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Abstract 
 

CLINICAL AND THERAPEUTIC SIGNIFICANCE OF OBESITY IN MELANOMA 

  

Jennifer McQuade, M.D., M.A..* 

 
Advisory Professor: Michael Davies, M.D., Ph.D. 

While the FDA approval of targeted and immune therapies in metastatic melanoma (MM) have 

dramatically improved outcomes in this disease, de novo and/or acquired resistance can limit 

the clinical benefit of these agents. The IGF-1/PI3K/AKT pathway has been implicated in 

resistance to both targeted and immune therapy. The IGF-1/PI3K/AKT pathway has also been 

shown to play a key role in the pathogenesis of obesity in other malignancies. To date, the 

impact of energy balance on clinical outcomes and therapeutic response in MM has not been 

studied. I hypothesized that energy balance would impact the molecular biology, behavior, 

and drug sensitivity of melanoma. 

 

The association of body mass index (BMI) with overall survival (OS) and progression-free 

survival (PFS) was studied in independent cohorts of >1900 MM patients treated with targeted 

therapy [dabrafenib and trametinib (D+T) and vemurafenib and cobimetinib], immunotherapy 

[ipilimumab and anti-PD-1/PDL-1], and chemotherapy. The functional significance of obesity 

was tested using a mouse model of diet-induced obesity (DIO) injected subcutaneously with 

murine melanoma cells. Tumors were followed for growth and assessed by proteomics and 

flow cytometry. The effect of DIO on therapeutic sensitivity was tested in tumor-bearing mice 

treated with a) D+T and b) anti-PD1.  
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Obesity was associated with significantly improved PFS and OS in MM patients treated with 

both targeted therapy and immunotherapy but not chemotherapy. Improved outcomes were 

not attributable to differences in clinical prognostic factors or treatment-related adverse 

events. The association of BMI with improved outcomes was driven by markedly improved 

survival in obese compared to normal BMI males, whereas no significant associations were 

observed in females. In a subcutaneous model of mouse melanoma, DIO led to increased 

tumor growth, increased PI3K pathway activation, and decreased immune infiltrates. There 

were no differences in sensitivity to D+T or anti-PD1 between diets in this model. 

Obesity is associated with markedly improved outcomes in MM patients treated with 

targeted and immune therapies.  In a subcutaneous model of murine melanoma, DIO 

increased tumor growth, recapitulating clinical associations in early stage melanoma. The 

biological basis for the paradoxical association of obesity with improved outcomes in MM 

should be explored further.  
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Chapter 1: Background 
 

Metastatic melanoma is an aggressive disease with poor outcomes historically. 

However, the outcomes of patients with metastatic melanoma have improved dramatically 

with the FDA approval of MAPK pathway-directed targeted therapies and checkpoint 

inhibitor immunotherapies.(1-7) Despite these many new options, metastatic melanoma 

patient outcomes remain heterogeneous and many patients still succumb to this disease. An 

improved understanding of factors associated with clinical benefit from these treatments 

may improve their personalized use and provide new insights into mechanisms of 

resistance. In other malignancies, clinical metabolic phenotypes (obesity and the metabolic 

syndrome) have been shown to correlate with clinical outcomes.(8-13) In preclinical models, 

dietary manipulation impacts tumor growth and sensitivity to anti-cancer therapies.(14-18) 

However, the impact of energy balance on melanoma molecular signaling, immunology, and 

response to therapy is currently unknown.  

 

The treatment of metastatic melanoma  

Melanoma is the most deadly of the common skin cancers. While clinically localized 

melanoma is curable by surgical resection, melanoma that has metastasized is an aggressive 

disease. Outcomes in patients with metastatic melanoma have historically been poor as 

chemotherapy has only limited activity in this disease. However, the treatment landscape for 

patients with metastatic melanoma has dramatically improved with the FDA approval of 10 

new drugs and combination regimens since 2011. These new therapies are the result of 

advances in the understanding of the molecular biology and immunology of this disease.  

Nearly 50% of cutaneous melanomas have an activating V600E point mutation in 

BRAF (BRAFV600)(19) resulting in constitutive activation of the RAF/MEK/ERK MAPK pathway 

that promotes cell proliferation and survival.  Randomized phase III trials demonstrated that 
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vemurafenib and dabrafenib (both BRAF inhibitors) significantly improved ORR and PFS in 

BRAFV600 metastatic melanoma patients, leading to their approval.(2, 20) However, ~50% of 

patients failed to respond, and 10% of patients had disease progression as their best 

response, indicating the presence of de novo resistance.  In addition, the median duration of 

response was only ~6 months due to rapid development of acquired resistance.  Concurrent 

inhibition of BRAF and MEK can help overcome MAPK pathway reactivation, as demonstrated 

by the improvement in ORR (75%) and PFS (~10 months) with combined BRAF and MEK 

inhibition (dabrafenib + trametinib and vemurafenib + cobimetinib). (4, 5) However, responses 

remain variable, and most patients still go on to develop resistance.(21) 

The other major category of systemic therapies now approved in metastatic melanoma 

is immunotherapy. Melanoma has long been known to be a highly immunogenic tumor. High-

dose interleukin-2 (HD-IL2), a cytokine therapy, was FDA approved in 1998 in metastatic 

melanoma based on rare but durable responses.(22)  The newer immunotherapies are the 

checkpoint inhibitors which work by blocking the inhibitory checkpoints that limit T cell 

activation, effectively “taking the brakes off” the immune system to allow it to eradicate tumors. 

Anti-CTLA4 (Ipilimumab) was the first checkpoint inhibitor FDA approved in 2011.(1, 23) 

Though the response rate with ipilimumab is only 10-15%, these responses are extraordinarily 

durable. Subsequently, the anti-PD1 antibodies nivolumab and pembrolizumab have been 

FDA approved in metastatic melanoma (and other diseases). These agents have response 

rates ~40% in metastatic melanoma are much better tolerated than ipilimumab.(6, 24). 

