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Abstract

In a regression setting, it is often of interest to quantify the importance of various features in
predicting the response. Commonly, the variable importance measure used is determined by the
regression technique employed. For this reason, practitioners often only resort to one of a few re-
gression techniques for which a variable importance measure is naturally defined. Unfortunately,
these regression techniques are often sub-optimal for predicting response. Additionally, because the
variable importance measures native to different regression techniques generally have a different in-
terpretation, comparisons across techniques can be difficult. In this work, we study a novel variable
importance measure that can be used with any regression technique, and whose interpretation is
agnostic to the technique used. Specifically, we propose a generalization of the ANOVA variable
importance measure, and discuss how it facilitates the use of possibly-complex machine learning
techniques to flexibly estimate the variable importance of a single feature or group of features. Using
the tools of targeted learning, we also describe how to construct an efficient estimator of this mea-
sure, as well as a valid confidence interval. Through simulations, we show that our proposal has good
practical operating characteristics, and we illustrate its use with data from a study of the median
house price in the Boston area, and a study of risk factors for cardiovascular disease in South Africa.
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1 Introduction

Suppose that the observed data include independent drawsO1, O2, . . . , On from an unknown distribution

P0 known only to lie in a potentially rich modelM, and that the data unit Oi consists of (Xi, Yi), where

Xi := (Xi1, Xi2, . . . , Xip) ∈ Rp is a covariate vector and Yi ∈ R is the outcome of interest. It is often of

interest to understand the association between Y and X under P0. For this purpose, it may be useful

to consider the conditional mean function µP0
, where for each P ∈M we define

µP (x) := EP (Y | X = x) . (1)

There are many tools for estimating µP0
: classical parametric techniques (e.g., linear regression),

and more flexible nonparametric or semiparametric methods, including smoothing splines (Reinsch,

1967), random forests (Breiman, 2001), generalized additive models (Hastie and Tibshirani, 1990),

loess smoothing (Cleveland, 1979), artificial neural networks (Barron, 1989), and kernel smoothing

(Wand and Jones, 1994), among many others. Once a good estimate of µP0 is obtained, it is often of

scientific interest to identify the features that contribute most to the variation in µP0
. For any given

set s ⊆ {1, 2, . . . , p} and distribution P ∈M, we may define the reduced conditional mean

µP,s(x) := EP
(
Y | X(−s) = x(−s)

)
, (2)

where for any vector v and set r of indices the symbol v(−r) denotes the vector of all components of

v with index not in r. Here, the set s can represent a single element or a group of elements. The

importance of the elements in s can be evaluated by comparing µP0 to µP0,s. This strategy will be

leveraged in this paper.

The ANOVA decomposition is the main classical tool for evaluating variable importance. There, µP0

is assumed to have a simple parametric form. While this facilitates the task at hand considerably, the

conclusions drawn can be misleading in view of the high risk of model misspecification. For this reason,

it is increasingly common to use either nonparametric or machine learning-based regression methods,

or both, to estimate µP0 ; in such cases, classical ANOVA results do not apply.

There has been recent work on evaluating variable importance without relying on overly strong mod-

eling assumptions. Proposals for flexible variable importance assessment can generally be categorized

as being either (a) intimately tied to a specific estimation technique for the conditional mean function
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or (b) agnostic to the estimation technique used. Variable importance measures falling into the former

category include the native variable importance measure for random forests (Breiman, 2001), variable

importance in neural networks (see, e.g., Olden et al., 2004), and ANOVA in linear models. Among

these, ANOVA alone appears to allow formal statistical inference. Additionally, even restricting our

attention to methods for which a variable importance measure is naturally defined, it is generally not

possible to directly compare the importance assessment stemming from these different methods: they

are usually measuring different quantities and thus have different interpretations. Examples of estima-

tion technique-agnostic variable importance measures include nonparametric extensions of R2 (Doksum

and Samarov, 1995); and the risk difference, EP0
(Y | A = a,W = w) − EP0

(Y | A = 0,W = w) for

X = (A,W ), or expected risk difference, EP0{EP0(Y | A = a,W = w) − EP0(Y | A = 0,W = w)}

(van der Laan, 2006), with extensions studying the best linear approximation of the risk difference

(Chambaz et al., 2012) and interval-censored survival outcomes (Sapp et al., 2014). These methods

all allow formal inference, but they may not have a desirable interpretation in the context of many

scientific problems. Despite their broad potential applicability, many of these proposals have only been

studied in the context of specific estimation strategies. For example, Doksum and Samarov (1995) only

consider the use of kernel-based estimators of the underlying regression function, though recent work

extends their results to local polynomial regression (Huang and Chen, 2008), functional regression (Yao

et al., 2005), and different test statistics for the null hypothesis of no variable importance (Fan and Li,

1996).

In our view, an ideal variable importance measure should (i) be entirely agnostic to the estimation

technique, (ii) allow formal inference, and (iii) provide an interpretation that is well suited to scientific

applications. In this work, we propose a variable importance measure that satisfies each of these criteria.

In particular, we consider inference on the variable importance measure

ψ0,s :=

∫
{µP0(x)− µP0,s(x)}2 dP0(x)

varP0
(Y )

. (3)

For a vector v and a subset r of indices, we denote by vr the vector of all components of v with index

in r. Then, we may interpret (3) as the additional proportion of variability in the outcome explained

by including Xs in the conditional mean. This follows from the fact that we can express ψ0,s as

EP0

[
{Y − µP0

(X)}2
]

varP0
(Y )

−
EP0

[
{Y − µP0,s(X)}2

]
varP0

(Y )
,
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the difference in the R2 either obtained using the full set of covariates or the reduced set of covariates

only. Thus, the parameter we focus on can be seen as a simple generalization of the classical R2 measure

to a nonparametric model. This parameter is a function of P0 alone, in that it describes a property of

the true data-generating mechanism and not of any particular estimation method.

Care must be taken in building point and interval estimators for ψ0,s when µP0 and µP0,s are not

known to belong to simple parametric families. In particular, when µP0
and µP0,s are estimated using

flexible methods, simply plugging estimators of these regression function estimates into (3) will not

yield a regular and asymptotically linear, let alone efficient, estimator of ψ0,s. In this manuscript, we

propose a simple method that, given sufficiently accurate estimators of µP0
and µP0,s, yields an efficient

point estimator for ψ0,s and a confidence interval with asymptotically correct coverage. The approach

we employ is based on ideas from the theory of semiparametric estimation and inference.

We present some properties of our parameter of interest and give our proposed estimator in Section 2.

In Section 3, we provide empirical evidence that our estimator outperforms the naive plug-in estimator

in settings where the covariate vector is low- or moderate-dimensional. In Section 4, we illustrate

the use of our method in the context of the benchmark Boston housing study data. In Section 5,

we apply our method on data from a retrospective study of heart disease in South African men. We

provide concluding remarks in Section 6. Technical details are provided in Part 1 of the Supplementary

Materials.

2 Variable importance in a nonparametric model

2.1 Parameter of interest

We work in a fully unrestricted, and hence nonparametric, model M. For given s ⊆ {1, 2, . . . , p} and

P ∈M, we define the statistical functional

Ψs(P ) :=

∫
{µP (x)− µP,s(x)}2 dP (x)

varP (Y )
(4)

using the conditional means defined in (1) and (2); this is the nonparametric measure of variable

importance we focus on. Using observations O1, O2, . . . , On independently drawn from P0 ∈ M, our

objective is to make efficient inference about the true value ψ0,s := Ψs(P0) of the variable importance

measure corresponding to the components of X with index in s, as implied by the data-generating
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mechanism P0. If we are interested in a parsimonious description of the interplay between outcome Y

and covariate vector X, determining which features of X are most important may be of interest, and

inference on ψ0,s for various choices of s may help in determining precisely this.

