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PHARMACOLOGIC AND GENETIC MANIPULATIONS OF ANGIOTENSIN 

SIGNALING IN THORACIC AORTIC DISEASE MODELS 

 

Andrew Milton Peters, B.S. 

 

Advisory Professor: Dianna M. Milewicz, M.D., Ph.D. 

 

Thoracic aortic aneurysms and dissections (TAAD) are a major cause of morbidity 

and mortality in patients. Many different risk factors have been associated TAAD, but 

hypertension is the largest risk factor. Subsets of TAAD patients have identifiable 

syndromic genetic diseases, yet a number of genetic non-syndromic patients have been 

identified. Infusion of angiotensin II into mouse models causes aortic disease through 

inflammation and fibrosis. An angiotensin type I receptor (AT1R) blocker (ARB) or an 

angiotensin converting enzyme (ACE) inhibitor (ACEi) can reverse aortic pathology in some 

mouse models. I set out to better understand the relationship between angiotensin and 

TAAD in our mouse models, and hypothesized that angiotensin II signaling through the 

AT1R contributes to thoracic aortic aneurysm formation in multiple model systems of 

disease, and that blocking related receptors in addition to the AT1R, such as the AT2R 

and Mas receptor, may have negative consequences. Previously identified genetic variants 

in the gene encoding smooth muscle alpha-actin, ACTA2, were modeled with Acta2-/- mice. 
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I found that the ascending aorta and aortic root in these mice become significantly dilated 

over time. Acta2-/- mice are hypotensive, and increasing the blood pressure with a 

pharmaceutical and diet based regimen significantly accelerated and worsened the aortic 

phenotype. Treatment with losartan, an ARB, attenuated the aortic dilation, but captopril, 

an ACEi,  did not decrease aortic growth and worsened the disease. Transverse aortic 

constriction (TAC) was used to study the ascending aorta and aortic root in response to 

increased biomechanical forces. Losartan attenuated the histologic and inflammatory 

changes associated with TAC, but captopril was again unable to rescue the phenotype. To 

understand why, I investigated other receptors blocked by ACEis: the angiotensin II type 2 

receptor (AT2R) and the Mas receptor, a receptor for the Ang1-7 peptide. I found that 

cotreatment with captopril and an agonist for the AT2R had similar physiologic effects as 

the AT1R blocker despite being unable to prevent the fibrotic and inflammatory 

remodeling. In contrast, cotreatment with captopril and an agonist for the Mas receptor 

blocked remodeling but did not rescue aneurysm formation. My results, coupled with 

clinical data, indicate that fibrosis may be beneficial in the aorta, and show we must 

expand our understanding of the angiotensin system in aortic disease. 
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Chapter 1 – Introduction 
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1.1 – Structure of the aorta 

The aorta is the largest vessel in the body, originating from the heart and serving as 

a conduit for blood flow to the rest of the body. Anatomically, it is divided into multiple 

sections, starting with the aortic valve (aortic annulus), then the aortic root with the 

sinuses of Valsalva, where the left and right coronary arteries branch off to provide blood 

to the heart (Figure 1.1). The junction between the root and ascending aorta is the 

sinotubular junction, and the tubular ascending aorta extends to the arch.  The innominate 

artery branches off the aortic arch and divides into the right subclavian artery and right 

common carotid artery. The segment through the aortic arch is also known as the 

transverse aorta, and the left common carotid artery branches off this segment of the 

aorta followed by the left subclavian artery. The descending thoracic aorta runs along the 

spine and is where the intercostal arteries originate. Once the aorta passes the diaphragm, 

it becomes the suprarenal abdominal aorta and, eventually, the infrarenal abdominal aorta 

below the branches of the left and right renal arteries. The aorta ends where it branches 

into the left and right iliac artery (1, 2).  The sections of the aorta arise from distinct 

embryologic origins, experience distinct biomechanical pressures, and as a result may 

respond differently to different stimuli (3, 4). In the ascending aorta, all the smooth muscle 

cells are of neural crest cell origin. In the aortic root, these cells are derived from the 

second heart field (3). In the research presented here, the focus is on the aortic root and 

ascending aorta. 
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Figure 1.1 – Anatomical figure of the aorta from the heart to the pelvis starting from the 
aortic valve annulus where the blood leaves the heart through the aortic valve. The focus 
of the research presented here is primarily at the aortic root, which includes the sinuses of 
Valsalva, and the ascending aorta. The pathology associated with each segment of the 
aorta can be different, in part due to the different developmental origin of the SMCs and 
the hemodynamic flow patterns. Reprinted with permission from Journal of the American 
College of Cardiology (Weinsaft JW, Devereux RB, Preiss LR, Feher A, Roman MJ, Basson CT, 
Geevarghese A, Ravekes W, Dietz HC, Holmes K, Habashi J, Pyeritz RE, Bavaria J, Milewski K, 
LeMaire SA, Morris S, Milewicz DM, Prakash S, Maslen C, Song HK, Silberbach GM, Shohet 
RV, McDonnell N, Hendershot T, Eagle KA, Asch FM, Investigators GR. Aortic Dissection in 
Patients With Genetically Mediated Aneurysms: Incidence and Predictors in the GenTAC 
Registry, 2016) (1) 

 

The aortic is an elastic artery and the aortic wall is composed of three layers: the 

tunica intima, tunica media, and tunica adventitia. As shown in Figure 1.2, the tunica intima 
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is composed of a single layer of endothelial cells that, under normal physiologic conditions, 

rests on the internal elastic lamina and signals changes in sheer stress to the cells 

underneath (5-7). Between the internal elastic lamina and the external elastic lamina lies 

the tunica media which is the layer containing the smooth muscle cells. In the aorta, the 

tunica media is composed of layers of elastin with smooth muscle cells (SMCs) in between, 

with all layers laid down during development. In humans, there are approximately 50 

layers. The number of layers varies in different species, and this number has been shown to 

depend on multiple factors like weight, diameter, and pressure (6). The number of elastin 

lamellae/SMCs can also vary in genetically-engineered mouse models (6, 8-11).  The layers 

of elastin provide the aorta with the elasticity required to store the energy of the heart 

beat when the aortic valves close and maintain the blood pressure for continuous blood 

flow. This is referred to as the Wendkessel effect. Approximately 50% of the stroke volume 

has been reported to be stored in the aorta and proximal blood vessels to perfuse the 

peripheral tissues, but some reports indicate that pharmaceuticals can manipulate it (12).  

In the aorta, the SMCs are arranged in concentric rings between the elastin layers. 

Microfibrils, in which the major protein is fibrillin, are at the tips of elastin extensions 

extend from the elastin lamellae and bind to dense plaques or focal adhesions on SMCs 

(13) (Figure 1.3). At the cell surface, dense plaques or focal adhesions connect the 

microfibrils to the cellular network of contractile filaments, which are made up of the 

smooth muscle specific isoforms of α-actin (SM α-actin) and myosin heavy chain (SM-

MHC). Together, this apparatus of connecting cells and matrix has been termed the 
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“elastin-contractile unit,” (9, 14) and as discussed below, perturbations in this unit may be 

an important cause of thoracic aortic disease. 

The outer layer of the aorta, the tunica adventitia, is composed of fibroblasts and 

can contain inflammatory cells with some diseases. In addition, this layer also contains 

stem cells capable of differentiating into multiple cell types in the vessel wall but their 

significance, function, and origin are still under debate (15-19).   From a clinical and 

physiological perspective, the extracellular matrix in the adventitia is composed mostly of 

collagen, which provides the vessel with the structural integrity to support the wall of the 

vessel against high intraluminal pressures.  In humans, this layer is also where the vasa 

vasorum (blood vessels of the blood vessel) reside, providing oxygen and nourishment to 

the vessel wall (13, 20). 
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Figure 1.2 – Histology of the aortic wall. A) A hematoxylin and eosin (H&E) stain of a wild 
type (WT) mouse aorta. Most of the vessel wall observed is the media with minimal 
adventitia and a single layer of endothelial cells. Normally, in mice there is not a sizeable 
amount of adventitial layer. B) The adventitial layer is much larger with some forms of 
aortic pathology. H&E stain of biomechanically stressed ascending mouse aorta to show 
the expansion of the adventitia. C) A Movat stain of the stressed aorta demonstrating the 
lumen, media (dark), and adventitial layer, which is composed of cells (red), collagen 
(yellow, poorly visualized due to the proteoglycan deposition), and proteoglycans (blue). D) 
At higher magnification, the elastin fibers can be seen in black in the medial layer. While 
not present in mice, the adventitia would be the location of the small arteries of the vasa 
vasorum. 
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Figure 1.3 – A drawing of the transverse and longitudinal cross section of the vessel wall 
demonstrating the contractile unit. Elastin layers (dense black) are arranged between the 
smooth muscle cells, and the contractile fibrils are connected to them in the cell. Reprinted 
with permission from Lab Invest (Davis EC. Smooth muscle cell to elastic lamina 
connections in developing mouse aorta. Role in aortic medial organization, 1993) (14) 

 

1.2 – Thoracic aortic disease and pathology 

Thoracic aortic aneurysms and dissections are a major clinical concern, and 

constitute some of the most devastating pathologies plaguing patients. The natural history 

of thoracic aortic aneurysms is that they enlarge over time, and with this expansion, are 

predisposed to acute aortic dissections.  With multiple possible presentations, the 

diagnosis of thoracic aortic dissections is often missed by physicians. Acute pain in the 

upper thorax radiating to the back or to other parts of the chest can often be mistaken for 

a minor ailment, when, in fact, it is an aortic dissection and a clinical emergency.  
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Figure 1.4 – Aortic aneurysm formation can lead to aortic rupture or dissection. Far left is 
an illustration of a root aneurysm and ascending aortic aneurysm. Stanford Type A 
dissections are depicted in the middle. They encompass the ascending aorta and are 
considered a clinical emergency. A Stanford Type B dissection is anything distal of the left 
subclavian artery (depicted far right). Uncomplicated dissections are medically managed 
and electively repaired. 

 

Thoracic aortic aneurysms are closely monitored in patients because they are often 

the precursor to an aortic dissection or aortic rupture. A rupture of the vessel wall results 

in blood leaving the vascular system causing a patient to bleed out or, depending on the 

location, compromise other organs near the structure. A dissection is more complex. The 

structure of the vessel (aorta) becomes compromised as the aorta enlarges, and a tear in 

the intima allows blood to enter the vessel wall. The blood separates the vessel wall 

creating a true and false lumen with the false lumen often being located in the medial layer 
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of the wall. Blood pressure builds in the false lumen, and the increase in pressure can cause 

the dissection to progress proximally or distally down the vessel wall. The pressure in the 

false lumen can often collapse or restrict the blood flow in the true lumen causing distal 

malperfusion with clinical symptoms. Furthermore, a dissection can lead to rupture and a 

patient exsanguinates out if the vessel ruptured is in a large enough compartment of the 

body (21, 22). 

Aortic aneurysms and dissections are commonly classified by the Stanford 

Classification System, which identifies the need for immediate surgical intervention. Other 

classification systems of dissection, such as the DeBakey Classification System are also used 

(23). Any dissection between the aortic valve and the left subclavian artery is considered a 

Stanford Type A dissection. This is considered a surgical emergency as the dissection can 

cause a stroke distally or a hemo-pericardium proximally.  Normally, these dissections 

require emergent replacement of the vessel or more depending on the patient.  Stanford 

Type B dissections are distal to the left subclavian artery. Often, these cases are medically 

managed but closely monitored. They are only surgically addressed if there are 

complications such as mesenteric ischemia, paralysis, or untreatable pain (23). 

A vascular aneurysm is defined by a ballooning of a vessel to 1.5 times its normal 

size, and indicates a weakening of the vessel wall. Aneurysm formation is accompanied by 

pathologic changes that strain the wall, alter its structure, and in theory change the flow 

mechanics (24-27).  In the aortic root and ascending thoracic aorta, the pathology 

associated with aneurysms is usually characterized by a disordering and fragmentation of 
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the elastic fibers along with an increase in inflammation. Inflammatory markers produced 

by vascular SMCs and fibroblasts, such as IL6 and MCP1, signal inflammatory macrophages 

to invade the vessel wall. The macrophages then recruit fibroblasts to begin remodeling 

the medial layer and alter the extracellular matrix (28). While the origin of the fibroblast 

have been debated (17), they differentiate into myofibroblasts and induce the remodeling 

process, including the production of matrix metalloproteases (MMPs), to alter the vessel 

wall by cleaving multiple target proteins in the extracellular matrix (29). The remodeling 

includes changes in the extracellular matrix with alterations or fragmentation of elastin 

fibers, the production of proteoglycans, and the production of adventitial collagen (28, 30). 

These changes lead to a loss of the highly structured matrix organization described above. 

The resulting disruption of the “elastin-contractile unit” structure can cause aberrant 

changes in smooth muscle cells such as apoptosis (31) or hyper-proliferation (5, 9, 11).    

By far the most important risk factor for thoracic aortic aneurysms and dissection 

(TAAD) is hypertension.  Other factors that increase blood pressure and biomechanical 

forces on the ascending aorta are body building, weight lifting, and illegal drug use 

(cocaine, methamphetamines). Approximately 75% of patients with TAAD have elevated 

blood pressure, making it the most significant co-factor in the disease (32).  Other factors 

that increase the risk for thoracic aortic disease include age and the presence of a bicuspid 

aortic valve (8). The disease is significantly more common in males than females. In the 

studies reported here, Chapter 4 describes the role of increased biomechanical forces on 

the ascending aorta in aortic aneurysm formation.    
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There are also multiple genetic changes that predispose to thoracic aortic disease.  

Clinical studies have shown that up to 25% of TAAD patients have a first degree relative 

with the disease (33-35). These cases with an inherited predisposition can have syndromic 

forms of the disease, including Marfan syndrome or Loeys-Dietz syndrome, or can lack 

syndromic features. Genetic variants leading to TAAD are typically inherited in an 

autosomal dominant pattern with reduced penetrance and variable expression (36). 

Mutations contributing to the disease have been found in cell adhesion proteins (FBN1, 

COL3A1) (37, 38), transforming growth factor-beta (TGF-β) pathway genes (TGFBR1, 

TGFBR2, SMAD3, TGFB2) (5, 39, 40), genes encoding proteins involved in SMC contraction 

(ACTA2, MYH11, MYLK) (41-44), and genes associated with survival and metabolism(FOXE3, 

MAT2A)(8, 45). Marfan syndrome is caused by mutations in FBN1, which encodes fibrillin-1, 

the major component in the microfibrils that link elastin with SMCs in the aorta. Many of 

these genes have been extensive studied for their relationship to the canonical TGF-β 

pathway. The data presented in this dissertation will focus on mutations in the gene 

encoding SM α-actin (ACTA2), which were identified by our lab in 2007 (41).  
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1.3 Angiotensin system 

 

Figure 1.5 –Angiotensinogen is converted to angiotensin I, which is then converted to 
angiotensin II via angiotensin converting enzyme (ACE). There are multiple therapeutics 
developed that alter this pathway, such as ACE inhibitors and AT1R blockers. 

 

The renin-angiotensin system (RAS) is system that regulates blood pressure. In 

response to changes in blood pressure, angiotensinogen, an α2-globulin, is produced by the 

liver and converted by renin to angiotensin I (AngI).  An angiotensin converting enzyme 

(ACE) on the surface of pulmonary and renal endothelium then converts angiotensin I to 

angiotensin II (AngII) which binds to AngII receptors to alter multiple cells in the body and 

adjust blood pressure.  Through the angiotensin II type 1 receptor (AT1R) it leads to the 

release of a mineralcorticoid, aldosterone, from the adrenal glands which increase sodium 

reabsorbortion kidneys to help control blood pressure (46, 47). There are two 
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pharmaceutical strategies to alter this pathway that are currently used extensively in 

patients, one via inhibition of ACE inhibitor (ACEi) the second blocking the AT1R (24).  

However, the angiotensin system is much more complex. There is more than one receptor 

for angiotensin II (48-51). The AT2R has different effects in cells than the AT1R. 

