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Survival for patients with osteosarcoma has not improved for > 30 years. Despite 

aggressive multi-agent chemotherapy combined with surgical resection, a significant 

fraction of patients with localized disease relapse after optimal treatment. We evaluated 

the occurrence of cytoplasmic LC3B (light chain 3B)-positive puncta (a marker of 

autophagy) and presence of HSP27 (heat shock protein 27) in cancer cells within pre-

treatment biopsy, post-treatment surgical resection, and metastatic osteosarcoma 

specimens by immunohistochemistry in 260 patients. LCB3+ puncta expression was seen 

in 34% of pre-treatment. 50% of resection, and 67% of metastasis samples. Sixty-six 

percent of all specimens were scored positive for HSP27 (85% of pre-treatment. 52% of 

resection, and 50% of metastasis samples). Among 215 patients with localized disease, 

pre-treatment HSP27 expression was associated with inferior overall survival (adjusted 

HR 26.7, p=0.0263) as well as at resection following chemotherapy (adjusted HR 1.85, 

p=0.039). Lack of LC3B-puncta expression was an independent poor prognostic marker 

at resection (adjusted HR 1.75, p=0.045). Patients with LC3B+/HSP27- tumors at 

resection had the best prognosis whereas patients with LC3B-/HSP27+ osteosarcoma had 

the worst long-term survival. Neither HSP27 nor LC3B expression correlated with tumor 

necrosis. These findings indicate that HSP27 expression is a negative prognostic 
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biomarker in osteosarcoma.  Conversely, presence of autophagy following neoadjuvant 

chemotherapy, as measured by LC3B-puncta, predicts longer overall survival in 

osteosarcoma patients with localized disease.  

We additionally evaluated the significance of chemotherapy-induced autophagy in 

2 human osteosarcoma cell lines: LM7 and CCH-OS-D. Both doxorubicin (DOX) and 

cisplatin (CDDP) were found to induce autophagy. In LM7 cells, autophagy inhibition 

with hydroxychloroquine (HCQ) prior to chemotherapy resulted in a trend towards 

decreased viability consistent with a cytoprotective role of autophagy. In CCH-OS-D 

cells, autophagy inhibition prior to DOX significantly decreased chemosensitivity 

suggesting a cytotoxic role of autophagy in this setting. The post-treatment expression of 

phosphorylated HSP27 was increased in LM7 and decreased in CCH-OS-D following 

DOX or CDDP. These findings support a dual role of chemotherapy-induced autophagy 

and potential application of pHSP27 as a predictive biomarker of autophagy inhibitors in 

osteosarcoma.   
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I. Background:  

Current Therapies for Osteosarcoma 

Bone sarcomas are rare, making up 0.2% of all cancers.1 Osteosarcoma is the 

most common bone sarcoma with approximately 1000 new cases per year in the U.S. and 

predominantly effects adolescents and young adults.2 Prior to the introduction of multi-

agent chemotherapy, survival for patients with osteosarcoma was extremely poor with 

long-term survival <20%.3 Up to 90% of patients developed metastatic disease following 

surgery alone, leading to the hypothesis that the majority of patients have subclinical 

micrometastatic disease at presentation. With the addition of perioperative chemotherapy 

beginning in the 1960s and 1970s, survival for patients with localized osteosarcoma has 

now improved to 60-65%.4 While chemotherapy plays an integral role in curative 

treatment for patients with osteosarcoma, chemotherapy alone is inadequate. Patients who 

do not undergo surgical resection of their disease will eventually relapse.5 These 

observations have informed the current treatment paradigm for osteosarcoma which 

consists of preoperative combination chemotherapy with MAP (cisplatin, doxorubicin, 

and high-dose methotrexate) followed by limb-sparing surgery (when feasible) with 

pathologic response assessment and subsequent MAP chemotherapy (Figure 1). Despite 

these advances, there is still a significant fraction of patients who relapse and die of 

pulmonary metastasis,6 and there have been no significant improvements in overall 

survival for >30 years.4, 7 
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Figure 1. Standard treatment schema for localized osteosarcoma. Tumor tissue is 

obtained prior to treatment, at resection, and at relapse (blue dots). 

The prognosis for patients with metastatic disease is particularly poor and 

treatment of recurrent/metastatic disease remains a challenge. Patients with primary 

metastatic disease (those presenting with overtly metastatic disease at diagnosis) have a 

5-year survival of approximately 30-50%8, 9 and those with metastatic recurrence have 

even lower 5-year survival of 15-20%.10 Pulmonary metastasectomy can be curative in 

patients with limited/resectable pulmonary disease whereas unresectable metastatic 

disease (such as multiple osseous metastases or extensive pulmonary disease) is likely 

incurable. While a number of chemotherapeutic regimens have been evaluated either 

retrospectively or in the context of clinical trials, response rates range from 10-40% with 

4-month progression-free survival rates ranging from 25 to > 45% (selected studies in 

Table 1). The pooled outcomes for patients with recurrent osteosarcoma enrolled on 7 

phase 2 clinical trials through the Children’s Oncology Group (COG) and its predecessor 

cooperative groups are even more discouraging.11 In each individual trial, the drugs tested 

were deemed to be inactive. The event-free survival (EFS) for patients with measurable 

disease was 12% at 4 months (95% CI, 6% - 19%) with no significant difference in EFS 

based upon patient demographics or the number of prior treatment regimens. For patients 

with pulmonary metastasis who were rendered disease free by surgery and were treated 

Pre-treatment	Biopsy	 Limb	Salvage		

Pathologic	Response	
Assessment	

(%	tumor	necrosis)	

Post-op	Chemotherapy	(MAP)		

Possible	Relapse/
Metastasis	

Pre-op	Chemotherapy	(MAP)	
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on study AOST0221 (inhaled GM-CSF), the EFS was significantly better than those with 

unresectable disease but remained low, 20% at 12 months (95% CI, 10-34%). Another 

recent study of advanced bone sarcoma patients treated in phase I clinical trials at MD 

Anderson Cancer Center re-demonstrated the overall poor outcomes and lack of effective 

therapies for these patients. This included pediatric and adult osteosarcoma patients 

treated across 14 unique protocols and showed no response to any of the cytotoxic, 

targeted, or biologic agents used.12 The 4-month progression-free survival (PFS) was 

26% for patients with recurrent osteosarcoma. 

 

Chemotherapy Regimen Outcome Study 

Gemcitabine + docetaxel PR: 3/10; SD 1/10 Navid F, et al. Cancer. 

2008.13 

Cyclophosphamide + 

etoposide 

PFS at 4 months: 42% Massimo B, et all. Cancer. 

2009.14 

Cyclophosphamide + 

topotecan 

PR: 2/18 Saylors RL, et al. JCO. 

2001.15 

Ifosfamide + etoposide PR or CR: 3/8 Miser JS, et al. JCO. 198716 

Ifosfamide + carboplatin + 

etoposide 

ORR: 51% (all sarcomas) Van Winkle P, et al. Pediatr 

Blood Cancer. 2005.17 

High-dose ifosfamide ORR 20% 

PFS at 4mo: 25% 

Palmarini E, et al. ASCO, 

2015.18 

Sorafenib + everolimus PFS at 6 mo: 45% Grignani G, et al Lancet 

Onc. 2015.19 

Table 1. Treatment outcomes for relapsed/metastatic osteosarcoma. Complete response 

(CR), objective response rate (ORR), progression-free survival (PFS), partial response 

(PR), stable disease (SD). 

Given the adverse outcomes and limited efficacy of treatment in the 

recurrent/metastatic setting as well as the lack of promising agents in early-phase 

development, it is important to identify patients with a high-likelihood of metastatic 

relapse and death for consideration of clinical trial participation in studies that combine 
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molecular biomarkers and targeted therapies, either in the neoadjuvant or adjuvant 

setting, to improve the efficacy of standard chemotherapy for osteosarcoma. As such, the 

identification of novel prognostic biomarkers either at diagnosis or resection following 

neoadjuvant chemotherapy is an unmet need in osteosarcoma. 

 

Prognostic Markers in Osteosarcoma 

Due to the potential for relapse amongst patients treated with standard therapy, 

several studies have sought to identify prognostic markers in patients with osteosarcoma. 

To date, stage at presentation (localized vs metastatic) and pathologic response to 

neoadjuvant chemotherapy (assessed by percent necrosis at the time of surgical resection) 

remain the most widely accepted and clinically utilized prognostic factors. Other clinical 

and pathologic factors have been explored as they relate to metastasis-free and overall 

survival including age at diagnosis, sex, stage at presentation, tumor location, tumor size, 

histologic subtype, surgical margins, and serum markers such as lactate dehydrogenase 

(LDH) level or alkaline phosphatase levels among others.20-23 For example, in one large 

retrospective cohort of 1,702 patients with high-grade osteosarcoma treated on 

neoadjuvant cooperative group protocols, older patient age at diagnosis (≥ 40 years), 

axial tumor site, larger tumor size (for extremity tumors), and presence of primary 

metastasis were associated with inferior overall survival.21 Treatment-related factors 

including response to chemotherapy and the extent of surgery (incomplete vs 

macroscopically complete) were also shown to be significant. In multivariate analysis, 

residual tumor (HR 4.01, p< 0.0001) and poor response to chemotherapy (HR 2.44, p< 

0.0001) were identified as key prognostic factors for overall survival. 
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Identifying patients with localized (i.e. non-metastatic) disease that are at high-

risk for relapse is clinically relevant and has informed the design of adjuvant therapy 

trials in osteosarcoma. Pathologic response to chemotherapy, as assessed by percent 

tumor necrosis on the primary resection specimen, is a well-established prognostic factor 

in osteosarcoma.24 Poor response has been defined as <90% tumor necrosis in most 

studies, however this cutoff may vary. In early studies of preoperative chemotherapy, 

patients with a poor response to MAP chemotherapy had significantly worse outcomes.25, 

26 These findings were confirmed in an initial literature review of studies that included 

non-metastatic high-grade osteosarcoma patients published between 1973-1992 where 

only tumor necrosis following preoperative chemotherapy was found to have independent 

prognostic significance.27 In a subsequent systematic review including studies from 1992-

2006, poor response to chemotherapy (pooled relative risk (RR) of death or recurrence 

2.37, 95%CI 2.07-2.70), larger tumor volume (pooled RR 1.36, 95%CI 1.18-1.58) and 

ablative surgery as compared to limb salvage (pooled RR 2.18, 1.58-3.00) were all 

identified as predictors of adverse outcomes.28 However, the authors noted that a pooled 

analysis was challenging due the heterogeneity of the prognostic factors analyzed across 

studies.  

With the identification of tumor necrosis as a prognostic biomarker in 

osteosarcoma, multiple clinical trials have sought to intensify either preoperative 

chemotherapy to improve pathologic response rates or modify postoperative therapy to 

improve outcomes among poor responders. Intensification of preoperative therapy can 

result in higher rates of “good necrosis,” but this strategy results in greater toxicity 

without clear survival benefit. In a phase II study evaluating intensification of 
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preoperative chemotherapy, the addition of ifosfamide to a standard doxorubicin/cisplatin 

backbone with autologous stem cell rescue resulted in an improvement in the objective 

rate of tumor necrosis but resulted in unacceptable toxicity and no significant 

improvement in survival.29  

The role of tailored or modified post-operative therapy for patients with poor 

tumor necrosis remains controverted. The initial rationale for modification of 

postoperative chemotherapy amongst poor responders was established in the 1970s when 

primary (preoperative) therapy consisted of a less active drug combination than current 

MAP chemotherapy.26  In subsequent studies from the Rizzoli Institute, intensification of 

postoperative chemotherapy amongst poor responders improved survival: patients 

received neoadjuvant chemotherapy with 2 cycles of high-dose methotrexate (HD MTX), 

intra-arterial cisplatin, and intravenous doxorubicin followed by surgical resection; poor 

responders (<90% tumor necrosis) went on to receive additional chemotherapy with 

ifosfamide and etoposide (I/E) in addition to MAP.30 The 5-year continuous disease-free 

survival (CDFS) was 63%, with no significant difference between good and poor 

responders. These findings have informed the subsequent treatment paradigm for patients 

with poor response to MAP chemotherapy. In one large retrospective series of adult 

patients with osteosarcoma treated at MD Anderson Cancer Center, the addition of high-

dose ifosfamide to postoperative therapy increased the CDFS amongst poor responders to 

67%.31, 32 These findings were validated in an updated series of adult patients treated 

within the same center.33 A recent large international randomized clinical trial has called 

the utility of this approach into question, however. In the EURAMOS-01 study, 618 

patients with poor tumor necrosis following preoperative MAP chemotherapy were 
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randomized to receive either MAP or MAP plus ifosfamide and etoposide (MAPIE).34 

Toxicity was noted to be higher in the MAPIE group and EFS did not differ between 

treatment groups (HR 0.98, 95% CI 0.78 – 1.23), leading investigators to conclude that 

the results do not support the addition of I/E to postoperative therapy for patients with 

poor response and that “new strategies are required to improve outcomes in this setting.” 

Similarly, a retrospective analysis of assessing the prognostic value to histologic response 

to therapy between a historic regimen (CCG-78235) vs increased intensity induction 

therapy (INT-013336) found that while histologic response predicted outcomes across 

studies (p <0.0001), there was an inverse relationship between the predictive value of 

tumor necrosis and the intensity of induction therapy.37 Stated another way, the difference 

in outcomes between good and poor responders was less dramatic with modern 

intensified chemotherapy as compared to prior regimens (10y EFS 70.8% vs 58.4% in 

good v poor responders respectively in INT-0133 as compared to 75.4% vs 39.9% in 

CCG-782). Thus the authors concluded that their findings “highlight the need for novel 

markers” to develop treatment strategies in future trials. 

To date, there are no established predictive biomarkers of response to MAP 

chemotherapy in osteosarcoma. Identifying poor risk patients at diagnosis would allow 

for a window trial approach with correlative biomarkers. Similarly, additional factors that 

allow for risk stratification independent of tumor necrosis would be valuable in informing 

future studies of adjuvant therapy in osteosarcoma.  Therefore, research to identify novel 

biomarkers (both predictive and/or prognostic), potential targets focusing on mechanisms 

of chemoresistance, and opportunities to enhance efficacy/sensitivity to standard agents 
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(MAP) is imperative to inform clinical trial design and improve outcomes for patients 

with osteosarcoma. 