However, while responses to checkpoint inhibitors are extremely durable, the majority of 

patients fail to respond, representing de novo resistance, and biomarkers to accurately predict 

response are lacking.   
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IGF1/PI3K/AKT signaling and therapeutic resistance 

  Oncogenic activation of the PI3K/AKT pathway is one of the most frequent events in 

cancer. The PI3K pathway can be activated by binding of ligands to receptor tyrosine kinases, 

including insulin-like growth factor receptor (IGF1R) and the insulin receptor (IR).  The Davies 

lab previously demonstrated that BRAFV600 melanoma cell lines with de novo resistance to 

BRAF and MEK inhibitors are characterized by increased expression of IGF1R and 

compensatory activation of the PI3K/AKT pathway following MAPK pathway inhibition (Figure 

1). (25, 26)  Both PI3K/AKT pathway activation and therapeutic resistance could be overcome 

by inhibition of IGF1, IGF1R, or AKT.  Increased activation of IGF1R was also identified in 

both cell lines and patient samples with acquired resistance to BRAF inhibitors.(27)  While 

combined inhibition of BRAF and MEK was able to slow growth of these cell lines, inhibition 

of IGR1R or PI3K was required to achieve cell death.(27)   

 We have also recently shown that the PI3K/AKT pathway can mediate resistance to 

immunotherapy. (28)  Loss of the tumor suppressor PTEN is one of the most common ways 

that the PI3K/AKT pathway is activated and occurs in ~30% of melanoma.(29)  In patients, 

loss of PTEN is correlated with decreased tumor infiltrating lymphocytes and worse outcomes 

with anti-PD1 immunotherapy. In preclinical models, PTEN loss decreases T cell trafficking 

into tumors and inhibits T cell-mediated tumor killing. (28)   

These and other studies support the rationale for combining PI3K pathway inhibition 

with MAPK pathway inhibition and/or checkpoint inhibitors. However, clinical development of 

IGF-1R/PI3K pathway inhibitors has been slow due to the challenge of achieving significant 

target inhibition at clinically tolerated doses.(30)  However, other less toxic strategies to inhibit 

this pathway could have benefit. 
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Energy balance and cancer  

Obesity and the metabolic syndrome are well-established risk factors for many 

malignancies, including breast, endometrial, colon, and pancreatic cancers.(31) In fact, 

obesity is now poised to overtake smoking as the leading preventable cause of cancer. 

Obesity has also been associated with increased recurrence risk and mortality in some 

malignancies.(11, 12) Based on strong epidemiological evidence, preclinical studies 

demonstrating increased tumor growth in obese models, and biological plausibility, energy 

balance has become a major target for cancer prevention efforts and identified as a priority 

area of research by the American Society of Clinical Oncology and the National Cancer 

Institute.(32) 

However, higher BMI has also been associated with improved survival in some 

cancers,(33-36) a phenomenon dubbed the “obesity paradox.” Whether this unexpected 

association is due to disease biology, ability to tolerate cytotoxic treatments, or other factors 

such as concurrent medication use for obesity-related comorbidities that may impact cancer 

biology (i.e. statins, metformin, beta blockers) remains unclear.  

 

Molecular and immunological effects of energy balance  

The biology underlying the impact of energy balance on cancer risk and progression 

is complex, and includes the stimulation of signaling pathways by obesity-related cytokines 

and hormones such as insulin-like growth factor 1 (IGF1) and leptin, chronic inflammation,  

increased oxidative stress, and adipocyte cross-talk.(37)  The insulin/IGF axis has been 

implicated as one of the key mediators in the relationship between obesity and cancer.(37, 

38) Insulin and IGFs regulate growth and metabolism at both the organism and tissue level. 

Obesity results in high circulating levels of these hormones, which are in turn linked to 

increased incidence and worse outcomes in several cancers.(39, 40) Diet-induced obesity 

(DIO) has been shown in preclinical models of many tumor types to promote cancer 
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development and progression as well as induce resistance to therapy, often in association 

with increased IGF1 and activation of the PI3K-AKT pathway.(14-18) Conversely, calorie 

restriction (CR) has been shown to suppress tumor growth and prolong survival.(18, 41-44) 

IGF1 appears to be a key mediator of many of these effects as knock-down of IGF1 attenuates 

the growth stimulatory effects of DIO and restoration of IGF1 abolishes the inhibitory effects 

of CR on tumor growth.(45, 46)  

Links between obesity, chronic inflammation, and cancer initiation have been 

described in many malignancies. Obesity has been demonstrated to negatively impair the 

adaptive immune response, with increased rate of vaccine failure in patients, and decreased 

cell-mediated immunity and immunological memory in DIO animal models.(47) However, the 

impact of energy balance on anti-tumor immunology remains largely unexplored and the 

impact of obesity on response to checkpoint inhibition has not been examined in any disease.  

 

Energy balance in melanoma 

The impact of energy balance in melanoma has not been well-studied to date. 

Limited data suggests that obesity is associated with a slightly increased risk of melanoma 

in men (48) and increased primary tumor Breslow thickness.(49)  However, the association 

of obesity with clinical outcomes in patients with melanoma had not been previously 

investigated. (31) The Lee lab at MD Anderson recently demonstrated that obesity is 

associated with worse outcomes in a large cohort of patients with surgically resected 

melanoma.(50)  In this study, we examined the association of body mass index (BMI) with 

overall survival and disease free survival in 1186 patients with surgically resected melanoma 

(75% Stage I/II, 24% Stage III, and 1% Stage IV). Obesity (BMI≥30) was associated with 

worse overall survival and disease free survival in this cohort, associations that remained 

significant after adjusting for sex, age, and disease stage. However, when serum C-reactive 

protein (CRP), a key marker of inflammation that has previously been associated with worse 
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prognosis in this population,(51) was added into the model, obesity was no longer 

significantly associated with survival but CRP was. This indicates that the association of 

obesity with poor outcomes in surgically resected melanoma may be mediated by chronic 

inflammation. While this study included patients of all stage of melanoma, the vast majority 

had clinically localized disease as this was a surgical cohort. Only 15 patients had Stage IV  

melanoma; therefore, this study was underpowered to examine the association of BMI with 

outcomes in Stage IV melanoma. Moreover, this cohort was accrued between 1998 and 

2008, which was before the FDA approval of contemporary targeted and immune therapy in 

melanoma and could therefore not be used to examine outcomes with these therapies.  

   In preclinical mouse models of B16 melanoma, diet-induced obesity has been 

shown to increase melanoma tumor growth and progression, however, the mechanisms are 

poorly understood.(52-54) Thus far, energy balance has not been studied in genetically 

relevant melanoma models (such as BRAF mutant), nor has the impact of energy balance 

on sensitivity to clinically relevant targeted or immune therapies. 

 

In summary, there is strong parallel evidence that (1) energy balance modulates the activity 

of the PI3K signaling pathway, and (2) activation of the PI3K signaling pathway can cause 

resistance to both targeted and immune therapy in melanoma (Figure 1).  I thus hypothesized 

that energy balance could impact the biology of melanoma and the efficacy of targeted therapy 

and immune therapy. To test this hypothesis, I assessed the association of BMI with overall 

survival (OS), progression-free survival (PFS), and overall-response rate (ORR) in multiple 

large independent cohorts of metastatic melanoma patients treated with targeted and immune 

therapies.  In addition, I conducted functional testing of the impact of obesity on melanoma 

tumor growth, molecular signaling, and therapeutic response in a genetically relevant, 

immunocompetent murine melanoma tumor model.   
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Figure 1: Molecular signaling in obesity and melanoma.   