Additionally, there is more than one ACE. The second ACE, ACE2, can convert angiotensin I 

and angiotensin II to smaller peptides Ang1-9 and Ang1-7, respectively, which lead down a 

different pathway triggering the Mas receptor.  Additionally, Ang1-9 is converted by ACE to 

Ang1-7, which is the ligand for the Mas receptor. These pathways are further discussed 

below and shown in Figure 1.6. 

 The AT2R has been known to counter the effects of the AT1R downstream in 

multiple systems. In the vascular SMCs, the AT1R increases proliferation, fibrosis, MMP2, 

and MMP9 expression (52), while the AT2R decreases proliferation, fibrosis, and MMP9 

expression (48).  However, in some models the AT2R has been thought to affect smooth 

muscle cell apoptosis (53, 54). Evidence indicates that Ang1-9 is converted by ACE to Ang1-

7.  With Ang1-7 binding to the Mas receptor on cardiomyocytes, it increases heart function 

improving cardiac output, cardiac index, and fractional shortening. It also reduces 

cardiomyocyte hypertrophy, fibrosis, and inflammation, but the Ang1-7 peptide and AngII 

have been viewed as having different effects on different physiologic systems, commonly 

focused on inflammation and fibrosis (55, 56). 
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Figure 1.6 – The revised view of the renin-angiotensin system. AngII can activate both the 
AT1R and AT2R receptors. AngI and AngII can both be metabolized by a second ACE 
enzyme into angiotensin peptides Ang1-9 and Ang 1-7, respectively.  

 

1.4 Angiotensin in animal models 

The role of the angiotensin system in aortic disease has been studied extensively in 

mouse models. The infusion of AngII into a mouse at a high enough dose can cause aortic 

disease. Most of the studies on angiotensin infusions focus on abdominal aortic aneurysms, 

since this and increased blood pressure are the most common presentations with this 

model, but expansion and dilation of the ascending aorta coupled with structural changes 

are also seen (57). AngII infusion causes medial expansion via hypertrophy or hyperplasia in 

both the abdominal and the thoracic aorta. Additionally, it has been shown to increase 

inflammation with the secretion of inflammatory cytokines by fibroblast and cells in the 

adventitia to recruit monocytes which further stimulate fibroblasts to remodel and 

increase cytokine production. Of note, however, blood pressure does not play the only role 
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as an increase in blood pressure with norepinephrine does not have the same effects (28, 

30, 58).  

There have been multiple studies using manipulation of the angiotensin system in 

genetic models of aneurysm formation to study the role of this pathway in driving the 

disease. There are a few different mouse models of Marfan syndrome which have variable 

effects on pathology and survival. These models include models that are deficient in 

fibrullin-1 (Fbn1-/-) (59) or express only a small percentage of normal fibrillin Fbn1mgR/mgR(8, 

60). One of the most established models is the Fbn1C1039G/+ mouse model (61, 62), which is 

viable and exhibits slow aortic growth. This mouse is heterozygous for a missense mutation 

that results in production of mutant fibrillin-1. In these mice, it was shown that the 

traditional beta-blocker (propranolol) and TGFβ neutralizing antibodies were able to 

reverse some of the aortic pathology. The idea was that propranolol would decrease blood 

pressure and stress on the aortic wall and the TGFβ neutralizing antibodies would block 

pathologic TGFβ signaling. However, an Angiotensin II type I receptor blocker (ARB), 

losartan, had a more drastic effect altering the structure of the aortic wall with decreased 

elastin fiber disruption, decreased wall thickening, and decreased distance between the 

elastic fibers (61). This echoes multiple studies showing the beneficial effects of blocking 

the AT1R or knocking it out in mice not just in the aorta, but also the heart (63, 64). 

One study also focused on the effects of the AT2R. Agtr2-/- mice were crossed with 

Fbn1C1039G/+ mice, which lead to an increase in pERK signaling, a downstream indicator of 

AT1R signaling (48). These results indicated that the AT2R may counter many of the 
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intracellular effects of the AT1R. Another mouse model of TAAD with a deletion in fibulin-4 

(Fbln4-/- mice) causes aneurysm formation with severe medial degeneration along with a 

loss of SMC differentiation and hyper proliferation. In these Fbln4-/- mice, the angiotensin 

converting enzyme inhibitor captopril was shown to be just as effective as losartan: 

initiating treatment with either drug in the first month of life attenuated the growth of the 

aorta and reduced pathologic changes in this model (65). 

Our lab developed a more acute biomechanical model, in which I focused on hyper-

acute aortic remodeling model using transverse aortic constriction (TAC) (52).  The model 

was originally designed to mimic congestive heart failure and has been studied extensively 

in congestive heart failure and left ventricular hypertrophy (66).  Over two weeks I saw an 

increase in proximal aortic size of 23%. There was an increase in the thickness of the media 

and adventitia. Medial cell density did not change, but cell density did increase in the 

adventitia. Inflammatory markers rose significantly as indicated by expression of IL6 and 

MCP-1. Additionally, I observed an increase in matrix remodeling genes MMP2 and MMP9. 

I also observed evidence of increased TGFβ signaling. As in other studies, losartan 

attenuated many of the pathophysiologic changes associated with this model. Specifically, 

losartan attenuated aortic growth, reduced medial thickening, and blocked the 

inflammatory response including the infiltration of macrophages. However, losartan was 

not able to completely reverse the changes in the adventitial layer, including thickening, 

collagen production, and signaling changes (52). Our data, combined with the prior studies 

by other labs (61, 65), indicate that AT1R may be a therapeutic target in ascending aortic 

disease. 
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1.5 Hypothesis tested 

I hypothesize that angiotensin II signaling through the AT1R contributes to 

thoracic aortic aneurysm formation in multiple model systems of disease, but that 

blocking related receptors in addition to the AT1R, such as the AT2R and Mas receptor, 

may have no effects or negative consequences.  

Herein, I demonstrate that losartan prevents aortic aneurysms in a mouse model of 

ACTA2 mutations, Acta2-/- mice, but captopril increases the growth of the aorta.  Instead of 

increased production of AngII in the aorta, I determined that the loss of α-actin filaments in 

aortic SMCs increases NF-κB signaling, thus driving increased expression of AT1R receptor, 

sensitizing the cells to exogenous AngII.  Furthermore, I show that in an acute 

biomechanical stress model, blocking AngII production using an ACE inhibitor (captopril) is 

not sufficient to reverse the aortic enlargement associated with the increased pressure. 

The addition of an AT2R agonist coupled with captopril prevented aortic growth in a 

manner similar to losartan.  Lastly, unrecognized congenital abnormalities in the aorta of 

the Agtr1-/- mice prevented the use of this model to confirm that losartan prevention of 

aortic enlargement with increased biomechanical forces was specifically due to blocking 

the AT1R receptor. This is an unexpected, totally novel observation. 
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Chapter 2 – Methods 
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2.1 Introduction 

Similar methods are used in all projects and will be described in this section. When I 

chose to make small adjustments from these approaches in different projects, I will 

mention those accordingly. 

 

2.2 Mouse models 

Mice were housed either at the animal care facility (CLAMC) at The University of 

Texas Health Science Center McGovern Medical School Building or in the Mouse 

Cardiovascular Phenotyping Core at Baylor College of Medicine. Wild type (WT) mice for 

transverse aortic constriction (TAC) were all acquired from Jackson Labs (Bar Harbor, ME, 

C57BL/6J Stock No:000664) at 10-12 weeks of age. Upon arriving, mice were quarantined, 

and the TAC surgery was performed at 12-14 weeks of age. Mice were sacrificed two weeks 

post-operatively as described below. Our lab had previously obtained frozen embryos of 

the Acta2-/- mouse from Dr. Warren Zimmer at Texas A&M, originally designed by 

Schildmeyer et al and bred into a C57BL6 background (67). Acta2-/- mice were then bred in 

house for our studies. In our Agtr1a-/- studies, mice were acquired from Jackson Labs (B6. 

129P2-Agtr1aTm1Unc/J, Stock No: 002682). Studies with TAC and Acta2-/- treated with 

captopril were all male while the other studies consisted of both male and female mice. 
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2.3 Transverse aortic constriction (TAC) 

All mouse experimental procedures were approved by the Animal Welfare 

Committee at The University of Texas Health Science Center McGovern Medical School and 

the Animal Welfare Committee at Baylor College of Medicine Mouse Phenotyping Core. 

C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME) at 10-11 weeks 

of age. As previously described in Kuang et al (52), mice were administered buprenorphine 

preoperatively (0.1 - 2.5 mg/kg subcutaneous injection). Mice were then given 2 – 2.5% 

isoflurane with 0.5 to 1.0 L/min of 100 % oxygen via a nose cone. Neck and chest hair was 

removed and the surgical site was prepared with chlorohexidine and 70% ethanol. Surgical 

instruments were sterilized chemically or by steam autoclave and the surgical area 

prepared accordingly. Sterile technique was used throughout.  For surgery, the mouse was 

placed in a supine position. After administering bupivacaine, a midline incision was made 

and superficial tissues were divided to expose the trachea to intubate the trachea using an 

18 – 21 gauge catheter. The catheter was then connected to a rodent ventilator (MiniVent, 

Type 845) administering 100% oxygen and 2 – 2.5% isoflurane. Mice were kept at a 

respiratory rate of 100-125 breaths per minute with a tidal volume of approximately 0.15-

0.25 mL. A partial sternotomy was performed to the second rib and the thymus divided to 

expose the transverse aorta.  A blunt 27 gauge needle was placed on the transverse aorta 

between the right innominate and left carotid artery.  Constriction was then made by tying 

a 6-0 non-absorbable braided black silk suture around the transverse aortic arch and 

needle. The needle was removed yielding the constriction.  The chest was closed with two 

interrupted vicryl 5-0 sutures after the lungs were re-inflated by closing of the outflow on 
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the rodent respirator. The skin was closed using 5-0 non-absorbable suture which was 

removed 10 days post-operatively. Anesthesia was discontinued and the animal extubated 

once it resumed spontaneous breathing.  Mice were monitored closely post-operatively for 

signs of distress and discomfort. The sham group underwent an identical procedure but no 

suture was tied to the aorta. Adequacy of the constriction was confirmed by Doppler flow 

studies, echocardiography, and catheter measurements described below. 

 

Figure 2.1 –The mice are constricted at the site of the transverse aorta leading to an 
increase in ascending aorta and aortic root size at two weeks. With the proximal increase in 
pressure, flow in the right carotid would increase significantly compared to the left carotid 
and there would be a significant pressure drop across the site of the constriction. 

 

2.4 Echo & Doppler studies 

Echocardiographic, Doppler, and blood pressure studies were all done in 

accordance with protocols previously described (11, 52). Under anesthesia, measurements 

were performed with a Vevo700, Vevo2100, Vevo3100, or an Indus Instruments Doppler 

system. Briefly, for all echo studies the mice were weighed and placed under anesthesia 
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with isoflurane administered and maintained via nose cone with a dose of 1 – 2% 

isoflurane at a rate of 0.5 to 1.0 L/min of 100 % oxygen. Mice were maintained under 

anesthesia for the duration of the experiment with a goal heart rate of 300 to 400 bpm. 

Heart rate and temperature were continuously monitored, and the temperature 

maintained within normal limits using the Indus Instruments pad and system. I observed 

some variability in response to anesthesia even within groups, with some mice appearing 

more sensitive to the anesthesia. Therefore, anesthesia was adjusted accordingly. All 

images were obtained in a parasternal long-axis view with 40 MHz ultrasonic probes. 

With all experiments performed with the Vevo700 and Vevo2100 systems 

(VisualSonics, Toronto, Ontario, Canada), the mice were placed in a supine position on the 

monitoring pad angled slightly to the mouse’s left side. Images of the ascending aorta and 

aortic root were then obtained and multiple videos recorded for each mouse. Under similar 

monitoring and anesthesia, Doppler measurements were made with the Indus Instruments 

Doppler probe one week post-operatively and recorded with their Doppler Signaling 

Processing Workstation with the mouse supine. 

The same procedures were performed using the Vevo3100 (VisualSonics, Toronto, 

Ontario, Canada) for ascending and aortic root measurements. However, with the 3100 

system, with the mice still sedated, I also assessed cardiac function and flow across the 

constriction at the transverse aorta, left common carotid artery, and right common carotid 

artery. Flow across the transverse aorta was obtained with the mouse still in the supine 

position. Cardiac function was assessed by obtaining both longitudinal and transverse 



23 
 

views across the left ventricle with the animal tilted slightly to its right in the supine 

position. Images over the left common carotid artery and right common carotid were 

obtained with the mouse in the Trendelenburg position. 

All mice were removed from isoflurane and allowed to recover. Flow studies of the 

common carotid arteries using the Vevo3100 correlated with the Indus Instruments 

Doppler studies. These studies were done using similar techniques, but the mice were not 

required to have their hair removed. 

Images of the ascending aorta and aortic root were then obtained, recorded, and 

later analyzed using VevoLAB 1.7.1 (VisualSonics, Toronto, Ontario, Canada) or Sante 

DICOM Editor 3.1 (Santesoft) (Figure 2.2). Carotid Doppler measurements were also 

analyzed with the VevoLAB 1.7.1 when obtained with either the Vevo 3100 or the Doppler 

Signal Processing Workstation, Ver 1.624 (Indus Instruments, Houston, Texas). 

 

Figure 2.2 – Echo image of the aorta in the longitudinal view. Measurements were taken at 
the ascending aorta and the aortic root. Images taken using the Vevo 700 and analyzed in 
the SanteDICOM Software. The red lines designate the measurements for the ascending 
aorta (left) and aortic root (right). The heart would be to the right of the image. 
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2.5 Non-invasive blood pressure monitoring and blood pressure measurements 

Non-invasive blood pressure monitoring was performed via a tail cuff system and 

were not utilized in TAC experiments. Briefly, awake mice were immobilized, and a blood 

pressure cuff placed over the tail. Mice were then placed on a heating pad and the blood 

pressure was recorded for five minutes with a CODA Noninvasive Blood Pressure system 

(Kent Scientific Corporation, Torrington, CT). This procedure was repeated multiple days in 

a row in order to acclimate the mouse to the testing environment and technique. Only the 

measurements on day five were utilized for analysis. 

For TAC studies I utilized an invasive, non-survival catheterization technique with a 

SPR-1000 1F Catheter (AD Instruments, Sydney, Australia), a Pressure Control Unit PCU-

2000 (Millar, Houston, TX), a PowerLab 4/35 DAQ device (AD Instruments), and LabChart 

software (AD Instruments). Prior to the procedure, all surgical instruments and supplies 

were sterilized by steam autoclave, and the surgical field prepared in a sterile fashion. The 

1F pressure catheter probes were presoaked in saline or distilled water for 30 second 

before catheterization. Mice were anesthetized with isoflurane via nose cone using the 

same method previously described for echocardiography (Section 2.4). Ketoprofen was 

given subcutaneously at a dose of 2.5 mg/kg. Hair on the chest and throat was removed, 

and the skin was prepared with povidone iodine and alcohol. A longitudinal incision was 

made approximately 2 mm to the right of the midline of the throat, from the lower jaw to 

the sternum. The skin and overlying tissue was gently divided and the right carotid artery 
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exposed. Ligatures were then placed on the right common carotid artery at the proximal 

and distal sites.  The knot on the distal site was made tight, while that on the proximal 

location site was made loose around the artery. Using a hemostat, the artery was clamped 

proximal to the more proximal ligation site. A 27 G needle was then used to create a small 

hole near the distal ligation site. The catheter probe was then inserted and advanced past 

the proximal knot, and the knot tightened down around the probe. For reference, the 

depth to insert the probe into a carotid for an 11-week-old mouse would be about 12 mm. 

Next, the hemostat was removed and the blood pressure recorded for a 5-10 minutes. 

Afterwards, the mouse was euthanized, while still sedated, for studies described below. 

2.6 Drug administration 

Captopril and Losartan are orally administered drugs used in both our TAC and 

Acta2-/- trials. Captopril (Cat# sc-200566A, Santa Cruz Biotechnology) was administered at 

75 mg/L and Losartan Potassium (Cat# sc-204796A, Santa Cruz Biotechnology) was 

administered at 600 mg/L in the drinking water, as previously (52). For the studies using 

AVE0991 (Sanofi, Paris, France), captopril was given in the drinking water and AVE0991 

given by intraperitoneal (IP) injection at a dose of 576 ug/kg/d. Similarly, Compound 21 

(C21, Vicore, Moelndal, Sweden) was administered by IP injection at a dose of 300 ug/kg/d 

with or without captopril in the drinking water. 