We note that this parameter involves two parts. First, the numerator of ψ0,s consists of the squared

difference in conditional means, averaged over the marginal distribution of the features. On one hand,

if the two conditional means are quite different, this expected difference is large. Hence, information

is lost by excluding the components Xs when using the conditional mean to explain the outcome Y .

On the other hand, if the difference is small, not much information may be lost, and perhaps using the

covariates in X(−s) may suffice. The numerator can then be interpreted as the amount of variability

in the outcome Y explained by including Xs in the conditional mean. Second, the denominator of ψ0,s

is the total variability of Y . It follows then that ψ0,s is a proportion between 0 and 1. In particular,

it is on the same scale for each s, which allows us to easily compare values for different covariates or

groups of covariates. As such, ψ0,s is indeed a generalization of ANOVA-derived variable importance,

where we consider the ratio of the amount of variability explained by including Xs in the regression to

the total variability of the outcome. Because efficient estimation of varP0
(Y ) requires no work at all –

in an unconstrained model, the empirical variance estimator is optimal – we will only need smoothing

techniques and flexible estimation methods to estimate the numerator of ψ0,s.

We now discuss some properties of Ψs that are relevant to building an efficient estimator of ψ0,s.

Specifically, we require that the functional (4) be appropriately differentiable, and that a functional

Taylor expansion holds with negligible higher-order terms.

The functional (4) is pathwise differentiable (see, e.g., Bickel et al., 1998), a result that we prove

in Part 1 of the Supplementary Material. Pathwise differentiable functionals generally admit a conve-

nient functional Taylor expansion that can be used to characterize the asymptotic behavior of plug-in

estimators based on the functional. An analysis of the pathwise derivative allows us to determine

the efficient influence function (EIF) of the functional relative to the statistical model (Bickel et al.,

1998). The EIF plays a key role in establishing efficiency bounds for regular and asymptotically lin-

ear estimators of the true parameter value, and most importantly, in the construction of efficient es-

timators, as we will highlight below. For convenience, we will denote the numerator of Ψs(P ) by

Φs(P ) :=
∫
{µP (x)− µP,s(x)}2 dP (x). The EIF of Φs and of Ψs relative to M are given explicitly in

the following lemma.

Lemma 1. The parameters Φs and Ψs are pathwise differentiable at each P ∈ M relative to M, with
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efficient influence functions DP,s and D∗P,s relative to M respectively given by

o 7→ DP,s(o) := 2{y − µP (x)}{µP (x)− µP,s(x)}+ {µP (x)− µP,s(x)}2 − Φs(P ) , (5)

o 7→ D∗P,s(o) :=
2{y − µP (x)}{µP (x)− µP,s(x)}+ {µP (x)− µP,s(x)}2

varP (Y )
− Φs(P )

{
y − EP (Y )

varP (Y )

}2

. (6)

The evaluation of Φs at P ∈M can be expressed as

Φs(P ) = Φs(P0) +

∫
DP,s(o)d(P − P0)(o) +Rs(P, P0) , (7)

where Rs(P, P0) is a remainder term from this first-order expansion around P0. The explicit form of

Rs(P, P0) is provided in Section 2.3 and can be used to algebraically verify this representation. For any

given estimator P̂n ∈M of P0, we can write, using elementary algebraic manipulations,

Φs(P̂n)− Φs(P0) =

∫
DP̂n,s

(o)d(P̂n − P0)(o) +Rs(P̂n, P0)

=

∫
DP̂n,s

(o)d(Pn − P0)(o) +Rs(P̂n, P0)− 1

n

n∑
i=1

DP̂n,s
(Oi)

=
1

n

n∑
i=1

DP0,s(Oi) +

∫ {
DP̂n,s

(o)−DP0,s(o)
}
d(Pn − P0)(o) +Rs(P̂n, P0)− 1

n

n∑
i=1

DP̂n,s
(Oi) , (8)

where Pn is the empirical distribution based on O1, O2, . . . , On, and we have made repeated use of

the fact that DP,s(O) has mean zero under P for any P ∈ M. This representation is critical for

characterizing the behavior of the plug-in estimator Φs(P̂n). Its four distinct summands can be studied

separately. The first summand is an empirical average of mean-zero transformations of O1, O2, . . . , On

– this term will determine the asymptotic behavior of our eventual estimator, as discussed in Section

2.2. The second summand is an empirical process term that we can show is asymptotically negligible

under certain conditions on P̂n. The third term is a second-order remainder term that we can similarly

show is asymptotically negligible. The fourth term can be thought of as the bias incurred from flexibly

estimating the conditional means (1) and (2), and in general, it will tend to zero slowly. This bias term

motivates our choice of estimator for ψ0,s in Section 2.2. Specifically, we will choose one particular

method of correcting for this bias term, and the large sample properties of our proposed estimator will

then be determined by the first summand in (8).
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2.2 Estimation procedure

Writing the numerator Φs of the parameter of interest as a statistical functional suggests a natural

estimation procedure. If we have estimators µ̂ and µ̂s of µP0
and µP0,s, respectively – obtained through

any method that we choose, including machine learning techniques – a natural plug-in estimator of

φ0,s := Φs(P0) is given by

φ̂naive,s :=

∫
{µ̂(x)− µ̂s(x)}2 dPn(x) =

1

n

n∑
i=1

{µ̂(Xi)− µ̂s(Xi)}2 ,

where Ȳn is the empirical mean of Y1, Y2, . . . , Yn. In turn, this suggests using

ψ̂naive,s :=
φ̂naive,s
varPn(Y )

=
1
n

∑n
i=1{µ̂(Xi)− µ̂s(Xi)}2
1
n

∑n
i=1(Yi − Ȳn)2

as a simple estimator of ψ0,s. We refer to this as the naive estimator, because this simple estimator

involves hidden tradeoffs. On one hand, it is easy to construct given the estimators µ̂ and µ̂s. On

the other hand, the naive estimator does not generally enjoy good inferential properties. If a flexible

technique is used to estimate µP0
and µP0,s, tuning parameters must generally be chosen to ensure an

adequate bias-variance tradeoff. Construction of µ̂ and µ̂s usually entails selecting tuning parameter

values to achieve an optimal bias-variance tradeoff for µP0
and µP0,s, respectively. However, we view

estimation of the regression functions as a nuisance, since we are ultimately interested in estimating

ψ0,s. Hence, we need to tailor the estimation procedure to make the appropriate bias-variance tradeoff

for estimating ψ0,s rather than each of µP0
and µP0,s. Without such tailoring, the estimator ψ̂naive,s

is generally overly biased and thus neither efficient nor regular and asymptotically linear. This is

problematic, in particular, because it renders the construction of valid confidence intervals extremely

difficult, if not impossible.

We propose to use the simple corrected estimator

φ̂n,s := φ̂naive,s +
1

n

n∑
i=1

DP̂n,s
(Oi)

of φ0,s, which, in view of (8), will be asymptotically efficient under certain regularity conditions. This

estimator, which is often referred to as the one-step estimator, is obtained by correcting for the excessive

bias of the naive plug-in estimator φ̂naive,s. Upon close examination, we note that to compute φ̂n,s it is

not necessary to obtain an estimator P̂n of the entire distribution P0 but rather to construct estimators µ̂

7
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and µ̂s of µP0
and µP0,s. As indicated before, the variance of Y under P0 may simply be estimated using

the empirical variance. It is easy to verify algebraically that the resulting estimator of ψ0,s simplifies to

ψ̂n,s =
φ̂n,s

varPn(Y )
= ψ̂naive,s +

∑n
i=1 2{Yi − µ̂(Xi)}{µ̂(Xi)− µ̂s(Xi)}∑n

i=1(Yi − Ȳn)2
. (9)

This estimator adjusts for the inadequate bias-variance tradeoff performed when flexible estimators µ̂

and µ̂s are tuned to be good estimators of µP0
and µP0,s rather than being tuned for the end objective

of estimating ψ0,s.