 

Autophagy in Cancer and Cancer Treatment 

Autophagy is a conserved physiologic process of cellular catabolism that allows 

the degradation and recycling of intracellular organelles, proteins, and macromolecules in 

order to maintain homeostasis during times of nutrient depravation and cellular stress.38 

The process of sequestering and breakdown of these cellular components through 

lysosoamal degradation is termed macroautophagy (referred to as autophagy henceforth). 

In this process, autophagy-related proteins sequester macromolecules to be degraded into 

double-membrane vesicles (termed autophagosomes). Autophagosomes fuse with the 

lysosome to form the autolysosome in which the macromolecules and organelles are then 

broken down into amino acids, nucleic acids, and fatty acids which can be used to 

maintain adenosine triphosphate (ATP) synthesis and support other key anabolic 

pathways. Macroautophagy has been the primary focus for studies of autophagy and 

autophagy inhibition in cancer. This differs from microautophagy (a nonselective 

lysosomal degradation by direct engulfment)39, chaperone-mediated autophagy (in which 

chaperones in the cytosol facilitate lysosomal proetolysis)38, and mitophagy (which refers 

to the degradation of mitochondria by autophagy).40  

Autophagy serves a dual role, either as a mechanism of cell survival or of cell 

death. As a cytoprotective mechanism, autophagy promotes cell survival in the setting of 

nutrient deprivation or other stress. Alternatively uncontrolled/excess autophagy can lead 

to cell death through apoptosis or an alternate cell death pathway termed “autophagic cell 



 

 

9 

death.” For example, studies have shown that knockdown of key autophagy (ATG) genes 

can promote both apoptotic and non-apoptotic cell death, suggesting that the role of 

autophagy is cytoprotective.39 Conversely, multiple lines of evidence support the 

rationale for autophagy as an alternate cell death pathway: 1) overexpression of 

autophagy proteins such as Beclin 1 or Atg1 can lead to cell death,41, 42 2) cells that are 

deficient in  apoptosis can undergo ATG-dependent cell death,43, 44 and 3) pharmacologic 

inhibition of autophagy may prevent cell death in certain settings.45, 46 This duality is 

particularly important in cancer and has implications for both carcinogenesis and cancer 

treatment. 

In cancer, the dual role of autophagy is often referred to as the “autophagy 

paradox.” In the early stage of tumorigenesis, autophagy has been shown to act as a 

tumor suppressor. Inhibition of autophagy through allelic deletion of Becn1 in genetic 

mouse models (BENC+/-) promotes tumorigenesis and results in a high incidence of 

spontaneous tumors.47, 48 Additionally, autophagy inhibition can lead to increased 

metabolic stress and genomic instability which can promote tumorigenesis and tumor 

progression.49 Conversely, activation and up regulation of autophagy is thought to 

contribute to tumor growth, tumor progression, and treatment resistance by promoting 

cell survival during periods of nutrient deprivation, chemotherapy, or radiation-induced 

stress.50 Because of this apparent paradox, there has been significant controversy 

regarding the role of autophagy modulation in cancer therapy.  

Autophagy markers such as LC3B puncta, p62/sequestosome 1 (SQSTM1), 

Beclin 1, and presence of autophagic vesicles or autophagosomes (evaluated by 

transmission electron microscopy [TEM]) have been explored as potential predictive and 
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prognostic biomarkers in multiple cancer types. For example, in a series of 12 patients 

with melanoma treated on a phase II trial of sorafenib and temozolimide, patients whose 

tumors had a high “autophagic index” (defined as ≥6 autophagic vesicles per cell on EM) 

were less likely to respond to treatment and had shorter survival as compared to those 

with a low autophagic index.51 In another series, the presence of high LC3 expression in 

pancreatic adenocarcinomas at time of pancreatoduodenectomy was associated inferior 

disease-free survival.52 In colon cancer, overexpression of Beclin 1 has been associated 

with inferior overall survival amongst patients receiving adjuvant 5-fluorouracil 

chemotherapy.53 While the presence of autophagy appears to be a negative prognostic 

marker in most cancer types, high expression of LC3 and Beclin 1 has been associated 

with improved response rate and superior overall survival in patients with ovarian 

cancer.54 In breast cancer, studies are conflicting. In one study, the presence of LC3B (but 

not Beclin 1) in residual tumors following neoadjuvant chemotherapy predicted inferior 

relapse-free survival (RFS; multivariate HR 1.88, 95% CI 1.14-3.08) and overall survival 

(OS; multivariate HR 2.43, 95% CI 1.26-4.67).55 A subsequent study found that when 

combined, the presence of LC3B+ puncta and nuclear HMGB1 expression in women 

with breast was associated with significantly improved metastasis-free survival following 

adjuvant chemotherapy (HR 0.49, 95% CI 0.26-0.89).56 Conflicting studies such as these, 

call into question the importance of evaluating autophagy in a context-dependent manner 

and additionally raise concerns about the methodology for evaluating autophagy markers 

in patient samples. As autophagy is a dynamic process, it is important to distinguish 

between static measurements of autophagy from those which measure autophagic flux. 

This has been a major limitation of prior studies. Expert guidelines recommend that the 
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use of autophagy markers such as  LC3B be accompanied by assays to estimate overall 

autophagic flux.57 In the study by Ladoire et al., the presence of cytoplasmic LC3B 

puncta was shown to have an inverse correlation with p62 staining, supporting the 

authors conclusion that in their study population high LC3B puncta reflects increased 

autophagic flux.56 No studies have evaluated the predictive or prognostic significance of 

autophagy markers in osteosarcoma. 

A wide range of current cancer drugs have been shown to modulate autophagy. 

For example, cytotoxic chemotherapies, hormonal therapies, and targeted therapies such 

as mTOR (mammalian target of rapamycin) inhibitors, HDAC (histone deacetylase) 

inhibitors, and multiple tyrosine kinase inhibiors (TKIs) have all been shown to induce 

autophagy in various cancer types.58  The listing of approved agents by the United States 

Food and Drug Administration (FDA) that inhibit autophagy is much shorter, including 

the antimalarial drugs chloroquine and hydroxychloroquine (HCQ) which inhibit 

lysosomal degradation. Several clinical trials have been conducted or are currently 

underway utilizing HCQ to inhibit autophagy.59 However, an important question remains: 

is autophagy inhibition beneficial or potentially detrimental?  

The role of autophagy in cancer is context-dependent and can vary based upon 

tumor type, stage (premalignant vs invasive), and cancer therapy.60 Recently studies have 

suggested that the role of autophagy and therefore the efficacy of autophagy inhibition 

may be dependent on p53 status. In a pancreas cancer genetically engineered mouse 

model (GEMM) of Kras-mutant, Trp53 -/- pancreatic adenocarcinoma, loss of autophagy 

via tumor specific Atg5 or Atg7 deletion or pharmacologic inhibition with 

hydroxycloroquine accelerated the development of pancreatic ductal adenocarcinomas.61 
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These findings called into question the safety of autophagy inhibition in patients with 

TP53-mutant cancers.62 Subsequent studies have refuted these findings based upon a 

pancreas-specific Kras-mutant Trp53+/− GEMM.63 This model allows for adult p53 loss 

of function via loss of heterozygosity (LOH) (rather than embryonic loss of p53) and is 

thought to more accurately recapitulate pancreatic tumor progression in humans. In this 

study, Atg5 deletion resulted in tumor suppression, with an increase premalignant lesions 

but preventing progression to pancreatic ductal adenocarcinoma and leading to prolonged 

survival. Taken together, these findings suggest that p53 status alone does not determine 

the role of autophagy in cancer. Rather, additional studies are needed to identify potential 

biomarkers that correlate with the role of autophagy in specific context (cancer type, 

therapy, stage) and may predict the therapeutic benefit of autophagy modulation. 

 

Autophagy in Osteosarcoma 

In osteosarcoma, most studies have focused on chemotherapy-induced autophagy 

as a mechanism of chemoresistance.64 Cisplatin, doxorubicin, and methotrexate have all 

been shown to induce autophagy in osteosarcoma cells, which then promotes tumor cell 

survival by decreasing sensitivity to chemotherapy.65-67 Autophagy inhibition, either via 

knockdown of key autophagy genes such as Beclin 168 or pharmacologic inhibition with 

compounds such as 3-methyladenine,67 bafilomycin A1,69 or chloroquine66 have been 

shown to decrease cell proliferation and increase apoptosis in osteosarcoma cells treated 

with doxorubicin or cisplatin. Further, MAP chemotherapy results in the upregulation of 

high mobility group box 1 protein (HMGB1) in osteosarcoma in vitro and has been 

suggested as a potential therapeutic target in osteosarcoma.70, 71  
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Our lab has previously shown a dual role for chemotherapy-induced autophagy in 

osteosarcoma.72, 73 Gemcitabine (GCB) treatment of human LM7, CCH-OS-D, and 

murine K7M3 cells in vitro and osteosarcoma lung metastases in vivo resulted in the 

formation of autophagic vesicles, conversion of LC3I to LC3II, and upregulation of 

Beclin 1 in both cells and tumor tissues as well as degradation of p62 and the formation 

of acidic vesicular organelles in tumor cells consistent with induction of autophagy. To 

evaluate the role of autophagy, we analyzed cell viability following treatment with 

chemotherapy combined with inhibition of autophagy by BECN1 or ATG knockdown and 

pharmacologic inhibition with hydroxychloroquine (HCQ).  In LM7, chemotherapy in 

combination with autophagy inhibition by BECN1 knockdown or HCQ treatment resulted 

in decreased viability suggesting a cytoprotective role for autophagy. Conversely, 

autophagy inhibition prior to chemotherapy resulted in increased cell viability of CCH-

OS-D and K7M3 cells consistent with cytotoxic autophagy.  

 

Phosphorylated HSP27 as a Potential Biomarker of Chemotherapy-induced 

Autophagy in Osteosarcoma 

We completed a human phosphokinase array to identify differentially expressed 

proteins and phosphoproteins at baseline and following treatment with GCB in 

osteosarcoma cell lines exhibiting opposing effects of autophagy and autophagy 

inhibition. Post-treatment expression of phosphorylated heat shock protein 27 (pHSP27) 

was significantly different between LM7 and CCH-OS-D cells following gemcitabine 

exposure and appeared to correlate with the role of chemotherapy-induced autophagy. 

Induction of pHSP27 following treatment with GCB correlated with a cytoprotective role 
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of autophagy and reduced chemosensitivity, while a failure to induce pHSP27 correlated 

with a cytotoxic role of autophagy. Inhibition of autophagy in cells with increased 

expression of pHSP27 following drug exposure resulted in increased osteosarcoma cell 

killing; conversely inhibition of autophagy in cells with decreased expression of pHSP27 

following treatment decreased osteosarcoma cell killing.73 These findings were validated 

in K7M3 cells treated with 9-nitrocamptothecin (9-NC). Previously, our lab has shown 

that inhibiting autophagy in K7M3 cells prior to treatment with 9-NC increases 

cytotoxicity whereas autophagy inhibition prior to treatment with GCB reduced 

cytotoxicity as compared to GCB alone.72 In a subsequent study, we found that this effect 

again correlated with the post-treatment expression of pHSP27: 9-NC resulted in 

induction of pHSP27 (and correlated with cytoprotective autophagy) whereas pHSP27 

was decreased following GCB treatment in K7M3 (correlating with cytotoxic 

autophagy). The correlation between pHSP27 expression and the role of chemotherapy-

induced autophagy in osteosarcoma was independent of cell line, species of origin, or 

specific chemotherapy (summarized in Table 2). Taken together, our findings suggest 

that pHSP27 may be a biomarker to predict the benefit of autophagy inhibitors in the 

treatment of osteosarcoma. 

 

Cell Line Chemotherapy pHSP27 expression Role of Autophagy 

LM7 GCB Increase Cell survival 

CCH-OS-D GCB Decrease Cell death 

K7M3 GCB Decrease Cell death 

K7M3 9-NC Increase Cell survival 

MG63 GCB No change No effect 

Table 2. Correlations between post-treatment expression of pHSP27 and the role of 

chemotherapy-induced autophagy in vitro. GCB – gemcitabine, 9-NC – 9-

nitrocamptothecin. 
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In the proposed model, treatment with chemotherapy in osteosarcoma results in an 

induction of autophagy. This can be accompanied by an increase in pHSP27 (Figure 2, a) 

which is associated with chemoresistance and cytoprotective autophagy or conversely, a 

degradation of pHSP27 associated with cytotoxic autophagy and autophagic cell death 

(b). In the first scenario, autophagy inhibition with drugs such as HCQ results in 

increased chemosensitivity (Figure 2, c). In the second, autophagy inhibition would result 

in decreased drug sensitivity (d). 

 

 
Figure 2. Proposed model for chemotherapy-induced autophagy and pHSP27 in 

osteosarcoma. (a) Increased pHSP27 expression following chemotherapy correlates with 

cytoprotective autophagy; (b) Decreased pHSP27 correlates with cytotoxic autophagy.  
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Figure 2 (continued). (c) Autophagy inhibition increases drug sensitivity (decreased cell 

viability). Viability studies show a decrease in LM7 viability with the combination of 

HCQ and GCB as compared to GCB alone; (d) Autophagy inhibition decreases drug 

sensitivity (increased cell viability) in osteosarcoma cells with decreased post-treatment 

pHSP27 expression. Viability studies show an increase in CCH-OS-D viability with the 

combination of HCQ and GCB as compared to GCB alone. Cell viability data reproduced 

with permission, courtesy Janice Santiago-O’Farrill PhD. 

  

HSP27 HSP27 

HSP27 HSP27 
+	

Osteosarcoma	

Chemo-resistance	
Cyto-protec ve	Autophagy	
	

Chemo	

HCQ	

Autophagy	inhibi on:		
Increases	drug	sensi vity	

* 

HSP27 

HSP27 

HSP27 

+	
Cyto-toxic	Autophagy	
Alternate	cell	death	

HCQ	

Autophagy	inhibi on:		
Decreased	drug	sensi vity	

C C H -O S -D

C
e

ll
 V

ia
b

il
it

y
 (

%
)

C
t r

l

H
C

Q
 

G
C

B
 

H
C

Q
 +

 G
C

B
 

0

2 0

4 0

6 0

8 0

1 0 0

(C)	

(D)	



 

 

17 

Heat shock Protein 27 (HSP27) in Cancer and Cancer Treatment 

Heat shock proteins (HSPs) are a highly conserved class of cytoprotective 

proteins whose synthesis is stimulated by heat shock (as their name implies) as well as 

other environmental and physiologic stressors. Heat shock protein 27 (also known as 

HSPB1) is a small HSP (molecular weight 27 kD) that is found in both normal cells and 

human cancers.74 Gene expression data from the Cancer Genome Atlas (TCGA) and the 

Genotype-Tissue Expression Project (GTEx)75 show that HSP27 is highly expressed 

across a range of normal tissues and tumor types including soft tissue sarcomas, with 

uterine and soft tissue leiomyosarcoma being most notable (Figure 3; ULMS and 

STLMS, respectively). Notably, osteosarcoma expression data is not included in the 

TCGA.  

