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Optimized Variable Selection Via Repeated
Data Splitting

Marinela Capanu, Colin B. Begg, and Mithat Gonen

Abstract

We introduce a new variable selection procedure that repeatedly splits the data into
two sets, one for estimation and one for validation, to obtain an empirically opti-
mized threshold which is then used to screen for variables to include in the final
model. Simulation results show that the proposed variable selection technique en-
joys superior performance compared to candidate methods, being amongst those
with the lowest inclusion of noisy predictors while having the highest power to de-
tect the correct model and being unaffected by correlations among the predictors.
We illustrate the methods by applying them to a cohort of patients undergoing
hepatectomy at our institution.
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Abstract

We introduce a new variable selection procedure that repeatedly
splits the data into two sets, one for estimation and one for validation,
to obtain an empirically optimized threshold which is then used to
screen for variables to include in the final model. Simulation results
show that the proposed variable selection technique enjoys superior
performance compared to candidate methods, being amongst those
with the lowest inclusion of noisy predictors while having the highest
power to detect the correct model and being unaffected by correlations
among the predictors. We illustrate the methods by applying them to
a cohort of patients undergoing hepatectomy at our institution.
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1 Introduction

Regression models have become the primary engine for many data analyses,
attempting to explain the variability in the dependent variable by identifying
independent predictors. Due to their popularity, simultaneous model selec-
tion and estimation continues to be one of the most important problems in
applied statistics. It is frequently the case that there are many predictors
to choose from and the literature does not provide a uniform message about
which technique to use to select the variables to include in a model. Sample
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sizes are also limiting, often preventing the inclusion of all the candidate pre-
dictors in the final model. Therefore it is not surprising that many variable
selection approaches have been proposed over the years including significance
filtering, stepwise methods and penalized regression (see Harrell 2001; Miller
2002; Hastie et al. 2009, among others). None of these methods have become
the standard, go-to method, suggesting that there is still substantial room
for improvement.

An ideal variable selection method would include all “true” predictors in
the model while excluding the “noisy” predictors, i.e. those with little or
no independent association with the dependent variable. However, these two
objectives clash with each other as they correspond to the type II and type I
errors in hypothesis testing. As such, there is a tradeoff between maximizing
selection of true predictors (full model) and minimizing selection of noisy
predictors (intercept only model) and a good variable selection procedure has
to strike a balance between these two extremes with the goal of obtaining an
accurate yet parsimonious model.

Another fundamental problem encountered in variable selection is the
tension between variable selection and estimation due to the bias-variance
tradeoff that comes with model complexity: more complex models will have
higher variance and lower bias, while the opposite happens as the model com-
plexity is decreased: simpler models will have higher bias and lower variance
(Hastie et al. 2009). An optimal model will have both low variance and low
bias. Since the expected prediction error on new data can be decomposed
into a bias component, a variance component, and noise (which is beyond our
control), by choosing the model complexity to trade bias off with variance
we, in effect, minimize the test error. This is a desirable goal for a model
selection procedure since we want the model to predict future observations as
well as it predicts the observed data. A mistake to be avoided when estimat-
ing the prediction error is to calculate it on the same data used to estimate
the model parameters as this can result in overfitting, making the predictions
look unrealistically good and degrading the ability of the model to generalize
to a new dataset.

In this article we propose a new technique designed to optimize variable
selection. The method initially involves repeated splitting of the data into
a training and validation dataset, then for each split fitting a sequence of
nested models on the training data (from the simplest model containing the
intercept to the full model), validating the corresponding fitted models in
the validation dataset, and finally choosing the empirical variable selection
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threshold α∗ by minimizing the validation prediction errors averaged over the
different splits. The final model is selected to include all predictors significant
at the α∗-level. By choosing α∗ to minimize the validation sum of squares
(as opposed to using an arbitrary p-value) averaged over repeated validation
datasets splits to avoid overfitting, we expect our procedure to find models
that are both accurate and reliable.

In Section 2 we describe some commonly used model selection techniques
and introduce the proposed methods. In Section 3 we report an extensive
simulation study to evaluate the methods. In Section 4 we apply the methods
to a real dataset and conclude with some final remarks in Section 5.