The PI3K pathway plays a key role in both melanoma and energy balance signaling. Obesity 

results in increased circulating insulin and IGF-1 which bind to their cell surface receptors 

leading to downstream activation of the PI3K pathway. The PI3K pathway is also commonly 

activated in melanoma and can lead to resistance to both targeted and immune therapies.    
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Chapter 2: Methods 
 

Clinical cohorts 
Analysis was conducted on independent cohorts of patients with metastatic 

melanoma, including 2 trial cohorts of patients treated with BRAFi + MEKi targeted therapy 

combinations, a multi-institutional cohort of patients treated with PD-1 immunotherapy, a trial 

cohort of patients treated with ipilimumab immunotherapy + DTIC chemotherapy vs. DTIC 

alone, and a control arm of DTIC chemotherapy (Table 1).  

BMI at treatment initiation was calculated as weight (kilograms) divided by the 

square of height (in meters) and categorized according to standard World Health 

Organization definitions of underweight (BMI<18.5), normal weight (18.5-24.9), overweight 

(25-29.9), and obese (≥30).(55) Underweight patients were excluded from analyses due to 

low prevalence (<2%) across the cohorts.  

Patients were followed from the date of treatment initiation or baseline randomization 

until disease progression [progression-free survival (PFS)] or death (OS). Disease 

progression and response rate were defined by Response Evaluation Criteria in Solid 

Tumors (RECIST) 1.1 criteria.(56) Survival curves for OS and PFS across BMI category and 

by sex were generated using the Kaplan-Meier method. The association of BMI with 

prospective survival outcomes was evaluated in Cox proportional hazards regression 

models adjusted for prognostic factors. Logistic regression was used to assess associations 

of BMI with treatment response and pharmacokinetics. In all analyses, normal BMI was used 

as the reference category.(57) Statistical analyses were performed utilizing SAS 9.4, JMP 

(SAS), R studio, and S+ 8.0.  
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Table 1: Metastatic melanoma patient cohorts 

Therapy Cohort Participants Men Women 

Targeted  

Therapy 

  D+T 599 347 252 

  V+C 240 143 97 

Immune  

Therapy 

  IPI + DTIC 207 138 69 

  PD1/PDL1 331 214 117 

Chemotherapy 
  DTIC 320 174 146 

  DTIC 221 140 81 
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In vivo experiments 
Cell lines 

BRAF-mutant murine melanoma cell lines were provided by Marcus Bosenberg from 

the Yale University Mouse Melanoma (YUMM) lines, Yale University.(58)   YUMM 3.1 cells 

(BrafV600E::Cdkn2a-/-) and YUMMM 5.2 (BrafV600E/wt p53−/−) cells were maintained in 

DMEM-F12 media with 10% FBS, 1% NEAA and 1% PS.   

 

Mice and diets 

Male C57/Bl6 18 week old diet-induced obesity (DIO) (#380050) and control mice 

(#380056) were obtained from Jackson laboratories. These mice have been fed either a 

60% high-fat diet (Research labs D12492, composition- 60% fat, 20% protein, 20% 

carbohydrates) or a low fat matched purified ingredient isocaloric diet (Research labs 

D12451, composition- 20% protein, 70% carbs, 10% fat) since weaning at 6 weeks. Mice 

were acclimatized for 3 weeks and continued on the same diets. All animal experiments 

were approved by The University of Texas MD Anderson Cancer Center Animal Care and 

Use Committee 

 

Mouse phenotypic analyses 

Mice were weighed weekly. Following overnight fasting, serum IGF-1 (R&D System) 

and IGFBP-1 (EMD Millipore) were measured by ELISA and blood glucose was measured 

by glucometer at baseline.   

 

Treatments 

1x106 cells YUMM 3.1 or YUMM 5.2 cells were injected subcutaneously into the left 

flank of 21 week DIO or control mice. Tumor-bearing mice were treated with twice weekly IP 

injections of 200mg/kg of anti-PD1 antibody (Bioxcell Clone RMP1-14) or isotype control 
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(Bioxcell Clone 2A3) or daily oral gavage treatment of dabrafenib (30mg/kg) and trametinib 

(1 mg/kg) or vehicle.  Tumors were measured every 3 days with calipers and tumor volume 

was calculated as the product of shortest length squared x longest length.  

 

 

Cell line protein isolation and western blotting 

Cells were plated in 6-well plates overnight. Cells were collected by scraping and 

washing 3x with cold PBS. The pellets were then lysed in buffer to isolate protein. Protein 

was quantified using the BCA reaction. Protein concentration was adjusted to 1.5mg/ml.   

Western blots of cell lines were performed for insulin receptor and IGF-1R (Cell Signal) with 

actin run to confirm equivalent protein loading between samples. For reverse phase protein 

array, cell lysate was mixed with 4 x SDS sample buffer and boiled for 5 minutes and then 

stored at -80.  

 

Tissue handling 

Day 14 tumor tissue was divided with 1/2 OCT-embedded, 1/4 FFPE, and 1/4 snap 

frozen. For each tumor sample used for protein extraction, a hematoxylin and eosin (H&E)-

stained slide was prepared and reviewed by a pathologist (M Tetzlaff). Regions containing 

80% or more viable tumor cells were identified. To isolate tumor tissue, the marked H&E 

slide was used to guide macrodissection of the matched tissue block.  

 

Reverse-phase protein array 

Extraction of protein from the dissected tumor samples was performed by the MD 

Anderson Functional Proteomics Core facility as previously described. (59) Reverse phase 

protein array (RPPA) analysis, which quantitatively measures >200 total- and phospho-

proteins in oncogenic signaling pathways, was performed as previously described.(60) A 
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detailed description of the RPPA method and data normalization is available at the core 

facility's web page. 1  

 

Immunohistochemistry 

FFPE tissue blocks were cut into 5-μm sections.  Immunohistochemistry for pS6 

(Clone D57.2.2E Cell Signaling, catalog #4858) was performed. Stained slides were 

reviewed by a pathologist (M.T. Tetzlaff) and an H-score was derived by multiplying the 

staining intensity (0, 1+, 2+, or 3+) by the percentage of positive cells. 

  

Flow cytometry 

Tumor tissues and spleens were weighed and dissociated into single cell 

suspensions. Erythrocytes in all samples were depleted using ammonium-chloride-

potassium lysing buffer (Invitrogen). Cells were treated with Fc blocking antibody and then 

stained with mAbs against CD8, CD4, Gr-1, CD11b, F4/80 and CD25. Samples were 

analyzed using FACS cantoII (BD Biosciences). 

 

Statistical analysis 

GraphPad Prism was used to perform statistical tests and graphing. A t-test was 

used to test for significance and data was plotted with standard error of the mean (SEM) 

shown. P values less than 0.05 were considered statistically significant.  Heatmaps were 

generated using Java Cluster and Tree View.  

  

1 https://www.mdanderson.org/research/research-resources/core-facilities/functional-proteomics-rppa-
core.html 
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Chapter 3: Association of BMI with outcomes in patients treated with targeted therapy 
 
Introduction 

Nearly 50% of cutaneous melanomas have an activating BRAFV600 mutation (19) 

resulting in constitutive activation of the RAF/MEK/ERK MAPK pathway that promotes cell 

proliferation and survival.  Treatments targeting the MAPK pathway have impressive activity 

in BRAFV600 mutant metastatic melanoma with response rates of >70% for both FDA-

approved BRAF + MEK combinations. However, not all patients respond and most go on to 

develop resistance.(21) Understanding the clinical factors associated with benefit from these 

therapies is critical to risk-stratifying patients and making informed treatment decisions.  