For the Acta2-/- studies, mice were treated long term with captopril via drinking 

water at a dose of 75 mg/L starting at four weeks of age.  The mice remained on this dose 

until they were sacrificed at 13 months of age, for a total of 12 months of treatment. 
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Similarly, mice treated with losartan, were given 600 mg/L in the drinking water starting at 

4 weeks of age (11). Losartan treatment was continued for 10 months until sacrifice at 11 

months of age.  Some mice were also treated long term with doxycycline for approximately 

12 months starting at 4 weeks of age. Doxycycline was administered in their drinking water 

with 1% sucrose. Controls for all of these experiments were untreated mutant and WT 

littermates given drinking water, except in the doxycycline trial in which the control mice 

were given 1% sucrose water. The doxycycline doses were based on previous studies (63, 

68). 

Additional cohorts of Acta2-/- mice were treated short-term with L-NG-nitroarginine 

methyl ester (L-NAME) in their drinking water (3 g/L) in conjunction with a high salt diet 

(8% NaCl diet, Harlan), to make the mutant mice normotensive. Mice were started on L-

NAME and high salt diet at 4 weeks for age and treated for 3 months prior to sacrifice at 4 

months of age. 

2.7 Histomorphometric study 

Following completion of the echo, Doppler, and catheterization studies, animals 

were sacrificed.  After anesthetization with 2.5% avertin, transcardiac perfusion was 

performed with 10 mL of PBS for 5 minutes followed by fixation with 10 mL of formalin for 

5 minutes. The heart, aortic root, ascending aorta, descending thoracic, and left and right 

carotid arteries were then carefully removed and placed in 10% formalin overnight. On the 

next day, the tissue was cleaned, processed and embedded in paraffin wax in a transverse 

orientation.  Tissues were cut into 4 µm sections using a microtome and mounted on slides 
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for staining. Hematoxylin and eosin (H&E) staining was performed via standard protocols. 

Pictures of the vessel cross-sections were taken at 40x, 50x, 200x, and 400x magnification. 

The luminal, medial, and adventitial areas were measured for each vessel in ImageJ. In 

addition, cell density was also assessed utilizing ImageJ. Movat staining was used to assess 

the structure, elastin breaks, and the amount of elastin and proteoglycan in the vessel wall. 

Additional staining of Mac-2 cells (anti-Mac-2 monoclonal antibody for macrophages), 

Sirius Red, and α-actin (anti-SMC α-actin specific antibody) were also obtained to look at 

inflammation, collagen production, and smooth muscle cells/fibroblast. TUNEL and PH3 

staining was also performed to analyze apoptosis and proliferation, respectively. Five or 

more mice were analyzed for each group and averaged, but the number of mice depended 

on the specific study. Some of the preliminary studies have smaller “n” sizes. Table 2.1 

shows the stains and antibodies utilized for these studies. 

 

Table 2.1 – Antibodies and stains utilized for IHC studies including their company and 
catalog number. 
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2.8 ImageJ analysis 

Images were recorded with a DP71 light microscope (Olympus, courtesy of 

Blackburn Lab) at 40x and 400x magnification, and all analysis was performed using ImageJ 

1.47v (NIH).  I utilized 40x magnification as a baseline and method of orientation for 

analysis. Cross-sectioned H&E’s at 40x were used to measure luminal area, vascular wall 

area, medial area, and adventitial area. Luminal area was defined as the area contained 

within the endothelium. However, in reality it is best measured to the internal elastic 

lamina, and echo measurements are considered a more physiologic standard. Vascular area 

was defined as everything from the internal elastic lamina to the tunica externa, the outer 

most defined layer of the vessel wall. Medial area was defined as the area between the 

internal elastic lamina and external elastic lamina. The adventitial area was defined as the 

area between the external elastic lamina and the tunica externa. Note this area was often 

omitted in the sham treated mice because it is very small and more difficult to quantify. In 

all mice, the endothelium is omitted since it is a single layer of cells and also difficulty to 

quantify. 

The 40x images were used to select sections at equivalent locations that were 

appropriately distributed throughout the aortic wall for analysis. The majority of the 

analysis was done at 400x. On H&E stained sections, cell nuclei were counted using a cell 

counter and individually the cellular density of the media and adventitia was determined in 
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each image. Over 6 images were analyzed for each section and averaged to calculate, 

which I once normalized to the area of each image. Measurements were verified by looking 

at multiple cuts of the same aorta. 

Images for Movat analysis were taken in a similar fashion at 400x magnification and 

analyzed in ImageJ. All components stained by Movat (elastin, collagen, proteoglycan, 

fibrin and smooth muscle cells) were assessed and presented as percentages registered 

pixels of the segment of interest for quantification. I focused primarily on elastin (black), 

proteoglycans (blue), and the cells which stained (red). A band pass filter was used for 

analysis, which allowed us to identify color thresholds for hue, saturation, and brightness 

for each measured component (i.e. elastin, proteoglycan, and smooth muscle cells). The 

resulting images were then used for quantification by the number of pixels.    

 Mac-2 staining was quantified by manually counting the total number of Mac-2 

positive cells in each section. The sirius red, TUNEL, and PH3 stains and images were not 

quantified for the purpose of these studies. 

 

2.9 Measurement of ROS in aortas by dihydroethidium (DHE) 

Descending aortas were harvested, rinsed immediately in cold PBS, placed in Tissue-

Tek OCT compound (Miles Laboratories), and snap frozen in liquid nitrogen. Blocks were 

cut to 30 μm-thick cryosections on a cryostat. Frozen sections were fixed in 4% PFA at 

room temperature for 15 minutes and rinsed 3x with PBS. DHE (Invitrogen, Cat#C10422) 
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stock at 2.5 mM was diluted for a final concentration of 10 μM in PBS and applied to each 

tissue section. Slides were incubated in a light-protected humidified incubator at 37°C for 

30 minutes. DHE was counterstained with DAPI. Sections were imaged within 8 hours of 

staining with a fluorescent ZEISS AXIOSKOP 40 microscope. Identical acquisition settings 

were used for tissue from wild-type or mutant animals. Fluorescence images were 

quantified with ImageJ. Integrated fluorescence intensity (IFI) was calculated by integrating 

the area and strength of red staining within the aortic wall in each image. Error bars 

represent standard error. 

 

2.10 RNA extraction and qPCR  

Following the echo, Doppler, and catheterization studies, RNA was extracted from 

the ascending and descending aorta of a subset of the mice. For RNA extraction, the mice 

were perfused with saline and the tissue harvested, cleaned, and then flash frozen. Trizol 

(Invitrogen) was used for the extraction of RNA. RNA was then reverse transcribed using 

the cDNA Archive Kits (Life Technologies) or iScript cDNA synthesis kit (Bio-Rad) following 

the manufacturer protocols. For real-time PCR analysis of mRNA expression, I utilized both 

TaqMan (Applied Biosystems, Foster City CA) and SyberGreen primers.  SybrGreen probes 

were designed as described in the Table 2.2 with references. When mentioned, I 

acknowledge the catalog number for the Taqman probes that were used. Experiments 

were performed in triplicate, and Gapdh was used as an endogenous control for each run. 
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Table 2.2 – Primers designed from SybrGreen utilized in our studies. 

“2.11 2D-gel electrophoresis  
Cultured SMCs or freshly isolated ascending aortic tissue were 

homogenized in urea sample buffer, containing 8M urea, 20mM Tris, 
23mM glycine, 0.2mM EDTA, 5% saturated sucrose, and 10mM DTT. 
Three micrograms of cell lysates mixed with or without 200ng of purified 
SM α-actin or SM γ-actin (provided by Dr. Kathleen Trybus from the 
University of Vermont) were added into 450µL of Rehydration/Sample 
buffer (Bio-Rad). Samples were loaded onto 24 cm, pH 4–7, immobilized 
pH gradient strips (Bio-Rad) overnight and focused in a PROTEAN® i12™ 
IEF System (Bio-Rad) for 60kVh. Then, the strips were equilibrated in 
Equilibration Buffer I and II (Bio-Rad), the center third parts were cut out 
and saved, and the strips were gently inserted into a 8-12% SDS-PAGE 
mini-gel (Bio-Rad). Then, the gel was run, transferred to nitrocellulose 
membrane, blotted with anti-pan actin antibody (MA5-11869, Sigma), 
and visualized as described in routine immunoblotting. The calculated 
isoelectric points for α-, β-, and γ-actin are 5.24, 5.29, and 5.31, 
respectively. 

 
2.12 NADPH oxidase activity assay. 

Aortic tissues harvested from 2 months old mice (n=4 per group) 
were ground in chilled grinding vials and were homogenized in lysis 
buffer (20 mmol/l KH2PO4, 1 mmol/l EGTA, and protease inhibitors 
cocktail; pH 7.4) and sonicated for 5s (3x with 10s interval). The 
homogenates were then centrifuged at 750 g for 5 min. The pellet was 
discarded and the supernatant was collected and subjected to a 
lucigenin-enhanced luminescence assay as described before to determine 
NADPH oxidase activity in the aortic tissue homogenate (69). Protein 
content was measured in an aliquot of homogenate by Bradford assay. 
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NADPH oxidase activity was measured by chemiluminescence in a well 
containing assay phosphate buffer (50 mM KH2PO4, 1 mM EGTA, and 150 
mM sucrose; pH 7.4), 5 μM lucigenin (Sigma), and the sample (50 μl). 
Reactions (final volume, 250 μl) were initiated by addition of 100 μM 
NADPH (Sigma). Luminescence was measured every second for 5 min in a 
luminometer (BioTek Synergy™ HT; BioTek Instruments, Inc., Winooski, 
VT). A background value was subtracted from each reading. Activity was 
calculated from the ratio of mean light units to total protein level and 
expressed as arbitrary units (relative light unit).  
 
2.13 Calcium imaging 
  Cells were seeded on 25mm coverslips and pretreated with the 
indicated drugs for the indicated times. Cells were loaded with Fura-2AM 
for 10-15 minutes and then placed in the imaging chamber with 0.5mL of 
culture medium. Coverslips were mounted for viewing on a Nikon TE200 
microscope, and imaging was performed with Incytim2 software 
(Intracellular Imaging, Inc.). Measurements were taken using excitation 
wavelengths of 343/380 nm and emission wavelength of 520 nm. Basal 
Ca++ was assessed for 20 seconds, then 0.5mL of medium containing the 
indicated amounts of AngII was added to the chamber. Imaging 
continued until Ca++ levels returned to baseline. Data is represented as 
Fmax/F0 where Fmax represents the highest 340/380 ratio and F0 
represents the baseline 340/380 ratio for each cell.” 
 

Quoted text reprinted from Supplemental Information with minimal 
modification with permission from Wolters Kluwer Health (Chen J, Peters AM, 
Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, 
Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, 
Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-actin Leads to NF-
kappaB-Dependent Increased Sensitivity to Angiontensin II in Smooth Muscle 
Cells and Aortic Enlargement Circ Res 2017). See reference (11)   

 

 

 

2.14 Statistical analysis 

All data are expressed as mean ± standard deviation. Multiple groups were analyzed 

assuming unpaired, non-parametric analysis (Kruskal-Wallis). Differences between specific 
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groups were analyzed assuming unpaired, non-parametric analyses (Mann-Whitney U). All 

groups included 4 or more male mice depending on the study. I was limited by survival 

rates in some of the long term treated Acta2-/- mice although, the analysis consists of 5 or 

more animals for most of the studies. Statistical analysis and graphs were all produced with 

GraphPad Prism 6 (Version 6.03) or with Microsoft Excel. Differences were considered 

significant when p<0.05. However p values approaching the 0.05 limit may be reported if I 

felt that it was due to that experiment being underpowered. The Bonferroni correction was 

not performed. When shown in the figures, a * indicates p≤0.05, ** indicates p≤0.01, *** 

indicates p≤0.001, and **** indicates p≤0.0001. 
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Chapter 3 –The Acta2-/- mouse model of thoracic aortic disease: source of increased AngII 

signaling and pharmacologic manipulation of AngII signaling 
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3.1 Introduction  

As mentioned earlier, in patients with thoracic aortic aneurysm or dissection 

(TAAD), it has been shown that up to 20% of them have a genetic predisposition for the 

disease (33, 34). Although many of those patients have syndromic features such as Marfan 

syndrome, the majority do not have features of a syndrome. These patients show no 

specific distinguishable features to identify them to be at risk for thoracic aortic disease 

other than a family history of the disease. In these cases, ACTA2 is the most frequently 

mutated gene, accounting for 12-20% of the familial mutations making it a specific clinical 

concern. ACTA2 encodes the SMC-specific isoform of α-actin (SM α-actin), which makes up 

to 40% of SMC cellular protein. SMCs major function is contracting in response to stimuli, 

such as cyclic strain or neurostimulation. This cyclic contraction is mediated by sliding thin 

filaments composed of α-actin filaments over the thick filaments, composed of SMC-

specific β-myosin heavy chain and other proteins. ACTA2 variants causing thoracic aortic 

disease are missense mutations inherited in an autosomal dominant pattern, which have 

been shown in vitro to cause a dominant negative effect on SMC α-actin filament formation 

(5, 41). It is notable that ACTA2 is a highly conserved and invariable gene with essentially 

no variation in the general population. Missense variants throughout the protein have 

been identified and strong associations exist between specific genotypes and phenotypes 

(5). Recurrent mutations disrupting specific amino acids, such p.R179, p.R258, and p.R149, 

have sufficient clinical data to identify distinctive clinical phenotypes associated with each 

variant and allow for personalized management of the vascular disease associated with 

these variants (70-73). 
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To model vascular disease in patients with ACTA2 mutations, we used a mouse 

model with knock out of SMC α-actin, Acta2-/- mice. Prior studies had shown that Acta2-/- 

mice have normal vascular development, but the mice are hypotensive and aortic 

segments contract less with agonist stimulation (67). Work in our lab initially focused on 

characterizing the SMC phenotype and determined that Acta2-/- SMCs were hyperplastic 

due to activation of cellular pathways, involving FAK, platelet-derived growth factor 

signaling, and reactive oxygen species (ROS) (9). 

 In the studies described below, we sought to characterize aortic pathology in 

Acta2-/- mice and determine whether treatment with modulators of the angiotensin system 

could alter the pathology. I show that Acta2-/- mice have aortic enlargement, but this 

enlargement does not progress to dissection.  Furthermore, the aortic enlargement is 

attenuated by losartan treatment but exacerbated by captopril treatment. These results 

once again emphasize the complex role of angiotensin signaling in aortic disease. Through 

my investigations of the cellular mechanisms of aneurysm formation, we identified that 

increased NF-κB signaling is responsible for increased expression of Agtr1. The 

overexpression of Agtr1 leads to increased sensitivity of the aortic SMCs to endogenous 

AngII levels and drives enlargement of the aorta. My results show a completely novel 

mechanism by which angiotensin signaling can be increased in cells without an increase in 

local or systemic levels of AngII.  
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3.2 Results 

3.2.1 Acta2-/- mice and losartan treatment over time 

There was no difference in the size of the aortic root or the ascending aorta 

between Acta2-/- and WT mice at 4 weeks of age (Figure 3.1 A). By 6 months of age, a 

significant increase in the size of the aortic root in Acta2-/- mice was evident when 

compared to WT mice, and the aortic diameter continued to increase at 7 months of age 

(Figure 3.1 B). Interestingly, we observed these changes despite the fact that the Acta2-/- 

mice were significantly hypotensive compared to the WT mice (11).  Importantly, there was 

no significant difference in mouse survival between the mutant and WT mice (Figure 3.1 C).  
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Figure 3.1 – A) At four months of age there was no significant difference between the size 
of the ascending aorta and the aortic root between the WT and Acta2-/- mice. B) Over time 
the aortic root became significantly larger in the Acta2-/- by 20 weeks of age. C) There was 
no difference significant in survival between these mice and their WT littermates. D & E) 
Ascending aorta and the aortic root measurements at seven months of age in the Acta2-/- 
with and without treated with losartan. Losartan was able to attenuate the growth of the 
aortic root.  Note that the ascending aorta is not significantly enlarged in the Acta2-/- mice. 
Modified and reprinted with permission from Circulation Research (Chen J, Peters AM, 
Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu 
MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. 
Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased Sensitivity to 
Angiontensin II in Smooth Muscle Cells and Aortic Enlargement. Circ Res 2017). See 
reference (11)   
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I also observed an increase in the number of elastin lamellae in the Acta2-/- 

postnatal aortas when compared to WT aortas (p<0.05, Figure 3.2 A, B). Elastic lamellae 

are laid down during development (7, 74), and the increased layers in the aorta can be 

observed in the histologic sections at every time point regardless of the treatments or 

procedures the mice went through postnatally. A similar phenotype is seen in mice 

deficient in elastin, Eln-/- mice (10). At 4 weeks of age Acta2-/- aortas also have an increase 

in the density of cells staining positive for a calponin, a SMC marker (Figure 3.3 A, C).  