2 Methods

Consider the following linear regression model, where the ith observation
response variable, Yi, is regressed on the p-dimensional covariate factor Xi =
(1, Xi,1, · · · , Xi,p), for each i = 1, · · · , n

E[Yi|Xi] = Xiβ = β0 + β1Xi,1 + · · ·+ βpXi,p, (1)

where βT = (β0, β1, . . . , βp) is the parameter vector. We assume the n obser-
vations are mutually independent and the responses are Gaussian, Yi|Xi ∼
N(Xiβ, σ

2).

2.1 Some current variable selection procedures

2.1.1 Screening by p-values

A common model selection approach that researchers prefer due to its sim-
plicity is to perform a two-stage approach in which, in the first stage, variables
are screened based on their p-values (either from the individual univariate
analyses or based on their marginal p-value from a model containing all
predictors under investigation) followed by a second stage in which those
predictors meeting a pre-specified threshold of significance (typically 0.05)
in the first stage are included in the final model. One issue with this ap-
proach is that the threshold used for screening is arbitrary and could lead
to an arbitrary model and to potential artifacts as pointed out by Freedman
(1983) and Freedman and Pee (1989) who showed that depending on what
screening level is used spuriously large F statistics and inflated Type I error
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can be obtained. Another shortcoming of this screening technique is that
it attempts to find the best model based solely on the basis of significance
testing without defining a measure of what represents a good model followed
by finding the best model by optimizing this measure (Dziak et al. 2005).

2.1.2 BERDS: Backward elimination via repeated data splitting

Some other conventional variable selection procedures involve stepwise test-
ing such as backward elimination (BE), forward selection (FS) and stepwise
selection (SS). These depend on one or two predetermined thresholds, αstay
and αentry that determine which variables are removed or added to the model.
For example, the BE procedure starts with the full model containing all pre-
dictors and deletes variables from the model one by one (starting with the
one that has the highest p-value greater than αstay) until all the predic-
tors remaining in the model yield F statistics significant at the prespecified
αstay. The FS procedure reverses the backward algorithm by starting with
no variables in the model and adding variables one by one based on their
contribution to the model, adding first the variable that has the largest F
statistic that is significant at the αentry level, and repeating the process by
calculating the F statistics for the variables that have not been included in
the model and checking against the αentry cutoff, until no new predictors can
be added to the model. Once a variable has been added to the model it re-
mains in the model throughout the selection process. The stepwise selection
combines the BE and FS but allows variables to be added or removed at
each stage, so variables that are added early in the process do not necessarily
stay in the final model. The SS proceeds just like the forward selection by
adding predictors in the model one at a time, requiring the F statistic of the
variable to be included to be significant at the αentry cutoff. However after
a variable is added the stepwise selection evaluates the F statistics for the
currently selected variables and removes any that do not meet the criterion
of having an F statistic significant at the αstay threshold.

The issues with stepwise variable selection techniques have been discussed
in numerous articles and a nice summary is provided by Harrell (2001). Some
of these problems involve the bias of the regression coefficients and their
standard errors, sensitivity of the chosen model to collinearity among the
predictors, and the number of candidate predictors affecting the number of
noisy variables being selected in the final model.

To resolve some of the issues encountered by stepwise approaches, Thall
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et al. (1992) introduced the backward elimination via cross-validation (BECV)
technique. This method employs K-fold cross-validation to first find an em-
pirical threshold α∗ by minimizing the backward elimination cross-validation
sum of squares, then performing backward elimination on the entire dataset
using α∗ as the αstay threshold. BECV was shown to be effective at screen-
ing out noisy predictors at the expense of failing to include true predictors
in many settings due to the fact that the cross-validation sum of squares is
very sensitive to the particular K partitions the data is split into. Moreover,
it was noticed that the cross-validation sum of squares displays a high de-
gree of local variation and thus may have multiple local minima. To improve
upon these shortcomings, Thall et al. (1997) introduced the backward elimi-
nation via repeated data splitting method (BERDS) that modifies BECV by
performing repeated data splitting in place of K-fold cross-validation. Specif-
ically, first the data are partitioned in two sets, half for estimation (E) and
half for validation (V) purposes and an exhaustive backward elimination is
performed on the estimation data. For each p-value threshold used in BE,
the corresponding model from E is fitted in V and the validation sum of
squares is computed. This process is repeated m times and the α threshold
minimizing a (trimmed) average of the m sums of squares is chosen as the
empirical cutoff to be used as αstay when applying BE on the full dataset to
obtain the final model. BERDS also modified the BECV by using a trimmed
mean of the m objective functions as well as truncating the domain of the
thresholds α to reduce the variability in the objective function described ear-
lier. The authors showed that BERDS was superior to BECV with smaller
model error, higher probability of excluding noisy variables and of selecting
each of several independent true predictors.