 

 
Figure 3. HSP27 expression across normal tissues and multiple cancer subtypes. The 

results presented here are in part based upon data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/. 
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In cancer, HSP27 expression can be induced by cytotoxic drugs and protects cells 

from apoptotic cell death. Overexpression of HSP27 is a poor prognostic biomarker in 

multiple cancers including gastric, liver, prostate, rectal and breast, and is additionally a 

marker of chemotherapy resistance in breast cancer and leukemia.76, 77 

HSP27 can undergo post-translational modification via serine phosphorylation; 

human HSP27 is phosphorylated at serine15, serine-78, and serine-82 by MAPKAP 

kinase 2/3 via the activation of the P38 MAPK pathway.78 Phosphorylation is a dynamic, 

reversible process that can affect structure, oligimerization, and function. Heat shock as 

well as other stressors have been shown to induce phosphorylation. Interestingly, early 

studies noted that agents such as tumor necrosis factor (TNF) and leukemia inhibitory 

factor only induced HSP27 phosphorylation in cells that were sensitive to the agents.74 

Similarly, in human breast cancer cells, phorbol ester induces HSP27 phosphorylation 

and inhibits cell growth.79 More recently, pHSP27 has been associated with gemcitabine-

resistance in pancreatic cancer cells as well as 5-fluorouracil resistance in colorectal 

cancer.80, 81 As a prognostic marker, pHSP27 expression is inversely correlated with 

tumor size and stage and was noted to decrease at progression in hepatocellular 

carcinoma82 and was shown to correlate with HER-2 status and node positivity in breast 

cancer.83  

While previously unactionable, several strategies are being developed to target 

heat shock proteins in cancer therapy.84 Recent studies with the novel HSP27 antisense 

oligonucleotide OGX-427 have shown promise in multiple tumor types including reports 

of increased chemosensitivity to GCB in pancreatic cancer85, erlotinib and chemotherapy 
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in NSCLC86, and increased responses to docetaxel in prostate cancer87. However, only 

limited preclinical data exists for the use of OGX-427 in osteosarcoma and no sarcoma 

patients were included in the phase I trials.88 

 

Heat Shock Protein 27 in Osteosarcoma 

Two small series have evaluated the expression and prognostic significance of 

HSP27 in osteosarcoma. HSP27 is overexpressed in 22-24% of patients at baseline and 

33-37% at resection following neo-adjuvant chemotherapy.89, 90 Overexpression of 

HSP27 in pretreatment biopsy samples evaluated in 54 patients was associated with 

inferior overall survival in univariate analysis (HR 3.95, [1.67-9.34]) and when adjusted 

for tumor size and histologic subtype (HR 3.26, [1.28-8.31]).89 In a second series from 

the same group examining the prognostic significance of multiple HSPs (27, 47, 60, 70, 

90α, 90β), only HSP27 overexpression at biopsy (p=0.0021) and HSP27 and HSP70 

expression at surgery (p=0.045, and p=0.018 respectively) were significantly associated 

with poor prognosis.90 Similarly, HSP27 overexpression at biopsy was associated with 

inferior overall survival in a multivariate analysis (adjusted HR 2.63, [1.14-6.06]), 

although presumably this series included some of the same patients as the initial study. 

As predictive biomarkers, HSP72 expression by immunohistochemistry91 and antibodies 

to HSP9092 in patient sera prior to initiation of therapy have both been shown to correlate 

with better responses to neoadjuvant chemotherapy. The utility of HSP27 as a potential 

predictive biomarker of chemotherapy response has not been assessed in osteosarcoma. 
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Hypothesis and Aims 

Based upon preclinical data showing a dual role for chemotherapy-induced 

autophagy in osteosarcoma and the correlation between autophagy inhibition and 

pHSP27 expression in vitro, my central hypothesis is that phosphorylated HSP27 

determines the role of autophagy in osteosarcoma and modulates response to preoperative 

chemotherapy. Therefore, HSP27, pHSP27, and/or autophagy may pose novel 

biomarkers and potential therapeutic targets to improve the efficacy of standard MAP 

chemotherapy in patients with osteosarcoma. 

 

In order to test this hypothesis, the following specific aims were studied: 

Aim 1. To determine if autophagy is induced in osteosarcoma tumor specimens following 

preoperative chemotherapy and correlates with pathologic response, prognosis, and 

HSP27/pHSP27 expression. 

 

Aim 2. To determine whether standard chemotherapy can result in either cytotoxic or 

cytoprotective autophagy in osteosarcoma cell lines and determine whether pHSP27 

expression correlates with the cytoprotective function of chemotherapy-induced 

autophagy following treatment with doxorubicin or cisplatin  
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II. Materials and Methods:  

Patients 

The study population for Aim 1 included 260 pediatric and adult patients with 

osteosarcoma evaluated at the University of Texas MD Anderson Cancer Center between 

1985 and 2012 with tissue specimens included on an institutional tissue microarray 

(TMA) that contains 394 specimens. In all cases, the diagnosis was established according 

to the World Health Organization Classification of Tumors by an expert sarcoma 

pathologist. 93 Patients with extraskeletal osteosarcoma were specifically excluded as this 

is considered a separate entity. Clinical data was collected by retrospective chart review. 

Institutional Review Board approval was obtained for this study and was exempt from 

requiring informed consent.   

 

Construction of tissue microarrays 

Decalcified FFPE tissue blocks from osteosarcoma pretreatment biopsies and 

surgical resection specimens (resected primary tumors and resected metastasis) were 

retrieved from the MD Anderson institutional tumor bank. Hematoxylin/eosin stained 

slides from each block were reviewed by a sarcoma pathologist to identify tumor areas. 

Tissue microarrays (TMAs) were constructed with 0.6mm diameter tissue cores from 

representative tumor areas from the FFPE blocks.  

 

Immunohistochemical Studies 

Four-micron thick unstained slides were prepared from formalin-fixed paraffin-

embedded decalcified human osteosarcoma tissue microarrays. Immunohistochemical 
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studies were performed using an autostainer (Bond III/Rx, Leica Biosystems, Buffalo 

Grove, IL) with an anti-human HSP27 monoclonal antibody (1:1000, Thermo Fischer 

Scientific, clone MA3-15) and LC3B (1:50, NanoTools/Axorra, clone 5F10).  

 Immunohistochemical labeling was independently scored by 2 trained sarcoma 

pathologists, both of whom were blinded from the clinical data at the time of assessment. 

Both  percentage of tumoral labeling (0-100%) and the intensity of immunostaining [0 

(negative), 1 (weak), 2 (moderate), 3 (strong)]was evaluated.  

 LC3B was evaluated using previously validated immunohistochemical methods94 

with granular cytoplasmic or punctate staining assessed. Staining of >10% tumor cells 

was considered positive for HSP27 or LC3B expression. In addition, median cut-points 

(≥ vs < median % staining) and staining intensity (negative vs weak/moderate/strong) 

were examined as prognostic factors.   

 

OS cell lines and cell culture   

LM7 is a human metastatic osteosarcoma cell line that was established in the 

Kleinerman Lab by intravenous recycling the parental cell line (SAOS-2) through the 

lungs of nude mice serially through 7 iterations. CCH-OS-D is a human osteosarcoma 

cell line derived from an 18-year-old male with osteosarcoma lung metastasis. LM7, and 

CCH-OS-D metastatic OS cell lines were cultured in Dulbecco’s modified Eagle medium 

containing 10% fetal bovine serum supplemented with antibiotic and nonessential amino 

acids. Cells were maintained in a humidified incubator with 5% CO2 at 37°C.  
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Reagents and antibodies  

Doxorubicin and cisplatin were obtained from the MD Anderson Cancer Center 

pharmacy and dissolved in PBS to desired concentrations. HCQ was purchased from 

Sigma Aldrich and dissolved with water to a concentration of 10mM. RIPA lysis buffer 

(sc-24948) was purchased from Santa Cruz Biotechnology. The following antibodies 

were used for Western blot analysis: Microtubule-associated protein 1 light chain LC3B 

(NB600-1384) was purchased from Novus Biologicals. Beclin (sc-11427) and HSP27 

(sc-13132) were purchased from Santa Cruz Biotechnology. SQSTM1/p62 (5114) was 

obtained from Cell Signaling Technology. p-HSP27 (MAB23141) was purchased from 

R&D Systems. 

 

Cell viability  

Cell viability, Western blot, and human phosphokinase arrays were completed 

using the same methodology as prior studies from our lab.73 Cells were seeded in 12-well 

plates with approximately 0.5 × 105 cells per well and allowed to attach overnight at 

37°C, 5% CO2. Cells were then treated in the following conditions: doxorubicin, 

cisplatin, HCQ, doxorubicin following HCQ pretreatment for 20 minutes, and cisplatin 

following HCQ pretreatment; cells with no treatment served as controls. Cells were 

trypsinized and viability was assessed by trypan blue exclusion assay using an automated 

cell counter (Vi-cell, Beckman Coulter). The incubation time and drug concentrations are 

specified in the results and respective figures. 
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Human phospho-kinase Antibody Array Kit 

LM7 and CCH-OS-D cells were treated with doxorubicin or cisplatin for 48 

hours. Untreated cells were used as a control. The cells were collected and lysed using 

the lysis buffer provided by the manufacturer, and protein concentration was determined 

using the Bradford Protein Assay from Bio-Rad. After blocking, the membranes were 

incubated with 400µg of protein overnight at 4°C. The membranes were washed and 

incubated with Detection Antibody Cocktails. HRP- conjugated Streptavidin antibodies 

and chemniluminescent detection reagents were used to visualize the protein. 

Densitometry was completed using ImageJ software (https://imagej.nih.gov/ij/). 

 

Western blot analysis  

After treatment, whole cell lysates were prepared by lysing the cells with RIPA 

lysis buffer for 30 minutes and centrifuging at 10,000 g at 4°C. Supernatants were 

collected and protein concentration was determined using the Bio-Rad DC protein assay 

kit (500-0113-0115). Equal amounts of protein were subjected to SDS-polyacrylamide 

gels (SDS-PAGE) and transferred onto a nitrocellulose membrane. Membranes were 

blocked in 5% milk or 5% bovine serum albumin for 1 hour and then incubated with 

primary antibody against LC3 (1:1000) or p62 (1:1000). After overnight incubation with 

primary antibodies, membranes were washed and incubated with anti-mouse (1:2000) 

horseradish peroxidase linked whole antibody (from sheep, NA931V; GE Healthcare) or 

anti-rabbit (1:2000) horseradish peroxidase linked whole antibody (from donkey, 

NA934V; GE Healthcare) as a secondary antibody. Signal was detected using ECL 

https://imagej.nih.gov/ij/
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reagents (GE Healthcare Life Science). β-actin or GAPDH were used as loading controls. 

Densitometry was completed using ImageJ software (https://imagej.nih.gov/ij/). 

 

Statistical analysis 

Analyses of overall survival (OS) and relapse-free survival (RFS) were performed. 

OS was defined as from the time of diagnosis to the time of death or to the time of last 

contact. RFS was defined as from the time of surgery to the time of relapse or death, 

whichever occurred first or to the time of last contact. The distributions of OS, and RFS 

were estimated by the Kaplan-Meier method.95 Log-rank test was performed to test the 

difference in survival between patient characteristics/biomarkers groups.96 Regression 

analyses of survival data based on the Cox proportional hazard (PH) regression model 

were conducted on OS and RFS.97 For the resection samples and good response, 

landmark analysis method was used and time of surgery would be the starting points of 

OS and RFS.98 Stepwise method was used to build a multivariate Cox PH regression 

model. Functional form, PH assumption, and multicollinearity were examined.  The 

correlation between two continuous factors was measured by Spearman correlation.99 The 

Chi-square test and Fisher’s exact test were used to determine whether proportions of 

patients with factors of interest were equal between patient characteristics/biomarkers 

groups.100 Wilcoxon signed rank test was used to compare biomarker expression of 

paired resection with synchronous metastatic samples, and paired resection with 

metachronous metastatic samples. A two-sided p-value<0.05 was considered statistically 

significant. SAS version 9.4 was used to carry out the computations. Experimental data 

for cell viability studies were analyzed using Graphpad PRISM 6.0 software. 

https://imagej.nih.gov/ij/
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III. Results  

Clinical Characteristics 

There were 215 patients with localized osteosarcoma at the time of diagnosis 

(localized patients) and 45 patients with primary metastatic osteosarcoma (metastatic 

patients). The age at diagnosis of all patients ranged from 4.9 to 90.8 with mean and 

median of 24.2 and 18.3, respectively. Metastatic patients (mean= 24.8 years) were 

slightly older than the localized patients (mean= 24.0 years). Tables 3 and 4 show the 

clinical characteristics in all patients and by stage at presentation (localized disease and 

metastatic disease).  
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Factor n Min Median Mean Max SD 

All patients       

Age at diagnosis (years) 260 4.9 18.3 24.2 90.8 15.8 

Tumor necrosis (%) (patients with pre-op 

chemo) 241 0 87.0 76.0 100 27.0 

 

 

     Localized disease at diagnosis       

Age at diagnosis (years) 215 4.9 18.2 24.0 90.8 15.6 

Tumor Necrosis (%) (patients with pre-op 

chemo) 205 0 86.0 76.1 100 27.2 

       

Metastatic disease at diagnosis  

     Age at diagnosis (years) 45 7.2 20 24.8 78.2 16.9 

Tumor necrosis (%) (patients with pre-op 

chemo) 36 0 88 75.0 100 25.9 

 

Table 3. Clinical and pathologic characteristics by stage at presentation (continuous 

factors). 
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Factor All patients 

Localized 

Disease 

Metastatic 

Disease 

 n (%) n (%) n (%) 

Gender 

   Male 153 (59) 126 (59) 27 (60) 

