(m)
a,s = µ

(m)
a,s − µ

(m)
0,s is at least the minimum, clinically meaningful level denoted δmin, the

power to reject Ha,s must be at least 80%. We let POW(θ(m), D, a, s) denote the probability

that the design D rejects (at least) null hypothesis Ha,s when data are generated according

to the population parameter vector θ(m).

The search space for our optimization problem is all designs D ∈ DADAPT that have

at most K ≤ 4 stages. We restricted to at most 4 stages since there were diminishing

improvements as the number of stages was increased from 2 to 4. Larger numbers of stages

lead to both a larger search space and more challenging computations in evaluating the

objective function.

5.2 Optimization Method

To search for the optimal design, we use a general purpose optimization algorithm called

simulated annealing (SA). While it is not guaranteed to find the global optimum solution,

which is an open research question for our problem, it may find adaptive designs with

improved performance compared to standard designs, which is our goal.

SA iteratively proposes a new candidate vector D′ of design parameters by randomly

perturbing the current candidate design parameters D. The new design D′ is accepted as

a replacement if it is superior to the current design D in terms of a composite performance

score V (D) defined below that combines the objective function (expected sample size) with

penalty terms to account for the power constraints. If the candidate is not superior, it may

still be accepted with some probability. By occasionally accepting less optimal candidates,

this allows the potential to escape a local minimum. The performance and evolution of

the algorithm are controlled by a cooling schedule, which determines the rate at which

suboptimal candidate designs are accepted and how new candidates are generated. We use

the optim function in R which implements the simluated annealing algorithm described in

Bélisle (1992).
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Each candidate design D is evaluated by the SA algorithm in terms of the objective

function ESSΛ(D) and how well it satisfies the power constraints. A composite performance

score V (D) is computed by combining these as follows:

V (D) = ESSΛ(D) + λ
M∑
m=1

∑
a,s

I
(
δ(m)
a,s ≥ δmin

){
0.8− POW(θ(m), D, a, s)

}
+
,

where (x)+ = max(x, 0) and λ is a positive constant that sets the penalty for failing to

achieve the power constraints. The terms on the right side of the above display penalize for

violation of the power constraints, with the penalty proportional to how far the actual power

is from the desired 80% power. The term I(δ
(m)
a,s ≥ δmin) is the indicator of the treatment

effect for treatment by subpopulation combination (a, s) exceeding the minimum, clinically

meaningful level in scenario θ(m); this term is included since we only require power to be at

least 80% when that condition holds. If all power constraints are satisfied by D then the

term on the right is 0 and all that remains is the expected sample size ESSΛ(D). We set

λ = 106 in our optimization in the next section.

The lengths of the futility boundary and alpha-allocation vectors increase with the num-

ber of stages. As a consequence, the dimension of the search space increases with the number

of stages. For this reason, we keep the number of stages K fixed for each run of the simulated

annealing algorithm. For each K ∈ {2, 3, 4}, we ran 200 parallel versions of the simulated

annealing algorithm with each version using 500 iterations. All parameters in the search

space are restricted to fall within their required domains, e.g., each αs,k and nk must be

positive and the αs,k must sum to α. In addition, we restrict all interim analyses to occur

between when 10% and 90% of the primary outcomes are observed.

Calculating expected sample size and power requires integrating over multivariate normal

distributions. We approximate each such integral by 50,000 Monte Carlo draws from the

corresponding multivariate normal distribution.
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6 Application to the SMART-AV Trial

6.1 Optimization Problem Definition

The primary outcome in the SMART-AV trial was the six month change in left ventricular

end-systolic volume (in ml), which is measured six months after enrollment. Subpopulations

1 and 2 are defined as those with short and long QRS, respectively. We set the accrual rate

to 20 participants per month. The familywise Type I error rate is set to be α = 0.05.

In the SMART-AV trial, the proportion of participants with short QRS was 49% and the

outcome standard deviation was assumed to be 60ml. We mimic these by setting π1 = 0.49

and σa,s = 60 for each a ∈ {0, 1, 2}, s ∈ {1, 2} throughout. Given these values, the joint

distribution of statistics Z depends on the population parameters θ only through the average

treatment effects δ = (δ1,1, δ2,1, δ1,2, δ2,2) where δa,s = µa,s − µ0,s. Therefore, it suffices to

define the distribution Λ (used in the objective function) and power constraint scenarios

θ(1), . . . ,θ(M) in terms of δ rather than the full vector θ.

The minimum clinically meaningful treatment effect used for powering the SMART-AV

trial was δmin = 15ml. We use this in our definition of Λ, which is defined to be the

equally weighted mixture of the following six scenarios (each with a point mass at a specific

value of δ): δ(1) = (0, 0, 0, 0); δ(2) = (15, 0, 0, 0); δ(3) = (15, 15, 0, 0); δ(4) = (15, 0, 15, 0);

δ(5) = (15, 15, 15, 0); δ(6) = (15, 15, 15, 15). Scenario 1 represents the global null hypothesis

of no average effect for every treatment by subpopulation combination. Scenario 6 represents

a benefit of 15ml for each treatment by subpopulation combination. The other scenarios

involve benefits of some treatments for some subpopulations.