2.1.3 Shrinkage methods: LASSO and elastic net

As an alternative to handle variable selection and dimensionality reduction in
the case of large p small n datasets, regularization and shrinkage techniques
have been developed. Some of the most commonly used shrinkage techniques
that also perform variable selection are the LASSO and the elastic net. The
elastic net solves the following regularization:

min
β0,β

(
1

2n

n∑
i=1

(Yi − β0 −Xiβ)2 + λ1Pλ2(β)

)
, (2)

5

Hosted by The Berkeley Electronic Press



where

Pλ2(β) =
(1− λ2)

2
‖β‖22 + λ2‖β‖1 =

p∑
j=1

(
(1− λ2)

2
β2
j + λ2|βj|

)
, (3)

with λ1 nonnegative and λ2 taking values between 0 and 1. The elastic net
penalty is controlled by λ2 and bridges the gap between Lasso (λ2 = 1)
and ridge regression (λ2 = 0), with values in between 0 and 1 interpolating
between the L1 norm of β and the squared L2 norm of β. The regularization
parameter λ1 controls the amount of shrinkage (0 is no penalty and ∞ is
complete penalty) and thus as λ1 increases Lasso sets more coefficients to
zero resulting in a more parsimonious model. Elastic net performs better
than Lasso in the presence of correlated predictors for which Lasso tends
to pick one and discard the others (Zou and Hastie 2005). LASSO and the
elastic net were designed to deal with large p small n settings, and even
though in this paper we focus attention on small to moderate p settings, we
included these shrinkage techniques in our simulation study since they are
widely used.

2.2 Selection Threshold OPtimized Empirically via
Splitting (STOPES)

We combined the simplicity of the screening by p-values approach described
in Section 2.1.1 with the advantages of deriving an empirical threshold as in
BERDS and propose a new variable selection procedure that uses attributes
of the two methods by first deriving an empirically optimized cutoff and then
using this cutoff as a screening threshold to determine which variables to
include in the final model. Specifically, we first randomly split the data into
halves, one half for estimation and one half for validation. We then obtain
the p-values for each simple regression containing one of the p predictors,
fitted on the estimation data, and sort them in increasing order. Starting
with the model containing only an intercept, we then fit the model containing
the most significant predictor, followed by the model containing the top two
most significant predictors, and so on until we fit the full model containing
all predictors. For each of these models we obtain the predicted values and
compute the corresponding prediction error sum of squares based on the
validation dataset (called validation sum of squares for simplicity). This
process is repeated m times and the optimized cutoff α∗ is found to be the
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threshold that minimizes the objective function defined as the average of the
validation sums of squares over the m repeated splits.

The challenge in minimizing this objective function lies in the fact that
it displays a high degree of local variability. To smooth the function and
alleviate the impact of such local fluctuations we truncated the domain of α
to reduce local variation near 0 and above 0.5 and used a trimmed averaged
for the sums of squares (as in Thall et al. (1997)). Moreover, the shape of the
objective function is of such nature that typically after several steep drops,
the function gradually decreases with smaller drops or rapidly rises back up
again. Consequently, rather than choosing the global minimum as the cutoff,
the desired threshold was chosen as the first local minimum following the
last steep drop in SSV (α) to reduce the effect of such local variation. Thall
et al. (1992) observed the same behavior and proposed as a compromise to
minimize such an irregularly shaped function, the “.25-s rule” in which α∗ is
defined to be the smallest value of α such that SSV (α∗) ≤ SSV (α0) + .25s
where α0 is the true minimum of the objective function SSV (α) and s2 is an
empirical estimate of the variance of SSV (α0).

Our preliminary simulations in which different multipliers other than
.25 were used, indicated that the “.25-s” rule functioned satisfactorily. We
adopted it in our algorithm for determining the optimized cutoff α∗ and
denoted this method as STOPES-min.