Female 107 (41) 89 (41) 18 (40) 

Race 

   Asian 9 (3) 7 (3) 2 (4) 

Black 35 (14) 28 (13) 7 (16) 

Hispanic 75 (29) 63 (29) 12 (27) 

White 140 (54) 116 (54) 24 (53) 

Histologic Subtype 

   Osteoblastic 110 (42) 91 (42) 19 (42) 

Chondroblastic 49 (19) 40 (19) 9 (20) 

Fibroblastic 46 (18) 39 (18) 7 (16) 

Telangiectatic 23 (9) 18 (8) 5 (11) 

Dedifferentiated parosteal 12 (5) 10 (5) 2 (4) 

Small cell 6 (2) 4 (2) 2 (4) 

High grade surface 3 (1) 3 (1) 

 Other - high grade 6 (2) 5 (2) 1 (2) 

Other intermediate/low grade 5 (2) 5 (2) 

 Radiation Induced Osteosarcoma    

No 250 (97) 207 (96) 43 (100) 

Yes 8 (3) 8 (4)  

Primary Site    

Femur 140 (54) 112 (52) 28 (62) 

Tibia 43 (17) 39 (18) 4 (9) 

Fibula 10 (4) 9 (4) 1 (2) 

Humerus 32 (12) 24 (11) 8 (18) 

Radius/ulna 3 (1) 3 (1) 

 Mandible 1 (0) 1 (0) 

 Rib/chest wall 7 (3) 4 (2) 3 (7) 

Pelvis/acetabulum 18 (7) 17 (8) 1 (2) 

Other upper extremity 2 (1) 2 (1) 

 Other lower extremity 1 (0) 1 (0) 

 Other axial skeleton 2 (1) 2 (1) 

  

Table 4. Clinical and pathologic characteristics by stage at presentation (categorical 

factors). 
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Factor All patients 

Localized 

Disease 

Metastatic 

Disease 

 n (%) n (%) n (%) 

Grade 

   Low 6 (2) 6 (3) 

 Intermediate 1 (0) 1 (0) 

 High 253 (97) 208 (97) 45 (100) 

Good response (patients receiving pre-op 

chemo)    

No 133 (55) 113 (55) 20 (56) 

Yes 108 (45) 92 (45) 16 (44) 

 

Table 4 (continued). Clinical and pathologic characteristics by stage at presentation 

(categorical factors). 
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Relapse-free and overall survival for osteosarcoma patients with localized disease  

Amongst patients with localized disease at diagnosis, there were 122 relapses and 

deaths during the follow-up period. Ninety-three patients are alive without relapse. Table 

5 shows the log-rank test results for clinical characteristics related to relapse-free 

survival. Patients with radiation induced osteosarcoma had inferior RFS than compared to 

patients without radiation induced osteosarcoma (Figure 4, p=0.0050). 
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Factor p-value 

Gender 0.435 

Race 0.828 

Histologic Subtype 0.737 

Histologic Subtype (Osteoblastic) 0.361 

Radiation Induced osteosarcoma 0.0050 

Primary Site 0.192 

Primary Site (femur) 0.951 

Grade (High/Intermediate vs Low) 0.151 

Pre-op Chemo 0.525 

Good response (patients receiving pre-op chemo)* 0.301 

*Landmark analysis method 

 

Table 5. Log-rank test for relapse-free survival amongst patients with localized disease at 

diagnosis. Radiation-induced osteosarcoma was the only clinical or pathologic 

characteristic that was significantly associated with RFS. 
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Figure 4. Relapse-free survival for patients with localized disease by radiation-induced 

subtype. Patients with radiation-induced osteosarcoma demonstrate inferior RFS. 
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Clinical and pathologic patient characteristics associated with RFS were analyzed 

using a univariate Cox model. Radiation induced osteosarcoma was significantly 

associated with poor RFS (HR: 2.85 [1.33-6.12], p=0.007) compared without radiation 

induced osteosarcoma (Table 6). 
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  Univariate analysis 

Factor 

No. of 

deaths 

Total 

n HR (95% CI) 

P-

value 

Age at diagnosis 121 215 1.01 (1.00, 1.02) 0.133 

     

Sex     

Female 40 89 Ref  

Male 65 126 1.16 (0.80, 1.67) 0.435 

Radiation Induced Osteosarcoma   

 

 

No 98 207 Ref  

Yes 7 8 2.85 (1.33, 6.12) 0.007 

Primary Site (femur vs others)   

 

 

Others 48 103 Ref  

Femur 57 112 1.01 (0.71, 1.45) 0.951 

Grade (High/Intermediate vs low)   

 

 

Low 1 6 Ref  

High/ Intermediate 104 209 2.68 (0.66, 10.8) 0.168 

Pre-op Chemo   

 

 

No 2 7 Ref  

Yes 103 208 1.45 (0.46, 4.56) 0.527 

Good response (patients with pre-op 

chemo)*   

 

 

Yes 43 92 Ref  

No 59 113 1.21 (0.84, 1.75) 0.302 

*Landmark analysis method 

 

Table 6. Relapse-free survival analysis for patients with localized disease (univariate Cox 

regression model).  
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Amongst patients with localized osteosarcoma, there were 105 deaths during the 

follow-up period; 110 patients were alive at the time of analysis. The median follow-up 

time was 11.0 years. The estimated overall survival (OS) was 12.0 years (95% CI 7.03-

20.3). Table 7 shows the log-rank test results for clinical characteristics related to overall 

survival. Patients with radiation induced osteosarcoma had inferior OS as compared to 

patients without radiation induced osteosarcoma (Figure 5, p=0.0003). 
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Factor p-value 

Gender 0.615 

Race 0.597 

Histologic Subtype 0.682 

Histologic Subtype (Osteoblastic vs others) 0.726 

Radiation Induced osteosarcoma 0.0003 

Primary Site 0.162 

Primary Site (femur vs others) 0.555 

Grade (High/Intermediate vs Low) 0.119 

Pre-op Chemo 0.574 

Good response (patients with Pre-op chemo)* 0.0958 

*Landmark analysis method 

 

Table 7. Log-rank test for overall survival amongst patients with localized disease at 

diagnosis. Radiation-induced osteosarcoma was the only clinical or pathologic 

characteristic that was significantly associated with OS. Good response (pathologic tumor 

necrosis >90%) showed a trend toward significance. 
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Figure 5. Overall survival for patients with localized disease by radiation-induced 

subtype. Patients with radiation-induced osteosarcoma demonstrate inferior OS. 
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Clinical and pathologic patient characteristics associated with OS amongst 

patients with localized osteosarcoma were analyzed using a univariate and multivariate 

Cox models. Higher age at diagnosis (HR 1.02 [1.00-1.03], p=0.0063) and radiation-

associated osteosarcoma (HR 3.76 [1.74-8.12], p=0.001) were significantly associated 

with inferior overall survival in a univariate model; these factors remained significant in 

multivariate analysis (all p < 0.03, Table 8). Patients with poor response to pre-operative 

chemotherapy showed a trend toward inferior overall survival in a landmark analysis (HR 

1.4 [0.94-2.07], p=0.097). 

  

  



 

 

39 

 

 

   Univariate analysis  Multivariate analysis 

Factor 

No. of 

deaths 

Tot

al HR (95% CI) 

P-

value 

 

HR (95% CI) 

P-

value 

Age at diagnosis 

(years) 105 215 

1.02 (1.00, 

1.03) 

0.006

3 

 1.01 (1.00, 

1.03) 0.0294 

        

Sex        

Female 40 89 Ref 

 

   

Male 65 126 

1.11 (0.75, 

1.64) 0.615 

 

  

Radiation 

Induced 

osteosarcoma   

  

 

  

No 98 207 Ref 

 

 Ref  

Yes 7 8 

3.76 (1.74, 

8.12) 0.001 

 3.08 (1.38, 

6.86) 0.0061 

Primary Site 

(femur vs others)   

  

 

  

Others 48 103 Ref 

 

   

Femur 57 112 

1.10 (0.76, 

1.65) 0.556 

 

  

Grade 

(High/Intermediat

e vs low)   

  

 

  

Low 1 6 Ref 

 

   

High/ 

Intermediate 104 209 

4.23 (0.59, 

30.4) 0.152 

 

  

Pre-op Chemo   

  

   

No 2 7 Ref 

 

   

Yes 103 208 

1.49 (0.37, 

6.05) 0.577 

 

  

Good response 

(patients with 

pre-op chemo)*   

  

 

  

Yes 43 92 Ref 

 

   

No 59 113 

1.40 (0.94, 

2.07) 0.097 

 

  

*Landmark analysis method 

 

Table 8. Overall survival analysis for patients with localized disease (univariate and 

multivariate Cox regression models).  
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Progression-free and overall survival for patients with metastatic osteosarcoma 

Patients with primary metastatic disease at the time of diagnosis have inferior 

outcomes. Because this is a well-established poor prognostic group, survival outcomes 

and biomarkers for patients with metastasis at diagnosis were analyzed separately from 

patients with localized osteosarcoma.   

Among the 45 patients with primary metastatic disease, 32 (71%) died during the 

follow-up period, with a median follow up of 10.6 years. The median overall survival 

was 2.47 years (95%CI 1.70-3.51). Patients with poor response to pre-operative 

chemotherapy had inferior progression-free survival (HR 2.4 [1.11-5.22]; table 9). 

Patients who did not receive preoperative chemotherapy also had inferior PFS (2 patients, 

HR 6.14 [1.34- 28.1]). Failure to receive preoperative chemotherapy was associated with 

inferior OS (log-rank p=0.0045; Cox HR 6.82 [1.47-31.7]). This likely represents 

patients who were too critically ill at the time of presentation to receive chemotherapy 

and/or surgery. No other clinical characteristics analyzed were significantly associated 

with overall survival amongst patients with primary metastatic disease (Tables 10 and 

11). 
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Factor 

No. of 

deaths/ 

progression 

Total 

n 

Hazard ratio (95% 

CI) 

P-

value 

Age at diagnosis   1.01 (0.99, 1.03) 0.380 

     

sex     

Female 14 18 Ref 

 Male 22 27 1.02 (0.52, 2.00) 0.945 

Histologic Subtype (Osteoblastic)   

  Others 20 26 Ref 

 Osteoblastic 16 19 1.05 (0.54, 2.03) 0.886 

Primary site (Femur)   

  Others 12 17 Ref 

 Femur 24 28 1.42 (0.71, 2.85) 0.323 

Pre-op Chemo     

Yes 29 38 Ref  

No 2 2 6.14 (1.34, 28.1) 0.019 

Good Response (with Pre-op 

Chemo)*   

  Yes 10 16 Ref 

 No 19 22 2.40 (1.11, 5.22) 0.027 

*Landmark analysis method 

 

 

Table 9. Progression-free survival analysis for patients with primary metastatic disease 

(univariate Cox regression model).   
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Factor p-value 

Gender 0.595 

Race 0.551 

Histologic Subtype 0.275 

Histologic Subtype (Osteoblastic vs others) 0.669 

Primary Site 0.0448 

Primary Site (femur vs others) 0.444 

Pre-op Chemo 0.0045 

Good response (patients with pre-op Chemo)* 0.554 

* *Landmark analysis method 

 

 

Table 10. Log-rank test for overall survival amongst patients with metastatic disease at 

diagnosis. Failure to receive preoperative chemotherapy was the only factor associated 

with OS. Of note, only 2 patients did not receive preoperative chemotherapy. 
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Factor No. of deaths Total n HR (95% CI) p-value 

Age at diagnosis 32 45 

1.01 (0.99, 

1.03) 0.496 

     

Sex     

Male 19 27 Ref 

 

Female 13 18 

1.21 (0.60, 

2.46) 0.596 

Histologic Subtype 

(Osteoblastic)   

  Others 17 26 Ref 

 

Osteoblastic 15 19 

1.17 (0.57, 

2.37) 0.669 

Primary site (Femur)   

  Others 11 17 Ref 

 

Femur 21 28 

1.33 (0.64, 

2.77) 0.445 

Pre-op Chemo     

Yes 25 38 Ref  

No 2 2 

6.82 (1.47, 

31.7) 0.014 

Good Response (with Pre-

op Chemo)*   

  Yes 10 16 Ref 

 

No 14 21 

1.28 (0.57, 

2.89) 0.555 

*Landmark analysis method 

 

Table 11. Overall survival analysis for patients with primary metastatic disease 

(univariate Cox regression model).  
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Expression of HSP27 and LC3 in Osteosarcoma Patient Samples 

The osteosarcoma tissue microarray included 394 osteosarcoma tumor specimens 

consisting of 116 pre-treatment biopsies, 184 primary resection specimens, and 94 

metastatic tumor specimens.  Metastatic specimens included a combination of 

synchronous metastasis (26, 28%) and metachronous metastasis (68, 72%). Due to the 

fragility of samples following the decalcification and staining process, not all sample 

were evaluable for all biomarkers analyzed.  

 

LC3B expression in osteosarcoma patient samples 

The percentage of osteosarcoma cells with clearly visible cytoplasmic LC3B+ 

puncta labeling were quantified, with ≥10% considered positive based upon established 

cutoffs in other tumor types.56 LC3B+ expression was significantly higher in resection 

specimens and metastasis as compared to pre-treatment biopsies (50% and 67% 

respectively vs 34%, p=0.004). Examples of LC3B labeling are shown in Figure 6. The 

intensity of cytoplasmic LC3B staining was heterogeneous. A higher proportion of pre-

treatment biopsy specimens were graded as 0 or negative (66%) as compared to resection 

(47%) or metastasis (30%, Table 12). 
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Figure 6. Examples of LC3B labeling in osteosarcoma tumor specimens and normal 

lung. Punctate labeling (A) as well as granular cytoplasmic labeling (B) in osteosarcoma 

tumor cells were considered positive. In normal human lung tissue, pneumocytes are 

negative for LC3B whereas macrophages stain positive (C). 

 

LC3B Expression in Patient Samples 

Factor All Biopsy Resection Metastatic 

  n (%) n (%) n (%) n (%) 

LC3B intensity 

    None 122 (47) 38 (66) 64 (47) 20 (30) 

Weak 82 (31) 7 (12) 43 (31) 32 (48) 

Moderate 54 (21) 11 (19) 29 (21) 14 (21) 

Strong 3 (1) 2 (3) 1 (1) 

 LC3B percent (10% as 

cutoff) 

    <10% 128 (49) 38 (66) 68 (50) 22 (33) 

≥10% 133 (51) 20 (34) 69 (50) 44 (67) 

 

Table 12. Punctate LC3B expression in osteosarcoma patient samples by IHC. Samples 

scored by intensity and percent of tumor cells expressing LC3B+ puncta.  