While we are not constrained to any particular estimation method to construct µ̂ and µ̂s, we have

found one particular strategy to work well in practice. One way to estimate these two conditional

mean functions is to use any specific regression technique to regress the outcome Y on the full covariate

vector X and then on the reduced vector X(−s) of covariates. However, this strategy does not take into

account that the two conditional means are related, and will generally result in incompatible estimates.

Specifically, we have that

EP0
(Y | X(−s)) = EP0

{EP0
(Y | X) | X(−s)} ,

which we can take advantage of to produce the following sequential regression estimating procedure:

1. regress Y on X to obtain an estimate µ̂ of µP0
;

2. regress µ̂(X) on X(−s) to obtain an estimate µ̂s of µP0,s.

The final estimating procedure we recommend for ψ0,s consists of the estimator (9), where the con-

ditional means involved are estimated using flexible regression estimators and this sequential regression

approach.

2.3 Asymptotic behavior of the proposed estimator

By studying the remainder term Rs(P̂n, P0) and the empirical process term, we can establish appropri-

ate conditions on µ̂ and µ̂s as estimators of µP0 and µP0,s under which the proposed estimator ψ̂n,s is

asymptotically efficient. This allows us to determine the asymptotic distribution of the proposed esti-

mator, and therefore, to propose procedures for performing valid inference on ψ0,s. The first result we

present establishes the explicit form of Rs(P, P0) and sufficient conditions on µ̂ and µ̂s that guarantee

that Rs(P̂n, P0) is asymptotically negligible.
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Lemma 2. The linearization (7) holds with second-order remainder term given explicitly by

Rs(P, P0) =

∫
{µP0,s(x)− µP,s(x)}2 dP0(x)−

∫
{µP0(x)− µP (x)}2 dP0(x) .

Furthermore, Rs(P̂n, P0) = oP (n−1/2) if
∫
{µ̂(x)−µP0(x)}2dP0(x) and

∫
{µ̂s(x)−µP0,s(x)}2dP0(x) are

both oP (n−1/2).

Each remainder term is a sum of several terms, each of which is a product of two terms that tend to

zero as sample size grows. Each of these second-order terms can feasibly be made to be oP (n−1/2), even

while using flexible regression techniques, including generalized additive models (Hastie and Tibshirani,

1990), to estimate the conditional mean functions.

The second result we present establishes conditions under which the empirical process term appearing

in (8) is asymptotically negligible.

Lemma 3. Provided
∫
{µ̂(x) − µP0

(x)}2dP0(x) and
∫
{µ̂s(x) − µP0,s(x)}2dP0(x) both tend to zero in

probability, and o 7→ DP̂n,s
(o) falls in a P0-Donsker class (van der Vaart, 2000) with probability tending

to one, it holds that
∫
{DP̂n,s

(o)−DP0,s(o)}d(Pn − P0)(o) = oP (n−1/2).

This empirical process term is negligible under rather weak conditions. Uniform consistency of

µ̂ and µ̂s suffices without the need for minimal rates of convergence. The additional Donsker class

condition requires that the set of possible realizations of µ̂ and µ̂s become sufficiently restricted with

probability tending to one as sample size grows. This condition is satisfied if, for example, the uniform

sectional variation norm (Gill et al., 1995) of DP̂n,s
is bounded with probability tending to one. When

using very flexible regression estimators, there may be reason for concern regarding the validity of the

Donsker class condition. In such cases, a cross-validated version of the one-step procedure involved

in our proposed estimator (see, e.g., van der Laan and Rubin, 2005) can be used to circumvent this

condition altogether. While this cross-validated estimator is only marginally more complex than the

estimator proposed here, we restrict attention to studying the simpler estimator.

The following theorem builds upon these two lemmas to describe the asymptotic behavior of the

proposed estimator.

Theorem 1. Suppose that both
∫
{µ̂(x)−µP0

(x)}2dP0(x) and
∫
{µ̂s(x)−µP0,s(x)}2dP0(x) are oP (n−1/2),

and that o 7→ DP̂n,s
(o) falls in a P0-Donsker class with probability tending to one. Then, the proposed

estimator ψ̂n,s is asymptotically linear with influence function D∗P0,s
. In particular, this implies that
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(a) ψ̂n,s tends to ψ0,s in probability, (b) ψ̂n,s is regular, and if ψ0,s ∈ (0, 1), (c) n1/2(ψ̂n,s − ψ0,s) tends

in distribution to a mean-zero normal random variable with variance σ2
0,s :=

∫
{D∗P0,s

(o)}2dP0(o).

A natural plug-in estimator of the standard error of ψ̂n,s is given by

σ̂n,s :=

[
1

n

n∑
i=1

{D̂∗P0,s(Oi)}
2

]1/2
,

where D̂∗P0,s
is any consistent estimator of D∗P0,s

. For example, D̂∗P0,s
may be taken to be D∗P0,s

with

µP0 , µP0,s, EP0(Y ), varP0(Y ) and φ0,s replaced by µ̂, µ̂s, Ȳn, 1
n

∑n
i=1(Yi − Ȳn)2 and φ̂n,s, respectively.

In view of the asymptotic normality of n1/2(ψ̂n,s−ψ0,s), an asymptotically valid (1−α)× 100% Wald-

type confidence interval for ψ0,s can be obtained as ψ̂n,s ± q1−α/2σ̂n,sn−1/2, where qβ is the β-quantile

of the standard normal distribution.

Since we must already compute µ̂ and µ̂s to obtain the naive estimator, computing the proposed

estimator and its standard error estimate takes minimal extra time. When flexible estimators of the

involved regression are used, the naive estimator is generally not asymptotically linear: it will usually

be irregular and have a rate of convergence slower than n−1/2. Constructing valid confidence intervals

based on the naive estimator may therefore be extremely difficult, if not impossible. It may be tempting

to adopt a bootstrap approach as remedy. However, this would not be advisable since, besides the

prohibitive computational burden of such an approach, theory suggests that this strategy is likely

invalid in this context.

2.4 Invariance to transformations

So far, we have defined a nonparametric measure of variable importance and proposed an efficient

estimator for this parameter that allows valid inference under mild regularity conditions. Our parameter

can be interpreted as the additional proportion of variability in the outcome explained by including a

single covariate or group of covariates when using the conditional mean as a proxy for the outcome.

In some applications, it is common to center and standardize the features – and sometimes even

the outcome – by subtracting their mean and dividing by their standard deviation prior to estimation.

In other applications, it is common to transform the outcome or the features using some monotone

transformation in order to achieve some form of normalization. It is therefore of interest to determine

how such transformations impact the variable importance measure we have proposed. This is what the

following result describes.
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Theorem 2. Suppose that gX : Rp → Rp has the form (x1, x2, . . . , xp) 7→ (g1(x1), g2(x2), . . . , gp(xp))

for invertible functions gj : R→ R, j = 1, 2, . . . , p, and that gY : R→ R is a linear function. If P0,g is

the distribution of (gX(X), gY (Y )) induced by P0, then Ψs(P0,g) = Ψs(P0).

The variable importance measure we have proposed is therefore invariant to a wide range of trans-

formations of the underlying data unit, namely linear transformations of the outcome and invertible

transformations of each feature. In particular, this implies that the proposed parameter is invariant to

univariate linear standardizations of individual features and the outcome.