The distribution Λ is asymmetric in that there is a positive treatment effect in subpop-

ulation 2 (long QRS) only when there is also a positive treatment effect in subpopulation

1 (short QRS). It is here that we incorporated the prior scientific knowledge that the short

QRS subpopulation is more likely to benefit from treatment. Analogously, we incorporated

17

Hosted by The Berkeley Electronic Press



that treatment 2 is expected to benefit a subpopulation (compared to control) only when

the same holds for treatment 1.

We use the same six vectors δ(1), . . . , δ(6) above to define the power constraints. This

means that in each scenario 1-6, for each treatment arm a ∈ {1, 2} by subpopulation s ∈

{1, 2} combination where the corresponding treatment effect δa,s ≥ 15ml, we require at

least 80% power to reject Ha,s. For example, consider the null hypothesis H1,1; the power

constraints are that in each scenario 2-6, the power to reject (at least) H1,1 is at least 80%.

6.2 Classes of Designs Compared

We describe four subclasses of the designs DADAPT , in increasing order of complexity. In

Section 6.3, we solve the optimization problem for each class and compare the resulting four

optimized designs in terms of expected and maximum sample sizes.

The first design class, called simple 1-stage designs, has a single stage K = 1 with equal

α allocation between the two subpopulations, i.e. each αs,1 = α/2. The sample size n is

optimized to be the smallest such that the power and Type I error constraints are all satisfied.

The second design class, called optimized 1-stage designs, has a single stage where the

α allocation between the two subpopulations is optimized. That is, simulated annealing is

used to search for the smallest sample size n such that there exists a pair (α1,1, α2,1) for

which the power and Type I error constraints are satisfied.

The third design class, called simple adaptive designs, optimizes over the number of stages

K ∈ {2, 3, 4} and the maximum sample size n, but the following are set (not optimized):

the alpha allocation is set to be equally partitioned (αs,k = α/(2K) for s = 1, 2; k ≤ K),

analysis times are equally spaced in terms of the number of observed outcomes, and all

futility boundaries are set to zero.

The fourth design class, called optimized adaptive designs, is just as the third class except

the alpha allocation, analysis timing, and futility boundaries are optimized.
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The reason we use the term “adaptive” only for the third and fourth classes of designs is

that 1-stage designs do not involve any adaptations. We refer to the optimized design from

each class above as the simple 1-stage design, optimized 1-stage design, simple adaptive

design, and optimized adaptive design, respectively. The simulated annealing algorithm

requires initial values to be input for all design parameters that it optimizes. These are

given in Supplementary Web Appendix S.2.

6.3 Results

The rightmost 2 columns of Table 1 show the expected and maximum sample sizes for the

optimal design in each of the four classes. The optimized adaptive design has 25% smaller

expected sample size compared to the optimized 1-stage design. However, the cost is that the

optimized adaptive design has 8% greater maximum sample size than the optimized 1-stage

design.

The optimized adaptive design has substantially lower expected and maximum sample

size compared to the simple adaptive design. This shows the importance of optimizing the

alpha allocation, analysis timing, and futility boundaries for the adaptive designs.

Columns 3-6 of Table 1 show design parameters from each of the four designs. The only

free parameter in the simple 1-stage design was the sample size n, whose optimized value is

1818. For the optimized 1-stage design, the proportion of alpha allocated to subpopulation

one is 54%. This only slightly differs from the simple 1-stage design, which allocates 50%

of alpha to each subpopulation. This minor improvement over the simple 1-stage design

produced only a small sample size reduction (from 1818 to 1779).

The analyses for the optimized adaptive design occur when 39%, 63%, 70%, and 100%

of the primary outcomes are observed. For scenarios 1-6, the expected sample sizes for the

optimized adaptive design are 1234, 1273, 1381, 1284, 1395, and 1477, respectively. Their

mean, i.e., ESSΛ, is 1341.
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Design Stage
Eff. Bnd.
(u1,k, u2,k)

Eff. Bnd.
(z1,k, z2,k)

Futility Bnd. αs,k/0.05 ESS MSS

Simple
1-Stage

1 (2.2,2.2) (2.0,2.0) NA (0.5,0.5) 1818 1818

Optimized
1-Stage

1 (2.2,2.2) (1.9,2.0) NA (0.54,0.46) 1779 1779

1 (2.7,2.7) (2.5,2.5) (0,0,0,0) (1/8,1/8)

1528 2154
Simple 2 (2.6,2.6) (2.4,2.4) (0,0,0,0) (1/8,1/8)
Adaptive 3 (2.6,2.6) (2.3,2.3) (0,0,0,0) (1/8,1/8)

4 (2.5,2.5) (2.2,2.2) NA (1/8,1/8)
1 (2.5,3.2) (2.3,3.0) (0.1,0.6,0.7,0.8) (0.21,0.03)

1341 1917
Optimized 2 (2.5,3.3) (2.2,3.1) (-0.8,-1.6,-1.7,1.6) (0.17,0.01)
Adaptive 3 (2.7,2.6) (2.4,2.4) (-0.4,-3.2,-1.8,-0.8) (0.02,0.14)

4 (2.3,2.5) (2.1,2.2) NA (0.25,0.17)

Table 1: Design parameters for each of the four designs that are solutions to the SMART-
AV trial optimization problem defined in Section 6.1. The third and fourth columns are
the efficacy boundaries (u1,k, u2,k) and (z1,k, z2,k), respectively. For the adaptive designs, the
fifth column gives the futility boundaries (f1,1,k, f2,1,k, f1,2,k, f2,2,k), k = 1, 2, 3; NA indicates
not applicable, which is the case for the final stage of each design. The sixth column gives
the alpha allocations (α1,k, α2,k)/0.05 (rescaled by 0.05 so they sum to 1) for each stage
k = 1, . . . , K. The last two columns report the expected sample size (ESSΛ), and maximum
sample size (MSS) for each design.