  

A B C
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Paired pre-treatment biopsy and post-treatment resection specimens were 

available for LC3B puncta evaluation in 18 patients, including 9 LCB+ at biopsy and 9 

LC3B negative prior to treatment. Five of 9 patients (56%) who were initially negative 

for LC3B puncta were positive for the autophagy marker at the time of resection 

following chemotherapy. Conversely, 8/9 patients (89%) who were positive prior to 

chemotherapy remained positive at resection (Table 13). These findings suggest that the 

presence of LC3B puncta at resection may represent chemotherapy-induced autophagy in 

a subset of patients. Similarly, amongst 6 patients with negative LC3B expression in pre-

treatment samples, 3 subsequently had LC3B+ puncta in metachronous metastatic 

specimens and 3 remained negative. Resection-metastasis pairs were available in 26 

patients. Amongst 13 who were negative for LC3B expression at resection, 9 (69%) 

demonstrated LC3B+ puncta in metachronous metastatic specimens (Table 13). 

Differences in LC3B expression amongst the pairs were not statistically significant, 

however this may be due to the small sample size. 
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LC3B+ (10% cutoff) in paired biopsy-resection specimens 

  Resection   McNemar's test p-value 

Biopsy <10% ≥10% 0.103 

<10% 4 5   

≥10% 1 8   

LC3B+ (10% cutoff) in paired biopsy-metastasis specimens 

  Metastasis   McNemar's test p-value 

Biopsy <10% ≥10% 0.0833 

<10% 3 3   

≥10% 0 2   

LC3B+ (10% cutoff) in paired resection-metastasis specimens 

  Metastasis   McNemar's test p-value 

Resection <10% ≥10% 0.166 

<10% 4 9   

≥10% 4 9   

 

Table 13. LC3B puncta in paired osteosarcoma tumor specimens.  
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HSP27 and pHSP27 expression in osteosarcoma patient samples 

The percent and intensity of HSP27 expression was variable, with some tumor 

having strong diffuse expression in tumor cells and others having no appreciable HSP27 

expression (Figure 7).  

 

 
Figure 7. Representative expression of HSP27 in osteosarcoma tumor specimens. 

Expression was variable, with some tumor having strong, diffuse staining (A) and others 

showing no expression (B). 

The percentage of osteosarcoma cells with HSP27 staining was quantified, with ≥10% 

considered positive. Two-thirds of all tumor specimens analyzed were scored as positive 

for HSP27 expression. The proportion of HSP27+ tumors was higher in pre-treatment 

biopsy (85%) and metastasis specimens (79%) as compared to resection (52%), although 

this was not statistically significant. The intensity of HSP27 staining was variable across 

all groups. There was no significant correlation between HSP27 expression and LC3B 

expression (Spearman correlation 0.006, p=0.945). HSP27 expression is summarized in 

table 14. 

  

A B
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HSP27 Expression in Patient Samples 

Factor All Biopsy Resection Metastatic 

  n (%) n (%) n (%) n (%) 

HSP27 intensity 

    None 41 (16) 9 (16) 28 (21) 4 (6) 

Weak 144 (57) 28 (48) 74 (56) 42 (67) 

Moderate 38 (15) 16 (28) 13 (10) 9 (14) 

Strong 29 (12) 5 (9) 16 (12) 8 (13) 

 
    HSP27 percent (10% as 

cutoff) 

    <10% 85 (34) 9 (15) 63 (48) 13 (21) 

≥10% 168 (66) 50 (85) 68 (52) 50 (79) 

 

Table 14. Heat shock protein 27 (HSP27) expression in osteosarcoma patient samples by 

IHC. Samples scored by intensity and percent of tumor cells expressing HSP27.  
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The percentage and intensity of osteosarcoma cells with phosphorylated HSP27 

(pHSP27 S78/S82) staining was quantified. The expression of pHSP27 was very limited 

(representative staining shown in figure 8) at all time points, with only 16% of all 

specimens tested showing any staining and 8% considered positive (pHSP27 >10%; table 

15). This likely reflects a degradation of phosphoproteins in the acquisition and 

processing (decalcification) of bone tumor specimens, rather than a true lack of pHSP27.  

Due to the limited labeling, no significant inferences could be made regarding the 

prognostic significance of pHSP27 or its correlation with other biomarkers of interest.  
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Figure 8. Representative expression of pHSP27 in osteosarcoma tumor specimens.  

 

pHSP27 Expression in Patient Samples 

Factor All Biopsy Resection Metastatic 

  n (%) n (%) n (%) n (%) 

pHSP27 intensity 

    None 241 (84) 44 (77) 133 (88) 64 (82) 

Weak 39 (14) 11 (19) 16 (11) 12 (15) 

Moderate 4 (1) 2 (4) 2 (1) 

 Strong 3 (1) 

 

1 (1) 2 (3) 

pHSP27 percent (10% as 

cutoff) 

    <10% 264 (92) 44 (77) 143 (94) 77 (99) 

≥10% 23 (8) 13 (23) 9 (6) 1 (1) 

 

Table 15. Phosphorylated heat shock protein 27 (pHSP27 S78/S82) expression in 

osteosarcoma patient samples by IHC. Samples scored by intensity and percent of tumor 

cells expressing HSP27.  
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Prognostic Significance of HSP27 Expression and LC3B Puncta in Osteosarcoma 

Patients  

 

LC3B as a prognostic biomarker in localized osteosarcoma 

The presence of LC3B puncta labeling in pre-treatment specimens was not 

associated with relapse-free or overall survival. Localized osteosarcoma patients with 

LC3B puncta staining present at resection (which was found in 50% of cases) had 

superior overall survival (Figure 9, p=0.031).  
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Figure 9. Overall survival for localized osteosarcoma patients stratified according to 

cytoplasmic LC3B puncta expression at resection (>10% positive, <10% negative) 
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The lack of LCB puncta labeling at resection was associated with inferior relapse-

free survival in univariate analysis (HR 1.81 [1.10-2.98], p=0.019) but only maintained 

borderline significance when adjusted for radiation-induced osteosarcoma in the 

multivariate model (HR 1.65 [0.99-2.75], p=0.053; table 16). This lack of LC3B at 

resection following chemotherapy was significantly associated with inferior overall 

survival in both the univariate (HR 1.78 [1.05-3.03], p=0.034) and multivariate analysis 

(HR 1.75 [1.01-3.04], p=0.045) when adjusted for age and radiation-induced 

osteosarcoma (Table 17). A median cutpoint was also explored and found to yield 

prognostic significance: patients with LC3B ≤ median at resection had inferior relapse 

free (lor rank p=0.004) and overall survival (log rank p=0.0068). Taken together, our 

findings suggest that presence of LC3B puncta can be considered an independent 

prognostic biomarker of improved survival following preoperative chemotherapy.   
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   Univariate  Multivariate* 

Factor 

No. of 

deaths 

Tota

l n HR (95% CI) P-value 

 

HR (95% CI) P-value 

HSP27 intensity   

  

   

None 10 22 Ref 

 

 Ref  

Weak, moderate, strong 52 81 1.76 (0.89, 3.49) 0.107  1.68 (0.84, 3.33) 0.141 

HSP27 intensity        

None, weak 43 78 Ref   Ref  

Moderate, strong 19 25 1.70 (0.98, 2.96) 0.0598  1.86 (1.06, 3.26) 0.0307 

HSP27 percent (median)   

  

   

≤ median 28 55 Ref 

 

 Ref  

> median 34 48 1.74 (1.04, 2.91) 0.0336  1.57 (0.93, 2.66) 0.0912 

HSP27 percent (10%)   

  

   

<10% 22 47 Ref 

 

 Ref  

≥10% 40 56 1.92 (1.13, 3.28) 0.016  1.76 (1.03, 3.03) 0.0398 

pHSP27 intensity   

  

   

None 63 103 Ref 

 

 Ref  

Weak, moderate, strong 11 17 1.21 (0.63, 2.29) 0.568  1.28 (0.67, 2.44) 0.456 

pHSP27 percent (median)   

  

   

≤ median 63 103 Ref 

 

 Ref  

> median 11 17 1.21 (0.63, 2.29) 0.568  1.28 (0.67, 2.44) 0.456 

pHSP27 percent (10%)   

  

   

<10% 68 111 Ref 

 

 Ref  

≥10% 6 9 1.25 (0.54, 2.89) 0.6  1.30 (0.56, 3.01) 0.538 

LC3 intensity   

  

   

Weak, moderate, strong 28 56 Ref 

 

 Ref  

None 38 51 1.82 (1.11, 2.97) 0.0174  1.65 (1.00, 2.73) 0.0525 

LC3 intensity        

Moderate, strong 13 27 Ref   Ref  

None, weak 53 80 1.32 (0.72, 2.43) 0.374  1.24 (0.67, 2.29) 0.488 

LC3 percent (median)   

  

   

> median 22 48 Ref 

 

 Ref  

≤ median 44 59 2.09 (1.25, 3.50) 0.0051  1.93 (1.14, 3.25) 0.0142 

LC3 percent (10%)   

  

   

≥10% 26 53 Ref 

 

 Ref  

<10% 40 54 1.81 (1.10, 2.98) 0.0192  1.65 (0.99, 2.75) 0.0527 

*Adjusting for radiation induced osteosarcoma 

 

Table 16. Univariate and multivariate analyses (Cox regression) for biomarkers at 

resection associated with RFS.  
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   Univariate  Multivariate* 

Factor 

No. of 

deaths Total n HR (95% CI) 

P-

value  HR (95% CI) 

P-

value 

HSP27 intensity   

  

   

None 7 22 Ref 

 

 Ref  

Weak, moderate, 

strong 46 81 2.11 (0.95, 4.73) 0.0683  2.13 (0.95, 4.78) 0.0661 

HSP27 intensity        

None, weak 35 78 Ref   Ref  

Moderate, strong 18 25 2.02 (1.14, 3.59) 0.0166  2.27 (1.26, 4.11) 0.0065 

HSP27 percent 

(median)   

  

   

≤ median 23 55 Ref 

 

 Ref  

> median 30 48 1.72 (0.99, 2.98) 0.0541  1.53 (0.87, 2.68) 0.137 

HSP27 percent (10%)   

  

   

<10% 18 47 Ref 

 

 Ref  

≥10% 35 56 2.00 (1.12, 3.56) 0.0197  1.85 (1.03, 3.33) 0.0395 

pHSP27 intensity   

  

   

None 54 103 Ref 

 

 Ref  

Weak, moderate, 

strong 10 17 1.33 (0.67, 2.61) 0.413  1.32 (0.67, 2.63) 0.423 

pHSP27 percent 

(median)   

  

   

≤ median 54 103 Ref 

 

 Ref  

> median 10 17 1.33 (0.67, 2.61) 0.413  1.32 (0.67, 2.63) 0.423 

pHSP27 percent (10%)   

  

   

<10% 59 111 Ref 

 

 Ref  

≥10% 5 9 1.09 (0.44, 2.71) 0.860  1.14 (0.46, 2.85) 0.778 

LC3 intensity   

  

   

Weak, moderate, 

strong 24 56 Ref 

 

 Ref  

None 34 51 1.78 (1.05, 3.00) 0.0315  1.69 (0.99, 2.90) 0.0556 

LC3 intensity        

Moderate, strong 11 27 Ref   Ref  

None, weak 47 80 1.34 (0.69, 2.60) 0.382  1.34 (0.69, 2.61) 0.395 

LC3 percent (median)   

  

   

> median 18 48 Ref 

 

 Ref  

≤ median 40 59 2.12 (1.21, 3.70) 0.0082  2.15 (1.21, 3.81) 0.0089 

LC3 percent (10%)   

  

   

≥10% 22 53 Ref 

 

 Ref  

<10% 36 54 1.78 (1.05, 3.03) 0.0337  1.75 (1.01, 3.04) 0.0448 

*Adjusting for age and radiation induced osteosarcoma 

 

Table 17. Univariate and multivariate analyses (Cox regression) for biomarkers at 

resection associated with OS.  
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HSP27 as a prognostic biomarker in localized osteosarcoma 

The majority of osteosarcoma specimens were scored as HSP27+ in pre-treatment 

samples. While HSP27+ in pre-treatment samples was not significant in univariate 

analysis for relapse free survival or overall survival, it was associated with inferior 

relapse-free survival (HR: 12.5 [1.34-116], p=0.027) and overall survival (HR: 26.7 

[1.47-484], p=0.0263) in multivariate analysis (tables 18 and 19, respectively). At 

resection, patients with HSP27+ osteosarcoma had inferior overall survival (Figure 10, 

p=0.017). HSP27+ in resection specimens was associated with inferior relapse-free 

survival in both the univariate (HR 1.92 [1.13-3.28], p=0.016) and multivariate models 

(HR 1.76 [1.03-3.03], p=0.039; table 16) as well as worse overall survival (univariate HR 

2.00 [1.12-3.56], p=0.0197, multivariate HR: 1.85 [1.03-3.33], p=0.039; table 17). A 

median cutpoint and stratification by intensity (none/weak vs. moderate/strong) was also 

explored and showed a similar trend with high expression of HSP27 associated with 

inferior outcomes. However neither measure was statistically significant in both the 

univariate and multivariate models for both RFS and OS (at resection summarized in 

tables 16 and 17; pre-treatment specimens in tables 18 and 19).  