However, the cell density normalizes to the same density as WT by 8 weeks of age, and the 

density remains the same as WT at all other time points assessed (Figure 3.2). This data 

suggests that the cellular proliferation phenotype and pathways that were previously 

identified in Acta2-/- SMCs do alter the development of aortic disease in this mouse.  The 

pathophysiologic changes seen between the observed groups were consistent with what 

we had previously observed in this model. In early studies, we found that there was a 

significant increase in the medial area of the Acta2-/- mice while there was no significant 

difference in medial cell density at older age. This would possibly indicate some form of 

cellular hypertrophy (Figure 3.5). However, the significant difference in medial cell density 

at a younger mouse age without increase in medial area may indicate that the cellular 

hyperplasia already exist after development.  
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Figure 3.2 – A) Aortic medial area increases significantly over time in the Acta2-/- mice 
compared to WT mice. B) Medial cell density was significantly higher in Acta2-/- mice 
compared to WT shortly after birth, however, the cell density between the mutant and WT 
were similar by 3 weeks of age. Modified and reprinted with permission from Circulation 
Research (Chen J, Peters AM, Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, 
Gong L, Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, 
Prakash SK, Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-actin Leads to NF-
kappaB-Dependent Increased Sensitivity to Angiontensin II in Smooth Muscle Cells and 
Aortic Enlargement, Circ Res 2017). See reference (11)   
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Figure 3.3 – Histologic analysis of the ascending aortas in mice at four weeks of age. A,B) 
Representative H&E, Movat, and calponin stains of the WT and Acta2-/- mice. (A) Show the 
increase in elastic lamellae and cells staining positive for calponin (quantified in B). 
Modified and reprinted with permission from Circulation Research (Chen J, Peters AM, 
Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu 
MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. 
Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased Sensitivity to 
Angiontensin II in Smooth Muscle Cells and Aortic Enlargement, 2017) (11).  

 

Given that losartan blocked aortic enlargement in other mouse models of thoracic 

aortic disease (61, 63), we assessed whether losartan treatment could rescue the aortic 
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dilation and pathology in Acta2-/- mice. The mice were treated with losartan starting at 4 

weeks of age, and treatment continued for six months. The growth of the aortic root was 

attenuated with losartan treatment in the Acta2-/- mice compared to WT mice, indicating 

that losartan can partially prevent the age-dependent aortic growth (Fig 3.1-D,E). Acta2-/- 

aortas have minimal medial degeneration and the only significant change in aortic 

pathology in the mutant aortas compared with WT aortas was an increase in proteoglycan 

deposition in the medial layer, and this deposition was prevented by losartan. There were 

no significant differences in elastin breaks between Acta2-/- and WT mice. However, 

collagen deposition in the adventitial layer was borderline increased (p=0.07) and 

attenuated by losartan (p=0.08) (Figure 3.4).  
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Figure 3.4 – A) The H&E, Movat, and Sirius Red stains of the WT, Acta2-/-, and Acta2-/- 
losartan treated mice. The Movat stain colors indicate elastin (black), proteoglycans (blue), 
and the cells which stained (red). B) Analysis showed that there was a significant increase 
in the amount of proteoglycan in the wall of the Acta2-/- mice while there was significantly 
less with losartan treatment. C & D) showed that there is no difference in elastin breaks 
between the groups. It appears that adventitial collagen is increased, but our study is 
underpowered. Modified and reprinted with permission from Circulation Research (Chen J, 
Peters AM, Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, 
Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, 
Milewicz DM. Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased 
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Sensitivity to Angiontensin II in Smooth Muscle Cells and Aortic Enlargement, Circ Res 
2017). See reference (11)  . 
 

3.2.2 Long term captopril treatment incapable of reversing pathological changes 

associated with Acta2-/- mouse model 

Losartan was able to attenuate aortic enlargement in the Acta2-/- mice. We 

therefore we wanted to further define the role of the angiotensin system in aneurysm 

formation and explore whether other therapeutic targets within this system might be 

effective. ACE inhibitors (ACEi) are upstream in the AngII signaling pathway of AngII 

receptor blockers, like losartan (Figure 1.5), we tested the use of an ACEi, captopril, in 

blocking aortic enlargement in the Acta2-/- mice. Habashi et al. found that they were able 

to inhibit aneurysm formation and the angiotensin pathway (65). This captured our interest 

given the clinical use of ACEi’s despite the fact that others noted that ACEi (enalapril) were 

not as effective in treating aortic aneurysm in Fbn1C1039G/+ (48). ACE inhibitors have been 

studied extensively in other tissues (75, 76). For this study, male Acta2-/- mice were treated 

for 10 months with captopril, with treatment beginning at 1 month of age. By 11 months of 

age, there was no difference in the aortic diameters between the Acta2-/- mice and WT 

mice.  Surprisingly, there was a significant increase in both the ascending aorta and aortic 

root diameter in the Acta2-/- mice treated with captopril compared to WT and untreated 

Acta2-/- littermates (Figure 3.4 A & B). Because larger mice tend to have larger aortas, we 

also analyzed the data normalizing the aortic size to the weight for all mice. There was no 

significant difference in the weight of WT and Acta2-/- mice, but treatment with captopril 
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significantly decreased their weight (Figure 3.4 C).  As a result, when we normalized to 

weight, the difference between the ascending aorta and aortic root size between the mice 

becomes more significant even in the ascending aorta (Figure 3.4 D & E).  

 

Figure 3.5 – A, B) Ascending aortic (A) and aortic root (B) measurements at 11 months of 
age and 10 months of treatment show that captopril treatment exacerbates the phenotype 
of Acta2-/- mice. C) Acta2-/- mice treated with captopril weigh significantly less than wild-
type. D, E) Normalizing to weight increases the significant differences between the groups. 
* indicates p≤0.05 and ** indicates p≤0.01 in the analysis. (Andrew M. Peters, Zhen Zhou, 
Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, 
Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz 
Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling and 
Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference (77). 
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Despite exacerbating the dilation of the aorta, captopril treatment did reverse some 

of the pathologic changes associated with Acta2-/- aortas. Specifically, the increased medial 

and adventitial areas were decreased with captopril treatment. These results suggest that 

the thickening of the adventitia and the media is actually protective. Captopril treatment 

had no effect on proteoglycan deposition but did increase elastin content in the aortic wall. 

The cellular hypertrophy that causes the medial thickening over time does not happen in 

the captopril treated aortas, so while elastin content remains constant, the amount of cells 

in the wall is lower in the captopril treated mice (Figure 3.6). 
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Figure 3.6 – A) H&E and Movat stains of the WT, Acta2-/-, and Acta2-/- mice treated with 
captopril. B & C) Analysis indicates that the Acta2-/-mice have a significant increase in the 
medial area and the adventitial area. These increases are not seen in the Acta2-/-captopril 
treated mice. D) There was a significant increase in the amount of elastin in the medial wall 
of the captopril treated mice compared to both the WT and untreated Acta2-/-mice. 
(Andrew M. Peters, Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing 
Kuang, Shanzhi Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna 
M. Milewicz Pharmacologic Manipulation of the Angiotensin System Affects Aortic 
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Remodeling and Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) 
See reference (77). 

 

“To investigate the increased signaling through the Agtr1a in 
Acta2−/− mice, SMCs were explanted from the ascending aorta. Our 
previous studies determined that Acta2−/− SMCs have increased 
levels of cellular ROS and ERK1/2 signaling (9). To determine 
whether Acta2−/− SMCs are more responsive to exogenous AngII, 
we assessed pRelA levels. Surprisingly, Acta2−/− SMCs show 
activated pRelA in the absence of AngII, whereas WT SMCs do not 
(Figure 3.7 A), and this increased pRelA signaling correlates with 
increased Il6 expression in the Acta2−/− SMCs [data not shown]. 
Furthermore, the Acta2−/− SMCs showed increased sensitivity to 
AngII and prolonged signaling. In the Acta2−/− SMCs, pRelA levels 
increase at 10 nmol/L AngII, whereas pRelA levels do not increase 
in WT SMCs until a 100-fold higher dose of AngII is used 
(1000nmol/L; Figure 3.7 A; [data not shown]). The Acta2−/− SMCs 
are also more sensitive than WT SMCs to exogeneous AngII based 
on intracellular Ca2+ assays (Figure 3.7 B). The Acta2−/− SMCs 
show earlier and more prolonged increases in pRelA levels than 

WT SMCs when exposed to 1 μmol/L AngII [data not shown]. 

Similar to the Acta2−/− aortas, expression of Agtr1a is increased >8-
fold in the Acta2−/− SMCs (Figure 3.7 D). For all cellular studies, 

Agtr1b expression followed the same pattern as Agtr1a but is ≈10-

fold lower (data not shown). 
 

We sought to determine the signaling pathway responsible 
for increased Agtr1a expression and AngII sensitivity in the Acta2−/− 
SMCs. Inhibition of the Agtr1a using losartan effectively blocks the 
increase of pRelA in response to exogenous AngII but does not 
decrease the basal level of pRelA in Acta2−/− SMCs; Il6 expression 
with these treatments correlates with pRelA levels[data not shown]. 

AngII-induced NF-κB activation in SMCs is mediated by 

RhoA/ROCK phosphorylation of Ser536 of RelA (78). Therefore, 
Acta2−/− SMCs were exposed to Clostridium botulinum exoenzyme 
C3 exotoxin to block Rho activation, which blocks AngII-inducible 
pRelA as expected, but does not decrease baseline activation of 
RelA in the Acta2−/− SMCs [data not shown]. ROS is a known 

activator of NF-κB signaling, and we previously found increased 

cellular ROS levels in the Acta2−/− SMCs (9). 
 
Blocking cellular ROS using [N-acetylcysteine (NAC)] 

decreases the baseline pRelA levels in the Acta2−/− SMCs and 
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reduces the sensitivity of these cells to exogenous AngII (Figure 
3.7 C; [data not shown]). NAC treatment also decreases the 

expression of Agtr1a, Il6, and Mmp2 in the mutant SMCs to levels 
similar to WT SMCs (Figure 3.7 D). Finally, pre-treatment of cells 

with NAC abolishes the increase in intracellular calcium in response 
to exogenous AngII in both WT and Acta2−/− SMCs (Figure 3.7 E). 

To confirm that NF-κB signaling is responsible for the 

hypersensitivity of the Acta2−/− SMCs, these cells were treated with 

an NF-κB inhibitor anatabine, which partially blocked 

phosphorylation of RelA (Figure 3.8 A) and also reduced 

expression of Il6, Agtr1a, and Mmp2 to levels similar to WT cells 

(Figure 3.8 B). Helenalin, an inhibitor of NF-κB DNA binding 

activity, which does not affect RelA phosphorylation, also 
significantly blocks expression of Il6, Agtr1a, and Mmp2 [data not 
shown)] (79, 80). In addition, pre-treatment of cells with either 
anatabine or helenalin abolishes the increase in intracellular 
calcium in response to exogenous AngII in both WT and Acta2−/− 
SMCs (Figure 3.8 C). 

 
To identify the source of increased ROS, the expressions of 

the nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases were assessed, and expressions of Nox4 and p22phox, 
along with a known activator of Nox4, Poldip2, are all significantly 
increased in the Acta2−/− SMCs (Figure 3.8 D) (81, 82). There is no 

significant change in expression of Nox1 or Nox2 [data not shown]. 
Furthermore, a specific inhibitor of Nox4, VCC588646, reduces 
ROS levels in Acta2−/− SMCs and also significantly decreases 

expression of Il6, Mmp2, and Agtr1a (Figure 3.8 E & F) (83). NF-κ
B has been previously shown to directly induce Nox4 
expression,(84) and treatment with helenalin significantly reduces 
expression of Nox4, Poldip2, and p22phox in Acta2−/− SMCs. Taken 
together, our data suggest a feedback loop in which increased ROS 

levels drive NF-κB signaling that increases Nox4, p22phox, and 

Poldip2 expression and ROS accumulation. This feedback loop 
increases expression of Agtr1a leading to increased AngII 
sensitivity in the aortic SMCs.”  

Quoted text reprinted with minimal modification with permission 

from Wolters Kluwer Health (Chen J, Peters AM, Papke CL, Villamizar 

C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, 

Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, 

Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-actin Leads to 

NF-kappaB-Dependent Increased Sensitivity to Angiontensin II in Smooth 

Muscle Cells and Aortic Enlargement. 2017) (11) 
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Figure 3.7 – Increased sensitivity to angiotensin II (AngII) in Acta2−/− 
smooth muscle cells (SMCs) is driven by reactive oxygen species (ROS). A) 
Dose–response curve after 20 min of AngII treatment shows that Acta2−/− 
SMCs have increased baseline phosphorylate RelA (pRelA) that increases 
with exposure to AngII concentrations as low as 10 nmol/L, compared 
with 1000 nmol/L in wild-type (WT) SMCs. B) Immediately after 
stimulation with various doses of AngII, Acta2−/− SMCs have increased 
intracellular Ca2+ levels when compared with WT cells. At least 30 cells 
were measured for each group. C) Treatment with N-acetyl cysteine 
(NAC) reduces baseline pRelA in Acta2−/− SMCs and reduces AngII-induced 
phosphorylation of RelA in both genotypes. D) Acta2−/− SMCs, like the 
aortic tissue, have increased expression of Il6, Agtr1a, and Mmp2. NAC 
treatment significantly reduces expression of all 3 genes but not to WT 
levels. E) Pre-treatment with NAC for 12 h abolishes the increase in 
intracellular Ca2+ levels after stimulation with 0.5 μmol/L AngII in both 
WT and Acta2−/− SMCs. Modified and printed with permission from 
Circulation Research (Chen J, Peters AM, Papke CL, Villamizar C, Ringuette 
LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu MX, Madonna 
R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz 
DM. Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent 
Increased Sensitivity to Angiontensin II in Smooth Muscle Cells and Aortic 
Enlargement. Circ Res 2017). See reference (11)  ” 
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Figure 3.8 – Inhibition of either nuclear factor (NF)-κB signaling or Nox4 
reduces Agtr1a expression and decreases sensitivity to angiotensin II 
(AngII) in Acta2−/− smooth muscle cells SMCs. A) Helenalin, an inhibitor of 
NF-κB signaling, reduces expression of Il6, Mmp2, and Agtr1a after 6 h of 
treatment. B) Twelve- hour pre-treatment with helenalin or a second NF-
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κB inhibitor anatabine abolishes the increase in intracellular Ca2+ with 0.5 
μmol/L AngII stimulation in both wild-type (WT) and Acta2−/− SMCs. C) 
Acta2−/− SMCs have increased expression of Nox4, Poldip2, and p22phox 
when compared with WT SMCs. D) A specific inhibitor of Nox4, 
VCC588646, reduces reactive oxygen species in Acta2−/− SMCs to WT 
levels. E) VCC588646 treatment reduces expression of Il6, Mmp2, and 
Agtr1a in WT and Acta2−/− SMCs. F) Treatment with the NF-κB inhibitor 
helenalin for 6 h reduces expression of Nox4, Poldip2, and p22phox in 
Acta2−/− SMCs. Modified and reprinted with permission from Circulation 
Research (Chen J, Peters AM, Papke CL, Villamizar C, Ringuette LJ, Cao JM, 
Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, 
Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. Loss 
of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased 
Sensitivity to Angiontensin II in Smooth Muscle Cells and Aortic 
Enlargement, Circ Res 2017). See reference (11)  . 
 