A key mechanism of resistance to MAPK pathway targeted therapy is PI3K pathway 

activation. This can occur at multiple nodes in this pathway, including via binding of receptor 

tyrosine kinases on the cell surface such as insulin and IGFR. Obesity results in higher 

circulating insulin and IGF-1, even in the absence of diabetes, and binding of these growth 

factors leads to downstream activation of the PI3K pathway. This interaction has been 

demonstrated in preclinical models in other malignancies to be key in the pathogenesis of 

obesity in promoting tumor growth and resistance to targeted therapy. (14-18, 61, 62)  Given 

this, I hypothesized that obesity would be associated with worse outcomes in patients with 

BRAFV600 melanoma treated with targeted therapy.  

Results 
Initial analysis was conducted on a cohort of treatment-naive patients with BRAFV600-

mutant metastatic melanoma treated with the BRAF inhibitor + MEK inhibitor combination 

dabrafenib and trametinib (D+T; FDA approval, 2014) in the randomized clinical trials 

BRF113220 (part C), COMBI-d, and COMBI-v with available BMI at treatment initiation 

(n=610).(4, 63-65)   

Eleven patients (1.8%) were underweight (BMI<18.5), 222 (37.1%) were normal 

weight (BMI 18.5-24.9), 231 (38.6%) were overweight (BMI 25-29.9), and 146 (24.4%) were 
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obese (BMI ≥30) (Figure 2). Clinical characteristics, including tumor burden, LDH, and 

ECOG PS were similar across BMI groups (Table 2). However, patients with higher BMI 

tended to be older, male, and less likely to have Stage M1C disease. As expected, obese 

patients were more likely to use metabolic syndrome-associated medications (metformin, 

statins, beta blockers, and aspirin). 

With a median follow-up of 20.2 months, the median PFS and OS were 9.6 and 19.8 

months, respectively, for normal BMI, 11.0 and 25.6 months for overweight, and 15.7 and 

33.0 months for obese patients treated with D+T (Figure 3).   Obese patients had 

significantly improved PFS (HR 0.73, 95% CI 0.56-0.95) and OS (HR 0.63, 95% CI 0.46-

0.86) compared to normal BMI patients (Table 3). Analysis of BMI as a continuous variable 

demonstrated a dose-dependent inverse relationship between BMI and HR for PFS that 

extended through morbid obesity (Figure 4).   

On multivariate analysis incorporating clinicopathological factors previously 

associated with outcomes with D+T(65) (age, sex, stage, LDH, BRAFV600 mutation type, 

ECOG PS, sum of target lesion diameters, number of disease sites, and prior adjuvant 

therapies), obesity remained associated with improved PFS (multivariate HR 0.75, 95% CI 

0.57-0.99) and OS (HR 0.59, 95% CI 0.43-0.82) (Table 3).  I also examined the possible 

contribution of metabolic syndrome related medication use, including metformin, beta 

blockers, aspirin, and statins as these medications may have potential anti-cancer activity. 

Following adjustment for concomitant medication use, obesity remained strongly associated 

with improved OS (multivariate HR 0.63, 95% CI 0.44-0.88), while the association with PFS 

was slightly attenuated (HR 0.77, 95% CI 0.58-1.03).  Exclusion of patients taking metformin 

(n=50) did not substantively change the association observed for obese BMI and OS (HR 

0.63, 95% CI 0.44 – 0.91).   
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Clinical response rates with D+T were also modestly increased in obese patients 

(OR 1.6, 95% CI 1.0-2.6) (Table 4) .Rates of adverse events were similar by BMI category 

(Table 4).  
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Figure 2: BMI distribution of D+T cohort.  

Histogram of BMI distribution shows a similar distribution to the general US population. <2% 

of patients were underweight and >60% were overweight or obese.  
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Table 2: Baseline characteristics of patients treated with dabrafenib and trametinib 

(D+T) by BMI category 

 BMI at treatment initiation  
 
Characteristic 

Normal BMI  
(18.5 to <25) 

Overweight  
(25 to <30) 

Obese 
(≥30) 

Patients, No. (%) 222 (37.1) 231 (38.6) 146 (24.4) 
Age, Mean, y (range) 52 (18-91) 56 (22-82) 56 (30-82) 
Male, No. (%) 109 (49.1) 156 (67.5) 82 (56.2) 
Stage, No. (%)    
   III/M1a/M1b 71 (32.0) 81 (35.1) 59 (40.4) 
   M1c 151 (68.0) 150 (64.9) 87 (59.6) 
LDH, No. (%)a    
  >ULN 51 (23.2) 54 (23.4) 36 (24.7) 
  >2xULN 28 (12.7) 25 (10.8) 12 (8.2) 
BRAF mutation, No. 
(%) 

   

  V600E 201 (90.5) 192 (83.1) 129 (88.4) 
  V600K/V600E + 
V600K 

21 (9.5) 39 (16.9) 17 (11.6) 

ECOG PS, No. (%)b    
  0 159 (72.3) 168 (73.0) 103 (70.5) 
  ≥1 61 (27.7) 62 (27.0) 43 (29.5) 
Sum of lesion 
diameter, No. (%)c 

   

  <median (57mm) 101 (47.0) 117 (51.1) 72 (49.3) 
   ≥median (57mm) 114 (53.0) 112 (48.9) 74 (50.7) 
Number of organ 
sites with 
metastases, No. (%) 

   

  <3 112 (50.5) 114 (49.4) 82 (56.2) 
   ≥3 110 (49.5) 117 (50.6) 64 (43.8) 
Prior adjuvant 
ipilimumab, No. (%) 

2 (0.9) 3 (1.3) 4 (2.7) 

Prior non- ipilimumab 
adjuvant therapy, 
No. (%) 

26 (11.7) 25 (10.8) 14 (9.6) 

Concomitant 
medications, No. (%) 

   

  Metformin 8 (3.6) 13 (5.6) 29 (19.9) 
  Statin 24 (10.8) 27 (11.7) 39 (26.7) 
  Beta blocker 27 (12.2) 47 (20.3) 43 (29.5) 
  Aspirin 23 (10.4) 26 (11.3) 37 (25.3) 

aData missing for 2 patients. bData missing for 3 patients. cData missing for 9 patients
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Figure 3: Outcomes by BMI category in patients treated with D+T. A. Progression-free 

survival. B. Overall survival. Blue=obese. Green=overweight. Red=Normal BMI 
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Table 3: Association between BMI and outcomes for patients treated with D+T 

aAdjusted for age, gender, stage, LDH, BRAF mutation, ECOG performance status, sum of 

target lesion diameters, number of disease sites, and prior adjuvant therapies 

 