Phosphorylated HSP27 was evaluated as a potential biomarker based upon the 

initial hypothesis. There were no significant associations between pHSP27 expression 

based upon percent staining, median cutoff, or intensity prior to treatment or at resection 

in relation to either RFS or OS. Further, there was no correlation between pHSP27 

positivity (any criteria) and total HSP27 nor LC3B.   
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   Univariate  Multivariate* 

Factor 

No. of 

deaths 

Total 

n HR (95% CI) P-value  HR (95% CI) P-value 

HSP27 intensity        

None 2 8 Ref   Ref  

Weak, moderate, 

strong 18 41 2.41 (0.55, 10.6) 0.243  11.5 (1.27, 105) 0.0299 

HSP27 intensity        

None, weak 10 30 Ref   Ref  

Moderate, strong 10 19 2.01 (0.84, 4.85) 0.119  2.60 (1.01, 6.73) 0.0487 

HSP27 percent 

(median)        

≤ median 11 27 Ref   Ref  

> median 10 23 1.12 (0.47, 2.64) 0.798  1.35 (0.55, 3.32) 0.512 

HSP27 percent (10%)        

<10% 2 8 Ref   Ref  

≥10% 19 42 2.48 (0.57, 10.8) 0.226  12.5 (1.34, 116) 0.0265 

pHSP27 intensity        

Weak, moderate, 

strong 4 12 Ref   Ref  

None 15 36 1.29 (0.43, 3.88) 0.655  1.16 (0.38, 3.53) 0.801 

pHSP27 percent 

(median)        

> median 4 12 Ref   Ref  

≤ median 15 36 1.29 (0.43, 3.88) 0.655  1.16 (0.38, 3.53) 0.801 

pHSP27 percent (10%)        

≥10% 4 12 Ref   Ref  

<10% 15 36 1.29 (0.43, 3.88) 0.655  1.16 (0.38, 3.53) 0.801 

LC3 intensity        

Weak, moderate, 

strong 4 16 Ref   Ref  

None 13 34 1.62 (0.53, 4.99) 0.399  1.50 (0.48, 4.67) 0.483 

LC3 intensity        

Moderate, strong 2 10 Ref   Ref  

None, weak 15 40 2.03 (0.46, 8.89) 0.35  1.90 (0.43, 8.39) 0.398 

LC3 percent (median)        

> median 4 16 Ref   Ref  

≤ median 13 34 1.62 (0.53, 4.99) 0.399  1.50 (0.48, 4.67) 0.483 

LC3 percent (10%)        

≥10% 4 16 Ref   Ref  

<10% 13 34 1.62 (0.53, 4.99) 0.399  1.50 (0.48, 4.67) 0.483 

*Adjusting for radiation induced osteosarcoma 

Table 18. Univariate and multivariate analyses (Cox regression) for biomarkers assessed 

in pre-treatment biopsy specimens associated with RFS.   
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   Univariate  Multivariate* 

Factor 

No. of 

deaths 

Total 

n HR (95% CI) P-value  HR (95% CI) 

P-

value 

HSP27 intensity   

  

   

None 1 8 Ref 

 

 Ref  

Weak, moderate, strong 15 41 3.68 (0.49, 28.0) 0.207  23.1 (1.34, 397) 0.0306 

HSP27 intensity        

None, weak 8 30 Ref   Ref  

Moderate, strong 8 19 1.90 (0.71, 5.09) 0.201  2.39 (0.84, 7.10) 0.117 

HSP27 percent (median 

as cutoff)   

  

   

≤ median 8 27 Ref 

 

 Ref  

> median 9 23 1.52 (0.59, 3.97) 0.388  1.85 (0.68, 5.01) 0.227 

HSP27 percent (10%)   

  

   

<10% 1 8 Ref 

 

 Ref  

≥10% 16 42 3.78 (0.50, 28.6) 0.198  26.7 (1.47, 484) 0.0263 

pHSP27 intensity        

Weak, moderate, strong 3 12 Ref   Ref  

None 11 36 1.18 (0.33, 4.27) 0.796  1.20 (0.32, 4.49) 0.787 

pHSP27 percent 

(median as cutoff)        

> median 3 12 Ref   Ref  

≤ median 11 36 1.18 (0.33, 4.27) 0.796  1.20 (0.32, 4.49) 0.787 

pHSP27 percent (10%)        

≥10% 3 12 Ref   Ref  

<10% 11 36 1.18 (0.33, 4.27) 0.796  1.20 (0.32, 4.49) 0.787 

LC3 intensity   

  

   

Weak, moderate, strong 3 16 Ref   Ref  

None 9 34 1.38 (0.37, 5.12) 0.631  1.40 (0.34, 5.82) 0.646 

LC3 intensity        

Moderate, strong 2 10 Ref   Ref  

None, weak 10 40 1.10 (0.24, 5.06) 0.905  1.02 (0.21, 4.84) 0.983 

LC3 percent (median)   

  

   

> median 3 16 Ref   Ref  

≤ median 9 34 1.38 (0.37, 5.12) 0.631  1.40 (0.34, 5.82) 0.646 

LC3 percent (10%)   

  

   

≥10% 3 16 Ref 

 

 Ref  

<10% 9 34 1.38 (0.37, 5.12) 0.631  1.40 (0.34, 5.82) 0.646 

*Adjusting for age and radiation induced osteosarcoma 

 

Table 19. Univariate and multivariate analyses (Cox regression) for biomarkers assessed 

in pre-treatment biopsy specimens associated with OS.  
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Figure 10. Overall survival for localized osteosarcoma patients stratified according to 

HSP27 expression at resection (>10% positive, <10% negative) 
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Combined analysis of LC3B puncta and HSP27 was evaluated for further risk 

stratification amongst patients with localized disease. In pre-treatment biopsy samples 

from 32 evaluable patients, the combination of HSP27+/LC3B- was associated with a 

trend towards inferior survival (log rank p=0.087).  Ninety-two patients with localized 

disease had resection specimens with HSP27 and LC3B biomarker data available for 

analysis. Patients with HSP27-/LC3B+ tumors had significantly improved overall 

survival as compared to all others (p=0.012, Figure 11). This was stratified into 4 groups 

with HSP27-/LC3B+ having favorable outcomes, HSP27+/LC3B+ or HSP27-/LC3B- 

with intermediate risk, and HSP27+/LC3B- having the worst overall survival (p=0.018, 

Figure 12). 
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Figure 11. Overall survival for localized osteosarcoma patients combined biomarker 

analysis at resection, HSP27-/LC3B+ vs all others. HSP27-/LC3B+ patients have 

significantly improved OS as compared to all others. 
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Figure 12. Overall survival for localized osteosarcoma patients stratified by combined 

biomarker analysis at resection yields 3 risk groups: good risk (HSP27-/LC3B+), 

intermediate risk (HSP27+/LC3B+ or HSP27-/LC3B-), or poor risk (HSP27+/LC3B-). 
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Pathologic treatment response assessed by percent tumor necrosis following 

neoadjuvant chemotherapy is the most well established prognostic marker in patients 

with localized osteosarcoma. Neither LC3B percentage nor HSP27 percentage expression 

in pre-treatment specimens correlated with percent tumor necrosis following neoadjuvant 

chemotherapy (Spearman correlation -0.12, p=0.384 and -0.067, p=0.655 respectively). 

Further, there was no association between LC3B+ puncta in pre-treatment samples and a 

good pathologic response to chemotherapy (p=0.391) nor between HSP27+ and good 

pathologic response (p=1.00, Table 20). Additionally, no significant association was seen 

between either marker at resection and a good response to therapy (data not shown). In a 

subset of localized OS patients with poor response to therapy (tumor necrosis <90%), the 

lack of LC3B puncta was associated with a trend toward inferior overall survival (HR: 

1.87 [0.96-3.64], p=0.0665; Figure 13).  
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 Factor 

Poor  

response 

Good 

response  

Poor 

response 

Good 

response P-value 

 

n (Column 

%) 

n (Column 

%)  

n (row 

%) 

n (row 

%)  

HSP27 intensity 

  

   1a 

None 3 (14) 4 (13)  3 (43) 4 (57) 

 Weak, moderate, strong 19 (86) 26 (87)  19 (42) 26 (58) 

 HSP27 intensity      0.756b 

None 13 (59) 19 (63)  13 (41) 19 (59)  

Weak, moderate, strong 9 (41) 11 (37)  9 (45) 11 (55)  

HSP27 percent (median) 

  

   0.758b 

≤ median 13 (59) 17 (55)  13 (43) 17 (57) 

 > median 9 (41) 14 (45)  9 (39) 14 (61) 

 HSP27 percent (10%) 

  

   1a 

<10% 3 (14) 4 (13)  3 (43) 4 (57) 

 ≥10% 19 (86) 27 (87)  19 (41) 27 (59) 

 LC3 intensity 

  

   0.391b 

None 16 (62) 21 (72)  16 (43) 21 (57) 

 Weak, moderate, strong 10 (38) 8 (28)  10 (56) 8 (44) 

 LC3 intensity      0.831b 

None, weak 20 (77) 23 (79)  20 (47) 23 (53)  

Moderate, strong 6 (23) 6 (21)  6 (50) 6 (50)  

LC3 percent (median) 

  

   0.391b 

≤ median 16 (62) 21 (72)  16 (43) 21 (57) 

 > median 10 (38) 8 (28)  10 (56) 8 (44) 

 LC3 percent (10%) 

  

   0.391b 

<10% 16 (62) 21 (72)  16 (43) 21 (57)  

≥10% 10 (38) 8 (28)  10 (56) 8 (44) 

 a: Fisher’s exact test, b: Chi-square test 

 

Table 20. Association between pre-treatment biomarker expression and pathologic 

treatment response to preoperative chemotherapy. Good pathologic response is defined as 

≥ 90% tumor necrosis at the time of resection. 
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Figure 13. Overall survival for localized osteosarcoma patients with poor response 

pathologic response to preoperative chemotherapy stratified according LC3B+ at 

resection. Amongst poor responders, presence of LC3B+ puncta is associated with a 

trend towards improved OS. 
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HSP27 and LC3B as prognostic biomarkers in primary metastatic osteosarcoma 

The prognostic significance of HSP27 and LC3B in patients with primary 

metastatic disease was evaluated at the time of diagnosis (pre-treatment) and at resection 

for patients who underwent resection of the primary tumor. Due to the limited number of 

samples, no meaningful inferences could be made based upon pretreatment expression of 

either marker. For example, amongst 9 patients with metastatic osteosarcoma who had 

evaluable pretreatment samples, 8/9 (89%) were positive for HSP27 (>10% expression). 

Similarly, at resection, neither LC3B+ (any criteria) nor HSP27+ (any criteria) was 

associated with either PFS or OS. 
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The Dual Role of Chemotherapy-induced Autophagy in Osteosarcoma Cells 

Several studies have evaluated the presence and significance of chemotherapy-

induced autophagy in osteosarcoma cell lines and to a lesser extent, mouse xenograft 

models.64 The majority of these works have focused on autophagy as a mechanism of 

chemoresistance and therefore explore autophagy inhibition as a means to enhance 

chemotherapeutic efficacy. In prior studies from our lab, we have shown that 

chemotherapy-induced autophagy in osteosarcoma can have a dual role, either 

cytoprotective or cytotoxic, following treatment with 9-nitrocamptothecin (9-NC)72 or 

gemcitabine (GCB).73 Further, in a recent paper from our group, we showed that the post-

treatment expression of pHSP27 correlated with the role of autophagy (and treatment 

effect of autophagy inhibition with hydroxychloroquine [HCQ]) in vitro for both 9-NC 

and GCB.   

Both cisplatin and doxorubicin have previously been shown to induce autophagy 

in multiple osteosarcoma cell lines including MG-63, SaOS-2, and U-2 OS amongst 

others. In these studies, standard MAP chemotherapy resulted in chemoresistance, and 

the inhibition of autophagy (either pharmacologic or by shRNA knockdown of key 

autophagy genes) resulted in enhanced chemosensitivity.65-67, 70, 101 To our knowledge, 

however, no preclinical models or in vitro experiments have shown a cytotoxic role for 

autophagy following doxorubin or cisplatin. Based upon our preliminary data with 9-NC 

and GCB in osteosarcoma cell lines in conjunction with the clinical biomarker data 

suggesting a favorable role for autophagy following standard chemotherapy, we sought to 

determine whether standard chemotherapy can result in either cytototxic or cytoprotective 

autophagy in osteosarcoma cell lines and determine whether pHSP27 expression 
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correlates with the cytoprotective function of chemotherapy-induced autophagy following 

treatment with doxorubicin or cisplatin. 

 

Doxorubicin and cisplatin induce autophagy in LM7 and CCH-OS-D  

Changes in key autophagy proteins were evaluated by Western blot to confirm the 

induction of autophagy following treatment with either doxorubicin or cisplatin 

treatment. LC3 and p62 are common markers of autophagy and autophagic flux. Upon 

induction of autophagy, LC3I is conjugated to phosphatidylenthanolamine to form LC3II 

which is then recruited to the autophagosomal membrane and subsequently degraded in 

the autolysosome. This process results in an increase in the LC3II/LC3I ratio that is 

indicative of activation or induction of autophagy. p62, also known as SQSTM1, is often 

used as a protein marker of autophagic flux. When autophagy is induced, p62 is 

incorporated into the autophagosome and is degraded. Thus the combination of an 

increased LC3II/LC3I ratio and decrement in p62 are suggestive of an increase in 

autophagy, and more specifically autophagic flux.57 Finally, the lysosomal inhibitor 

hydroxychloroquine blocks the late-stages of autophagy resulting in an increase in 

LC3II/LC3I. 

Initially, LM7 cells were treated with either doxorubicin (DOX, 0.2 ug/mL), 

cisplatin (CDDP, 20uM), hydroxychloroquine alone (HCQ, 20 uM), or the combination 

of DOX+HCQ, or CDDP+HCQ and collected at 48 hours post-treatment. For the 

combination, cells were pretreated with HCQ for 20 minutes prior to the addition of 

DOX. Evaluation of LC3 showed a modest increase in the LC3II/LC3I ratio for DOX and 

CDDP alone, and as expected, a significant increase LC3II accumulation in all groups 

containing HCQ (Figure 14).  
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Figure 14. DOXO and CDDP increase LC3II expression in LM7 cells. Osteosarcoma 

cells were grown until 70-80% confluent and treated with HCQ (20 uM), DOXO (0.2 

ug/mL), HCQ+DOXO (pretreatment with HCQ for 20 minutes, followed by DOXO), 

CDDP (20 uM), or HCQ+CDDP (pretreatment with HCQ for 20 minutes, followed by 

CDDP). Cells were collected and lysed using RIPA buffer. Equal amounts of total protein 

were resolved in SDS-PAGE, transferred to a nitrocellulose membrane and blotted using 

specific antibodies for LC3. Beta-actin is used as a loading control. Western blot analysis 

and densitometry show increase in LC3II/LC3I ratio following treatment with DOXO or 

CDDP compared to untreated control consistent with induction of autophagy. LC3II 

accumulation is seen in all HCQ containing conditions, consistent with late-autophagy 

inhibition. p62 is needed to confirm the presence of autophagic flux, but was not able to 

be performed. 
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Next, this experiment was repeated for LM7 cells with DOX alone (0.2ug/mL) for 

48 and 72 hours. Under these conditions, induction of autophagy was not readily apparent 

(qualitative expression of p62 and LC3 shown in figure 15). While the HCQ either alone 

or in combination with DOX resulted in an increase accumulation of LC3II, DOX alone 

did not significantly alter either p62 or LC3 expression in comparison to untreated 

controls.  
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Figure 15. Autophagy induction is not apparent with standard doses of DOXO at 48 and 

72 hours in LM7 cells. Osteosarcoma cells were grown until 70-80% confluent and 

treated with HCQ (20 uM), DOXO (0.2 ug/mL), HCQ+DOXO (pretreatment with HCQ 

for 20 minutes, followed by DOXO). Cells were collected and lysed using RIPA buffer. 