 

Figure 3.9 – Levels of AngII in Acta2−/− aortas and kidneys are not 
significantly different from WT. Measurements were made at 3 mo of age 
(n=20 aortas per genotype, 4 kidneys per genotype). Modified and 
reprinted with permission from Circulation Research (Chen J, Peters AM, 
Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, 
Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis 
EC, Prakash SK, Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-
actin Leads to NF-kappaB-Dependent Increased Sensitivity to 
Angiontensin II in Smooth Muscle Cells and Aortic Enlargement. Circ Res 
2017.) See reference (11)   
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3.2.3 L-NAME and NAC in Acta2-/- mice 

Many of the studies in our lab have focused on the role of blood pressure in aortic 

disease. We and others have done numerous studies on mechanical stress and blood 

pressure in mouse models. I specifically discuss how we investigate this model in a hyper 

acute setting in Chapter 4 (52). Others have also shown that mechanically stressing the 

vessels can influence the angiotensin system through a β-arrestin and G-protein mediated 

pathway (85).  

Given these ideas, we decided to significantly increase the biomechanical stress on 

the ascending aorta in the Acta2-/- mice by utilizing a nitric oxide synthase inhibitor, L-NG-

nitroarginine methyl ester (L-NAME), coupled with a high salt diet (8% NaCl in chow, 

Harlan). The regimen made the hypotensive Acta2-/- mice normotensive (Figure 3.10 A) 

(11). With the increase in blood pressure, the studies showed that the increase in 

biomechanical stress in these mice could lead to a significant increase in aortic root size by 

just three months of age compared to the untreated WT and Acta2-/- mice. The ascending 

aorta was also significantly enlarged in the normotensive Acta2-/- mice by 3 months of age 

(Figure 3.10 B & C).  These data show that the forces associated with increased blood 

pressure increase the growth rate of the ascending aorta and aortic root in the Acta2-/- 

mice. 

We initiated a treatment trial with N-acetyl cysteine (NAC), a broad spectrum 

antioxidant, to determine whether reducing ROS could prevent aortic dilation. To better 

observe any decrease in phenotype, we chose to use the Acta2-/- mice treated with L-
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NAME and high salt diet as these mice have accelerated aortic enlargement. Co-treatment 

with L-NAME, high salt diet, and NAC in Acta2-/- mice attenuated the enlargement of the 

ascending aorta when compared with WT aortas, but the aortic root still significantly 

enlarged (Figure 3.10 B & C). These results suggest that ROS plays a greater role in the 

development of ascending aortic enlargement than aortic root enlargement.  

 

Figure 3.10 – A) All tail cuff blood pressure measurements taken in WT mice, Acta2-/- mice 
and Acta2-/- treated over the course of the study. Acta2-/- had significantly lower blood 
pressure than WT mice. L-NAME and a high salt diet were able to increase the blood 
pressure in Acta-/- back to normal. B & C) Treatment with L-NAME and high-salt diet 
significantly increases aortic root dilation at 3 months of age. Treatment with L-NAME, 
NAC, and high salt diet reduces ascending aortic enlargement. Modified and reprinted with 
permission from Circulation Research (Chen J, Peters AM, Papke CL, Villamizar C, Ringuette 
LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, 
Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-
actin Leads to NF-kappaB-Dependent Increased Sensitivity to Angiontensin II in Smooth 
Muscle Cells and Aortic Enlargement. Circ Res 2017). See reference (11)  .  
 

3.2.4 Agtra1-/- and Acta2-/- cross 

Since AngII signaling increases superoxide production by activating NADPH oxidases 

in SMCs (86), we crossed the Acta2-/- mice and the Agtr1a-/- mice to determine if ROS are 

increased in the Acta2-/- aortas without AngII signaling from the Agtr1a receptor. Agtr1a-/- 
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mice are hypotensive and have thinner aortic walls than WT, but do not develop 

aneurysms. The aortic tissue is more friable and falls apart easily on dissection, making it 

difficult to work with these mice. I was unable to determine whether aortic dilation was 

decreased or pathologic endpoints were altered in the Acta2-/- Agtr1a-/- double mutant 

mice because the significant hypotension complicated interpretation of the data.  Instead, 

we hypothesized that we would not block the increased ROS signaling in the aorta if the 

Agtr1a receptor was not present, i.e., ROS would still be increased due to the loss of SM α-

actin. Acta2-/- Agtr1a-/- double mutant mice were born in the expected Mendelian ratio, 

despite having lower blood pressures than the Acta2-/- mice (Figure 3.11 C). Both DHE 

staining and lucigenin assays indicate decreased ROS in Acta2-/- Agtr1a-/- mice compare to 

the Acta2-/- mice, suggesting that Agtr1a activity is partially, but not completely, 

responsible for the increased ROS. Importantly, the Acta2-/- Agtr1a-/- aortas still have 

significantly higher ROS levels than WT.  Furthermore, the expression of Il6 and Mmp2 

remains higher in the Acta2-/- Agtr1a-/- double mutant aortas than WT aortas, suggesting 

that pathways other than Agtr1a contribute to the activation of these genes. Expression of 

other renin-angiotensin system components was not significantly different in Acta2-/- 

Agtr1a-/- mice compared with the single mutants (Figure 3.11). 
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Figure 3.11 – Addition of the Agtr1a-/- allele into Acta2-/- mice does not completely prevent 
increased ROS A) frozen DHE staining of aortic sections indicate that ROS levels in the 
aortas of Acta2-/- Agtr1a-/- mice are higher than in WT mice, but lower than in Acta2-/- mice. 
B) NADPH oxidase activity in the Acta2-/- Agtr1a-/- is not different compared to Acta2-/- and 
WT mice. C) Acta2-/- Agtr1a-/- mice have significantly lower systolic blood pressure than 
Acta2-/- mice. D) Expression of Mmp2 is elevated in the Acta2-/- Agtr1a-/- mice compared to 
WT. E) Components of the RAS system appear to not be affected by the loss of Agtr1a. 
Modified and reprinted with permission from Circulation Research (Chen J, Peters AM, 
Papke CL, Villamizar C, Ringuette LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu 
MX, Madonna R, Kee P, Geng YJ, Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. 
Loss of Smooth Muscle alpha-actin Leads to NF-kappaB-Dependent Increased Sensitivity to 
Angiontensin II in Smooth Muscle Cells and Aortic Enlargement, Circ Res 2017). See 
reference (11) . 
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3.3 Discussion 

I found that NF-κB signaling driven by increased cellular ROS leads to an 

increase in expression of the Agtr1a.  The increased expression of Agtr1a in aortic 

SMCs then leads to activation of AngII-dependent signaling at AngII levels that were 

100 fold lower than that required in WT SMCs in vitro, as assessed by phosphorylation 

of RelA and increased intracellular Ca2+.  Acta2-/- aortas have increased levels of ROS 

and phosphorylated RelA. Increased expression of Agtr1a is also observed.  When the 

Agtr1a receptor is deleted in the Acta2-/- mice, ROS levels remain elevated. This result 

indicates that increases in ROS and downstream molecular changes do not 

completely depend on exogenous AngII signaling through Agtr1a in the Acta2-/- aortic 

SMCs. Exogenous AngII further augments both ROS and NF-κB signaling in the mutant 

cells. In turn, this drives a feedback loop resulting in further increases in ROS and NF-

κB signaling (Figure 3.12). Others groups have shown that when ROS is increased in 

SMCs by overexpression of p22phox, an important subunit for all NADPH oxidases, SMC 

hypertrophy driven by AngII is potentiated, making ROS a potential therapeutic target 

(87). My results indicate that increased cellular ROS in the p22phox-overexpressing 

SMCs could activate NF-κB signaling, increasing the expression of Agtr1a. This ends 

up potentiating AngII signaling in aortic SMCs.   

The Acta2-/- mice develop dilation of the aortic root by 6 months of age. This is 

similar to the aortic root enlargement observed in patients with ACTA2 mutations (70), and 

aortic root dilation is attenuated with losartan, an Agtr1a and Agtr1b blocking agent (ARB). 

However, aortic growth is not completely reversed.  Losartan treatment attenuates pRelA 
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signaling but not through ERK1/2 signaling, suggesting that ERK1/2 activation is driven by 

other pathways.  Knocking out Agtr1a in Acta2-/- mice does not decrease ROS levels to 

those of WT. This suggests that increased ROS and downstream molecular changes are not 

dependent on exogenous AngII signaling through the Agtr1a in the Acta2-/- aortic SMCs in 

vivo. The baseline increase in ROS and/or the pathways driving ERK1/2 signaling may be 

responsible for losartan not completely reversing aortic enlargement. We note that 

significant hypotension in Acta2-/- mice limits forces on the ascending aorta thereby 

attenuating aortic enlargement in this mouse model.  L-NAME and a high salt diet 

increased the blood pressure to levels similar to the WT mice and also significantly 

increased the aorta growth rate. This is consistent with current data that suggests blocking 

nitric oxide (NO) signaling protects the aorta from enlargement in mouse models of 

aneurysms (88), and excessive signaling through a target downstream of NO signaling, type 

I cGMP-dependent protein kinase, can drive thoracic aortic disease (89). Therefore, the 

significantly increased growth rate of the aorta in the Acta2-/- mice after L-NAME treatment 

is due to increased biomechanical stress on the aorta not inhibition of NO-synthase.   

There was a significant increase in elastic lamellae in our mice in addition to an 

increase in SMCs, similar to what is reported with the Eln-/- mice (10). I note that patients 

with ELN hemizygosity show a similar phenotype with supravalvular aortic stenosis and an 

increase in elastic lamellae (90, 91). As stated previously, the number of lamellar units is 

based biomechanical properties (6), and Eln+/- mice are hypertensive.  The increased 

lamellae in these mice are likely due to the increased blood pressure and increased 

biomechanical stress in the wall (92) . The same cannot be said in the hypotensive Acta2-/- 
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mice, but in culture Acta2-/- SMCs are stiffer than WT SMCs (11), so cellular stiffness, rather 

than global wall, stress could be responsible for the increase in lamellar units in the Acta2-/- 

aortas.  Alternatively, the increased elastin lamellae laid down during development could 

be due to increased proliferation of the mutant SMCs.  It is known that Acta2-/- SMCs 

proliferate more rapidly the WT SMCs in vivo and in vitro (9).  Eln+/- SMCs also proliferate 

more rapidly than WT cells (13). Therefore, it is possible that the increased elastin lamellae 

laid down in both mouse models may be a result of the increased proliferative capacity of 

these mutant cells.   

 

Figure 3.12 - Model of dysregulated signaling in Acta2-/- SMCs showing the feedback loop 
linking reactive oxygen species with angiotensin signaling in Acta2-/- SMCs. Reprinted with 
permission from Circulation Research (Chen J, Peters AM, Papke CL, Villamizar C, Ringuette 
LJ, Cao JM, Wang S, Ma S, Gong L, Byanova K, Xiong J, Zhu MX, Madonna R, Kee P, Geng YJ, 
Brasier A, Davis EC, Prakash SK, Kwartler CS, Milewicz DM. Loss of Smooth Muscle alpha-
actin Leads to NF-kappaB-Dependent Increased Sensitivity to Angiontensin II in Smooth 
Muscle Cells and Aortic Enlargement, Circ Res 2017) See reference (11) . 
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The use of an ACEi, captopril, did not inhibit aneurysm formation in these mice. 

Instead it exacerbated the phenotype.  My results differ from studies using other mouse 

models of thoracic aortic disease.   Long-term treatment with captopril reversed aortic 

pathology, aortic growth, and aortic rupture in the Fbln4-/- mouse (65). Additionally, aortic 

disease in the Fbn1C1039G/+ mouse was attenuated by treatment with another ACEi, 

enalapril.  My cellular studies suggest that AngII signaling in SMCs could be increased 

without increased exogenous AngII, which may partially explain the failure of captopril 

treatment to attenuate growth. However, the exacerbation of the aortic enlargement in 

the Acta2-/- mice when these mice were treated with captopril has thus far not been 

explained.  The next chapter (pg. 55) will further explore pharmaceutical manipulation of 

the AngII signaling pathway in another model of thoracic aortic disease.  

We also tested whether the MMP inhibitor, doxycycline, could alter aortic 

pathology in Acta2-/- mice (data not shown). In the hypomorphic Marfan mouse model, 

Fbn1mgR/mgR mice, doxycycline was able to increase their lifespan by about 53 days with 

decreased elastin breaks and levels of Mmp2 and Mmp9 expression (68). Another group 

showed that combining losartan and doxycycline could synergistically prevent thoracic 

aortic aneurysms in Fbn1C1039G/+ mice by down regulating Mmp2 and Mmp9 and restoring 

the structural integrity of the wall (63). However, my results were inconclusive as to 

whether doxycycline decreased aortic enlargement in the Acta2-/- mice.   These studies 

were complicated by the fact that sugar water was used to dissolve the bitter tasting 

doxycycline, and this increased the weight of the treated mice and the size of their aortas.  
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We failed to control for the increased weight by giving the control mice sugar water.  

Furthermore, the study was most likely underpowered to determine differences between 

the groups.   

Next, I hypothesized that development of aortic disease in Acta2-/- mice was 

hindered by hypotension. I showed that making them normotensive with a combination of 

L-NAME and high salt diet drastically accelerated and exacerbated the phenotype over 

time. To further assess the role of biomechanical forces in driving the disease, we 

attempted to use constriction of the thoracic aorta to increase biomechanical forces on the 

ascending aorta (see methods for details) on the Acta2-/- mice (unpublished data). 

However, we were unable to get results from this study because the majority of the Acta2-

/- mice died when they were anesthetized for surgery, including in sham operated mice. 

The high death rate is most likely due to the hypotension in the Acta2-/- mice.  We also had 

increased peri-operative mortality with the TAC procedure in Agtr1a-/- mice, which are also 

hypotensive. I conclude that hypotensive mouse models are unable to survive the stress 

associated with anesthesia and surgery.  

In the end, I was able to show that disrupting SM α-actin sensitizes the aortic SMC 

to exogenous AngII by increasing ROS and NFκB signaling, leading to an increase in the 

expression of Agtr1a. I confirmed this pathway is also activated using pharmacologic 

disruption of SM α-actin filaments in vitro (data not shown) (11). Blocking both ROS 

production with NAC and the AT1R with losartan attenuated aortic growth in the Acta2-/- 

mice.  Based on the signaling pathways identified in these studies, blocking NF-κB signaling 
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should also block aortic growth, and these pathways may also be effective therapeutic 

targets in other patients with disruption in SM α-actin filament formation.   
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Chapter 4 – Pharmacological manipulation of AngII signaling in the TAC mouse model of 

thoracic aortic aneurysm formation 
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4.1 Introduction 

As mentioned earlier, the major risk for thoracic aortic aneurysms and dissections is 

hypertension.   In fact, any condition that increases biomechanical forces on the ascending 

aorta increases the risk for thoracic aortic disease.  Uncontrolled essential hypertension is 

the most concerning risk factor, but other conditions that increase blood pressure also 

predispose to aortic disease such as cocaine or stimulant use, weight lifting, the Valsalva 

maneuver, and congenital defects that constrict the aorta like aortic coarctation (32). 

While Chapter 3 has addressed altered genes that predispose to the disease, hypertension 

can lead to earlier onset thoracic aortic disease in individuals with and without a genetic 

predisposition.  

 I have adopted a mouse model of an acute increase in biomechanical forces to 

assess how increased biomechanical stress leads to aortic enlargement.  A transverse aortic 

constriction (TAC) is created by constricting the aorta between the first two major vessels 

branching off the aorta, the innominate and left common carotid (Section 2.3) (52). The 

model has been used extensively to study pressure-induced cardiac hypertrophy due to 

hypertension or aortic stenosis.  With the acute constriction of the transverse aorta, the 

blood pressure increases proximally on the heart, ascending aorta, and right carotid artery.  

The increased pressures lead to hypertrophy of the left ventricle within two weeks after 

placement of the constriction (93).  Subsequently, the left ventricle dilates, and congestive 

heart failure ensues (66, 94). TAC results may vary due to different surgeons, anesthesia 
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and surgical techniques, and various other factors such as suture migration (94-96). Hence, 

the precise phenotype present in each of these models is open to interpretation. 