We note here that the invariance of the proposed variable importance parameter to certain transfor-

mations of either the outcome or features ensures that the estimand remains the same after transforma-

tion. However, it does not guarantee that the estimate obtained on any particular dataset will also enjoy

this same invariance property. Nevertheless, variations in the variable importance estimate obtained

with and without such transformation are not expected to be large if sufficiently flexible estimators are

used and the data set is reasonable large, because both estimators are then consistent for the same

estimand. As such, the lack of invariance of the estimator is not expected to pose any practical problem

for large data sets, and may be of interest for future research for small data sets. We do note that if

the estimation procedure used to obtain conditional mean estimates itself enjoys the same invariance

properties as the parameter, finite-sample invariance of the point estimator will then also hold.

2.5 Behavior under the zero-importance null hypothesis

This work primarily focuses on developing an efficient estimator of a variable importance measure

proposed using flexible estimation techniques and on describing how valid inference may be drawn

when the set s of features under evaluation does not have degenerate importance. Specifically, we have

restricted our attention to cases in which ψ0,s ∈ (0, 1) strictly. It may be of interest, however, to test

the null hypothesis ψ0,s = 0 of zero importance. Developing valid inference under this particular null

hypothesis appears very difficult. Because DP0,s is identically zero under this null, it is likely that a

higher-order expansion must be used to construct and characterize the behavior of an appropriately-

regularized estimator of φ0,s and thus of ψ0,s. However, the parameters Φs and Ψs are generally not

even second-order pathwise differentiable, and so, higher-order expansions cannot easily be constructed.

There may be hope in using approximate second-order gradients, as outlined in Carone et al. (2014),

though this remains an open problem. To highlight the difficulties that arise under this particular

null hypothesis, we conducted a simulation study for a setting in which one of the variables has zero
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importance. The results from this study are provided in the next section.

3 Experiments on simulated data

We now present empirical results describing the performance of the proposed estimator compared to

that of the naive estimator. We consider settings in which the total number of features is relatively low

or moderately large. In both settings, we compute and display the empirical bias and variance of the es-

timators as well as the empirical coverage of nominal 95% confidence intervals. In all implementations,

we use the sequential regression estimating procedure described in Section 2.2 to compute compati-

ble estimates of the required regression functions, and we compute Wald-type confidence intervals as

outlined in Section 2.3.

3.1 Low-dimensional vector of features

We consider here data generated according to the following specification:

X1, X2
iid∼ Uniform(−1, 1) and ε ∼ N(0, 1) independent of (X1, X2)

Y = X2
1

(
X1 + 7

5

)
+ 25

9 X
2
2 + ε .

We generated 1,000 random datasets of size n ∈ {100, 300, 500, 700, 1000, 2000, . . . , 10000} and con-

sidered in each case the importance of Xj for j ∈ {1, 2}. The true value of the variable importance

measures implied by this data-generating mechanism can be shown to be ψ0,1 ≈ 0.158 and ψ0,2 ≈ 0.342.

To obtain µ̂ and µ̂j , we fit locally-constant loess smoothing using the R function loess with tuning

selected to minimize a five-fold cross-validated estimate of the empirical risk based on the squared error

loss function. Because we obtained essentially the same results using locally-constant kernel regression,

we do not report summaries from these additional simulations here. This fact nevertheless highlights

the ease of comparing results from two different estimation techniques.

We computed the naive and proposed estimator and respective confidence intervals for each of

B = 1, 000 replications. Because of the unavailability of a simple asymptotic distribution for the

naive estimator, a percentile bootstrap approach with 80 bootstrap samples was used to attempt to

obtain approximate confidence intervals based on ψ̂naive,j . For each estimator, we then computed the

empirical bias scaled by n1/2 and the empirical variance scaled by n. Our output for the estimated
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bias includes confidence intervals for the true bias based on the resulting draws from the bootstrap

sampling distribution. Finally, we computed the empirical coverage of the nominal 95% confidence

intervals constructed.

Figure 1 displays the results of this simulation. Values relating to the proposed estimator are

depicted in blue, while they are in red for the naive estimator. Circles and stars denote j = 1 and

j = 2, respectively. In the left panel, we note that the Monte Carlo error is relatively small, regardless

of sample size – since B is large, this is not surprising. The scaled empirical bias of the proposed

estimator decreases towards zero as n tends to infinity, regardless of which feature we remove. Also,

we see that the naive estimator has substantial bias that does not tend to zero faster than n−1/2. This

coincides with our expectations, since the naive estimator involves an inadequate bias-variance tradeoff

with respect to the parameter of interest and does not access an additional quantity to correct for this

fact. However, we also see that the proposed estimator for j = 2 appears to dip slightly below zero for

large n, though we expect for larger n to see the scaled bias of the proposed estimator get closer to

zero. Numerical error in our computations may explain why this does not exactly happen, though there

is very substantial bias reduction from using the proposed estimator regardless. These results provide

empirical evidence that the one-step correction performed is necessary to account for the slow rates of

convergence in estimation of ψ0,s introduced because µP0
and µP0,s are flexibly estimated.

In the middle panel of Figure 1, we see that the variance of the proposed estimator is essentially

the same as that of the naive estimator – we have thus not suffered much at all from removing excess

bias in our estimation procedure. The ratio of the variance of the naive estimator to the variance of

the proposed estimator is near one for all n considered, and ranges between approximately 0.8 and 1.2

in our simulation study. Finally, in the right-hand panel, we see that as sample size grows, coverage

increases for the confidence interval based on the proposed estimator and approaches the nominal level.

In contrast, the coverage of intervals based on the naive estimator decreases instead and very quickly

becomes completely unsatisfactory. When we take into account the fact that bootstrapping a confidence

interval adds computation time, the procedure based on the proposed estimator appears to substantially

outperform that using the naive estimator in both computation time and coverage.
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3.2 Testing the zero-importance null hypothesis

We now consider data generated according to the following specification:

X1, X2
iid∼ Uniform(−1, 1) and ε ∼ N(0, 1) independent of (X1, X2)

Y = 25
9 X

2
1 + ε .

We generated 3,000 random datasets of size n ∈ {100, 300, 700, 1000, 2000, . . . , 4000} and again con-

sidered in each case the importance of Xj for j ∈ {1, 2}. The true value of the variable importance

measures implied by this data-generating mechanism can be shown to be ψ0,1 ≈ 0.407 and ψ0,2 = 0.

We estimated the conditional means as in the previous simulation. The empirical bias and variance for

each estimator were computed and scaled as before, and the empirical coverage of confidence intervals

was also evaluated.

Figure 2 displays the results of this simulation. In the left-hand panel, we observe that the proposed

estimator has smaller scaled bias in magnitude than the naive estimator when we remove the feature

with nonzero importance (j = 1). However, when we remove the feature with zero importance (j = 2),

the proposed estimator has slightly higher bias. While this is somewhat surprising, it likely is due to the

additive correction in the one-step construction being slightly too large. The scaled bias of the proposed

estimator, regardless of j, tends to zero as n increases, which is not true of the naive estimator. In the

middle panel, we see that we have not incurred excess variance by using the proposed estimator. The

ratio of the variances is close to one for the predictive feature, but is less than one for the null feature.

This indicates a somewhat larger variance when using the proposed estimator. In the right-hand panel,

we see that both estimators have close to zero coverage for the parameter under the null hypothesis,

but that the proposed estimator has higher coverage than the naive estimator for the predictive feature.

These results highlight that more work needs to be done for valid testing and estimation under this

boundary null hypothesis. While our current proposal yields valid results for the predictive feature,

even in the presence of a null feature, ensuring valid inference for null features themselves remains an

important challenge ahead.