20

http://biostats.bepress.com/jhubiostat/paper288



Table 2 gives the rejection probability for each null hypothesis under each scenario and

design. This represents power (for scenarios where the corresponding treatment effect is

positive) or Type I error (for scenarios where the corresponding treatment effect is zero,

indicated by bold numbers). It also gives the familywise Type I error rate (FWER) for each

design and scenario combination, which is always at most 0.05. For the optimized adaptive

design, the maximum familywise Type I error rate across the six scenarios is 0.047. Since

the futility boundaries are non-binding, the optimized adaptive design does not exhaust the

allowed familywise Type I error rate of 0.05. When no futility stopping is applied to the

optimized adaptive design, it exhausts the familywise Type I error rate, i.e., the familywise

Type I error rate is 0.05.

In scenario 1, where all null hypotheses are true, the Type I errors in columns 3-6 sum

to a value greater than the familywise Type I error rate (FWER). This is expected since

each of columns 3-6 gives the power to reject at least the corresponding null hypothesis, and

FWER is the probability of rejecting at least one true null hypothesis.

The power constraints are satisfied by each design, which follows from Table 2 since all the

non-boldface numbers (power) are at least 0.8. In scenario 6, all but the optimized adaptive

design have power close to 0.9 for each null hypothesis; the optimized adaptive design has

power closer to the required 0.8, which was achieved by a combination of higher futility

boundaries and an asymmetric alpha allocation. In this and other scenarios, the optimized

adaptive design saves resources (reflected in lower expected sample size) by achieving power

closer to what is required.

Figure 1 shows the distribution of sample sizes for each of the six scenarios for the

optimized adaptive design. Of the simulated trials conducted to evaluate the performance

of the optimized adaptive design, 96% had sample size smaller than the optimized 1-stage

design’s sample size of 1779.
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Rejection Probabilities
Subpopulation 1 Subpopulation 2 FWER

Design Scenario H1,1 H2,1 H1,2 H2,2

1 0.015 0.015 0.015 0.014 0.050
2 0.80 0.015 0.025 0.014 0.049

Simple 3 0.80 0.82 0.026 0.026 0.050
1-Stage 4 0.84 0.027 0.84 0.027 0.045

5 0.84 0.87 0.84 0.043 0.043
6 0.89 0.90 0.89 0.90 0
1 0.015 0.013 0.015 0.013 0.049
2 0.80 0.014 0.027 0.014 0.049

Optimized 3 0.80 0.80 0.027 0.023 0.049
1-Stage 4 0.84 0.026 0.84 0.026 0.044

5 0.84 0.86 0.84 0.044 0.044
6 0.89 0.89 0.88 0.89 0
1 0.014 0.014 0.014 0.013 0.049
2 0.80 0.016 0.024 0.016 0.050

Simple 3 0.80 0.85 0.022 0.011 0.032
Adaptive 4 0.83 0.024 0.83 0.024 0.042

5 0.83 0.88 0.83 0.039 0.039
6 0.88 0.90 0.89 0.90 0
1 0.019 0.0091 0.017 0.0090 0.047
2 0.80 0.0095 0.028 0.0093 0.044

Optimized 3 0.81 0.80 0.029 0.015 0.043
Adaptive 4 0.84 0.020 0.81 0.021 0.036

5 0.84 0.84 0.81 0.032 0.032
6 0.87 0.81 0.83 0.83 0

Table 2: Rejection probabilities for each scenario and null hypothesis for the four designs.
Boldface rejection probabilities correspond to Type I error and the non-bold rejection proba-
bilities correspond to power. The last column gives the familywise Type I error rate (FWER).
The rejection probability for each Ha,s is the probability of rejecting at least that null hy-
pothesis.
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Figure 1: Boxplots of sample size distributions for the optimized adaptive design under each
of the six scenarios. The horizontal dashed line indicates the sample size of the optimized
1-stage design.
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7 Software for Optimizing Our Adaptive Designs

Open-source software for optimizing over each of the aforementioned four design classes is

available at http://rosenblum.jhu.edu. The software allows the user to input their own opti-

mization problem by specifying the outcome type (continuous, binary, or time-to-event), the

distribution Λ (consisting of a discrete set of point masses), the power constraint scenarios

θ(1), . . . ,θ(M) and the required power for each null hypothesis under each such scenario. The

output is a reproducible, automatically generated report describing the performance of the

optimized design (computed using simulated annealing) from each class. The software has

a graphical user-interface that runs on a web-browser, whose purpose it to make the soft-

ware accessible to users without requiring knowledge of a specific statistical programming

language. The software is also available as an R package at

https://github.com/mrosenblum/AdaptiveDesignOptimizer

8 Discussion

We used simulated annealing to optimize the design parameters. A future research direction

is to investigate the impact of the starting values for the optimization problem as well as the

temperature parameter used by SA. Also, other optimization methods, e.g., gradient-based

methods, could be compared to SA.

Adjusting for prognostic baseline variables can lead to improved treatment effect estima-

tors compared to using the difference of sample mean estimator (Yang and Tsiatis, 2001).