While the “.25-s” rule was observed to perform well (see Section 3), its
arbitrariness led us to investigate alternatives to identify the optimal cut-
point α∗ in the presence of irregular local fluctuations and proposed for this
purpose employing the Pruned Exact Linear Time (PELT) which is an exact
search algorithm introduced by Killick et al. (2012) to search for change-
points. Note that we also investigated other changepoint algorithms such as
binary segmentation (Scott and Knott 1974) and segment neighborhoods al-
gorithms (Auger and Lawrence 1989) but PELT was selected for its superior
performance. Our proposed variable selection technique employs PELT for
the minimization step and is denoted STOPES (Selection Threshold OPti-
mized Empirically via Splitting).

The proposed algorithm is described step by step below:

1. Randomly split the data into halves: one half for estimation (E) and
one half for validation (V).

2. For j = 1, · · · , p, using E, fit each univariable regression modelE(Y |Xj) =
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β0j + βjXj. Let αj be the p-value for testing H0j : βj = 0. Order the
p-values in increasing order, α(1), · · · , α(p) and let α(p+1) = 1.

(a) For each k = 1, · · · , (p+ 1), use α(k) as the threshold that screens
which variables are included in the model and fit the corresponding
nested models on E:

E[Yi|Xi,Sk
] = Xi,Sk

βSk
, i ∈ E (4)

where Sk = {j : αj < α(k)}. In other words, S1 would result
in a model containing only the intercept, S2 would add to the
intercept the most significant predictor, Sk would result in a model
containing all predictors for which αj < α(k), and Sp+1 would

correspond to the full model. Let β̂Sk,E be the corresponding
fitted coefficient vector from the regression in (4).

(b) For each k = 1, · · · , (p+ 1), obtain the validation sum of squares
corresponding to the particular (E, V) split and to the threshold
α(k):

SSE,V (α(k)) =
∑
i∈V

[Yi −Xi,Sk
β̂Sk,E]2, (5)

where Sk and β̂Sk,E are defined as in the step above. Note that
the validation sum of squares is a step function with jumps at each
p-value α(1), · · · , α(p).

3. Repeat steps (1) and (2) m times.

(a) At each of r = 1, · · · ,m record the observed p-values and the
corresponding validation sums of squares: α1,r, · · · , αp,r and
SSEr,Vr(α(k),r), for k = 1, · · · , (p + 1). Sort in increasing order
the p ∗m vector α containing the observed p-values at each of the
m splits and use the step function definition (5) of the validation
sums of squares to interpolate the sums of squares at each of these
p ∗ m observed thresholds: for each r = 1, · · · ,m let this p ∗ m
vector of validation sums of squares be denoted by SSr(α).

(b) At each split, denote αmin,r = min{α1, · · · , αp} and αmax,r =
max{α1, · · · , αp} for r = 1, · · · ,m. Let αmin be the 90th quantile
of {αmin,1, · · · , αmin,m} and αmax be the 10th quantile of {αmax,1,
· · · , αmax,m}. Truncate the range of α between αmin, αmax and
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take a 20% trimmed mean of {SS1(α), · · · , SSm(α)} over this
truncated range of α. Denote this truncated and trimmed mean
as SSV (α) which is the objective function to be minimized.

4. (a) STOPES-min: Employ the “.25-s” rule to minimize SSV (α): α∗

is defined to be the smallest value of α such that SSV (α∗) ≤
SSV (α̂0) + .25s where α̂0 is the observed global minimum of the
objective function SSV (α) and s2 is defined as the variance of
{SSE1,V1(α̂0), · · · , SSEm,Vm(α̂0)}.

(b) STOPES: Employ the PELT algorithm to identify the first change-
point in SSV (α) and denote that as α∗.