  

 
 
BMI  

 
 
Patient 
No. (%) 

PFS OS 
 
Median 
(mo) 

Univariate 
Adjusted  
HR  
(95% CI) 

Multivariate 
Adjusted  
HR  
(95% CI)a 

 
Median 
(mo) 

Univariate 
Adjusted  
HR (95% 
CI) 

Multivariate 
Adjusted  
HR  
(95% CI) a 

18.5 
to <25 

222 
(37) 

9.6 1.00 1.00 19.8 1.00 1.00 

25 to 
<30 

231 
(39) 

11.0 0.90 (0.76-
1.19) 

0.95 (0.75-
1.21) 

25.6 0.84 (0.65-
1.10) 

0.78 (0.59-
1.02) 

≥30 146 
(24) 

15.7 0.73 (0.56-
0.95) 

0.75 (0.57-
0.99) 

33.0 0.63 (0.46-
0.86) 

0.59 (0.43-
0.83) 
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Figure 4: HR for PFS by BMI in patients treated with D+T. Spline analysis showing HR for 

PFS (y-axis) by BMI (x-axis). Solid line indicates HR with curve centered at reference BMI 24.9. 

Dotted lines indicate 95% CI.  
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Table 4: Clinical response rates and adverse events by BMI category in patients treated 
with D+T 

 
Outcome 

Normal BMI 
(18.5 to <25) 

Overweight 
(25 to <30) 

Obese 
(≥30) 

Response rate 64% 65% 77% 
  OR vs Normal BMI 
(95%CI)   OR 0.90 (0.61-1.34) OR 1.63 (1.0-2.63) 
Adverse events    
  Any AE 216 (98%) 226 (97%) 145 (>99%) 
  Grade III/IV AE 110 (50%) 125 (54%) 95 (65%) 
  AE leading to    
treatment 
discontinuation  28 (13%) 27 (12%) 30 (21%) 
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A cohort of patients treated with the only other FDA-approved BRAF inhibitor + MEK 

inhibitor combination for BRAFV600-mutant metastatic melanoma, vemurafenib and cobimetinib 

(V+C; FDA approval, 2016), in the phase III coBRIM randomized controlled trial (n=241), was 

analyzed as a validation cohort.(5, 66) Clinical characteristics are presented in Table 5. 

Obese patients treated with V+C again had improved PFS (HR 0.62, 95% CI 0.42-0.91) 

and OS (HR 0.64, 95% CI 0.41-0.98) compared to normal BMI patients, with hazard ratios very 

similar to those observed in the D+T cohort (Table 6).  Following adjustment for clinical 

prognostic factors in this smaller cohort (age, gender, stage, LDH, BRAF mutation, ECOG 

performance status), the hazard ratios were minimally changed but statistical significance was 

lost (PFS HR 0.66, 95% CI 0.42-1.02; OS HR 0.62, 95% CI 0.37-1.02).  

Pharmacokinetic data available for this cohort demonstrated no significant differences in 

serum Cobimetinib concentrations between BMI groups (Figure 5). 
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Table 5: Baseline characteristics of patients treated with V+C by BMI category 

 BMI at treatment initiation  
 
Characteristic 

Normal BMI 
(18.5 to <25) 

Overweight 
(25 to <30) 

Obese 
(≥30) 

Patients, No. (%) 85 (35.4) 88 (36.7) 67 (27.9) 
Age, Median, y  
(25-75%) 50 (39-61) 59 (50-67) 57 (44-65) 
Male, No. (%) 40 (47.1) 59 (65.9) 44 (65.7) 
Stage, No. (%)    
   III/M1a/M1b 34 (40.0) 34 (38.6) 32 (47.8) 
   M1c 61 (60.0) 54 (61.4) 35 (52.2) 
LDH >ULN, No. (%)a 45 (46.4) 41 (47.7) 26 (40.0) 
BRAF mutation, No. 
(%)b 

   

  V600E 61 (91.0) 62 (86.1) 44 (84.6) 
  V600K 6 (9.0) 10 (13.9) 8 (15.4) 
ECOG PS, No. (%)c    
  0 65 (77.4) 72 (82.8) 43 (64.2) 
  ≥1 19 (22.6) 15 (17.2) 24 (35.8) 

a Data missing for 3 patients. b Data missing for 49 patients. c Data missing for 2 patients. 
 

 

 

 

 

 

Table 6: Association between BMI and outcomes for patients treated with V+C 

 
 
 
 

 
 
BMI  

 
 
Patient 
No. 
(%) 

PFS OS 
Univariate 
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI) 

Univariate  
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI)  

  All 
patients 
  (n=240)     

18.5-
24.9 

85 (35) 1 1 1 1 

25-29.9 88 (37) 0.73 (0.51-
1.04) 

0.65 (0.43-
1.00) 

0.86 (0.58-
1.28) 

0.67 (0.43-
1.06) 

≥30 67 (28) 0.62 (0.42-
0.91) 

0.66 (0.42-
1.02) 

0.64 (0.41-
0.98) 

0.62 (0.37-
1.02) 

Adjusted for age, sex, stage, and LDH 
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Figure 5: Pharmacokinetics by BMI category for Cobimetinib. No significant differences are 

seen in Cobimetinib serum pharmacokinetics by BMI category A. steady-state area under the 

curve (AUC) (p=0.39)   B. maximum concentration (Cmax) (p=0.34), and C.  minimum 

concentration (Cmin)  (p=0.37) 
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Sex differences in BMI and outcome associations with targeted therapy 

As female sex was previously shown to be independently associated with improved 

survival in the D+T cohort,(65) and as there were sex differences in BMI distribution (Table 1), 

associations in men and women were next assessed separately. These analyses showed that 

obesity was associated with markedly improved outcomes in male patients but that BMI was 

not associated with outcomes in females (Table 7 and Figure 6). Median PFS and OS were 7.4 

and 16.0 months respectively for normal BMI males, 10.1 and 21.3 months for overweight 

males, and 12.8 and 36.5 months for obese males  

Obese males had significantly improved PFS (0.69, 95% CI 0.49-0.99) and OS (HR 

0.46, 95% CI 0.30-0.70) versus normal weight males on univariate analysis, with differences in 

OS remaining significant after adjustment for other prognostic features (multivariate HR 0.44, 

95% CI 0.29-0.69) (Table 7).  These differences were marked, as the 2-year OS rate for obese 

males was 64% compared to 35% for normal BMI males (Figure 6 and Table 8). Obesity in 

males was also associated with improved response rates (ORR 76% vs. 58%, OR 2.26, 95% 

CI 1.20-4.26) (Table 8). In contrast, there were no significant differences in OS, PFS, or 

response rates by BMI in female patients treated with D+T (Tables 7 and 8).  