Wald statistics based on such covariate-adjusted estimators could be used in place of the

z-statistics Za,s,k.

The alpha reallocation described in Section 4.2 can be generalized such that, when both

null hypotheses for subpopulation s are rejected, the alpha from subpopulation s gets real-
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located to the other subpopulation s′ across multiple stages (not just the final stage K). It

can be reallocated in any proportions to stages {k′, . . . , K}, where k′ is the first stage where

both null hypotheses for subpopulation s are rejected, as long as this is done according to

an algorithm that is prespecified (and not a function of the data except through k′). We

conjecture that this may help to reduce expected sample size by lowering efficacy boundaries

at earlier stages for one subpopulation when both null hypothesis are rejected for the other

subpopulation. The proof of Theorem 4.1 in Supplementary Web Appendix S.4 is given for

the aforementioned, generalized reallocation method.

The optimization problem described in Section 5 minimizes expected sample size subject

to power and Type I error constraints. An interesting alternative would be to minimize some

linear combination of maximum and expected sample size subject to power and Type I error

constraints.

An alternative approach to calculate the efficacy boundaries us,k is to replace (3) by

finding the smallest us,k ∈ [zs,k,∞) such that

P0

{
Za,s,k′ > us,k′ for at least one pair (a, k′) with a ∈ {1, 2}, k′ ≤ k

}
≤

k∑
k′=1

αs,k′ . (4)

The main difference between the above display and (3) is that the former is in terms of

cumulative αs,k over the current and previous stages, while the latter considers each αs,k

separately. The two algorithms for computing us,k can differ if the efficacy boundary us,k

calculated using (3) does not fully exhaust the available αs,k, which can happen if the min-

imum us,k ∈ [zs,k,∞) satisfying (3) is at us,k = zs,k. In such a case, the boundaries at

subsequent stages computed using (4) could be lower than the corresponding boundaries

computed using (3), leading to more power. As discussed at the end of the proof of Theorem

4.1 in Supplementary Web Appendix S.4, using efficacy boundaries based on equation (4)

strongly controls the familywise Type I error rate.
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If both treatments in the SMART-AV trial were found to be superior to the standard

of care for a subpopulation, the investigators were further interested in testing if AV delay

optimized with the SmartDelay electrogram-based algorithm was non-inferior to echocar-

diographically optimized AV delay. In Section S.3 of the Supplementary Web Appendix,

we augment our class of adaptive enrichment designs by adding non-inferiority testing.

This is done in a way that does not reduce power for any of the original null hypothe-

ses Ha,s, a = 1, 2; s = 1, 2, and still guarantees strong control of the familywise Type I

error rate, asymptotically. For the optimized adaptive design, we calculated the power of

the non-inferiority tests with non-inferiority margin 0.7 in scenario δ(6) = (15, 15, 15, 15).

For each subpopulation, the power to reject the corresponding inferiority null hypothesis is

12%. Having low power for the non-inferiority test is not surprising, since non-inferiority

tests often require greater sample sizes than superiority tests. However, we were curious to

understand how low this power would be.

A limitation of the proposed design is that the simulated annealing algorithm is not guar-

anteed to find the global optimum, which is an open research problem. Another limitation

is that using an adaptive design results in larger maximum sample size compared to a single

stage design. Furthermore, implementing an adaptive design is more logistically complex

than implementing a simpler design. Another limitation of adaptive enrichment designs is

that they generally require the time from enrollment until the outcome is observed to be rel-

atively short compared to the enrollment period; otherwise, long times between enrollment

and measuring the outcome would prevent sufficient information from accruing in time to

make a useful decision about modifying enrollment.
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Supplementary Web Appendix

References to figures, tables, theorems and equations preceded by “S-” are internal to this

supplement; all other references refer to the main paper.

S.1 Distribution of Test Statistics

We derive the mean and the covariance matrix of the asymptotic joint distribution of the

test statistics. We make the assumptions stated in 3.

Theorem S.1.1. The joint distribution of (Z1,1,1, Z1,2,1, Z2,1,1, Z2,2,1, . . . , Z1,1,K , Z1,2,K , Z2,1,K , Z2,2,K)

is asymptotically normal with mean

E[Za,s,k] =
δa,s√
σ2
a,s+σ2

0,s∑k
k̃=1

∑n
k̃

i=1 I(Si,k̃=s)I(Ai,k̃=a)

=
µa,s − µ0,s√

σ2
a,s+σ2

0,s∑k
k̃=1

∑n
k̃

i=1 I(Si,k̃=s)I(Ai,k̃=a)

.

1
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and covariance matrix with

Cov(Za,s,k, Za,s,k) = 1

Cov(Za,s,k, Za,s,k′) =

√√√√∑min(k,k′)

k̃=1
ns,k̃∑max(k,k′)

k̃=1
ns,k̃

Cov(Za,s,k, Za′,s,k) =
σ2

0,s√
(σ2

a,s + σ2
0,s)(σ

2
a′,s + σ2

0,s)

Cov(Za,s,k, Za′,s,k′) =
σ2

0,s√
(σ2

a,s + σ2
0,s)(σ

2
a′,s + σ2

0,s)

√√√√∑min(k,k′)

k̃=1
ns,k̃∑max(k,k′)

k̃=1
ns,k̃

Cov(Za,1,k, Za′,2,k′) = 0 for all other combinations of (a, k, a′, k′)