5. Include in the final model all predictors significant at the α∗-level and
fit the model on the full dataset.

3 Simulation Study

3.1 Simulation Design

We conducted extensive simulations to investigate the properties of the pro-
posed methods. We generated the covariates X1, · · · ,Xp and the residuals,
ε = Y − E(Y|X) as iid N(0, 1). The different configurations studied are
chosen to mimic typical datasets encountered in practice for moderate sam-
ple sizes and numbers of predictors (see Table 1). Specifically, we varied
the sample size, n, to be 100, 200, or 300 and assumed 10, 20, or 30 noisy
predictors in the model. Models M1 through M4 allowed scenarios in which
either a single true predictor, or 2 true predictors, or 3 true predictors were
included in the model, while models M5-M10 included 3 true predictors.
Model 1 assumed no correlation among the predictors, while models M2,
M3 and M4 assumed the noisy predictors correlated with each other with
correlation ρn = 0.3, 0.6, 0.8 respectively (and uncorrelated with the true
predictors). Models M5, M6, and M7 allowed 2 of the 3 true predictors to
be correlated with each other with correlation ρt = 0.3, 0.6, 0.8 respectively,
while models M8, M9, and M10 further assumed that all noisy predictors
are correlated with each other with correlation ρn = 0.6. The values of the β
parameters (displayed in Table 2) were chosen based on empirical calibration
studies such that for each particular configuration a 0.05 level t-test rejects
the null hypothesis that β = 0 with 0.99 probability (see Thall et al. 1992).
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We have also studied the null hypothesis under which none of the p pre-
dictors were related to the response Y (i.e. β = 0, model M0 in Table 1)
and have reported the proportion of predictors that were significant at the
0.05 level in the final regression. This proportion should be close to 0.05 if
the significance tests of regression coefficients of the variables included in the
final model preserved a true Type I error rate of 5%. Note that this quan-
tity is not available for LASSO and the elastic net as there is no statistical
significance testing produced for these methods.

We compared the performance of the different methods investigated in
terms of: (1) average number of noisy predictors included in the final model;
(2) probability of including all true predictors in the selected model; (3)
proportion of times the selected model was the correct model; (4) bias of
the coefficients β; and (5) the model error 1

n

∑n
i=1[Ŷi − E(Yi|Xi)]

2, where Ŷi
is the ith fitted value (estimated response). For the model error, we report
the average ratios between the model error (as defined above) of the selected
model and the model error of the true model (i.e. from fitting a model
that includes only the true predictors). Operating characteristics were also
evaluated by increasing the sample size while keeping the true model fixed
to assess the asymptotic behaviour of the methods.

We conducted 1000 simulations for each scenario and averaged results
across simulations to compare the operating characteristics of the methods in-
vestigated. Computations were performed in R using Ubuntu system. We
used the glmnet R package to fit Lasso with cross-validation for the selection
of λ while we assumed α = 0.5 when fitting the elastic net. For the imple-
mentation of the proposed method STOPES, we have used the R package,
changepoint with the cpt.meanvar function. BERDS was implemented by
calling in R the C functions provided at https://biostatistics.mdander-
son.org/softwaredownload.

3.2 Simulation Results

As seen in Table 3, for all methods the significance tests of regression co-
efficients of the final model preserve the Type I error at 5%, with BERDS
being very slightly anti-conservative, while the other methods exhibiting a
somewhat conservative behaviour for scenarios in which the ratio of sample
size relative to the number of predictors (n/p) is the smallest (m = 30).

Simulation results are graphically summarized in Figures 1 through Fig-
ure 4 and further detailed in the Supplementary Tables (note that, unless
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noted otherwise, the elastic net had comparable performance with that of
LASSO and for simplicity it was omitted from the figures, but full results
can be found in the Supplementary Tables). The STOPES method outper-
forms or has similar performance to the other methods for all the simula-
tions investigated, while the STOPES-min method follows closely behind.
All methods have similar model error across simulations (Figures 1) except
for Lasso which displays a much larger model error likely due to the larger
bias in the Lasso estimates as well as selecting some of the most parsimo-
nious models (on average Lasso and STOPES included in the model the least
amount of noisy predictors). BERDS and the univariate screening at 0.05
level result in the most number of noisy predictors selected in the final mod-
els (Figures 2), regardless of the configuration, with the univariate screening
tripling the number of selected noisy predictors as the number of total noisy
predictors increases from 10 to 30 (about 0.5 noisy predictors for 10 noisy
predictors, increasing to about 1 noisy predictor selected out of 20 noisy
predictors and tripling to about 1.5 noisy predictors out of 30 predictors).

Except for LASSO, all methods have satisfactory performance in terms
of including the true predictors in the final models (Figures 3), with BERDS
and the univariate screening having the highest proportion of true predictors
included (but as seen above at the expense of selecting more noisy predictors
as well) while LASSO’s ability to include all the true predictors diminishes
with the increased sample size (as it moves further away from the small n
large p scenario for which LASSO performs best).

The most challenging criterion is the proportion of times the different
techniques selected the true model as the final model, i.e. included all the
true predictors and none of the noisy predictors (Figures 4). In all the sce-
narios studied, the STOPES had the highest power for this criterion except
for a few scenarios in which the STOPES-min was superior. BERDS consis-
tently exhibited lowest power among most settings. As the number of true
predictors increased, the power of including the exact model diminished (for
more details see the Supplementary Tables).