3.3 Moderate-dimensional vector of features

We consider two settings: one in which all of the features are independent, and a second in which groups

of features are correlated. In the first setting (setting A), we generate data according to the following
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specification:

X1, X2, . . . , X15
iid∼ N(0, 4) and ε ∼ N(0, 1) independent of (X1, X2, . . . , X15)

Y = I(−2,+2)(X1) · bX1c+ I(−∞,0](X2) + I(0,+∞)(X3) +
∣∣X6

4

∣∣3 +
∣∣X7

4

∣∣5 + 7
3 cos

(
X11

2

)
+ ε .

We generated 500 random datasets of size n ∈ {100, 300, 500, 1000}, and consider the importance of

the features included in the sets {1, 2, 3, 4, 5}, {6, . . . , 10} and {11, . . . , 15} for each sample size. Details

on the analysis of additional groups of features are provided in Part 2 of the Supplementary Materials.

The true value of the variable importance measure corresponding to each of the considered groups is

given in Table 2.

In the second setting (setting B), the covariate distribution was modified to include clustering.

Specifically, we generated (X1, X2, . . . , X15) ∼MVN15(µ,Σ), where the mean vector is

µ = 3× (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)− 2× (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

and the variance-covariance matrix is given by

Σ =


Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

 ,

where we have set

Σ11 =


1 0.15 0.15

0.15 1 0.15

0.15 0.15 1

 , Σ22 =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 and Σ33 =


1 0.85 0.85

0.85 1 0.85

0.85 0.85 1


and each of Σ12, Σ13 and Σ23 are three-by-three zero matrices. The random error ε and the outcome

Y are then generated as in setting A. In this setting, we considered the same sample sizes and groups

of features to study as in setting A. The true value of the variable importance measure corresponding

to each of the considered groups is also given in Table 2. As in setting A, results for the analysis of

additional groupings are provided in Part 2 of the Supplementary Materials.

For each scenario considered, we estimated the conditional mean functions using gradient boosted
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trees (Friedman, 2001) fit using the GradientBoostingRegressor function in the sklearn module in

Python. We used five-fold cross-validation to select the optimal number of trees with one node as well

as the optimal learning rate for the algorithm. We summarized the results of these simulations in the

same manner as in the low-dimensional simulations.

The results for setting A are presented in Figures 9 and 10. First, from Figure 9, we note that as n

increases, the scaled empirical bias of the proposed estimator approaches zero while that of the naive

estimator increases in magnitude across all three groupings s considered. From Figure 10, we observe

that the empirical coverage of intervals based on the proposed estimator increases towards the nominal

level as n increases, and is uniformly higher than the empirical coverage of the bootstrap intervals based

on the naive estimator.

The results for setting B are presented in Figures 12 and 13. From Figure 12, we notice some

residual bias in the proposed estimator for s = {11, . . . , 15}. It is possible that larger samples may be

needed to observe more thorough bias reduction – indeed, this group of features is that with the highest

within-group correlation. Nevertheless, the scaled empirical bias of the proposed estimator approaches

zero as n increases for both s = {1, . . . , 5} and s = {6, . . . , 10}. In all cases, the scaled empirical bias

of the naive estimator increases in magnitude as n increases. We observe similar coverage results as in

setting A from Figure 13: intervals based on the proposed estimator have uniformly higher coverage

than those based on the naive estimator.

Regardless of whether or not the data are correlated, the proposed estimator performs significantly

better than the naive estimator in these simulations. How well the proposed estimator performs appears

to be tied to the degree of correlation, with higher levels of correlation associated with relatively poorer

point and interval estimator performance. This suggests that it may be wise to consider in practice the

importance of entire groups of correlated predictors rather than that of individual features. Indeed, this

is a sensible approach for dealing with correlated features, which necessarily render variable importance

assessment challenging. We note that in our simulations the empirical coverage of proposed estimator-

based intervals for the importance of a group of highly correlated features (s = {11, . . . , 15}, Figure 13)

approaches the nominal level with increasing sample size, indicating that the one-step approach does

yield good results in such cases.

Use of the proposed estimator results in better point and interval estimation performance than the

naive estimator in the presence of null features. Each group of five features has at least two null features,

and some have more. For example, when evaluating the importance of the group (X1, X2, . . . , X5), the
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group (X8, X9, X10, X12, X13, X14, X15) has null importance. However, as before, we expect the behavior

of point and interval estimators for the variable importance of null features to be not as good. Future

work on valid estimation and testing under this null hypothesis is necessary.

4 Results from the Boston housing study data

We consider data on the median house value sampled from 506 neighborhoods in the suburbs of the

Boston, Massachusetts metropolitan area. These data come from Harrison and Rubinfeld (1978), and

are freely available on the UC Irvine Machine Learning Repository. In addition to the median house

value, measurements on four groups of variables are available. The first consists of accessibility features:

the weighted distance to five employment centers in the Boston region, with housing prices expected

to increase with decreased distance to employment centers; and an index of accessibility to radial

highways, with housing prices expected to increase with increased highway access. The second group

consists of neighborhood features: the proportion of black residents in the population; the proportion

of the population of lower socio-economic status, referring to adults without any high school education

or male workers classified as laborers; the crime rate; the proportion of a town’s residential land zoned

for lots greater than 25,000 square feet; the proportion of non-retail business acres per town; the full

value property tax rate; the pupil-teacher ratio by school district; and an indicator of whether the tract

of land borders the Charles River. The third group consists of structural features: the average number

of rooms in owner units; and the proportion of owner units built prior to 1940. The final group consists

of one variable alone: the nitrogen oxide concentration, a measure of air pollution. In our analysis, we

considered the variable importance for each individual feature, as well as the natural groups defined

above, when predicting the median house value.

We estimate the conditional means using the sequential regression estimating procedure outlined in

Section 2.2 and using the Super Learner (van der Laan et al., 2007) via the SuperLearner R package.

Our library of candidate learners consists of boosted trees implemented in the gbm R package, generalized

additive models implemented in the gam R package, elastic net implemented in the glmnet R package,

and random forests implemented in the randomForest R package, each with varying tuning parameters.

We used ten-fold cross-validation to determine the optimal combination of these learners. This process

allowed the Super Learner to determine the optimal tuning parameters for the individual algorithms as

part of its optimal combination.
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The results are presented in Figure 7. First, we see a difference in the ordering of features based on

estimated importance using the naive and proposed estimators. The group of neighborhood variables

appears to be the most important in predicting the median house value; this seems to be driven largely

by the proportion of the population of lower socio-economic status. The group of structural variables

appears to be the second most important group, and seems to be mostly driven by the average number

of rooms in the house, which is also the most important individual feature. Since the neighborhood

group is so large, its large importance is not surprising. The average number of rooms in a house also

tends to increase its price, which thus contributes to most of the relative importance of the structural

group. Interestingly, the crime rate appears to be the least important individual feature in predicting

median house value. One might expect a priori that crime rate would have a large effect on median

house value. Finally, we estimate that including all of the covariates in the model explains 97.6% of the

variability in median house value, with a 95% confidence interval of (95.7%, 99.6%).

The Boston housing dataset is a popular choice as a benchmark for testing new prediction methods.

Hence, there are many estimates of variable importance produced on these data, all of which are specific

to the particular method under consideration. Comparing our results to those obtained by three other

groups of investigators – Doksum and Samarov (1995), Friedman and Popescu (2008) and Bi et al.

(2003) – we find that our results are similar for the two most important single features, the average

number of rooms and the proportion of the population designated as being of lower socioeconomic

status. We estimate average number of rooms to be most important, in line with Bi et al. (2003),

Doksum and Samarov (1995), and many applications of random forest alone; this is not consistent with

the findings of Friedman and Popescu (2008). After these two features, the ranking tends to differ

based on the prediction algorithm used. Our findings are consistent with those of Bi et al. (2003)

in that distance is found to be third most important, but beyond that, our rankings differ. This is

not concerning, since the other variables tend to be estimated at low importance by many methods.