Similar differences by sex were observed in patients treated with V+C. Obesity was 

associated with markedly improved PFS (HR 0.44, 95% CI 0.26-0.74) and OS (HR 0.53, 95% 

CI 0.29-0.93) in male patients.  In contrast, no significant associations of BMI with outcomes 

were detected in female patients (Table 7). 
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Table 7: Outcomes by BMI stratified by sex for patients treated with targeted therapy 

 
 
 
Population 

 
 
BMI  

 
 
Patient 
No. 
(%) 

PFS OS 
Univariate 
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI) 

Univariate  
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI)  

D+T 
  Male 
  (n=347) 

18.5-
24.9 

109 
(31) 

1 1 1 1 

25-29.9 156 
(45) 

0.85 (0.63-
1.13) 

0.93 (0.69-
1.25) 

0.73 (0.53-
1.00) 

0.80 (0.57-
1.11) 

≥30 82 (24) 0.69 (0.49-
0.99) 

0.75 (0.52-
1.08) 

0.46 (0.30-
0.70) 

0.44 (0.29-
0.69) 

  Female 
  (n=252) 

18.5-
24.9 

113 
(45) 

1 1 1 1 

25-29.9 75 (30) 0.95 (0.65-
1.39) 

1.05 (0.69-
1.59 

0.84 (0.52-
1.35) 

0.65 (0.37-
1.13) 

≥30 64 (25) 0.74 (0.48-
1.12) 

0.83 (0.54-
1.29) 

0.89 (0.55-
1.45) 

0.93 (0.56-
1.55) 

V+C 
  Male 
  (n=143) 

18.5-
24.9 

40 (28) 1 1 1 1 

 25-29.9 59 (41) 0.69 (0.44-
1.07) 

0.62 (0.38-
1.03) 

0.82 (0.51-
1.35) 

0.67 (0.39-
1.15) 

 ≥30 44 (31) 0.44 (0.26-
0.73) 

0.59 (0.31-
1.08) 

0.53 (0.29-
0.93) 

0.68 (0.35-
1.29) 

  Female 
  (n=98) 

18.5-
24.9 

45 (46) 1 1 1 1 

 25-29.9 30 (31) 0.64 (0.35-
1.16) 

0.66 (0.27-
1.58) 

0.71 (0.34-
1.39) 

0.72 (0.27-
1.83) 

 ≥30 23 (23) 0.92 (0.50-
1.64) 

0.75 (0.37-
1.51) 

0.75 (0.35-
1.50) 

0.59 (0.25-
1.29) 

 

 

Table 8: ORR and 2 year survival by BMI stratified by sex for patients treated with D+T 

Cohort BMI ORR OR (95% CI) 2 year PFS  2 year OS 

  All patients 18.5-24.9 65% 1 27% 27% 
25-29.9 65% 0.9 (0.6-1.3) 29% 51% 

≥30 77%  1.6 (1.0-2.6) 36% 64% 
  Male  
   

18.5-24.9 58% 1 20% 35% 
25-29.9 65%  1.4 (0.8-2.3) 27% 46% 

≥30 76%  2.3 (1.2-4.3) 33% 64% 
  Female 18.5-24.9 72% 1 34% 60% 

25-29.9 63%  0.7 (0.4-1.2) 36% 61% 
≥30 78% 1.4 (0.7-2.9) 41% 65% 
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Figure 6: Outcomes by BMI stratified by sex for patients treated with D+T. A. Male 

progression-free survival. B. Female progression-free survival C. Male overall survival. D. 

Female overall survival. Red lines, normal BMI; Green lines, overweight; Blue lines, obese 
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Discussion 
Obesity was unexpectedly associated with improved outcomes BRAF-mutant metastatic 

melanoma patients treated with the two BRAF and MEK inhibitor combinations approved in 

metastatic melanoma.  In the larger cohort of patients treated with dabrafenib and trametinib, 

these associations were independent of multiple clinical prognostic factors previously found to 

be predictive of benefit from this therapy.(65) In this cohort, I also examined concomitant 

medications as a possible confounder as obese patients were more likely to be taking multiple 

medications associated with the metabolic syndrome which may have anti-cancer activity. 

However, BMI effects were independent of use of aspirin, metformin, beta blockers, and 

statins. Treatment tolerance was also examined as a possible explanation, but the Grade III/IV 

adverse events were actually slightly higher in obese patients, though this was not time 

adjusted and as obese patients had better response they stayed on therapy longer. The 

vemurafenib + cobimetinib validation dataset, which was significantly smaller, showed similar 

associations of higher BMI and better outcomes on univariate analysis but significance was lost 

on multivariate analysis. Cobimetinib pharmacokinetic data was available for this cohort and 

there was no difference by BMI category by pharmacokinetics. 

As female sex was previously found to be associated with improved PFS in the 

dabrafenib + trametinib cohort(65), and as there are differences in BMI distribution and body 

composition by sex, I next looked at male and female patients separately. This analysis 

showed that in both cohorts, obesity was strongly associated with improved outcomes in males, 

but no BMI associations were observed in females.  

Interestingly, there has only been one prior study of the association of BMI with 

outcomes in patients treated with targeted therapy.(36) In this study of patients with renal cell 

carcinoma (RCC), higher BMI was also found to be associated with improved survival. 

However, the association of BMI with outcomes has not been evaluated in metastatic RCC 

patients treated with other therapies. Thus, it is unclear if this paradoxical association is specific 
28 

 



to targeted therapies, or whether higher BMI is generally prognostic in these diseases. 

Therefore, I next examined the association of BMI with outcomes in metastatic melanoma 

patients treated with checkpoint inhibitor immunotherapy.  
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Chapter 3: Association of BMI with outcomes in patients treated with immunotherapy 
 

Introduction 
The association of BMI with outcomes in patients treated with immunotherapy has 

never been examined in any malignancy, as this form of therapy is very new with FDA 

approvals first occurring in melanoma (ipilimumab 2011; pembrolizumab and nivolumab both in 

2014). Non-small cell lung cancer was the first non-melanoma malignancy in which anti-PD1 

was approved in 2015, and they have now been approved in RCC, bladder cancer and head 

and neck cancer, with more approvals expected.  

While targeted therapy has a robust predictive biomarker for response (BRAF V600 

mutation), immunotherapy lacks a biomarker adequate to inform treatment decisions.(67)The 

most well-studied biomarker is tumor PD-L1 expression. However, PDL-1 expression is 

dynamic and thresholds vary by assay. More problematic is that PD-L1 expression does not 

adequately discriminate between patients who will or will not benefit. Though higher PD-L1 

expression enriches for responders, patients with no tumor PD-L1 expression may still respond 

and vice-versa. Thus, identifying other clinical and/or molecular predictors of response in 

critical.  

Interestingly, there is considerable cross-talk between molecular signaling pathways 

and the anti-tumor immune response.(68, 69) Our lab has recently shown that PI3K-AKT 

pathway can cause resistance to checkpoint inhibitor immunotherapy.(70) The success of 

targeted therapy may also in part depend on the immune response.(71) Thus, though 

immunotherapy and targeted therapy are fundamentally different modalities, there may be 

common factors underlying response and resistance.  However, if opposing associations of 

BMI and outcomes were seen between targeted and immune therapy, this factor could be used 

to help decide which form of therapy is used first-line in BRAF-mutant patients.  
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The impact of obesity on the anti-tumor immune response has not been well-studied.  