Introducing correlation among predictors did not change substantially
the operating characteristics of STOPES and STOPES-min whereas for the
other methods the performance deteriorated particularly for BERDS and the
univariate screening and especially for increasing numbers of noisy predictors.
As expected, for scenarios with highest correlated true predictors (Models 7
and 10), the elastic net is more powerful than LASSO in selecting exactly
the true model (see Supplementary Tables 7 and 10).
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All methods except for LASSO and the elastic net exhibited small bias
of the estimated coefficients (see Supplementary Table 11). The empirically
chosen cutpoints for the two proposed methods tend to be closer together
than those produced by BERDS for most scenarios investigated, especially
as the sample size n increases (Supplementary Table 12).

Encouragingly, as seen in Figure 5, the proposed methods showed excel-
lent asymptotic behaviour showing model error decreasing, power increasing
towards 1, and number of noisy predictors dropping towards zero with in-
creasing sample size, and converging towards an asymptote at a much faster
rate than the other competitors: by sample sizes of n = 300, STOPES and
STOPES-min have stabilized to an asymptote while for the other methods
the power was still below 1 and the number of noisy predictors above 0 with
sample sizes as large as n = 500. Similar convergence patterns were observed
for the other configurations studied (data not shown).

4 Data Analysis

We applied the proposed methods to a dataset consisting of all adult patients
that underwent partial hepatectomy at Memorial Sloan Kettering Cancer
Center between 2002 and 2003 (n=314). This is a subset of a larger study
population reported in Sima et al. (2009) which included all patients un-
dergoing partial hepatectomy between 1995 and 2003; we only focused on a
subset of the original data in order to illustrate the methods on a dataset
that resembles the sample sizes used in the simulation study. The outcome
of interest for this analysis was the amount of blood loss experienced dur-
ing surgery. To achieve normality we have used the log-transformed blood
loss measurements. There were 22 available preoperative factors that we
investigated as potential predictors.

Since all the investigated methods (except the Univariate p < 0.05) in-
volve random sampling from the data (and thus a re-run of the analysis can
potentially result in a different model), we applied the methods 100 times
and summarized the final models selected by the different methods and the
number of times they were selected. Furthermore, for STOPES, STOPES-
min, and BERDS we varied m, the number of splits, to be 20, 100, and 1000
to study whether the model converges to a single final model as expected
when m→∞. These results are reported in Table 4.

As we increased the number of splits, the STOPES and STOPES-min
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methods converged to a single final model (the same model for both meth-
ods when m = 1000 splits were employed), while LASSO and elastic net
were divided between four different models. Out of the 100 runs, BERDS
selected about three quarters of the time a two-variable model, while the
remaining times it selected much bigger models. Except for STOPES and
STOPES-min, the models selected predominantly by the other methods were
all different from each other but they all included the number of segments
resected indicating the importance of this predictor.

Summaries (median and IQR) of the cutpoints selected by the different
methods are reported in Table 5. STOPES-min and STOPES display very
stable behavior with similar distributions for the optimal cutpoints selected
with tight ranges indicating convergence, whereas BERDS results in wider
ranges that do not improve as the number of splits is increased.

The models predominantly picked by STOPES and STOPES-min have
low residual sums of squares without growing too large in size (as more vari-
ables are added into the model, the residual sum of squares becomes smaller
at the expense of more complex models). We also report the adjusted R2 but
there was not much separation for this criterion among the different mod-
els and there was still a lot of variability unexplained even after accounting
for all the predictors in the model (adjusted R2 of 0.16 for the full model)
indicating that blood loss during the surgery is a difficult outcome to predict.

In conclusion, the data analysis confirms the findings from the simulation
study, with our new methods resulting in models that provide tight fit to
the data (with residual sum of squares close to the plateau values beyond
which further lowering the RSS may not warrant increasing the complexity
of the model; see the type I/type II errors tradeoff discussed in Section 1).
Moreover, as we increased the number of splits performed, these methods
converged to a single final model contrary to the other methods for which
convergence was not attained. This is in line with the findings in the simula-
tion study where we observed that the proposed methods already converged
to an asymptote with sample sizes of 300, while the others were converging
at a much slower rate.