Importantly, we also obtain variable importance for the natural groups of variables described by Harrison

and Rubinfeld (1978), in contrast to every method besides that of Doksum and Samarov (1995). Our

parameter provides a more natural interpretation than that of Doksum and Samarov (1995) – their

measure provides the squared correlation between the difference µP0
(X) − µP0,s(X) in means and the

residual Y − µP0,s(X). Finally, we obtain asymptotically valid confidence intervals in addition to point

estimates, which have the advantage of interpretability and generalizability to any prediction algorithm

or ensemble of algorithms.
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5 Results from the South African heart disease study data

We consider a subset of the data from the Coronary Risk Factor Study, a retrospective cross-sectional

sample of 462 white males aged 15 – 64 in a region of the Western Cape, South Africa. The primary aim

of this study was to establish the prevalence of ischemic heart disease risk factors in this high incidence

region. These data are a subset of a larger dataset described in Rousseauw et al. (1983), and are

publicly available as one of the datasets used in Hastie et al. (2009). For each participant, the presence

or absence of myocardial infarction (MI) at the time of the survey is recorded. This dataset includes

160 cases and 302 controls. In addition, measurements of systolic blood pressure (mmHg), cumulative

tobacco consumption (kg), LDL cholesterol (mg/dL), adiposity (similar to body mass index), family

history of heart disease (binary), type A behavior (binary), obesity, current alcohol consumption, and

age are available.

These features can naturally be grouped into two sets: behavioral features (tobacco consumption,

alcohol consumption, and type A behavior), and biological features (systolic blood pressure, LDL choles-

terol, adiposity, obesity, family history, and age). We considered the importance of each feature sepa-

rately, as well as that of these two groups of features, when predicting the presence or absence of MI.

We estimate the conditional means using the Super Learner, with the same library of learners as in

the previous section. Then, we used the sequential regression estimating procedure to calculate both

the naive and proposed estimators, and produced confidence intervals based on the proposed estimator

alone, since as we have seen earlier, intervals based on the naive estimator are generally invalid.

The results are presented in Figure 8. The ordering is slightly different in the two plots; this is not

surprising, since the one-step procedure should eliminate excess bias in the naive estimator introduced

by estimating the conditional means using flexible learners. We find that the two groups of features –

biological and behavioral – are important, with biological factors more important than behavioral factors

(tobacco consumption, alcohol consumption, and type A behavior). The most important individual

feature is family history of heart disease – this is consistent with the fact that family history has been

found to be a risk factor of MI in previous studies. The fact that both groups of features are more

important than any individual feature besides family history appears scientifically sensible.

We compared these results to the logistic regression model fit to these data in Hastie et al. (2009).

Based on the absolute values of z-statistics, logistic regression picks age as most important (z = 4.184)

followed immediately by family history (z = 4.178). This slight difference is captured in our uncertainty

estimates (Figure 8): there, we see that the point estimates for age and family history are close, and their
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confidence intervals almost overlap. Logistic regression picks the next two most important variables

as LDL cholesterol (z = 3.129) and tobacco consumption (z = 3.034); we find the opposite ordering,

but again see remarkably similar point estimates and nearly overlapping intervals. While our results

match closely with the simplest approach to analyzing variable importance in these data, our proposed

method is not dependent on a single estimating technique, such as logistic regression. The use of more

flexible learners to estimate ψ0,s, as we have done in this analysis, renders our findings much less likely

to be driven by potential model misspecification.

6 Conclusion

We have developed a novel measure of variable importance, interpreted as the additional proportion of

variability in the outcome explained by including a single feature or a group of features in the condi-

tional mean outcome given all available features. This parameter can be readily seen as a nonparametric

extension of the classical R2 measure, and it provides a description of the true relationship between the

outcome and covariates rather than an algorithm-specific measure of association. We have also studied

the properties of this parameter and derived its nonparametric efficient influence function. Leveraging

tools from semiparametric and nonparametric efficiency theory, we have described the construction of

an asymptotically efficient estimator of the true variable importance measure built upon flexible, data-

adaptive learners. We have studied the properties of this estimator, notably the distributional limit

of a suitably normalized version of the estimator, and described the construction of asymptotically

valid confidence intervals. In simulations, we have found the proposed estimator to have good practical

performance, particularly when comparing to a naive estimator of the proposed variable importance

measure, both when the vector of covariates is low or moderate-dimensional. We did find this perfor-

mance to depend very much on whether or not the true variable importance measure equals zero. When

it does, a limiting distribution is not readily available, and significant theoretical innovation then seem

to be needed in order to perform valid inference. However, for those features with true importance, the

behavior of point and interval estimates is not influenced by the presence of null features. In practice,

some judgment is necessary to determine whether there is a sensible cutoff for designating a feature as

null, but if it exists, the value of this cutoff would likely be close to zero.

For each candidate set of variables, the estimation procedure we proposed requires estimation of two

conditional mean functions. To guarantee the good statistical properties of our estimator, these condi-
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tional means must be estimated well. For this reason, and as was illustrated in our work, we recommend

an aggressive use of super learning with a wide range of candidate learners, ranging from the very para-

metric to the fully nonparametric. This flexibility mitigates concerns regarding model misspecification.

Additionally, we also suggest the use of sequential regressions to minimize any incompatibility between

the two conditional means estimated.

Software

We implement the methods discussed above in the R package vimp and the Python package vimpy,

both freely available on the author’s Github page at https://github.com/bdwilliamson/vimp and

https://github.com/bdwilliamson/vimpy, respectively.

Supplementary Materials

Technical details and additional results from the moderate-dimensional simulations are available in the

supplementary document.
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Table 1: Approximate values of ψ0,s for each simulation setting and group considered for effect size in the
moderate-dimensional simulations in Section 3.3.

Setting
Group A B

(X1, X2, . . . , X5) 0.295 0.281
(X6, X7, . . . , X10) 0.240 0.314

(X11, X12, . . . , X15) 0.242 0.179

Figure 1: Empirical bias scaled by
√
n, empirical variance scaled by n with Monte Carlo error bars, and empirical

coverage of nominal 95% confidence intervals for the proposed and naive estimators, for j = 1 and 2, using loess
smoothing with spans selected by cross-validation to estimate (1) and (2). Circles denote that we have removed
X1, while stars denote that we have removed X2.

Figure 2: Empirical bias scaled by
√
n, empirical variance scaled by n with Monte Carlo error bars, and empirical

coverage of nominal 95% confidence intervals for the proposed and naive estimators, for j = 1 and 2, using loess
smoothing with spans selected by cross-validation to estimate (1) and (2). Circles denote that we have removed
X1, while stars denote that we have removed X2. We operate under the null hypothesis for X2; ψ0,2 = 0.
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Figure 3: Empirical bias for the proposed and naive estimators scaled by
√
n vs n for setting A, using gradient

boosted trees to estimate (1) and (2). We consider all s combinations from Table 2. Red circles denote the
naive estimator, and blue stars denote the proposed estimator. Monte Carlo error bars are displayed vertically.

Figure 4: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators vs n
for setting A, using gradient boosted trees to estimate (1) and (2). We consider all s combinations from Table
2. Red circles denote the naive estimator, and blue stars denote the proposed estimator.

Figure 5: Empirical bias for the proposed and naive estimators scaled by
√
n vs n for setting B, using gradient

boosted trees to estimate (1) and (2). We consider all s combinations from Table 2. Red circles denote the
naive estimator, and blue stars denote the proposed estimator. Monte Carlo error bars are displayed vertically.
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Figure 6: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators vs n
for setting B, using gradient boosted trees to estimate (1) and (2). We consider all s combinations from Table
2. Red circles denote the naive estimator, and blue stars denote the proposed estimator.