Proof. Basic calculations show that E[Za,s,k] has the desired form. When deriving the co-

variance matrix, we will repeatedly use the property that for a given a ∈ {0, 1, 2},

Cov

 1∑k
k̃=1 ns,k̃

k∑
k̃=1

nk̃∑
i=1

I(Ai,k̃ = a)I(Si,k̃ = s)Yi,k̃,
1∑k′

k̃=1 ns,k̃

k′∑
k̃=1

nk̃∑
i=1

I(Ai,k̃ = a)I(Si,k̃ = s)Yi,k̃


=

1∑k
k̃=1 ns,k̃

1∑k′

a=1 ns,k̃

min(k,k′)∑
k̃=1

nk̃∑
i=1

I(Ai,k̃ = a)I(Si,k̃ = s)σ2
a,s

=
σ2
a,s

max(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)

2
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We have

Cov(Za,s,k, Za,s,k)

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a,s+σ2

0,s∑k
a=1 ns,k̃

1∑k
k̃=1 ns,k̃

1∑k
k̃=1 ns,k̃

k∑
k̃=1

nk̃∑
i=1

I(Si,k̃ = s)[I(Ai,k̃ = a)σ2
a,s + I(Ai,k̃ = 0)σ2

0,s]

= 1.

If k = k′, s = s′ and l 6= a′

Cov(Za,s,k, Za′,s,k)

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a′,s+σ2

0,s∑k
k̃=1

ns,k̃

1∑k
k̃=1 ns,k̃

1∑k
k̃=1 ns,k̃

k∑
k̃=1

nk̃∑
i=1

I(Si,k̃ = s)I(Ai,k̃ = 0)σ2
0,s

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a′,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
0,s∑k

k̃=1 ns,k̃

=
σ2

0,s√
(σ2

a,s + σ2
0,s)(σ

2
a′,s + σ2

0,s)
.

3
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If k 6= k′, s = s′, and a = a′

Cov(Za,s,k, Za,s,k′)

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a,s+σ2

0,s∑k′
k̃=1

ns,k̃

1∑k
k̃=1 ns,k̃

1∑k′

k̃=1 ns,k̃

min(k,k′)∑
k̃=1

nk̃∑
i=1

I(Si,k̃ = s)[I(Ai,k̃ = a)σ2
a,s + I(Ai,k̃ = 0)σ2

0,s]

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a,s+σ2

0,s∑k′
k̃=1

ns,k̃

σ2
a,s + σ2

0,s

max(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)

=

√√√√min(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)

max(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)
.

If k 6= k′, l 6= a′ and s = s′

Cov(Za,s,k, Za′,s,k′)

=
1√

σ2
a,s+σ2

0,s∑k
k̃=1

ns,k̃

σ2
a′,s+σ2

0,s∑k′
k̃=1

ns,k̃

1∑k
k̃=1 ns,k̃

1∑k′

k̃=1 ns,k̃

min(k,k′)∑
a=1

nk̃∑
i=1

I(Si,k̃ = s)I(Ai,k̃ = 0)σ2
0,s

=

√√√√min(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)

max(
∑k

k̃=1 ns,k̃,
∑k′

k̃=1 ns,k̃)

σ2
0,s√

(σ2
0,s + σ2

a,s)(σ
2
0,s + σ2

a′,s)
.

Note that if all variances are assumed equal, then
σ2
0,s√

(σ2
0,s+σ2

a,s)(σ2
0,s+σ2

a′,s)
= 1

2
.

S.2 Starting Values for Simulated Annealing Searches

The simulated annealing algorithm requires initial values to be input for all design parameters

that it optimizes. These are given here.
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For design class two, we used α1,1 = α2,1 = 0.025.

For design class 4 with K = 4, initial values were the following: equal alpha allocations for

all stages and subpopulation combinations (i.e. αs,k = 0.05/8 for s = 1, 2, k = 1, 2, 3, 4), all

futility boundaries set to −1, the timing of the interim analysis is set to when 10%, 33%, 67%,

and 100% of the primary outcomes are observed. For each of design classes 1-4, we initialized

the maximum sample size n to be 2250, 1890, 1950, 1950, respectively. The first of these was

selected based on a quick initial search over n to determine roughly what magnitude is

required to satisfy the power constraints for design class one; values of n for the subsequent

design classes were based on the optimal results for the previous classes. For example,

for classes 3 and 4, the initial value n = 1950 was selected by slightly increasing the value

n = 1779 that resulted from optimizing over design class two; this was based on our intuition

that larger values of n are typically required in order to achieve a reduction in the expected

sample size, when comparing single stage versus multiple stage designs.

For design class four with K = 2 or K = 3 stages, the initial values were the same as

described above for K = 4 with the following exceptions: for K = 2 the analysis times were

started at 10% and 100% of outcomes observed; for K = 3 the analysis times were started

at 30%, 50%, and 100% of outcomes observed.