5 Discussion

Many variable selection approaches have been proposed over the years, yet
model selection continues to pose difficulty to researchers. In this article we

13

Hosted by The Berkeley Electronic Press



introduce a new model selection method which presents a number of advan-
tages over the existing methods. By deriving an empirical p-value threshold
via minimizing the prediction error of a sequence of nested models (from
an intercept only model to a full model), our method avoids the shortcom-
ings of the univariable screening approach as well as of other techniques that
use arbitrary cutoffs to decide which variables to include in the model. It
also bypasses the risk of omitting correlated true predictors or predictors
that are important only after adjusting for other variables. Furthermore,
using repeated data splitting to estimate the objective function to be min-
imized it avoids overfitting and results in adequate yet parsimonious model
selection with good prediction ability. Indeed, we have used extensive sim-
ulations to study the finite sample properties of the two new methods and
have demonstrated that they have superior performance compared to com-
petitor methods, with low model errors and with highest power of detecting
the correct model while including the least amount of noisy predictors in
the model. Due to its general nature in the minimization step and to its
excellent performance, we recommend STOPES as the preferred choice to
STOPES-min.

Encouragingly, with increasing sample size the proposed method had op-
erating characteristics stabilizing to an asymptote and converging to a single
final model at smaller sample sizes than the other methods. Note that in
our simulations we have used m = 20 splits (Thall et al. 1997) to estimate
the threshold α∗. However for data analysis we recommend using a larger
number of repeated splits (such as m = 500, 1000 recognizing that for certain
datasets the methods will converge to a final model at a faster or slower pace.

The scenarios considered here were meant to mimic typical scenarios en-
countered in practice with moderate sample sizes and moderate numbers of
predictors, and thus our methods were not specifically examined under other
scenarios such as large p small n problems.

The algorithm is straightforward and easy to implement using readily
available software; R code is provided in the Supplementary Material and
can be obtained from the authors per request, while building an R package
is underway. Extensions to other regression types such as Cox regression
or logistic regression are possible by changing the optimization objective
function (for example using concordance index for Cox models and AUC for
logistic regression) and are currently being investigated.
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Table 1: Different configurations used in simulations.

Model Number of Number of Sample size Correlation
True Predictors Noisy Predictors n

M0 0 10, 20, or 30 100, 200, or 300 None
M1 1, 2, or 3 10, 20, or 30 100, 200, or 300 None
M2 1, 2, or 3 10, 20, or 30 100, 200, or 300 ρn = 0.3
M3 1, 2, or 3 10, 20, or 30 100, 200, or 300 ρn = 0.6
M4 1, 2, or 3 10, 20, or 30 100, 200, or 300 ρn = 0.8
M5 3 10, 20, or 30 100, 200, or 300 ρt = 0.3
M6 3 10, 20, or 30 100, 200, or 300 ρt = 0.6
M7 3 10, 20, or 30 100, 200, or 300 ρt = 0.8
M8 3 10, 20, or 30 100, 200, or 300 ρt = 0.3, ρn = 0.6
M9 3 10, 20, or 30 100, 200, or 300 ρt = 0.6, ρn = 0.6
M10 3 10, 20, or 30 100, 200, or 300 ρt = 0.8, ρn = 0.6

Table 2: True coefficients β1, β2, β3 under different sample sizes and correla-
tion structures.

Sample size Correlation
ρt = 0 ρt = 0.3 ρt = 0.6 ρt = 0.8

n=100 0.58 (0.42, 0.42, 0.54) (0.33, 0.33, 0.54) (0.29, 0.29, 0.54)
n=200 0.34 (0.26, 0.26, 0.34) (0.21, 0.21, 0.34) (0.19, 0.19, 0.34)
n=300 0.27 (0.21, 0.21, 0.27) (0.17, 0.17, 0.27) (0.15, 0.15, 0.27)
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Table 5: Median and interquartile range of the p-value cutpoints selected by
the different methods over the 100 runs of the blood loss data analysis.

m = 20 m = 100 m = 1000
Method

STOPES-min 0.0013 (0.0008, 0.0023) 0.0013 (0.001, 0.0016) 0.0014 (0.0013, 0.0015)
STOPES 0.0016 (0.001, 0.0026) 0.0015 (0.001, 0.0019) 0.0014 (0.0013, 0.0015)
BERDS 0.0078 (0.0029, 0.0384) 0.01 (0.003, 0.07) 0.01 (0.003, 0.047)
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