Figure 7: Estimates from the Boston housing project study, for the proposed and naive estimators of the
standardized variable importance parameter, on left and right respectively. We estimate (1) and (2) using the
Super Learner with the elastic net, generalized additive models, gradient boosted trees, and random forests in
its library.
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Figure 8: Estimates from the South African heart disease study, for the proposed and naive estimators of the
standardized variable importance parameter, on left and right respectively. We estimate (1) and (2) using the
Super Learner with the elastic net, generalized additive models, gradient boosted trees, and random forests in
its library.

Supplementary material

6.1 Proofs of lemmas and theorems

Throughout, for brevity of notation, we take Pf to denote
∫
f(x)dP (x) for any measure P and P -

measurable function f . We define the full and reduced conditional means for a measure P as

µP (x) := EP (Y | X = x) and µP,s(x) := EP (Y | X(−s) = x(−s)) ,

where for any p−dimensional vector v and a subset s ⊆ {1, 2, . . . , p} the symbol v(−s) denotes the

elements in v with index not in s. The following proofs rely on a study of the statistical functionals

Φs(P ) :=

∫
{µP (x)− µP,s(x)}2dP (x) and Ψs(P ) :=

Φs(P )

varP (Y )
.

Proof of Lemma 2.1. For a given distribution P ∈ M, we denote by p the density of P with respect

to some dominating measure ν. For bounded h ∈ L2(P ), we can define the parametric submodel pε =

(1+εh)p, which is valid for small enough ε and has score h at ε = 0. Every regular parametric submodel

centered at P and with score h at the origin is either of this form or can be approximated arbitrarily
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well by a submodel of this form. Given that the statistical model M considered is nonparametric, and

that DP,s ∈ L2(P ) with PDP,s = 0, if we show that for any P ∈M

∂

∂ε
Φs(Pε)

∣∣∣∣
ε=0

=

∫
DP,s(o)h(o)dP (o)

then we will have established that Φs(P ) is pathwise differentiable at P with efficient influence function

DP,s ((Bickel et al., 1998)).

The evaluation of Φs on Pε equals

Φs(Pε) =

∫∫
{µPε(x)− µPε,s(x)}2dPε(o) =

∫∫
θs,ε(x)dPε(o)

=

∫∫
θs,ε(x){1 + εh(x, y)}p(x, y)ν(dx, dy)

=

∫∫
θs,ε(x)p(x, y)ν(dx, dy) + ε

∫∫
θs,ε(x)h(x, y)p(x, y)ν(dx, dy) ,

where θs,ε(x) := {µPε,s(x)− µPε(x)}2, and so, we have that

∂

∂ε
Φs(Pε)

∣∣∣∣
ε=0

=

∫∫
∂

∂ε
θs,ε(x)

∣∣∣∣
ε=0

p(x, y)ν(dx, dy) +

∫∫
θs(x)h(x, y)p(x, y)ν(dx, dy) , (10)

where θs = θs,ε|ε=0. Using basic laws of probability, and with some abuse of notation, we can write

θs,ε(x) in terms of p and h as

θs,ε(x) =

[∫
y{1 + εh(x, y)}p(x, y)ν(dy)∫
{1 + εh(x, y)}p(x, y)ν(dy)

−
∫∫

y{1 + εh(x, y)}p(x, y)ν(dxs, dy)∫∫
{1 + εh(x, y)}p(x, y)ν(dxs, dy)

]2

and we can then compute that ∂
∂εθs,ε(x)

∣∣
ε=0

equals

2{µP (x)− µP,s(x)}
[∫
{y − µP (x)}h(x, y)p(x, y)ν(dy)∫

p(x, y)ν(dy)
−
∫∫
{y − µP,s(x)}h(x, y)p(x, y)ν(dxs, dy)∫∫

p(x, y)ν(dxs, dy)

]
.

In view of (10), this allows us to write that

∂

∂ε
Φs(Pε)

∣∣∣∣
ε=0

=

∫∫
[2{µP (x)− µP,s(x)}{y − µP (x)}+ θs(x)]h(x, y)p(x, y)ν(dx, dy)

=

∫∫
[2{µP (x)− µP,s(x)}{y − µP (x)}+ θs(x)− Φs(P )]h(x, y)p(x, y)ν(dx, dy)

as required, where to obtain the first line we used that µP (X) − µP,s(X) has mean zero conditionally
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upon X(−s) = x(−s) as a simple consequence of the law of total expectation, and to obtain the second

line we used that
∫∫

h(x, y)p(x, y)ν(dx, dy) = 0.

Because Ψs is the ratio of two parameters, namely Φs and the population outcome variance param-

eter, both of which are pathwise differentiable and have known efficient influence functions relative to

nonparametric models, it follows that Ψs is itself pathwise differentiable at each P ∈M. Furthermore,

its efficient influence function can readily be found using the delta method. We will use the fact that

the parameter P 7→ varP (Y ) has nonparametric efficient influence function given by

o 7→ DP,v(o) := {y − EP (Y )}2 − varP (Y ) .

It follows then that the nonparametric efficient influence function of Ψs at P equals

o 7→ D∗P,s(o) =
DP,s(o)varP (Y )−DP,v(o)Φs(P )

var2P (Y )

=
2{y − µP (x)}{µP (x)− µP,s(x)}+ {µP (x)− µP,s(x)}2 − Φs(P )

varP (Y )

− [{y − EP (Y )}2 − varP (Y )]Φs(P )

{varP (Y )}2
.

Proof of Lemma 2.2. We can express the expansion of interest using the Pf notation described above

as

Φs(P )− Φs(P0) = (P − P0)DP,s +Rs(P, P0) = −P0DP,s +Rs(P, P0) ,

where we have used the fact that PDP,s = 0 since, by definition, DP,s(O) has mean zero under P .

This implies that the form of Rs(P, P0) can be derived as Ψs(P )−Ψs(P0) +P0DP,s. The explicit form

provided in Lemma 2.2 can be obtained from this expression as follows:

Rs(P, P0) = Φs(P )− Φs(P0) + P0DP,s

= Φs(P )− P0{(µP0 − µP0,s)
2}+ 2P0{(µP − µP,s)(µP0 − µP )}+ P0{(µP − µP,s)2} − Φs(P )

= P0{(µP − µP,s)2} − P0{(µP0 − µP0,s)
2}+ 2P0{(µP − µP,s)(µP0 − µP )}
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= P0{(µP0,s − µP,s)2 − (µP0
− µP )2} ,

where the last line is obtained by arithmetic manipulations. This directly implies that Rs(P̂n, P0) =

oP (n−1/2) if and only if µ̂− µP0 and µ̂s − µP0,s are both oP (n−1/4) in L2(P0) norm.

Proof of Lemma 2.3. This is a direct application of Lemma 19.24 of van der Vaart ((2000)).

Proof of Theorem 2.4. Under the conditions of the theorem, we have that φ̂n,s − φ0,s = PnDP0,s +

oP (n−1/2). Additionally, it is easy to verify that varPn(Y )− varP0
(Y ) = PnDP0,v + oP (n−1/2), where

DP0,v(o) = {y − EP0
(Y )}2 − varP0

(Y ). By the delta method, it follows then that

ψ̂n,s − ψ0,s =
φ̂n,s

varPn(Y )
− φ0,s
varP0

(Y )
= Pn

[
varP0(Y )DP0,s − φ0,sDP0,v

varP0
(Y )2

]
+ oP (n−1/2)

= PnD
∗
P0,s + oP (n−1/2) .