S.3 Test for Non-inferiority Following Superiority of

Both Treatments in a Subpopulation

An added feature of the SMART-AV trial design is that if both treatments are found to

be superior to the control for a subpopulation, then a non-inferiority test is conducted to

compare the treatments (Stein et al., 2010). This section incorporates an additional non-

inferiority test into our adaptive enrichment designs, while maintaining strong control of the

familywise Type I error rate.
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For subpopulation s and for a prespecified non-inferiority margin τ ∈ (0, 1], interest

lies in evaluating if treatment a = 1 preserves more than 100 ∗ τ percent of the benefit of

treatment a = 2 compared to the control a = 0. An advantage of this approach is that,

since non-inferiority is tested only if superiority of both treatments compared to the control

has already been established, the treatment effect comparing a = 2 versus control a = 0

has already been assessed within the trial, obviating the need to rely on historical data to

estimate this treatment effect. The non-inferiority test for subpopulation s is only performed

if (i) accrual continues for both treatments through stage K for that subpopulation and (ii)

both H1,s, H2,s are rejected using the original efficacy thresholds {us,k, zs,k : s = 1, 2; k ≤ K}

without reallocation of alpha from the other subpopulation.

Since the non-inferiority hypothesis test is only conducted for subpopulation s after the

null hypotheses H1,s, H2,s have been rejected, we assume below that µa,s − µ0,s > 0 for

each a ∈ {1, 2}. The inferiority null hypothesis for subpopulation s is defined as H
(Inf)
s :

µ1,s − µ0,s ≤ τ(µ2,s − µ0,s) or equivalently H
(Inf)
s : µ1,s − τµ2,s − (1 − τ)µ0,s ≤ 0. For

subpopulation s, define the standardized statistic for testing H
(Inf)
s as

Z(Inf)
s =

{
Ȳ1,s,K − τ Ȳ2,s,K − (1− τ)Ȳ0,s,K

}{ σ2
1,s∑K

k=1 n1,s,k

+ τ 2
σ2

2,s∑K
k=1 n2,s,k

+ (1− τ)2
σ2

0,s∑K
k=1 n0,s,k

}−1/2

.

Under H
(Inf)
s , the test statistic is asymptotically normally distributed with unit variance

and mean at most 0 (Pigeot et al., 2003).

For each subpopulation s ∈ {1, 2}, we reject H
(Inf)
s if Z

(Inf)
s > Φ−1(1 − α/2), where

Φ−1(1 − α/2) is the 1 − α/2 quantile of the standard normal distribution. This ensures

that the familywise Type I error rate for the optimized adaptive design (considering all 4

superiority null hypotheses Ha,s and the 2 non-inferiority null hypotheses) is at most α.

Implementation requires specifying the non-inferiority margin τ . That is, specifying how

much treatment effect reduction for treatment a = 1 compared to a = 2 is acceptable. This

6
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choice is a clinical judgment and depends on what the benefits of treatment a = 1 compared

to a = 2 are (e.g., in term of safety, side effects, or cost).

The correlation between the test statistics for non-inferiority and test for superiority in

subpopulation s = 1, 2 is given by

Cov(Z(Inf)
s , Z1,s,k) =

σ2
1,s∑K

k=1 n1,s,k
+

(1−τ)σ2
0,s∑K

k=1 n0,s,k√
σ2
1,s+σ2

0,s∑K
k=1 n1,s,k

√
σ2
1,s∑K

k=1 n1,s,k
+ τ 2 σ2

2,s∑K
k=1 n2,s,k

+ (1− τ)2 σ2
0,s∑K

k=1 n0,s,k

Cov(Z(Inf)
s , Z2,s,k) =

− τσ2
2,s∑K

k=1 n2,s,k
+

(1−τ)σ2
0,s∑K

k=1 n0,s,k√
σ2
2,s+σ2

0,s∑K
k=1 n2,s,k

√
σ2
1,s∑K

k=1 n1,s,k
+ τ 2 σ2

2,s∑K
k=1 n2,s,k

+ (1− τ)2 σ2
0,s∑K

k=1 n0,s,k

.

The mean of the test statistics Z
(Inf)
s , s = 1, 2 is given by

E[Z(Inf)
s ] =

µ1,s − τµ2,s − (1− τ)µ0,s√
σ2
1,s

N1,s
+ τ 2 σ

2
2,s

N2,s
+ (1− τ)2 σ

2
0,s

N0,s

,

S.4 Proof of Theorem 4.1

For convenience of notation below, define z̃s,k and ũs,k to equal zs,k and us,k, respectively,

whenever no alpha reallocation is used.

Define a closed testing procedure using the following local tests:

• Test of elementary null hypothesis Ha,s: reject if Za,s,k > z̃s,k for at least one k ∈

{1, . . . , K}.

• Intersection test of H1,s ∩ H2,s, s ∈ {1, 2}: reject if Za,s,k > ũs,k for at least one pair

(a, k), a ∈ {1, 2}, k ∈ {1, . . . , K}.

• For s 6= s′, s, s′ ∈ {1, 2}, any a, a′ ∈ {1, 2}, intersection test of Ha,s ∩ Ha′,s′ : reject if

Za,s,k > zs,k or Za′,s′,k > zs′,k for at least one k ∈ {1, . . . , K}.

7
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• For s 6= s′, s, s′ ∈ {1, 2}, any a′ ∈ {1, 2}, intersection test of H1,s ∩H2,s ∩Ha′,s′ : reject

if Za,s,k > us,k for at least one pair (a, k), a ∈ {1, 2}, k ∈ {1, . . . , K} or if Za′,s′,k > zs′,k

for some k ∈ {1, . . . , K}.

• Intersection test of all 4 null hypotheses: reject if Za,s,k > us,k for at least one triple

(a, s, k), a, s ∈ {1, 2}, k ∈ {1, . . . , K}.

For a set A the intersection hypothesis corresponding to A can only by rejected at stage k if

all intersection hypothesis that include A are rejected at or before stage k.