Before mice develop heart failure after TAC, increased left ventricular pressure and 

hypertrophy of the heart produces significant increase in biomechanical forces on the 

ascending aortic wall proximal to the site of constriction. Therefore, I used this model to 

study aortic remodeling due to increased biomechanical forces on the ascending aorta and 

limited all analyses to two weeks after constriction so that forces continuously increased 

on the aorta and our results were not complicated by heart failure.  After two weeks, the 

ascending aorta dilates and there is thickening of the medial and adventitial layers in the 

aortic wall.  The medial layer thickens due to widening between the elastin layers without 

evidence of hyperplasia, suggesting SMC hypertrophy.  The adventitial layer increases in 

area and cell density due to accumulation of collagen, myofibroblasts, and macrophages. 

Inflammatory markers are increased, including interlukin-6 (IL6) and monocyte 

chemoattractant protein 1 (MCP-1), and remodeling factors like matrix metalloproteinase 2 

(MMP2) and matrix metalloproteinase 9 (MMP9) also increase in expression (52). 

The pathologic changes associated with aortic remodeling with TAC are similar to 

the pathologic changes in the aorta associated with AngII infusion (28, 30, 57). This 

suggests that AngII signaling may drive the hypertension-associated remodeling.  We 

hypothesized that utilizing an ARB, losartan, would alter the response and prevent the 

observed pathologic changes and aortic enlargement. The administration of losartan 3 days 

prior to TAC and for two weeks post operatively eliminated the vascular inflammatory 



66 
 

response, including the macrophage accumulation. Losartan partially rescues the TAC-

induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation.  

Therefore, I concluded that signaling through the AT1R was completely responsible for the 

vascular inflammation and partially responsible for the TAC-induced aortic remodeling.  

At the outset of these studies, the signaling downstream of AT1R was the interest. 

It is well established that there are different intracellular pathways associated with the 

AT1R, only some of which are ligand-dependent (97). I was specifically interested in the 

ligand independent pathways that had been investigated in the heart. Known to play a part 

in load induced hypertrophy, it was shown in vivo and in vitro that stimulation of the AT1R 

independently of AngII leads to translocation of G-proteins into the cytosol via Janus kinase 

2. This activation was inhibited by another ARB, candesartan (64). Later, it was shown ex 

vivo that mechanical stretch mediates a confirmation change in β-arrestin, driving signaling 

consistent with ligand mediated AT1R signaling. Hearts from mice lacking β-arrestin or the 

AT1R did not respond to the mechanical stress (85). The ligand-independent activation of 

AT1R in vascular SMCs has also been investigated. Mechanical signaling of the Agtr1a to 

activate SMC’s in mesenteric and renal arteries did not rely on ion channels TRPC6 or 

KCNQ3, 4, or 5 for SMC (98). However, in FbnC1039G/+ mice, studies suggested that β-arrestin 

contributed to thoracic aortic aneurysm formation in Marfan syndrome (99). Hence, we 

wanted to investigate the ligand independent activation of the AT1R in our TAC model. 

At the initiation of these studies, we sought to confirm whether the remodeling is 

due to an increase in circulating AngII levels or if ligand-independent signaling is a more 

important driver of disease. To test this hypothesis, we administrated an ACE inhibitor to 
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block conversion of angiotensin I to angiotensin II to see if it prevented hyper-acute aortic 

remodeling in our TAC model.  

 

4.2 Results 

4.2.1 Treatment with captopril fails to rescue remodeling associated with TAC   

Wildtype C57BL6/J male mice (12 weeks of age) underwent TAC or sham surgeries 

with or without treatment with either losartan or captopril to determine if captopril could 

prevent pathologic remodeling as effectively as losartan. All treatments were started ~72 

hours prior to surgery with losartan and captopril given via drinking water at 600 mg/L or 

75 mg/L, respectively. Initial experiments showed a significant decrease in survival with 

captopril treatment (Figure 4.1 A) despite the fact that the losartan mice were significantly 

more constricted than the captopril treated group (Figure 4.1 B). Necropsy results from our 

preliminary study showed multiple deaths due to aortic rupture or dissection in the 

ascending aorta.  I first noted that only mice treated with captopril were acutely dying 

post-operatively for no apparent reason. Prior TAC studies performed by this surgeon did 

not result in similar deaths, so I began to investigate whether and how captopril might be 

causing death. I performed surgery on a second group of mice and monitored survival rates 

closely, with necropsy performed on any non-surviving mice. Closer examination indicated 

that only mice treated with captopril were acutely dying outside of what we considered the 

perioperative window. Therefore, I began to monitor the mice more closely in the second 

preliminary group and the monitored survival rates after post-op day five were consistent 
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with our first group and necropsies were routinely performed. Two mice treated with 

captopril following TAC specifically stood out. Prior to echocardiography on day 14, one 

mouse exhibited behaviors consistent with significant discomfort and pain.  Necropsy 

revealed an intramural hematoma in this mouse (Figure 4.1 C). Another visibly healthy 

mouse acutely died after post-op day five, and gross examination of the ascending aorta 

indicated a dissection that started in the ascending aorta. Histologic examination of the 

same mouse indicated that blood was present in the vessel wall near the pulmonary artery 

(Figure 4.1 D & E).  
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Figure 4.1 – A) The survival curve after TAC and treatment with either losartan or captopril. 
Only mice treated with captopril died after TAC. B) The increased deaths of the mice 
treatment with captopril were not due to increased constriction as measured by 
RCCA/LCCA ratio. C) Prior to echocardiography on day 14, this mouse exhibited behaviors 
consistent with significant discomfort. After necropsy, thorough cleaning of the aorta 
revealed and intramural hematoma (red arrow). D) Gross examination of the ascending 
aorta of another mouse who on necropsy who died acutely indicated a dissection that 
started in the ascending aorta (red arrow). Histologic examination of the same mouse, (F) 
indicated that blood was present in the vessel wall (red arrow) near the pulmonary artery. 
* indicates p≤0.05. 

 

These initial experiments were repeated by a different surgeon performing the TAC. 

There was a significant increase in the ascending aorta and aortic root diameter between 

the WT sham controls and WT TAC mice (Figure 4.2 A, B, & C). As in my previous study, 

aortic growth was attenuated by losartan treatment compared to untreated TAC mice in 

the ascending aorta and aortic root. Captopril treatment, on the other hand, was unable to 

attenuate the increase in size of the ascending aorta or aortic root in these mice to the 
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same extent as the losartan treatment.  In contrast to the previous studies, none of the 

captopril treated mice died after the five day peri-operative period.  
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Figure 4.2 – A) In our third set of studies, echoes from the four different groups were 
obtained in our WT sham, TAC, TAC+captopril, and TAC+losartan treated groups. The 
approximate locations of the measurements are indicated in the sham image. B & C) The 
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increase in the ascending aorta and in the aortic root size was significant in the untreated 
TAC mouse compared to sham. Losartan was able to attenuate the increase in size as 
previously observed. However, TAC mice treated with captopril was not attenuated. D) As 
previously, the level of constriction was verified via Doppler flow studies indicating 
successful constriction in all TAC mice. E) Successful constriction in TAC mice were also 
verified by measuring blood flow across the constriction in the transverse aorta. * indicates 
p≤0.05, ** indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. (Andrew 
M. Peters, Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, 
Shanzhi Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. 
Milewicz Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling 
and Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference 
(77). 

 

The level of constriction was accessed by comparing the ratio of Doppler velocities 

between the right common carotid artery (RCCA) and the left common carotid artery 

(LCCA) (RCCA/LCCA). In my original studies, a successful constriction was considered a ratio 

between 5-10 which was also consistent with what was seen in literature and our 

preliminary studies (52, 66). It is important to note that the ratios in the constricted groups 

were consistently above 10 without a decrease in survival rates (Figure 4.2 D), which was 

higher than the ratio in our previous studies (Figure 4.1 B). We also assessed blood flow 

across the aortic constriction in these mice as this has been reported to be another method 

to assess the level of constriction (100). It was significantly elevated in all the TAC groups 

compared to the sham, and there was no significant difference between the TAC groups 

(Figure 4.2 E).  

Histologic analysis of the TAC mice showed that the increase in vascular and 

adventitial area was similar between the losartan and captopril treated groups (Figure 4.3 

A, B, & C). These results reflected the observations in my first study, but my earlier 
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histopathologic measurements were too underpowered to indicate a significant different 

between the medial area in these groups (data not shown). The adventitial cell density 

decreased significantly in the captopril treated group compared to the non-treated TAC 

group and sham control (Figure 4.3 D), and the medial cell density significantly decreased 

in both TAC and TAC + Captopril groups compared to the sham controls (Figure 4.3 E). 

Additionally, inflammatory markers including IL6, MCP-1, MMP2, and MMP9 remained 

elevated under captopril treatment compared to WT sham (data not shown), but this was 

difficult to assess given these markers were nearly undetectable in my WT sham cohort. 

The changes in the structure of the aortic wall were consistent with our previous TAC 

studies with an increased distance between the elastic lamellae increased number of Mac-

2 positive cells in untreated and captopril treated TAC mice (Figure 4.4 A). The increase in 

distance between the lamellae coupled with the significant decrease in medial cell density 

could indicate that there is significant SMC hypertrophy. The expansion of the adventitia 

also appeared to consist largely of proteoglycans along with inflammatory cells. In the 

media, we verified that there was a significant increase in elastin breaks in the mice 

undergoing TAC that was not attenuated with captopril treatment (Figure 4.4 B). We also 

observed a significant increase in the proteoglycans in the medial layer in addition to what 

we observed in the adventitia (Figure 4.4 C). Cell counting confirmed that there was a 

significant increase in inflammatory cells that was not reversed with captopril treatment 

(Figure 4.4 D). 



74 
 

 

Figure 4.3 – A, B, & C) H&E stains showing that captopril did not alter the increase in 
vascular or adventitial area. D) Treatment with captopril in TAC mice increased adventitial 
cell density compare to both the sham and TAC controls. E) Medial cell density was also 
significantly decreased in the TAC and TAC + captopril mice compared to sham controls. * 
indicates p≤0.05, ** indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. 
(Andrew M. Peters, Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing 
Kuang, Shanzhi Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna 
M. Milewicz Pharmacologic Manipulation of the Angiotensin System Affects Aortic 
Remodeling and Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) 
See reference (77). 
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Figure 4.4 – A) Movat stains (top) show the changes in the structure of the aortic wall were 
consistent with my previous TAC studies showing an increased distance between the elastic 
lamellae increased number of Mac-2 positive staining cells in untreated and treated TAC 
mice. B) There was significant increase in elastin breaks in the mice undergoing TAC, and C) 
increase in the proteoglycan in the medial layer. D) Cell counting confirmed that there was 
a significant increase in inflammatory cells that was not reversed with captopril treatment. 
* indicates p≤0.05, ** indicates p≤0.01, and *** indicates p≤0.001. (Andrew M. Peters, 
Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi 
Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz 
Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling and 
Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference (77). 
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4.2.2 C21 is beneficial in biomechanical stress model 

There are additional receptors involved in that angiotensin system other than the 

ligand dependent or independent signaling of the AT1R (See section 1.3, pg. 10). Therefore, 

I sought to characterize the role of the AT2R and Mas receptor in the captopril treated TAC 

mice by treating with agonists for these receptors: compound 21 (C21) is an agonist for the 

AT2R while AVE0991 is an agonist for the Mas receptor.  I focused on the physiologic 

changes associated with treatment. Ultrasound examination of the ascending aorta and the 

aortic root again showed a significant increase in aortic size in the ascending aorta, which 

was not attenuated with captopril.  Co-treatment with C21 was able to eliminate the 

increase in the ascending aortic diameter, but it only attenuated the increase in size in the 

aortic root. Meanwhile co-treatment with AVE0991 with captopril had no effect on the 

ascending aorta or aortic root compared to untreated or captopril treated mice and 

remained significantly elevated compared to mice treated with both captopril and C21 

(Figure 4.5 A & B).  As with previous studies, I verified the level of constriction using the 

ratio between the left and right carotid (RCCA/LCCA) and flow across the constriction site 

(Figure 4.6 C & D).  
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Figure 4.5 – A & B) Echoes of the ascending aorta and the aortic root again showed a 
significant increase in the ascending aorta size which was not attenuated with captopril. 
Co-treatment with C21 was able to eliminate the change in the ascending aorta and 
attenuate it in the root. Meanwhile co-treatment with AVE0991 and captopril had no effect 
compared to untreated mice.  C & D) We verified that the constriction in the untreated and 
treated mice were similar between groups using two methods.  * indicates p≤0.05, ** 
indicates p≤0.01, *** indicates p≤0.001, and **** indicates p≤0.0001. (Andrew M. Peters, 
Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi 
Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz 



78 
 

Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling and 
Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference (77). 

 

 

In our original publication on aortic remodeling with TAC, we did not assess blood 

pressure (52). For the studies reported here, I assessed blood pressure and pulse pressure 

in the ascending aorta by inserting a catheter into the right carotid artery and advancing it 

to the ascending aorta. There was a significant increase in systolic blood pressure in the 

TAC mice, and systolic blood pressure was significantly decreased in both treatment 

groups.  In contrast, the diastolic blood pressure was not different between the TAC and 

sham group.  However, the losartan and captopril treated mice both had significantly lower 

diastolic blood pressure (DBP) compared to sham and TAC controls in the ascending aorta 

(Figures 4.6 A & B). There was no difference in pulse pressure between any of the treated 

or untreated in mice that underwent TAC (Figure 4.6 C), which was interesting since cyclic 

strain has been directly correlated with vascular disease in the carotid arteries (101).  
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Figure 4.6 – With an intraluminal catheter, we directly measured the A) systolic and B) 
diastolic blood pressure in the groups. C) Pulse pressure was then calculated. All TAC mice 
had significantly increased systolic blood pressure, but the blood pressure in mice treated 
with losartan and captopril were significantly lower. The losartan and captopril treated 
mice also had significantly decreased diastolic blood pressure compared to both sham and 
untreated TAC mice, but the pulse pressure was consistent in all mice treated with TAC. * 
indicates p≤0.05 and ** indicates p≤0.01. (Andrew M. Peters, Zhen Zhou, Jiyuan Chen, 
Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, Siddharth Prakash, 
GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz Pharmacologic Manipulation of 
the Angiotensin System Affects Aortic Remodeling and Aneurysm Development: Cautions 
for Clinical Practice, Submitted 2017) See reference (77). 

 
 

 Lastly, mice undergoing TAC were treated with C21 alone, which was able to 

decrease the ascending aorta similar to the captopril and C21 treated mice but not the 

aortic root when compared to the untreated TAC mice (Figure 4.7).  As expected, direct 

measurement of the systolic blood pressure (SBP) in the ascending aorta and aortic root 

was significantly increased in all mice that underwent TAC. Any combination of the 

pharmaceutical agents was capable of decreasing the SBP however, all remained elevated 

compared to WT sham mice. While diastolic blood pressure (DBP) remained normal in the 

untreated TAC mice, all treated TAC mice had a significant decrease in DBP compared to 

sham and control mice (Figure 4.8). These results are consistent with our earlier study, 
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which indicated TAC mice had increased pulse pressure with or without any 

pharmaceutical manipulation. 

 

Figure 4.7 – Ultrasound assesments of the aortic root and ascending aortic diameters in WT 
sham, TAC, TAC + losartan, TAC + captopril, TAC + captopril + AVE0991, TAC + captopril+ 
C21, and TAC + C21. The number of observations for each group is listed at the bottom of 
each graph, and significant p values are listed above. As expected TAC mice had an increase 
in the size of the aortic root and ascending aorta compared to sham mice, and losartan was 
able to attenuate these changes. Captopril alone was not able to attenuate the increase, 
and the combination with AVE0991 did not show any significant changes compared to the 
untreated mice. Captopril in combination with C21 was able to significantly decrease the 
increase in aortic size.  Alone, C21 was only able to decrease the ascending aorta when 
compared to the untreated TAC mice. (Andrew M. Peters, Zhen Zhou, Jiyuan Chen, 
Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, Siddharth Prakash, 
GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz Pharmacologic Manipulation of 
the Angiotensin System Affects Aortic Remodeling and Aneurysm Development: Cautions 
for Clinical Practice, Submitted 2017) See reference (77). 
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Figure 4.8 – As expected, direct measurement of the systolic blood pressure (SBP) in the 
ascending aorta and aortic root was significantly increased in all mice that underwent TAC. 
Any combination of the pharmaceutical agents was capable of decreasing the SBP, but they 
all remained elevated compared to WT sham mice. While diastolic blood pressure (DBP) 
remained normal in the untreated TAC mice, all treated TAC mice had a significant 
decrease in DBP compared to sham and control mice. (Andrew M. Peters, Zhen Zhou, 
Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, 
Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz 
Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling and 
Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference (77). 