Equal amounts of total protein were resolved in SDS-PAGE, transferred to a 

nitrocellulose membrane and blotted using specific antibodies for LC3 and p62. Beta-

actin is used as a loading control. Qualitative changes in p62 and LC3II/LC3I were not 

consistent with autophagy induction, where a decrement in p62 and increase in LC3II 

would be expected. HCQ containing conditions result in increased LC3II accumulation. 
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Subsequently, LM7 cells were treated with escalating doses of DOX (0.2-0.8 

ug/mL) and collected at 24, 48, and 72 hours post-treatment. LC3I to LC3II conversion 

was assessed; DOX+HCQ was used as a positive control. This demonstrated a relative 

increase in the LC3II/LC3I ratio with increasing doses and longer drug exposure (Figure 

16). 
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Figure 16. Autophagy induction with DOXO increase with dose and time in LM7 cells. 

Osteosarcoma cells were grown until 70-80% confluent and treated with increasing doses 

of DOXO (0.2 – 0.8 ug/mL) for 24, 48, and 72 hours. DOXO+HCQ was used as a 

positive control. Cells were collected and lysed using RIPA buffer. Equal amounts of 

total protein were resolved in SDS-PAGE, transferred to a nitrocellulose membrane and 

blotted using specific antibodies for LC3. Beta-actin is used as a loading control. Western 

blot analysis and densitometry show increase in LC3II/LC3I ratio at later time points and 

higher doses consistent with induction of autophagy. LC3II accumulation is seen in 

DOX+HCQ consistent with late-autophagy inhibition.  
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Our prior experience with LM7 has shown this cell line to be relatively 

chemoresistant to multiple chemotherapies, having higher IC50 concentrations as 

compared to other human and murine osteosarcoma cell lines. We therefore repeated the 

Western blots for LM7 cells treated at higher doses (DOX 1ug/mL and CDDP 40uM) for 

48 and 72 hours. DOX resulted in an increase in the LC3II/I ratio at both 48 and 72 hours 

but without a concomitant decrease in p62 (Figure 17). CDDP treatment resulted in an 

increase in LC3II/I and a decrement in p62 at 48 but not 72 hours (Figure 18). Overall, 

these finding suggest that both DOX and CDDP can induce autophagy in LM7 cells, 

however the optimal dose and time point for maximal autophaguc flux was not clearly 

identified.  
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Figure 17. DOXO induces autophagy in LM7 cells. Osteosarcoma cells were grown until 

70-80% confluent and treated DOXO (1 ug/mL), HCQ (20 uM), HCQ+DOXO 

(pretreatment with HCQ for 20 minutes, followed by DOXO) and collected at 48 and 72 

hours.  Cells were collected and lysed using RIPA buffer. Equal amounts of total protein 

were resolved in SDS-PAGE, transferred to a nitrocellulose membrane and blotted using 

specific antibodies for LC3 and p62. Actin is used as a loading control. Western blot 

analysis and densitometry show increase in LC3II/LC3I ratio with DOX treatment at 48 

and 72 hours compared to untreated controls; DOX did not result in a decrease in p62. 

Note, densitometry values were normalized to untreated cells at each respective time 

point. 
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Figure 18. CDDP induces autophagy in LM7 cells. Osteosarcoma cells were grown until 

70-80% confluent and treated CDDP (40 uM), HCQ (20 uM), HCQ+CDDP (pretreatment 

with HCQ for 20 minutes, followed by CDDP) and collected at 48 and 72 hours.  Cells 

were collected and lysed using RIPA buffer. Equal amounts of total protein were resolved 

in SDS-PAGE, transferred to a nitrocellulose membrane and blotted using specific 

antibodies for LC3 and p62. Actin is used as a loading control. Western blot analysis and 

densitometry show increase in LC3II/LC3I ratio and decrease in p62 with CDDP 

treatment at 48 as compared to untreated controls consistent with induction of autophagy. 

Note, densitometry values were normalized to untreated cells at each respective time 

point. 
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The results for CCH-OS-D cells were more apparent. CCH-OS-D cells were 

treated with either doxorubicin (DOX, 0.2 ug/mL) or cisplatin (CDDP, 20 uM) for 48 

hours. GCB treatment was used as a positive control. All treatment groups resulted in an 

increase in the LC3II/LC3I ratio and decrement in p62 relative to untreated cells 

consistent with induction of autophagy (Figure 19).   
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Figure 19. DOXO and CDDP induce autophagy in CCH-OS-D cells. Osteosarcoma cells 

were grown until confluent and treated with GCB (1 uM), DOXO (0.2 ug/mL), or CDDP 

(20 uM) for 48 hours. Cells were collected and lysed using RIPA buffer. Equal amounts 

of total protein were resolved in SDS-PAGE, transferred to a nitrocellulose membrane 

and blotted using specific antibodies for LC3 and p62. GAPDH is used as a loading 

control. Western blot analysis and densitometry show increase in LC3II/LC3I ratio and 

decrease in p62 following treatment with GCB, DOXO, or CDDP compared to untreated 

controls consistent with induction of autophagy.  
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 While autophagy induction was evidenced by changes in autophagy proteins for 

CCH-OS-D cells treated with either DOX or CDDP, autophagy induction in LM7 cells as 

evaluated by Western blot was only modest at best. Autophagy induction appeared to be 

greater at later time points and higher doses of DOX in LM7, however additional studies 

are needed to validate these findings and optimize conditions for chemotherapy-induced 

autophagy with DOX in LM7 cells. We have previously correlated the findings of 

Western blot analysis for autophagy induction in LM7 and CCH-OS-D cell lines treated 

with GCB and 9-NC by both acridine orange staining for AVOs and electron microscopy. 

These additional assays would allow further evaluation of chemotherapy-induced 

autophagy in both cell lines following DOX or CDDP and may validate the findings on 

Western blot analysis. 

 

Chemotherapy-induced authophagy serves a dual role in osteosarcoma cells treated with 

doxorubicin or cisplatin 

The effect of autophagy inhibition can give insights into the role of 

chemotherapy-induced autophagy. When chemotherapy induces cytoprotective 

autophagy and chemoresistance, the addition of autophagy inhibition to chemotherapy 

results in increased chemosensitivity and decreased cell viability. Conversely, if 

autophagy serves a cytotoxic role and is a mechanism of cell death, blocking autophagy 

in addition to chemotherapy is expected to result in increased cell viability. To determine 

the role of chemotherapy-induced autophagy in LM7 and CCH-OS-D treated with DOX 

and CDDP as either cytoprotective or cytotoxic, viability studies were completed using 

chemotherapy alone or in combination with the autophagy inhibitor HCQ. 
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LM7 and CCH-OS-D cells were treated with HCQ, DOX alone, CDDP alone, or 

combination DOX+HCQ pretreatment or CDDP+HCQ pretreatment and collected at 48 

and 72 hours. Viability was assessed using trypan blue exclusion via ViCell and 

compared to untreated controls at each time point. All conditions were conducted with 3 

replicates and experiments were repeated 3 times. Combining HCQ with either DOX (0.2 

ug/mL) or CDDP (20 uM) resulted in a trend towards decreased cell viability for LM7 

(Figures 20 and 21, respectively). While this effect was not statistically significant, this 

may be in part due to inadequate autophagy induction at the specified dose and time point 

of analysis.  
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Figure 20. Pharmacologic inhibition of autophagy prior to DOX results in a trend 

towards increased chemosensitivity in LM7 cells. Cells were treated with HCQ (20 uM), 

DOX (0.2 ug/mL), or pretreated with HCQ for 20 minutes prior to DOX treatment for 48 

and 72 hours. Cell viability was measured by trypan blue exclusion assay.  
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Figure 21. Pharmacologic inhibition of autophagy prior to CDDP results in a trend 

towards increased chemosensitivity in LM7 cells. Cells were treated with HCQ (20 uM), 

CDDP (20 uM), or pretreated with HCQ for 20 minutes prior to CDDP treatment for 24, 

48, and 72 hours. Cell viability was measured by trypan blue exclusion assay. 
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 Viability studies in LM7 were repeated with higher doses of DOX (1 ug/mL) and 

CDDP (40 uM) alone or in combination with HCQ for 48 and 72 hours. There were no 

significant differences in viability at 48 hours amongst the treatment groups (data not 

shown). However, at 72 hours combining HCQ with DOX resulted in a trend toward 

decreased viability (Figure 22, DOX vs DOX+HCQ p=0.094); combining HCQ with 

CDDP also decreased viability (Figure 23, CDDP vs CDDP+HCQ p=0.022). These 

findings support a cytoprotective role for autophagy in LM7 cells treated with DOX or 

CDDP.  
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Figure 22. Pharmacologic inhibition of autophagy prior to higher doses of DOX results 

in a trend towards increased chemosensitivity in LM7 cells at 72 hours. Cells were 

treated with hydroxychloroquine (CQ), DOX (1ug/mL), or pretreated with CQ for 20 

minutes prior to DOX treatment for 72 hours. Cell viability was measured by trypan blue 

exclusion assay. There was no difference in viability between untreated controls and 

HCQ alone. Pretreatment with HCQ prior to DOX resulted in a trend towards decreased 

viability as compared to DOX alone (p=0.094). 

 

  

U
ntr

ea
te

d 7
2 

hr

C
Q
 7

2h
r

D
ox 

72
hr

C
Q
 +

 D
ox 

72
hr

0

50

100

V
ia

b
il
it

y
 %

LM7 cells



 

 

86 

 

 

 
 

Figure 23. Pharmacologic inhibition of autophagy prior to higher doses of CDDP results 

in increased chemosensitivity in LM7 cells. Cells were treated with hydroxychloroquine 

(CQ), CDDP (40 uM), or pretreated with HCQ for 20 minutes prior to CDDP treatment 

for 72 hours. Cell viability was measured by trypan blue exclusion assay. There was no 

difference in viability between untreated controls and HCQ alone. Pretreatment with 

HCQ prior to CDDP resulted in decreased cell viability as compared to CDDP alone 

(p=0.022). 
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Conversely, the pretreatment with HCQ prior to DOX in CCH-OS-D resulted in 

increased cell viability at 48 and 72 hours (Figure 24). Combining in HCQ with CDDP in 

CCHOSD cells resulted in no change in viability (Figure 25). Notably, treatment with 

CDDP alone resulted in significant cytotoxicity at both 48 and 72 hours in CCH-OS-D 

cells which may have limited the apparent effect adding the autophagy inhibitor HCQ. 
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Figure 24. Pharmacologic inhibition of autophagy prior to DOX results in decreased  

chemosensitivity in CCH-OS-D cells. Cells were treated with HCQ (20 uM), DOX (0.2 

ug/mL), or pretreated with HCQ for 20 minutes prior to DOX treatment for 48 and 72 

hours. Cell viability was measured by trypan blue exclusion assay. Pretreatment with 

HCQ prior to DOX resulted in increased cell viability as compared to DOX alone 

(p<0.001). 

 

 

*** *** 



 

 

89 

 
Figure 25. Pharmacologic inhibition of autophagy prior to CDDP does not alter  

chemosensitivity in CCH-OS-D cells. Cells were treated with HCQ (20 uM), CDDP (20 

uM), or pretreated with HCQ for 20 minutes prior to CDDP treatment for 48 and 72 

hours. Cell viability was measured by trypan blue exclusion assay. CDDP alone 

significantly decreased viability at both 48 and 72 hours; pretreatment with HCQ did not 

change viability at either time point. 
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Taken together, these findings support a dual role for chemotherapy-induced 

autophagy in osteosarcoma. The data with LM7 cells are in line with other studies that 

have firmly established the induction of cytoprotective autophagy with either DOX or 

CDDP in osteosarcoma cell lines. We found that in CCH-OS-D cells autophagy 

inhibition with HCQ prior to DOX treatment resulted in increased cell viability 

suggesting a cytotoxic role for autophagy in this context. This presents a valuable model 

system for evaluating the mechanisms of cytoprotective vs cytotoxic autophagy and for 

exploring the effects of autophagy modulation. Additional studies are needed to confirm 

these findings. While we have shown this duality in other osteosarcoma cell lines and 

with various chemotherapeutic agents, these findings would benefit greatly from 

validation in vivo.  

 

Post-treatment phosphorylated HSP27 expression correlates with the role of autophagy 

and effect of autophagy inhibition in osteosarcoma cells  

Previously, we identified that treatment of LM7 and CCH-OS-D cells with GCB 

resulted in opposing effects of autophagy. A human phosphokinase array was used to 

identify differentially expressed proteins and phosphoproteins that could serve as 

potential biomarkers and to gain mechanistic insights into the opposing roles of 

chemotherapy-induced autophagy. Post-treatment expression of pHSP27 correlated with 

the role of autophagy and effect of autophagy inhibition independent of cell line, species 

of origin (murine or human osteosarcoma), or chemotherapeutic agent. An increase in 

pHSP27 (but not total HSP27) following chemotherapy correlated with a cytoprotective 

role for autophagy and therefore was associated with a benefit to adding HCQ to 

chemotherapy. Decreased expression of pHSP27 following treatment correlated with 
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cytotoxic autophagy and alternate cell death. In this setting, the addition of HCQ was 

associated with increased cell viability. These findings may have important biomarker 

implications for the treatment of patients with osteosarcoma with autophagy inhibitors. 

We therefore sought to validate these findings in osteosarcoma cells following treatment 

with standard chemotherapy, DOX and CDDP. 