Now we show that for a fixed a, s ∈ {1, 2} DADAPT rejects Ha,s if and only if the closed

testing procedure rejects every intersection hypothesis involving Ha,s. Without loss of gen-

erality we assume (a, s) = (1, 1).

If DADAPT rejects H1,1, at least one of the following two statements is true: 1) there exists

a k ∈ {1, . . . , K} s.t. Z1,1,k > ũ1,k; 2) there exits a k ∈ {1, . . . , K} such that Z1,1,k > z̃1,k

and Z2,1,m > ũ1,m for some m ≤ k.

First we assume that statement 1) is true and show that all intersection hypothesis

involving H1,1 are rejected. Let k∗ be the first stage satisfying Z1,1,k∗ > ũ1,k∗ .

• The intersection test H1,1 ∩ H2,1 ∩ H1,2 ∩ H2,2: If alpha reallocation is done from

population 1 to population 2 before or at stage k∗, Za,1,k > u1,k for at least one

(a, k), a ∈ {1, 2}, k ∈ {1, . . . , k∗} pair. If alpha reallocation is done from population

2 to population 1 before or at stage k∗, Za,2,k > u2,k for at least one pair (a, k), a ∈

{1, 2}, k ∈ {1, . . . , k∗}. If no reallocation is done before or at stage k∗, ũs,k = us,k for

all combinations of (s, k), s ∈ {1, 2}, k ∈ {1, . . . , k∗} and by 1) Z1,1,k∗ > ũ1,k∗ = us,k∗ .

• The intersection test H1,1 ∩ H2,1 ∩ Ha′,2 for a′ = 1, 2. If alpha reallocation is done

from population 1 to population 2 before or at stage k∗, Za,1,k > u1,k for at least one

(a, k), a ∈ {1, 2}, k ∈ {1, . . . , k∗} pair. If alpha reallocation is done from population

2 to population 1 before or at stage k∗, Za′,2,k > z2,k for at least one k ∈ {1, . . . , k∗}.

8
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If no reallocation is done before or at stage k∗, ũs,k = us,k for all combinations of

(s, k) : s ∈ {1, 2}, k ∈ {1, . . . , k∗}. Hence, if 1) holds Z1,1,k∗ > ũ1,k∗ = u1,k∗ .

• The intersection test H1,2 ∩H2,2 ∩H1,1: If alpha reallocation is done from population

1 to population 2 before or at stage k∗, Z1,1,k > z1,k for at least one k ∈ {1, . . . , k∗}.

If alpha reallocation is done from population 2 to population 1 before or at stage k∗,

Za,2,k > u2,k for at least one pair (a, k), a ∈ {1, 2}, k ∈ {1, . . . , k∗}. If no reallocation

is done before or at stage k∗, z̃s,k = zs,k and ũs,k = us,k for all combinations of (s, k) :

s ∈ {1, 2}, k ∈ {1, . . . , k∗}. As ũ1,k ≥ z̃1,k for all k ∈ {1, . . . , K}, it follows that if 1)

holds Z1,1,k∗ > ũ1,k∗ ≥ z̃1,k∗ = z1,k∗ .

• The intersection test H1,1 ∩ Ha′,2 for a′ ∈ {1, 2}: If alpha reallocation is done from

population 1 to population 2 before or at stage k∗, Z1,1,k > z1,k for at least one k ∈

{1, . . . , k∗}. If alpha reallocation is done from population 2 to population 1 before or

at stage k∗, Za′,2,k > z2,k for at least one k ∈ {1, . . . , k∗}. If no reallocation is done

before or at stage k∗, ũ1,k∗ ≥ z̃1,k∗ = z1,k∗ . Hence, from 1) Z1,1,k∗ > z1,k.

• The intersection test H1,1 ∩H2,1: Follows directly from 1).

• The intersection test H1,1: Follows directly from 1) and ũ1,k∗ ≥ z̃1,k∗ .

Now assume that statement 2) is correct. Let k∗ be the first stage satisfying Z1,1,k∗ > z̃1,k∗

and m∗ be the first stage satisfying Z2,1,m∗ > ũ1,m∗ . By assumption 2) m∗ ≤ k∗.

• The intersection test H1,1 ∩ H2,1 ∩ H1,2 ∩ H2,2: If alpha reallocation is done from

population 1 to population 2 before or at stage m∗, Za,1,k > u1,k for at least one

(a, k), a ∈ {1, 2}, k ∈ {1, . . . ,m∗} pair. If alpha reallocation is done from population

2 to population 1 before or at stage m∗, Za,2,k > u2,k for at least one pair (a, k), a ∈

{1, 2}, k ∈ {1, . . . ,m∗}. If no reallocation is done before or at stage m∗, ũ1,m∗ = u1,m∗

and by 2) Z2,1,m∗ > ũ1,m∗ = u1,m∗ .

9

http://biostats.bepress.com/jhubiostat/paper288



• The intersection test H1,1 ∩ H2,1 ∩ Ha′,2 for a′ = 1, 2. If alpha reallocation is done

from population 1 to population 2 before or at stage m∗, Za,1,k > u1,k for at least one

(a, k), a ∈ {1, 2}, k ∈ {1, . . . ,m∗} pair. If alpha reallocation is done from population 2

to population 1 before or at stage m∗, Za′,2,k > z2,k for at least one k ∈ {1, . . . ,m∗}. If

no reallocation is done before or at stage m∗, ũs,m∗ = us,m∗ for s ∈ {1, 2}. Hence, if 2)

holds Z2,1,m∗ > ũ1,m∗ = u1,m∗ .