 

 

 The aortic pathology was also assessed in these aortas from animals treated with 

losartan, captopril, and captopril plus the agonists.   The pathologic changes in the 

adventitia in the losartan and captopril treatment were consistent with what was 
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previously shown (Figure 4.3). Interestingly, there appeared to be little change in the 

adventitia with co-treatment of captopril and C21 or C21 alone.  However, treatment with 

captopril and AVE0991 decreased both the medial and adventitial area with an increase in 

adventitial cell density and decrease in medial cell density (Figure 4.9). There was 

significant proteoglycan deposition in the adventitia in all groups.  

Next, vascular inflammation was assessed by Mac-2 staining for macrophages in the 

adventitia. TAC causes significant increases macrophage positive cells in the adventitia, and 

losartan completely blocks the accumulation of Mac-2 positive cells in the adventitia. 

However, captopril and co-treatment with C21 or C21 alone do not appear to decrease this 

accumulation of Mac-2 cells in the adventitia.  In contrast, co-treatment of captopril and 

AVE0991 completely eliminate Mac-2 positive cells the inflammatory response in the 

adventitia (Figure 4.11). Sirius red staining for collagen deposition indicated a significant 

increase in the adventitial fibrotic response with TAC. This response was attenuated with 

losartan but remained elevated with captopril treatment and C21 with and without 

captopril. Interestingly, AVE0991 treatment with captopril significantly decreases the 

amount of collagen in the adventitia (Figure 4.12).  
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Figure 4.9 – Preliminary H&E stains (n=2) confirming what was previously observed in all of 
our earlier published and unpublished studies. TAC increased medial and adventitial 
thickening, and losartan treatment was able to attenuate it. Losartan was able to attenuate 
the changes. While captopril attenuated the changes in the medial layer, it appeared to not 
do so in the adventitial layer, and the pathologic changes in the adventitia observed in 
these mice were consistent with what was previously shown. There appeared to be little 
change with co-treatment of captopril and C21 or C21 alone, but treatment with captopril 
and AVE0991 appeared to significantly both medial and adventitial area. There also 
appeared to be an increase in adventitial cell density. Note that p values not calculated. 
(Andrew M. Peters, Zhen Zhou, Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing 
Kuang, Shanzhi Wang, Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna 
M. Milewicz Pharmacologic Manipulation of the Angiotensin System Affects Aortic 
Remodeling and Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) 
See reference (77). 
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Figure 4.10 – Movat staining (n=2) shows increased proteoglycan deposition in the 
adventitial layer. There was an increase in the distance between the elastic lamellae in TAC 
mice, and significant proteoglycan deposition in the adventitia. These observations 
appeared slightly attenuated in the losartan treated mice, but was absent in the captopril 
and AVE0991 treated mice. While the adventitia appears larger compared to the WT sham 
controls, there appears to be less proteoglycan deposition and more cells in the wall. Note 
that p values not calculated. (Andrew M. Peters, Zhen Zhou, Jiyuan Chen, Alexandra Janda, 
Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, Siddharth Prakash, GenTAC 
Consortium, Callie S. Kwartler, Dianna M. Milewicz Pharmacologic Manipulation of the 
Angiotensin System Affects Aortic Remodeling and Aneurysm Development: Cautions for 
Clinical Practice, Submitted 2017) See reference (77). 
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Figure 4.11 – Mac-2 staining of the aortas (n=2). TAC significant increases macrophage 
positive cells in the adventitia, and losartan attenuates it. Captopril and co-treatment with 
C21 or C21 alone do not appear to decrease this inflammatory response. Co-treatment of 
captopril and AVE0991 appeared to completely eliminate the inflammatory response in the 
adventitia. Note that p values not calculated. (Andrew M. Peters, Zhen Zhou, Jiyuan Chen, 
Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, Siddharth Prakash, 
GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz Pharmacologic Manipulation of 
the Angiotensin System Affects Aortic Remodeling and Aneurysm Development: Cautions 
for Clinical Practice, Submitted 2017) See reference (77). 
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Figure 4.12 – Sirius red staining (n=2) in the cells indicated a significant increase in the 
adventitial fibrotic response, and it was attenuated with losartan but remained elevated 
with captopril treatment. It appears to be slight decreased with C21 with and without 
captopril. AVE0991 treatment with captopril and TAC significantly decrease the amount of 
collagen in the adventitia. Note the absence of p values. (Andrew M. Peters, Zhen Zhou, 
Jiyuan Chen, Alexandra Janda, Corey L. Reynolds, Shao-Qing Kuang, Shanzhi Wang, 
Siddharth Prakash, GenTAC Consortium, Callie S. Kwartler, Dianna M. Milewicz 
Pharmacologic Manipulation of the Angiotensin System Affects Aortic Remodeling and 
Aneurysm Development: Cautions for Clinical Practice, Submitted 2017) See reference (77). 

 

4.2.3 Knock out of Agtr1a fails to alter vascular inflammation 

 Given the effectiveness of losartan in previous studies (61, 65), I set out early to try 

to perform TAC in Agtr1a-/- mice. We expected results similar to those observed in 

pharmaceutically treated mice in Agtr1a-/- mice. The Agtr1a-/- mice are hypotensive 

compared to WT controls (Figure 4.13). My early results indicated a significantly decreased 

peri-operative survival rate making my study difficult. Because of my concerns regarding 

possible flaws in my original study, this was repeated with two different surgeons.  After 

the peri-operative period, surviving Agtr1a-/- mice were not significantly different than the 

WT untreated TAC mice. Vascular and adventitial area remained elevated in WT and 

Agtr1a-/- untreated mice. Investigation of inflammatory markers such as Mac-2 indicated 

that inflammation was attenuated in Agtr1a-/- TAC mice (Figure 4.14). Therefore, we 
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investigated the difference between the WT and Agtr1a-/- mice. Agtr1a-/- mice have 

decreased medial area compared to WT mice, but the medial area is significantly increased 

compared to Agtra1-/- mice after TAC. Vascular and adventitial expansion are still present in 

Agtr1a-/- TAC mice compared with both WT and Agtr1a-/- sham controls (Figure 4.15). TAC 

Agtr1a-/- mice show increased distance between the elastic lamellae, but Agtr1a-/- mice 

appear to have more elastic lamellae, and early results in other studies have indicated that 

they are less developed.    

 

Figure 4.13 – SBP and DBP measurement taking in WT and Agtra1-/- mice to verify their 
decreased blood pressure. All measurements taken by tail cuff following the protocol 
previously mentioned (Section 2.5). ** indicates p≤0.01.  
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Figure 4.14 – My preliminary studies in mice deficient in Agtr1a did not have the same 
effect as while type mice treated with losartan. A, B, & C) Vascular and adventitial area 
remain elevated in WT and Agtr1a-/- treated mice. D) While inflammation appeared to be 
attenuated in these mice, the number of Mac-2 positive cells was only attenuated in 
Agtr1a-/- mice.  

 

 

A 
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Figure 4.15 – A, B, & C) Agtr1a-/- mice have decreased medial area compared to WT mice, 
but the medial area is significantly increased compared to Agtra1-/- mice after TAC. C & D) 
Significant vascular and adventitial expansion is still present in Agtr1a-/- mice compare to 
both sham controls. E) There is a significant increase in SMCs in the media under control 
conditions. F & G) When analyzed by weight, the ascending aorta is significantly lower in 
the sham mice compared to WT sham, but there is no difference between the two in the 
aortic root.  
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Figure 4.16 – Significant adventitial expansion remains in the TAC Agtr1a-/- compared to 
WT and Agtr1a-/- mice who underwent sham surgery. TAC Agtr1a-/- mice show increased 
distance between the elastic lamellae, but Agtr1a-/- mice appear to have more elastic 
lamellae and early results appear less developed.   

 

4.3 Discussion 

 We have previously shown that signaling through the AT1R is responsible for a 

significant portion of the aortic remodeling that occurs with TAC.  A prominent component 

of TAC-induced aortic remodeling is vascular inflammation characterized by increased Il6 

and Mcp1 expression and recruitment of macrophages to the adventitia, and these 

changes are completely blocked when signaling through the AT1R is prevented by 
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treatment with losartan.  Other changes are only partially blocked, including ascending 

aortic dilatation, adventitial cellular hyperplasia and collagen accumulation. I initially 

hypothesized that the AT1R activation was not due to increased AngII in aortic tissue, but 

rather mechanical stretch activation of the AT1R, which has been described in 

cardiomyocytes and SMCs (64, 85, 98, 99).  Furthermore, it has been shown that inverse 

agonists of the AT1R can block this activation of the AT1R (102).  Although losartan is not 

an AT1R inverse agonist, EXP3174, an active metabolite of losartan, can act as an inverse 

agonist in the inositol phosphate (IP) production assay based on studies involving a 

constitutively active AT1-N111G mutant (103). To begin to investigate whether AT1R 

activation with TAC-induced aortic remodeling was ligand independent, I blocked the 

production of AngII using captopril. Indeed, captopril did not block the aortic dilatation and 

vascular remodeling associated with TAC, supporting the conclusion that the AT1R 

activation in SMC with TAC is ligand independent. At the same time, the initial experiments 

suggested that captopril had a negative effect on aortic remodeling, leading to increased 

deaths due to aortic rupture.   
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Figure 4.17 – Working model indicating my points of interest in the angiotensin system. 
The questions remaining are the influence of the AT2R and Mas receptor in our hyper-
acute model specifically in the ascending aorta and how they could modulate the ligand 
independent signaling. 

 

 I sought to determine the role of signaling through other receptors in the 

angiotensin system with TAC when all AngII signaling is blocked and aortic remodeling is 

dependent on mechanical stimulation.  AT2R receptors are present in vascular SMCs, and 

have been reported to comprise approximately 30% of the AngII receptors in the rat aorta 

(104).  It is feasible that AT1R activation proceeds unchecked when all the receptors are 

blocked but selective activation of AT2R could block aortic enlargement to the same extent 
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as losartan treatment alone.  As stated above (Section 1.3), the AT2R has been known to 

counter the effects of the AT1R downstream in multiple systems. In the vascular SMCs, the 

AT1R increases proliferation, fibrosis, MMP2, and MMP9 expression (52), while the AT2R 

decreases proliferation, fibrosis, and MMP9 and MMP2 expression (48, 105).  However, in 

some models the AT2R has been thought to affect smooth muscle cell apoptosis (53, 54) 

Another ACEi, enalapril, was used to reinforce the importance of the AT2 receptor. 

A cross between the FblnC1039G/+ with mice deficient in AT2R, Agtr2-/y (106), actually 

increased aneurysm formation and made losartan less effective (48). Their results indicated 

the AT2R decreases pERK signaling, cell proliferation, fibrosis, and MMP9 signaling. Their 

results were reinforced by other labs, which showed that antagonists of the AT2R are 

detrimental in abdominal aortic models. In ApoE-/- mice infused with AngII, the antagonist 

of the AT2R, PD123319, leads to an increase in atherosclerosis and AngII induced vascular 

pathology (107). However, they later showed PD123319 could work by an AT2R 

independent mechanism, which complicates interpretation of their results (108). Still, the 

independent beneficial effects of the AT2R could possibly explain why captopril was not 

just ineffective but detrimental.  

 Ang1-7 is a peptide mainly generated from AngII by angiotensin converting enzyme 

2 (ACE2), but which can also be made from AngI via neutral endopeptidase activity.  Ang1-7 

binds to the G protein-coupled receptor Mas. In SMCs, Mas receptor signaling is considered 

an antagonist of AngII signaling. Mas receptor signaling is vasodilatory and blocks 

hypertrophy and migration of SMCs.  Importantly, Ang1-7 blocks the pro-inflammatory 
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response triggered by AngII in primary human SMCs in culture by blocking NF-κB signaling 

and inducible nitric oxide synthase induction. With exposure to AngII, SMCs activate NF-κB 

signaling, and Ang1-7 markedly inhibits this activation and the associated inflammatory 

changes (109). Specifically, Ang1-7 suppresses superoxide anion levels and NADPH oxidase 

activity that occurs in SMCs with exposure to AngII (110), but does not have these effects 

on SMCs in the absence of AngII exposure.  In our studies of TAC-induced aortic remodeling 

and blocking angiotensin signaling through the major receptors, selective activation of the 

Mas receptor agonist completely blocked vascular inflammation based on decreased Il6 

and Mcp1 expression and lack of macrophage accumulation in the adventitia.  At the same 

time, aortic enlargement was not rescued and the aortic pathology was adversely affected. 

The Mas agonist prevented SMC hypertrophy and instead caused SMC loss in the aortic 

media and decreased fibrosis in the adventitial layer. The loss of SMCs is in contrast to a 

protective role of the Mas receptor in other cells types.   

Ang1-7 has been studied extensively in multiple systems. In the kidney, its 

activation has been associated with decreased matrix protein production and improved 

renal function and its inhibition associated with increased collagen deposition, TGF-β, 

Smad2/3, ERK1/2, and NFKβ (55). In rat models, Ang 1-7 was shown to improve heart 

function by reducing cardiomyocyte hypertrophy, fibrosis and inflammatory cell infiltration 

with short term administration. In the cerebrovasculature, in a study of intracerebral 

hemorrhagic stroke with C57BL/6 mice, it was shown to modulate NF-κB signaling by 

decreasing TNF-α, MCP-1, and IL-8 (111). Of interest to me, another group utilized mice 

deficient in ACE2, Ace2-/y (112) and the AngII infusion model to study the thoracic aorta. 
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They were able to find ACE2 deficiency worsened the AngII mediated inflammation model 

with enhanced AKT phosphorylation, increased ERK1/2, and increased endothelial nitric 

oxide synthase. These results could be reversed with an ARB, irbesartan, that prevented 

inflammation by suppressing the Akt-ERK-eNOS signaling pathway (113).    Therefore, the 

loss of SMCs and other adverse pathologic changes with TAC when the Mas receptor is 

activated suggests that ROS generation with TAC plays a protective role in aortic SMCs.   

 While our focus is on the angiotensin system, we must remember the kinin system 

also influences the vascular disease. Kininogen is metabolized by kallikrein into bradykinin. 

Bradykinin, a fundamental part of the kinin system, has been a well-established vasodilator 

helping to control blood pressure. It has also been associated with increased vasodilation, 

vascular permeability, inflammation, and pain.  ACE is one of the major vasopeptidases 

regulating bradykinin signaling as it metabolizes bradykinin into its inactive forms. 

Subsequently, ACEi use has been shown to increase nitric oxide and vasorelaxation (114). 

Hence, the kinin system may play a role in the results I observed with captopril. While 

inhibiting both AT1R and AT2R, we may have left bradykinin uninhibited resulting in our 

increased inflammation observed with captopril treated mice compared to losartan treated 

mice.  