Obesity leads to chronic inflammation and this is another key mechanism linking obesity to 

cancer initiation and progression.(72, 73) Obesity has been demonstrated to negatively impair 

the adaptive immune response, with increased rate of vaccine failure in patients, and 

decreased cell-mediated immunity and immunological memory in animal models.(47) However, 

the impact of obesity on tumor immunology has not been explored. 

Therefore, I next examined the association of BMI with outcomes in patients treated 

with both anti-CTLA4 and anti-PD1 immunotherapy.  

 
Results 

Metastatic melanoma patients treated on the Phase III RCT CA 184-024 of ipilimumab 

(IPI, anti-CTLA-4, FDA approval 2011) + dacarbazine (DTIC) with available BMI (n=207) were 

analyzed.(23) In addition, a cohort of 335 metastatic melanoma patients treated with anti-PD-1 

(pembrolizumab, FDA approval 2014, n=250; nivolumab, FDA approval 2014, n=73) or anti-

PDL-1 (atezolizumab, n=8) antibodies at 4 centers in the USA and Australia with BMI at 

treatment initiation, clinical response assessment, and survival data available was analyzed. 

Patients initiated therapy between October 2009 and January 2016. Additional clinical 

characteristics extracted included age, sex, stage, tumor mutation, prior treatments, and 

immune-related adverse events (irAEs).  

 BMI distributions of both immunotherapy cohorts were similar to the targeted therapy 

cohorts. Patients with higher BMI were again older and more likely to be male, but there were 

otherwise no consistent differences between BMI categories (Table 9).  

With a median follow-up of 38.8 months, obesity was associated with improved PFS 

(HR 0.67, 95% CI 0.45-0.99) and OS (0.64, 95% CI 0.42-0.97) compared to normal BMI in 

patients treated with IPI + DTIC (Table 10 and Figure 7). These associations remained 

significant after adjustment for age, sex, stage, and LDH. Similar to targeted therapy, obesity 

31 
 



was associated with large improvements in outcomes in men, with 2 year OS of 40.6% in 

obese versus 17.8% in normal BMI males. Multivariate analysis confirmed significantly 

improved PFS (HR 0.55, 95% CI 0.32-0.93) and OS (HR 0.40, 95% CI 0.22-0.72) in obese 

males. In contrast, BMI was not associated with either PFS or OS in females treated with IPI + 

DTIC (Table 10 and Figure 7). 
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Table 9: Patient characteristics of patients treated with immunotherapy 

 IPI + DTIC PD1 
  BMI  

18.5-24.9  
No. (%) 

BMI  
25-29.9 
No. (%) 

BMI 
 ≥30 
No. (%) 

 BMI  
18.5-24.9  
No. (%) 

BMI  
25-29.9 
No. (%) 

BMI 
 ≥30 
No. (%) 

Patients, No. 
(%) 

68 (33) 88 (43) 51 (25) 102 (31) 109 (33) 120 (36) 

Age, Mean, y 
(range) 

53 
 (24-83) 

60  
(31-87) 

60  
(34-80) 

57  
(18-86) 

63  
(34-86) 

63  
(22-86) 

Male, No. (%) 41 (60) 64 (73) 33 (65) 58 (57) 70 (64) 83 (69) 
Stage       
   III/M1a/M1b 17 (25) 38 (43) 26 (51) 19 (19) 32 (29) 40 (33) 
   M1c 51 (75) 50 (57) 25 (49) 81 (79) 76 (70) 80 (67) 
LDH >ULN,  
No. (%) 

26 (38) 31 (35) 18 (25) 40 (39) 38 (35) 39 (32) 

ECOG PS 
  0 46 (68) 65 (74) 35 (69) 60 (59) 64 (59) 72 (60) 
  ≥1 22 (32) 23 (26) 16 (31) 41 (40) 45 (41) 48 (40) 
Mutation status 
  BRAF mutant - - - 34 (33) 32 (29) 34 (28) 
    V600E - - - - - - 
    Other V600 - - - - - - 
  NRAS mutant   - - - 24 (24) 21 (19) 18 (15) 
  WT - - - 37 (36) 50 (46) 67 (57) 
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Table 10: Association between BMI and outcomes for patients treated with IPI + DTIC 

 
 
 
Population 

 
 
BMI  

 
 
Patient 
No. 
(%) 

PFS OS 
Univariate 
Adjusted  
HR (95% 
CI) 

Multivariate 
Adjusted  
HR (95% CI) 

Univariate  
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI)  

  All 
patients 
  (n=207)     

18.5-
24.9 

68 (28) 1 1 1 1 

25-29.9 88 (37) 0.87 (0.62-
1.22) 

0.88 (0.61-
1.26) 

0.76 (0.53-
1.08) 

0.70 (0.48-
1.03) 

≥30 51 (21) 0.67 (0.45-
0.99) 

0.63 (0.41-
0.95) 

0.64 (0.42-
0.97) 

0.54 (0.34-
0.86) 

  Male 
  (n=138) 

18.5-
24.9 

41 (29) 1 1 1 1 

25-29.9 64 (45) 0.76 (0.50-
1.16) 

0.77 (0.49-
1.22) 

0.69 (0.45-
1.07) 

0.63 (0.39-
1.01) 

≥30 33 (23) 0.53 (0.32-
0.88) 

0.55 (0.32-
0.93) 

0.46 (0.27-
0.80) 

0.40 (0.22-
0.72) 

  Female 
  (n=69) 

18.5-
24.9 

27 (28) 1 1 1 1 

25-29.9 24 (24) 1.02 (0.56-
1.88) 

1.29 (0.66-
2.51) 

0.79 (0.42-
1.50) 

0.84 (0.43-
1.64) 

≥30 18 (18) 1.02 (0.55-
1.92) 

0.92 (0.45-
1.86) 

1.13 (0.58-
2.18) 

1.16 (0.55-
2.46) 

Adjusted for age, gender, stage, LDH, and ECOG performance status 
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Figure 7. Outcomes by BMI in metastatic melanoma patients treated with Ipilimumab 

(IPI) + dacarbazine (DTIC).  A. All patients’ progression-free survival. B. All patients overall 

survival C. Male overall survival. D. Female overall survival. E. Male progression-free survival. 