LM7 and CCHOSD cells were treated with DOX or CDDP for 48 hours; 

untreated cells were used as a control. Phosphoprotein expression was determined using 

the human phosphokinase antibody array kit (R&D Systems) and analyzed by 

densitometry. Multiple phosphoproteins demonstrated changes in expression following 

treatment with chemotherapy (data not shown).  Specifically, pHSP27 (s78/82) was 

decreased in CCHOSD cells following DOX or CDDP and increased in LM7 with both 

agents (Figure 26). In comparison, heat shock protein 60 (HSP60) was increased with 

DOXO in both cells lines and relatively unchanged following CDDP treatment.  
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Figure 26. Post-treatment expression of phosphorylated HSP27 varies by osteosarcoma 

cell line. LM7 and CCH-OS-D cells were treated with DOX (0.2ug/mL) or CDDP (20 

uM) for 48 hours. Proteins were detected using a human phosphokinase antibody array 

kit (R&D Systems). DOX and CDDP resulted in increased expression of pHSP27 (red 

boxes, left; relative densitometry, right) in LM7 cells as compared to untreated controls. 

Conversely, pHSP27 expression was decreased in CCH-OS-D treated with DOX or 

CDDP.  HSP60 expression is shown for comparison. Additional 

proteins/phosphoproteins not shown. 
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 These findings are consistent with prior work from our lab, demonstrating 

induction of pHSP27 following treatment correlated with a cytprotective role of 

autophagy in osteosarcoma. However, the limited number of replicates and 

semiquantitative approach did not allow for evaluating the statistical significance of these 

findings. Functional proteomic profiling by reverse phase protein lysate array is currently 

underway for both cell lines treated with DOX, CDDP, and GCB to validate these 

findings. This platform includes a panel of >290 proteins and phosphoproteins including 

HSP72, pHSP27, HMGB1, as well as other key autophagy-related and apoptotic pathway 

proteins. These studies will allow for further exploration of specific pathways associated 

with cytotoxic vs cytoprotective autophagy in osteosarcoma. 

 

Summary of in vitro Studies 

Both doxorubicin and cisplatin are able to induce autophagy in LM7 and CCH-

OS-D cell lines, however the dose and time point for maximal chemotherapy-induced 

autophagy or increased autophagic flux may vary depending on the cell line or 

chemotherapeutic agent used. Further, autophagy inhibition can result in either increased 

chemosensitivity and decreased viability (in the case of doxorubicin or cisplatin in LM7) 

or alternatively, can reduce chemosensitivity and increase viability (for doxorubicin in 

CCH-OS-D). These findings imply a dual role for chemotherapy-induced autophagy in 

osteosarcoma, either as a cytoprotective mechanism promoting cell survival or cytotoxic 

leading to cell death. Finally, we demonstrated that the post-treatment expression of 

pHSP27 correlated with the role of autophagy and effect of autophagy inhibition. In LM7 

cells, doxorubicin and cisplatin result in increased expression of pHSP27 and induction 
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of cytoprotective autophagy. In CCH-OS-D where autophagy appears to be cytotoxic, 

pHSP27 expression decreases following doxorubicin exposure. These findings are 

summarized in Table 21.  

 

 
 

Table 21. Summary of in vitro studies.    

LM7 CCHOSD

Doxorubicin Cisplatin Doxorubicin Cisplatin

Autophagy Varying degrees of autophagy induction in both cell lines with both agents

Effect of autophagy 

inhibition

Decreased viability Decreased viability Increased viability No change in 

viability

Post-treatment 

pHSP27 expression

Increased Increased Decrease Decrease

Proposed Role of 

Autophagy

Cell survival Cell survival Cell death No effect
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IV. Discussion 

The paradoxical role of autophagy in cancer has been well described, however the 

key determinants of autophagy as either a mechanism of chemoresistance or promoting 

cancer cell death have not been defined. Defining the role of autophagy in a specific 

context and identifying potential biomarkers that could therefore predict benefit (or 

potentially harm) for combining autophagy inhibitors with cytotoxic chemotherapy is 

needed. In this project, we sought to understand the role and prognostic significance of 

chemotherapy-induced autophagy in osteosarcoma patients treated with standard MAP 

chemotherapy as well as in osteosarcoma cell lines and to correlate these findings with 

expression of HSP27/pHSP27.  

First, we show that both cytoplasmic LC3B puncta and HSP27 expression are 

relevant prognostic biomarkers in patients with localized osteosarcoma. Patients that lack 

LC3B+ puncta (<10% of cells) at resection following preoperative chemotherapy have a 

poor prognosis, as did patients who expressed HSP27 (>10% of cells). By combining 

these 2 markers at resection, we were able to identify a favorable risk group (HSP27-

/LC3B+) and those with particularly poor risk (HSP27+/LC3B-) with standard therapy. 

These markers may be valuable in risk stratification and support the development of 

clinical trials targeting either HSP27 or modulating autophagy in osteosarcoma.   

Although several studies have examined the role of chemotherapy-induced 

autophagy in osteosarcoma cell lines, to our knowledge, the presence and prognostic 

significance of autophagy markers such as LC3B has not been previously reported in 

osteosarcoma patients. While the majority of preclinical data suggest that chemotherapy-
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induced autophagy is a mechanism of chemoresistance to standard MAP chemotherapy in 

osteosarcoma,65, 70, 101 and the expression LC3B has been shown to be a poor prognostic 

marker in multiple other cancer types,102 we found the opposite. The presence of LC3B 

puncta following chemotherapy was a positive prognostic marker in osteosarcoma. One 

large study of >1600 breast cancer patients similarly showed the presence of cytoplasmic 

LC3B to be a favorable prognostic marker following adjuvant chemotherapy.56 Using a 

similar methodology to evaluate LC3B puncta in tumor cells and the same >10% cutoff, 

Laoire et al demonstrated that the combined positivity to LC3B+ puncta and presence of 

nuclear HMGB1 was associated with prolonged metastasis-free and breast cancer specific 

survival. Additionally, the authors showed that LC3B+ puncta correlated with a reduction 

in SQSTM1/p62, suggesting that a high percentage of LC3B+ puncta reflects increased 

autophagic flux.  

In our study, a limited number of patients demonstrated LC3B puncta on pre-

treatment specimens suggestive of basal autophagy in a subset of primary osteosarcoma. 

However, this finding was not associated with relapse-free survival, overall survival, or 

pathologic treatment response. Overall, the proportion of osteosarcoma with LC3B+ 

puncta was significantly higher in post-treatment specimens, though the majority of these 

specimens were not paired. In the nine patients with paired pre-/post-chemotherapy 

specimens who were initially negative for cytoplasmic LC3Bpuncta, >50% were positive 

following chemotherapy. Taken together, these findings suggest that standard 

chemotherapy can induce autophagy in a subset of patients with osteosarcoma and that 

chemotherapy-induced autophagy may be favorable in the primary treatment of 

osteosarcoma. The presence of LC3B+ either prior to treatment or at resection did not 
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correlate with percent tumor necrosis nor was it significantly associated with a “good” 

pathologic response, suggesting that LC3B+ is an independent prognostic biomarker 

rather than a surrogate marker for pathologic treatment response. Even amongst the 

subset of poor responders, patients lacking LC3B following chemotherapy had a trend 

towards inferior overall survival. 

The association of post-treatment LC3B puncta and favorable outcomes suggests 

that chemotherapy-induced autophagy following MAP may serve as mechanism of 

alternate cell death as opposed to chemoresistance in primary osteosarcoma. Rather than 

combining chemotherapy with autophagy inhibitors,2, 66, 67, 69, 71 strategies that induce 

autophagy such as mTOR inhibition103, 104 or other agents58 that are currently being 

explored in osteosarcoma may prove beneficial when added to primary therapy. The 

implications for targeting autophagy (either promoting or inhibiting it) in 

recurrent/metastatic osteosarcoma remain unclear. LC3B puncta was observed in the 

majority of metastasis specimens (67%). Further, in a limited number of metachronous 

biopsy-metastasis and resection-metastasis pairs, LC3B became positive in the majority 

of patients who were initially scored as negative. Given the conflicting data regarding the 

association of LC3B puncta with improved relapse free and overall survival but its 

increased occurrence in osteosarcoma metastasis, it would be premature to conclude 

whether autophagy, as evidenced by LC3B, is a driver of osteosarcoma metastasis and 

therefore should be inhibited. Additional mechanistic studies are needed.  

In regard to HSP27, our study is in agreement with prior studies that have shown 

overexpression of HSP27+ at biopsy as an independent poor prognostic factor.89, 90 

However, in these 2 small series the proportion of HSP27+ tumors (>10% of tumor cells) 
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was much lower both at biopsy (22-24%) and resection (33-37%) as compared to our 

finding (85% and 52%, respectively). While Uozaki et al found an association between 

HSP27+ at resection and poor response among 19 patients evaluated, HSP27+ did not 

correlate with pathologic treatment response in our analysis. Although not a predictive 

biomarker of pathologic response, the negative prognostic implications of HSP27 

overexpression at diagnosis support strategies combining HSP27 inhibition with primary 

MAP chemotherapy. Several preclinical studies support the rationale for targeting HSP27 

in osteosarcoma.105-107 

We examined the combination of HSP27 and LC3B in osteosarcoma patient 

samples based upon preclinical data suggesting an association between HSP27, pHSP27, 

and autophagy. The ER stress response/ubiquitin-proteosome system, mitochondrial 

autophagy (mitophagy), and the Akt/mTOR pathway have been proposed as mechanisms 

linking HSP27 and autophagy.108, 109 In addition, HMGB1 which has been shown to 

promote drug resistance in osteosarcoma cell lines by inducing autophagy, regulates the 

expression HSP27. 108  

In osteosarcoma cell lines, both doxorubicin and cisplatin can induce autophagy. 

However, this may lead to either cell survival or cell death and therefore opposing effects 

of autophagy inhibition. We previously demonstrated that increased expression of 

pHSP27 following chemotherapy exposure was associated with cytoprotecitve autophagy 

and chemoresistance.73 Here we found consistent findings when LM7 and CCH-OS-D 

cells were treated with either doxorubicin or cisplatin. Notably, however, the association 

between the role of autophagy, effect of autophagy inhibition, and total HSP27 in 

osteosarcoma cell lines has been inconsistent. We sought to evaluate pHSP27 in 
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osteosarcoma tumor specimens based upon the initial hypothesis but labeling was 

severely limited likely due to the decalcification protocols used in processing bone tumor 

specimens in FFPE tissue. We found no correlation between the LC3B puncta and 

HSP27+ in patient specimens.  

There are several limitations to the current study. In regard to the biomarker 

analysis, all samples were analyzed retrospectively from a single institution and there 

were a limited number of pretreatment biopsy specimens. This significantly limited the 

number of pre-treatment/post-treatment paired samples available for analysis and 

therefore limited our ability to specifically assess chemotherapy-induced autophagy. 

Further, based upon the initial hypothesis and cell line data, we sought to explore pre-

/post-treatment changes in HSP27 and pHSP27 expression (rather than absolute 

expression) in relation to autophagy markers. This analysis could not be conducted given 

the lack of paired samples and our inability to accurately measure pHSP27 in decalcified 

bone tumor specimens. Finally, autophagy was assessed by a single marker, LC3B 

puncta. The addition of other autophagy markers such as p62 to confirm the presence of 

autophagic flux or the autophagy-related DNA binding protein HMB1 to this analysis 

would serve to validate these findings and is currently underway.  

In regard to analysis of chemotherapy-induced autophagy in osteosarcoma cell 

lines, optimal conditions for autophagy induction with doxorubicin and cisplatin in LM7 

cells were not defined. While both agents were shown to induce some degree of 

autophagy, insufficient autophagy induction may limit the implications of the viability 

studies and post-treatment pHSP27 expression data. Finally, while we have demonstrated 

a correlation between the role of chemotherapy-induced autophagy and pHSP27 in 
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osteosarcoma cell lines, the functional significance and potential mechanistic basis of 

these findings have not been explored. 

This study adds to our prior work identifying a context-dependent dual role for 

chemotherapy-induced autophagy in osteosarcoma that is independent of cell line, 

species of origin, or chemotherapeutic agent. These findings establish a valuable model 

system to further evaluate the mechanisms underlying of cytotoxic vs. cytoprotective 

autophagy. While pHSP27 was initially identified as a differentially expressed protein 

that consistently correlates with the role of autophagy, its functional significance remains 

unclear. Future studies stemming from this project will undertake functional proteomic 

profiling by RPPA to identify additional proteins and key pathways associated with the 

opposing effects of autophagy as well as functional studies using shHSP27 knockdowns 

in LM7 and overexpression of HSP27 in CCH-OS-D cells to determine if HSP27 is 

indeed necessary for cytoprotective autophagy in osteosarcoma. Given that pHSP27 (but 

not total HSP27) correlates with the role of autophagy, identifying the specific kinases 

involved in phosphorylating HSP27 in each context may give additional mechanistic 

insights. Finally, in vivo studies combining autophagy inhibitors with chemotherapy in 

the treatment of osteosarcoma will be a key step in translating these findings to the clinic. 

Independent of their potential mechanistic link, HSP27 and LC3B can be 

considered as independent biomarkers in osteosarcoma; if analyzed together they allow 

for improved risk stratification for localized osteosarcoma patients following 

preoperative chemotherapy. One of the limitations of this approach, however, is awaiting 

evaluation of these markers at resection ~12 weeks into therapy. Predictive biomarkers of 

response to conventional MAP chemotherapy are needed. Such markers would allow for 
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modification or intensification of preoperative therapy for poor risk patients in a window 

trial paradigm that would allow for paired biomarker assessment. Prospective analysis of 

paired-samples may be beneficial in validating HSP27 and LC3B puncta as prognostic 

and potentially as predictive biomarkers in osteosarcoma. This would justify the addition 

of HSP27 targeted therapies or agents that promote autophagy to standard chemotherapy 

in poor risk patients.  

 

V. Conclusions  

 While previously thought to be primarily a mechanism of chemoresistance, 

chemotherapy-induced autophagy can serve a dual role in osteosarcoma. Autophagy 

following standard chemotherapy as evidenced by the presence of LCB puncta in 

osteosarcoma tumor cells is associated with favorable outcomes. Conversely, 

overexpression of HSP27 is a negative prognostic marker prior to treatment or following 

preoperative chemotherapy. When evaluated together, the combination of LC3B-

/HSP27+ identifies particularly poor risk patients following preoperative chemotherapy. 

These findings not only establish HSP27 and LC3B as prognostic biomarkers in 

osteosarcoma but serve as a rationale for future studies targeting either HSP27 or 

modulating autophagy in osteosarcoma treatment. 
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