In other words, the proposed estimator ψ̂n,s is an asymptotically linear estimator of ψ0,s with influence

function D∗P0,s
. By the weak law of large numbers, this implies that ψ̂n,s is consistent for ψ0,s. It

also implies that ψ̂n,s is a regular estimator because its influence function is given by a gradient of the

pathwise derivative of Ψs. Finally, by the central limit theorem, it implies that n1/2(ψ̂n,s − ψ0,s) tends

to a mean-zero normal variate with variance varP0
{D∗P0,s

(O)} = P0D
∗2
P0,s

.

Proof of Theorem 2.5. Take a, b ∈ R and consider the transformed outcome Y ∗ = a+ bY . Denoting by

P0,a,b the distribution of (X,Y ∗) induced by P0, we can write that

Ψs(P0,a,b) =

∫ {
EP0,a,b

(Y ∗ | X = x)− EP0,a,b
(Y ∗ | X(−s) = x(−s))

}2
dP0,a,b(x)

varP0,a,b
(Y ∗)

=

∫ {
EP0(a+ bY | X = x)− EP0(a+ bY | X(−s) = x(−s))

}2
dP0(x)

varP0
(a+ bY )

=

∫
b2
{
EP0(Y | X = x)− EP0(Y | X(−s) = x(−s))

}2
dP0(x)

b2varP0
(Y )

= Ψs(P0) ,

where we have used the linearity of the expectation and the fact that the marginal distribution of X is

the same under P0 and P0,a,b.

Suppose the transformation gX : Rp → Rp has the form (x1, x2, . . . , xp) 7→ (g1(x1), g2(x2), . . . , gp(xp))

for invertible functions gj : R→ R, j = 1, 2, . . . , p, and let X∗ = gX(X) = (g1(X1), g2(X2), . . . , gp(Xp)).
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Denote by P0,gX the distribution of (X∗, Y ) induced by P0. For any P , the denominator of Ψ(P ) only

involves the marginal distribution of Y under P . Because P0 and P0,gX induce the same marginal

distribution of Y , the denominators of Ψs(P0) and Ψs(P0,gX ) are identical. This is also true of the

numerators since

Φs(P0,gX ) = EP0,gX

[
EP0,gX (Y | X∗)− EP0,gX (Y | X∗(−s))

]2
= EP0,gX

[
EP0

(Y | X∗)− EP0
(Y | X∗(−s))

]2
= EP0

[
EP0

(Y | X)− EP0
(Y | X(−s))

]2
= Φs(P0) ,

where in the second line we have used that P0,gX and P0 induce the same conditional distribution of

Y given any transformation g0(X) of X, and where the third line follows from the invertibility of gX .

Therefore, we find, as claimed, that Ψs(P0,gX ) = Ψs(P0).

Additional simulation results: moderate-dimensional vector of features

We consider two settings: one in which all of the features are independent, and a second in which groups

of features are correlated. In the first setting (setting A), we generate data according to the following

specification:

X1, X2, . . . , X15
iid∼ N(0, 4) and ε ∼ N(0, 1) independent of (X1, X2, . . . , X15)

Y = I(−2,+2)(X1) · bX1c+ I(−∞,0](X2) + I(0,+∞)(X3) +
∣∣X6

4

∣∣3 +
∣∣X7

4

∣∣5 + 7
3 cos

(
X11

2

)
+ ε .

We generated 500 random datasets of size n ∈ {100, 300, 500, 1000}, and consider the importance of the

features included in the sets {{11} and {1, 2, 3, 6, 7}} for each sample size. An analysis of additional

groups is provided in the main manuscript. The truth corresponding to each of these situations is given

in Table 2.

In the second setting (setting B), the covariate distribution was modified to include clustering.

Specifically, we generated (X1, X2, . . . , X15) ∼MVN15(µ,Σ), where the mean vector is

µ = 3× (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)− 2× (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
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and the variance-covariance matrix is given by

Σ =


Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33

 ,

where we have set

Σ11 =


1 0.15 0.15

0.15 1 0.15

0.15 0.15 1

 , Σ22 =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 and Σ33 =


1 0.85 0.85

0.85 1 0.85

0.85 0.85 1


and each of Σ12, Σ13 and Σ23 are three-by-three zero matrices. The random error ε and the outcome

Y are then generated as in setting A. In this setting, we considered the same sample sizes and groups

of features to study as in setting A. The true value of the variable importance measure corresponding

to each of the considered groups is also given in Table 2. As in setting A, results for the analysis of

additional groupings are provided in the main manuscript.

For each of these situations, we estimate the conditional means EP0(Y | X) and EP0(Y | X(−s)) using

gradient boosted trees, fit using the GradientBoostingRegressor function in the sklearn module in

Python. We use five-fold cross-validation to select the optimal number of trees with one node, as well

as the optimal learning rate for the algorithm. We computed the naive and proposed estimates and

respective confidence intervals for each of 500 replications. Because of the unavailability of a simple

asymptotic distribution for the naive estimator, a percentile bootstrap approach with 80 bootstrap

samples was used to attempt to obtain approximate confidence intervals based on ψ̂naive,s. For each

estimator, we then computed the empirical bias scaled by n1/2 and the empirical variance scaled by n.

Finally, we computed the empirical coverage of the nominal 95% confidence intervals constructed.

The results from setting A are presented in Figures 9–11. We see that when the features are

uncorrelated, on these two groups, the performance of the various estimators considered is similar

to the performance showcased in the main manuscript – as n grows the scaled bias of the proposed

estimator tends to zero while the scaled bias of the naive estimator tends away from zero, and coverage

of confidence intervals based on the proposed estimator tends to the nominal level while coverage of

confidence intervals based on the naive estimator remains low. In all settings, we see that variance of

the proposed estimator is similar to the variance of the naive estimator (Figure 11).
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Table 2: Approximate values of ψ0 for each simulation setting and group considered for effect size.

Setting
Group A B

X11 0.242 0.035
(X1, X2, X3, X6, X7) 0.535 0.461

Figure 9: Empirical bias for the proposed and naive estimators scaled by
√
n vs n for setting A, using gradient

boosted trees to estimate the conditional means. We consider all s combinations from Table 2. Red circles
denote the naive estimator, and blue stars denote the proposed estimator.

The results from setting B are a bit different (Figures 12–14). For both groups, we see some residual

bias in the proposed estimator, though the magnitude of this bias is smaller than the magnitude of the

scaled bias in the naive estimator. We also see some odd behavior in terms of coverage – coverage of

confidence intervals based on the proposed estimator is not nearly as good when s = 11 under setting

B as it was under setting A. However, it is encouraging that the coverage of confidence intervals based

on the naive estimator approaches zero as n increases. Finally, we see that the variance of the proposed

estimator is still similar to the variance of the naive estimator.
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Figure 10: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators vs n
for setting A, using gradient boosted trees to estimate the conditional means. We consider all s combinations
from Table 2. Red circles denote the naive estimator, and blue stars denote the proposed estimator.

Figure 11: Empirical variance for the proposed and naive estimators scaled by n vs n for setting A, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table 2 and the
main manuscript. Red circles denote the naive estimator, and blue stars denote the proposed estimator.
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Figure 12: Empirical bias for the proposed and naive estimators scaled by
√
n vs n for setting B, using gradient

boosted trees to estimate the conditional means. We consider all s combinations from Table 2. Red circles
denote the naive estimator, and blue stars denote the proposed estimator.

Figure 13: Empirical coverage of nominal 95% confidence intervals for the proposed and naive estimators vs n
for setting B, using gradient boosted trees to estimate the conditional means. We consider all s combinations
from Table 2. Red circles denote the naive estimator, and blue stars denote the proposed estimator.
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Figure 14: Empirical variance for the proposed and naive estimators scaled by n vs n for setting B, using
gradient boosted trees to estimate the conditional means. We consider all s combinations from Table 2 and the
main manuscript. Red circles denote the naive estimator, and blue stars denote the proposed estimator.
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