• The intersection test H1,2 ∩H2,2 ∩H1,1: If alpha reallocation is done from population

1 to population 2 before or at stage k∗, Z1,1,k > z1,k for at least one k ∈ {1, . . . , k∗}.

If alpha reallocation is done from population 2 to population 1 before or at stage k∗,

Za,2,k > u2,k for at least one pair (a, k), a ∈ {1, 2}, k ∈ {1, . . . , k∗}. If no reallocation is

done, z̃s,k∗ = zs,k∗ and by 2) Z1,1,k∗ > z̃1,k∗ = z1,k∗ .

• The intersection test H1,1 ∩ Ha′,2 for a′ ∈ {1, 2}: If alpha reallocation is done from

population 1 to population 2 before or at stage k∗, Z1,1,k > z1,k for at least one k ∈

{1, . . . , k∗}. If alpha reallocation is done from population 2 to population 1 before or

at stage k∗, Za′,2,k > z2,k for at least one k ∈ {1, . . . , k∗}. If no reallocation is done

before or at stage k∗, z̃1,k∗ = z1,k∗ . Hence, it follows from 2) that Z1,1,k∗ > z1,k∗ .

• The intersection test H1,1 ∩H2,1: Follows directly from 2).

• The intersection test H1,1: Follows directly from 2).

This shows that if DADAPT rejects H1,1, then all intersection tests involving H1,1 are also

rejected.

If H1,1 ∩H1,2 is rejected at stage k and ∩{(a,s)=(1,1)}Ha,s is rejected at stage k′ ≥ k then

DADAPT rejectes H1,1. This completes the proof that for a fixed a, s ∈ {1, 2}, DADAPT rejects

Ha,s if and only if the closed testing procedure rejects every intersection hypothesis involving

Ha,s.
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Now we want to show that all intersection tests control the familywise Type I error rate.

• Elementary null hypothesis Ha,s: For a given a, s ∈ {1, 2}, the probability of making a

Type I error under the null Ha,s is bounded above by

K∑
k=1

P (Za,s,k′ ≤ z̃s,k′ for all k′ < k,Za,s,k > z̃s,k) ≤
K∑
k=1

α1,k +
K∑
k=1

α2,k = α

where the inequality follows from the construction of the efficacy boundaries z̃s,k.

• Intersection of H1,s ∩ H2,s: Both H1,s and H2,s are true. The probability of a Type I

error in subpopulation s ∈ {1, 2} is bounded above by

K∑
k=1

P (max(Z1,s,k′ , Z2,s,k′) ≤ ũs,k′ for all k′ < k,max(Z1,s,k, Z2,s,k) > ũs,k)

≤
K∑
k=1

α1,k +
K∑
k=1

α2,k = α.

Here, the inequality follows from the construction of the efficacy boundaries ũs,k.

• Intersection test of Ha,s ∩Ha′,s′ s 6= s′, with s, s′ ∈ {1, 2} and a, a′ ∈ {1, 2}. Under the

null of Ha,s and Ha′,s′ both being true, the Type I error is bounded above by

K∑
k=1

P (Za,s,k′ ≤ zs,k′ for all k′ < k,Za,s,k > zs,k)

+
K∑
k=1

P (Za′,s′,k′ ≤ zs′,k′ for all k′ < k,Za′,s′,k > zs′,k)

≤
K∑
k=1

αs,k +
K∑
k=1

αs′,k = α,

where the inequality follows from the construction of the efficacy boundaries zs,k

• For s 6= s′ with s, s′ ∈ {1, 2} and a′ ∈ {1, 2}, intersection test of H1,s ∩ H2,s ∩ Ha′,s′ :
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Under the null of all three hypothesis in the test being true, the Type I error is bounded

from above by

K∑
k=1

P (max(Z1,s,k′ , Z2,s,k′) ≤ us,k′ for all k′ < k,max(Z1,s,k, Z2,s,k) > us,k)

+
K∑
k=1

P (Za′,s′,k′ ≤ zs′,k′ for all k′ < k,Za′,s′,k > zs′,k)

≤
2∑
s=1

K∑
k=1

αs,k = α,

where the inequality follows from the construction of the efficacy boundaries (zs,k, us,k).

• Intersection test of all 4 null hypotheses: Under the null of no treatment effect in any

subpopulation and treatment combination, the Type I error is bounded above by

2∑
s=1

K∑
k=1

P (max(Z1,s,k′ , Z2,s,k′) ≤ us,k′ for all k′ < k,max(Z1,s,k, Z2,s,k) > us,k)

≤
2∑
s=1

K∑
k=1

αs,k = α,

where the inequality follows from the construction of the efficacy boundaries us,k.

As all intersection test have Type I error rate at most α, the closed testing principle implies

that DADAPT controls the familywise Type I error rate at a level α.

In Section 8, an alternative way of calculating efficacy boundaries us,K , s = 1, 2, k =

1, . . . , K is presented. It follows from the construction of the efficacy boundaries (see equation

(4)) that all intersection tests using these efficacy boundaries control the familywise Type I

error rate. Hence, DADAPT implemented using efficacy boundaries calculated using equation

(4) strongly control the familywise Type I error.
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