Finally, I sought to determine how TAC-induced aortic remodeling would occur with 

loss of the AT1R.  These studies were complicated by the fact that the Agtr1a-/- mice are 

significantly hypotensive and appear underdeveloped ascending aortas. Interestingly 

deletion of Agtr1a-/- in mice has been associated with a variety of factors including 
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increased life expectancy (115, 116), but diminished growth, vascular thickening, and 

atrophy of the inner renal medulla (117).  Despite these issues with the aorta, it was still 

surprising that TAC induced medial wall thickening, adventitial thickening, and vascular 

inflammation were present in the Agtr1a-/- mice. We expected our results to be similar to 

the mice treated with losartan. Based on the pharmacologic manipulation of aortic 

remodeling with TAC, these changes are proposed to be in part due to ligand independent 

activation of AT1R.  Despite this conclusion, it is clear that mechanical forces are still able 

to cause remodeling in the absence of the Agtr1a.  It is notable that not all TAC-induced 

remodeling is blocked by losartan (52), but the influence of deleting a gene in a highly 

variable system is difficult to predict. In such a dynamic system, there is no guarantee that 

another signaling pathway does not become more dominant or compensates for the loss of 

the Agtr1a receptor. Humans only have one isoform of the AT1R, but mice have two, and in 

the kidney the absence of once can be compensated by the other isoform (117). In this 

model, Agtr1b is still present, and it is yet unknown how it might affect the cell types in the 

ascending aorta and whether it can compensate for the loss of Agtr1a. Others have found 

Agtr1b to be more mechanosensitive in vascular SMC myogenic vasoconstriction (118). This 

model would need to be studied more extensively to verify the role of Agtr1b in TAC-

induced remodeling of Agtr1a-/- mice.   
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Chapter 5 – Discussion and Conclusions 
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5.1 Introduction 

I hypothesized that angiotensin II signaling through the AT1R contributes to thoracic 

aortic aneurysm formation in multiple model systems of disease, but that blocking related 

receptors in addition to the AT1R, such as the AT2R and Mas receptor, may have negative 

consequences. In the Acta2-/- mouse model, I found an increased sensitivity of cells to AT1R 

signaling without exogenous AngII was due to increased ROS and NF-ΚB signaling. Acta2-/- 

mice develop dilated aortas over time, and the dilation is partially blocked with an ARB, 

losartan, but blocking the formation of the ligand with an ACEi, captopril, was insufficient 

to attenuate disease. In TAC, I again found that ARB treatment attenuated the physiologic 

and pathophysiologic changes I observed, but captopril did not. The combination of 

captopril and C21 had the same physiologic affect as an ARB. However, the results did not 

coincide with the pathophysiologic changes. 

Angiotensin signaling was initially identified as a system to manage the blood 

pressure in response to different environmental stimuli.  As described in Chapter 1, 

angiotensinogen is converted to angiotensin I by renin which is then converted to the 

ligand AngII by ACE (24). Investigations into AngII signaling were at first primarily focused 

on the renal response to manage blood pressure, but over time research has been 

expanded to identify a role for angiotensin signaling in other systems, such as the heart 

and aorta (50, 51).  

In addition to its function in regulating blood pressure, the renin angiotensin system 

is also known to be involved in triggering inflammation and fibrosis during remodeling of 
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multiple organ systems including the kidneys and the heart. In the kidneys, the renin-

angiotensin-aldosterone-system plays a role in both hypertensive and end-stage kidney 

disease (119). The invasion of fibroblasts and the fibrotic response eventually lead to the 

destruction of nephrons and the interstitium of the kidney, resulting in kidney failure (120). 

In patients, the administration of ARBs has been shown to improve proteinuria, indicating 

improved kidney function and reinforcing the beneficial aspects of ARBs and their 

relationship to fibrosis (121). In the heart, a similar fibrotic response has been observed. It 

has been well established that angiotensin signaling and downstream aldosterone signaling 

have been associated with increased collagen synthesis and deposition (122). They have 

also been associated with degenerative remodeling of the heart, restricted blood flow, and 

heart failure (103). In investigations of these models, data has consistently shown that 

these changes involved TGF-β signaling in the fibrotic response (75). 

5.2 Role of angiotensin signaling in TAAD 

The work presented in this dissertation furthers understanding of the role of 

angiotensin signaling in thoracic aortic remodeling and disease. First, we addressed the role 

of blocking all angiotensin receptors using an ACE inhibitor, captopril.  Previous studies had 

shown another ACE inhibitor, enalapril, was not as effective as losartan in preventing aortic 

growth in the Marfan mouse model (48). Interestingly, in the Fbln4-/- mouse model, 

captopril was as effective as losartan in preventing many of pathologic changes associated 

with the disease such as an increase in vascular area (65). I found that captopril actually 

increased aortic growth in both the aortic root and ascending aorta of the Acta2-/- mouse 
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model and worsened elastin breaks compared with no treatment.  In our TAC model of 

acute hypertension, treatment with captopril did not prevent aortic enlargement and 

vascular inflammation, whereas treatment with losartan did.  These results provide 

additional data to support that ACE inhibitors are not equivalent to ARBs in terms of 

treating thoracic aortic disease. 

In the Acta2-/- mouse model, we identified that the source of increased AngII 

signaling in the aorta was not an increase in ligand. Rather, there was a significantly 

increased sensitivity of the AT1R to endogenous levels of AngII due to ROS increasing NF-κB 

signaling, which drives increased expression of AT1R (11).  It is important to note that the 

Fbn1-/- mice may also have increased AT1R expression since these mice also show 

increased ROS in SMCs and aortic tissues.  

We intended to use the data from the TAC captopril trial to show that TAC-induced 

AT1R signaling in the ascending aorta and aortic root was not dependent on the ligand, 

AngII. Surprisingly, our original captopril trials gave an overwhelmingly poor outcome with 

50% of the mice dying.  Replication of the study by a different surgeon did not demonstrate 

the increased death rates. However, captopril did not rescue the aortic remodeling induced 

by TAC. Markers of vascular inflammation remained elevated in the captopril treated TAC 

mice, and the aortic root and ascending aorta enlarged despite decreased systolic 

pressures in the ascending aorta. These results support our hypothesis that ligand-

independent AT1R signaling is important in driving aortic disease but also raised the 
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question of whether other components of the angiotensin system may play a role in the 

remodeling. 

5.3 Angiotensin signaling through AT1R 

In the past 10 years, angiotensin signaling through AT1R has emerged as a potential 

therapeutic target to prevent thoracic aortic disease.  Initially, losartan was used to block 

canonical TGF-β signaling in the Marfan mouse model.  Additional studies showed that 

losartan could block thoracic aortic disease in multiple mouse models, including our own 

studies of aortic enlargement in the Acta2-/- mice (52, 61). Since blocking TGF-β signaling 

using losartan was so effective in the Marfan mouse model, the use of an ARB as a receptor 

blocker to prevent aortic disease in Marfan patients has been tested in multiple clinical 

trials (123). Many of these trials compared ARB treatment to β-adrenergic blocking agents 

which are considered the gold standard for treatment of aortic disease under the belief 

that it reduces stress on the aorta by reducing left ventricular ejection fraction and heart 

rate (123, 124). These studies focused on aortic growth rates but included other endpoints 

including aortic surgery and acute aortic dissection. 

5.4 Clinical relevance 

At least eight randomized clinical trials of losartan in patients with MFS were 

initiated worldwide. The first prospective trial completed was the Dutch COMPARE trial, 

which assessed 233 MFS patient over the age of 18 years who met diagnostic criteria for 

MFS and were assigned to receive losartan or no additional medications beyond “usual 

therapy”, which commonly included a β-blocker. After a mean follow up of 3.1 years, 
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losartan significantly reduced the rate of aortic root dilation when compared with “usual 

therapy” with the caveat that more patients in the losartan group than in the “usual care” 

group took β-blockers (125). Importantly, a sub study analyzed the 117 MFS patients with 

characterized FBN1 mutations and determined that only individuals with haploinsufficiency 

mutations (n=38, 32.5%), but not individuals with missense mutations (n=79, 67.5%), had a 

reduction in the rate of aortic root dilation with losartan treatment (126). Other outcomes 

beyond rate of aortic root dilation have not been reported for the COMPARE trial.  

The US Pediatric Heart Network Trial was the largest losartan trial (127). It enrolled 

608 patients with MFS between the ages of 6 months and 25 years who met Ghent criteria 

and had significant aortic root enlargement (defined by a Z score > 3.0). The two arms of 

the randomized trial were atenolol (started at 0.5mg/kg/day and increased on the basis of 

hemodynamic response to a maximum of 4mg/kg/ day) and losartan (started at 0.4 

mg/kg/day and increased on the basis of hemodynamic response to a maximum of 1.4 

mg/kg/day). The “mean” dose for young adults was 151 mg atenolol per day and 85 mg of 

losartan per day. The main outcome of the trial did not show any significant difference in 

the rate of aortic root growth between the groups. Similarly, two other double blind clinical 

trials testing losartan against atenolol (128) or against placebo (129) showed no effect of 

losartan in limiting aortic dilatation. In contrast, a small open label pilot study in 28 patients 

with MFS found reduced rate of aortic dilation with losartan added on to β-blockade 

therapy (130). Other clinical studies are still ongoing and results have not been published.  

Although the US Pediatric Heart Network trial was designed to examine rate of 

aortic root growth as the primary outcome and there was no difference between groups, a 
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combined secondary endpoint (death, dissection, aortic root surgery) was reached over the 

3 years clinical trial period in 10 of 268 atenolol-treated patients and in 19 of 267 Losartan-

treated patients. This event rate was almost 2-fold higher in the losartan treated patients, 

but did not reach statistical significance (p value = 0.07). The study was not sufficiently 

powered to examine clinical endpoints of dissection, death, and aortic root surgery, in part 

due to the fact that these events are fortunately very rare in a young cohort like the 

Pediatric Heart Network study. Assuming a similar cohort of MFS patient and the same 

statistical parameters as used for the US Pediatric Heart Network study with an 85% power 

to detect a difference at the level of significance of 0.05, a sample size of 760 patients may 

have reached a statistically significant increase for combined secondary endpoints of 

dissection, aortic surgery, or death in the losartan-treated group. However, this is 

speculative, and extrapolation of the observed event rate in the US Pediatric Heart 

Network trial is uncertain since it occurred exceedingly rarely. But the results from this trial 

raise the important point that future clinical studies cannot focus on aortic dilatation alone, 

and must include clinically important outcomes such as dissection and need for aortic 

surgery. The p-value of 0.07 indicates that there is a 93% chance that the increased 

combined frequency of dissection, death, and aortic root surgery in the losartan-treated 

MFS patients in the US Pediatric Heart Network trial did not occur randomly.  Importantly, 

other smaller clinical trials comparing β-blockade to losartan did not have increased events 

in individuals treated with losartan.  
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5.5 The fibrotic response 

These results bring up an interesting question: is it possible that the fibrotic 

response seen in many of the models may not be detrimental but beneficial? Angiotensin II 

blockade with enalapril was recently reported to reduce the progression of cardiac fibrosis 

in patients with Duchenne and Becker muscle dystrophy in a small randomized clinical trial 

(131, 132). While reduced cardiac or renal fibrosis might improve the functions of these 

organs, it could be of disadvantage for the aorta, where tensile strength is required to 

withstand the force of pulsatile blood flow. Biomechanical studies show that the wall 

increases in thickness to better distribute the hoop stress in response to an increase in 

pulse pressure (25). We also know that AngII signaling drives a fibrotic response in the 

thoracic aorta stimulating fibroblast and myofibroblast proliferation and recruiting 

macrophages and monocytes. Eventually, this leads to adventitial thickening and 

deposition of increased extracellular matrix (28, 30). The thickening of the medial and 

adventitial layer and increased fibrosis with TAC is a physiologic response to increased wall 

stress.  

Hence, blocking aortic fibrosis driven by TGF-β or AngII signaling may not be the 

correct pharmacological target to block aneurysm growth.  This view is supported by 

multiple observations.  First, mutations in genes encoding proteins in the TGF-β canonical 

signaling pathway lead to decreased TGF-β signaling in smooth muscle cells but actually 

cause heritable thoracic aortic disease (8).  It is counter-intuitive to further block TGF-β 

signaling in these individuals to prevent aortic disease.  Second, blocking TGF-β signaling in 
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the MFS mouse model through knockout of the TGF-β type II receptor or knockdown of 

TGF-β2 increases aneurysm formation (133, 134).  Third, blocking TGF-β signaling in 

another mouse model for aortic aneurysms, AngII infusion, increases the penetrance and 

severity of aneurysms and deaths due to aortic rupture (135).  Finally, loss of function 

mutation of lysyl oxidase, an enzyme mediating collagen crosslinking and strongly linked to 

mechanical stability of extracellular matrix and fibrosis, were recently identified as 

causative for familial thoracic aortic aneurysms and dissections (136, 137). Blocking TGF-β 

signaling or blocking proper collagen maturation disrupts the integrity of the thoracic 

aorta.  

AngII signaling also drives fibrosis in the adventitial layer of the thoracic aorta.  

AngII stimulates aortic adventitial fibroblasts to recruit monocytes via secretion of MCP-1, 

and the recruited monocytes further activate the fibroblasts/myofibroblasts to proliferate 

and deposit extracellular matrix, leading to adventitial thickening (28, 105). Although this 

process occurs as part of aneurysm formation associated with AngII infusion, the same 

vascular inflammation and adventitial fibrosis occurs when the forces are increased on the 

aorta by thoracic aortic constriction and this hypertensive remodeling is attenuated by 

losartan (52).  Therefore, aortic adventitial remodeling driven by signaling through the 

AT1R can be physiologic to adapt to increased pressures or pathologic and associated with 

aneurysms.  The unanswered question is whether blocking this adventitial fibrotic 

remodeling through the use of losartan will increase the risk for aortic dissection or 

rupture.    
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5.6 Angiotensin signaling through AT2R 

I asked whether signaling through the AT2R or the Mas receptor might be 

important in TAC-induced aortic remodeling.  Dramatic differences in terms of aortic 

growth and aortic pathology were found when agonists of the AT2R or the Mas receptor 

were used with captopril in TAC mice. The AT2R agonist, C21, in combination with captopril 

was able to prevent aortic enlargement but not vascular inflammation in this model 

system.  Almost the exact opposite was found when the Mas receptor agonist was used – 

aortic enlargement was not rescued but vascular inflammation and much of the associated 

adventitial fibrosis was completely blocked. These results support that additional studies 

must now focus on the use of AT2R agonists as potential therapeutics to help prevent 

thoracic aortic disease.  Although the Mas receptor agonists have shown to be beneficial in 

skeletal and heart diseases, the profound aortic pathologic changes, including collapse of 

the aortic media with SMC loss, and the continued enlargement of the aorta indicate that 

activation of the Mas receptor is not a target for thoracic aortic disease. 

5.7 Study limitations 

Several limitations of my studies should be kept in mind when considering my 

conclusions. First, in many experiments there was insufficient statistical power. 

Furthermore, I did not account for the Bonferroni correction in any of my calculations. This 

may have altered some of the statistical significance in my results. Second, all of my studies 

focused on aneurysm formation but did not effectively investigate the risk for dissections 

and how they relate to the angiotensin system in these models. Ideally, a model that more 
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consistently causes aortic dissection should be utilized for future studies. While some of my 

necropsy studies indicated possible dissections, the frequency of the finding was not 

consistent enough to draw conclusions. Our lab is currently attempting to define better 

mouse models for aortic dissection. Once those models are established, one of the first 

goals should be to assess whether changes in the fibrotic or inflammatory responses 

associated with the angiotensin pathway may hinder or exacerbate dissection.  

5.8 Future directions 

Moving forward, we should pay closer attention to the difference between the 

ascending aorta and the aortic root. We know that they are derived from distinct 

developmental origins (3), but how does that specifically affect their different responses to 

the same stimulus? Recent results have also indicated an inducible nitric oxide synthase 

was potential therapeutic target (88), and it would be interesting to determine how the 

AT2R or Mas could play a role in this system. Finally, I would also be interested in going 

back and to address my original question about which intracellular pathway downstream of 

the AT1R is activated in the ascending aorta in response to biomechanical stress.   

My goal at the start of this project was to identify pathways that might improve the 

treatment of thoracic aortic aneurysms. I believe that the results of my studies contribute, 

in a small way, to our understanding of therapeutic strategies targeting the angiotensin 

system. While ARBs are considered the therapeutic with the highest potential of all the 

pharmaceutical manipulations of the angiotensin system, the angiotensin system is far 

more complicated and dynamic than most would have ever anticipated. Much more time 
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needs to be invested in our understanding of the angiotensin system in thoracic aortic 

disease, and we should not assume that blocking particular receptors or pathways in other 

systems, such as the kidneys or heart, will also be beneficial in the thoracic aorta. We must 

carefully choose our experimental designs to better investigate disease pathologies and 

possible therapeutic strategies.  
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