F. Female progression-free survival. Red lines, normal BMI; Green lines, overweight; Blue 

lines, obese 

Female OS Male OS 

Male PFS Female PFS 

A B 

C D 
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Anti-PD1 

Increased BMI was again associated with significantly improved outcomes in males but 

not females treated with anti-PD-1/PD-L1.  For male patients, the 2 year PFS rate was 36% for 

overweight/obese versus 18% for normal BMI (HR 0.62, 95% CI 0.43-0.89) (Table 11 and 

Figure 8). Overweight/obese male patients also had improved OS (HR 0.60, 95% CI 0.41-0.90) 

(Table 11) and modestly improved response rates (45% vs 32%, OR 1.82, 95% CI 0.94-3.50) 

(Tables 12) In contrast, women treated with anti-PD-1/PD-L1 had identical response rates by 

BMI category (41%), and there were no significant BMI associations with PFS or OS (Table 12 

and Figure 8). 
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Table 11: PFS and OS by BMI for patients treated with PD-1/PD-L1 

 
 
 
Population 

 
 
BMI  

 
 
Patient 
No. 
(%) 

PFS OS 
Univariate 
Adjusted  
HR (95% 
CI) 

Multivariate 
Adjusted  
HR (95% CI) 

Univariate  
Adjusted  
HR (95% CI) 

Multivariate 
Adjusted  
HR (95% CI)  

  All 
patients   
  (n=331)   

18.5-
24.9 

102 
(31) 

1 1 1 1 

≥25  229 
(69) 

0.77 (0.58-
1.02) 

0.86 (0.63-
1.16) 

0.72 (0.52-
1.00) 

0.75 (0.53-
1.07) 

  Male 
  (n=214) 

18.5-
24.9 

57 (27) 1 1 1 1 

≥25 157 
(73) 

0.62 (0.43-
0.89) 

0.66 (0.45-
0.96) 

0.60 (0.41-
0.90) 

0.68 (0.44-
1.04) 

  Female 
  (n=117) 

18.5-
24.9 

45 (38) 1 1 1 1 

≥25 72 (62) 1.07 (0.67-
1.68) 

1.20 (0.73-
1.97) 

0.90 (0.52-
1.56) 

0.85 (0.46-
1.56) 

 

 

 

 

 

Table 12: Clinical response rates by BMI for patients treated with PD-1/PD-L1 

 BMI<25 BMI≥25 
All patients 
Response rate 34% 44% 
  OR vs BMI<25 (95%CI)   OR 1.5 (0.9-2.4) 
Males 
Response rate 32% 45% 
  OR vs BMI<25 (95%CI)   OR 1.8 (1.0-3.5) 
Females 
Response rate 41% 41% 
  OR vs BMI<25 (95%CI)   OR 1.0 (0.5-2.1) 
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Figure 8. Outcomes by BMI in metastatic melanoma patients treated with PD1/PDL1.  A. 

All patients progression-free survival. B. All patients overall survival C. Male overall survival. D. 

Female overall survival. E. Male progression-free survival. F. Female progression-free survival. 

Red lines, normal BMI; Green lines, overweight; Blue lines, obese 

  

Overall PFS Overall OS 

Male OS Female OS 

Male PFS Female PFS 
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Discussion 
Consistent with the association of obesity with improved outcomes seen with targeted 

therapy, higher BMI was also associated with improved outcomes in patients treated with both 

anit-CTLA4 and anti-PD1/PDL1 immunotherapy. Moreover, there was again a large sex 

difference in BMI associations with very strong associations of higher BMI with improved 

outcomes seen in males and no associations observed in females.  Future work should focus 

on validating the findings of the PD1 cohort which was an off-protocol cohort and examining 

combination CTLA4 and PD1 therapy. These findings also support the rationale for examining 

the association of BMI with outcomes in other diseases in which immunotherapy has been 

approved. 

As noted in the introduction, the impact of obesity on anti-tumor immunity has not been 

previously studied. The work from the Lee lab showing that the association of higher BMI with 

worse outcomes in early stage melanoma was lost when serum C-reactive protein was added 

into the model suggests that inflammation may mediate the deleterious relationship between 

obesity and outcomes seen in clinically localized melanoma.(50) However, this chronic 

inflammation could hypothetically be beneficial in the setting of immunotherapy.  

Given that obesity was associated with improved outcomes in metastatic melanoma 

patients treated with both targeted and immune therapy, it was important to examine whether 

obesity was simply prognostic in advanced melanoma or if the effect was specific to these 

therapies.  
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Chapter 4: Association of BMI with outcomes in patients treated with chemotherapy 
 

Introduction 
Metastatic melanoma is relatively resistant to chemotherapy and there is only one 

chemotherapeutic that has been approved in this disease, dacarbazine (DTIC). The ORR with 

DTIC is 5-10% and the median PFS is <2 months.(2, 23)  

The reason why melanoma is so chemo-resistant is not well understood.(74) The 

rewiring of molecular pathways that were purported to make melanoma “bullet-proof” are not 

unique to this disease. There are clinical factors associated with outcome in patients with 

melanoma treated with chemotherapy including age, sex, stage, and LDH. However, these are 

prognostic factors rather than predictive to this specific therapy. Given the very low activity of 

chemotherapy in melanoma, the association of BMI with outcomes in metastatic melanoma 

patients with chemotherapy can be used to approximate the impact of obesity on the natural 

history of this disease.    

Thus, I next examined the associations of BMI in metastatic melanoma patients treated 

with DTIC, a control arm in multiple RCTs(2, 23)  to explore whether BMI was prognostic in 

metastatic melanoma or if the effect was specific to targeted and immune therapy.  

 

Results 
Metastatic melanoma patients with available BMI data treated with dacarbazine (DTIC) 

in the control arms of CA 184-024(23) (n=221) and the Phase III BRIM3 randomized controlled 

trial (2) (n=309) were analyzed. Clinical characteristics of patients treated with DTIC are shown 

in Table 13.  

BMI was not significantly associated with PFS (CA 184-024, HR 0.83, 95% CI 0.59-

1.18; BRIM-3, HR 0.86, 95% CI 0.62-1.18) or OS (CA 184-024, HR 0.95, 95% CI 0.66-1.37; 
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BRIM-3, HR 0.94, 95% CI 0.62-1.41) in either cohort (Table 14, Figure 9).  Further, BMI was 

not significantly associated with outcomes in either males or females. Importantly, CA 184-024   

randomized patients to DTIC alone or DTIC + IPI which allowed me to statistically examine 

treatment interaction. In the OS analysis, the pinteraction for BMI, treatment, and sex was 0.035, 

indicating that BMI associations were sex- and treatment-specific.  
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Table 13: Characteristics of patients treated with dacarbazine (DTIC) 

 
Characteristic 

DTIC (CA 184-024, n=320) DTIC (BRIM3, n=221) 
BMI 

18.5-24.9 
No. (%) 

BMI 
25-29.9 
No. (%) 

BMI 
≥30 

No. (%) 

BMI 
18.5-24.9 
No. (%) 

BMI 
25-29.9 
No. (%) 

BMI 
≥30 

No. (%) 
Patients, No. 
(%) 

143 (45) 107 (33) 70 (22) 74 (33) 88 (40) 59 (27) 

Age, Mean, y 
(range) 

49 (17-
86) 

56 (22-
84) 

53 (31-
78) 

55 (23-
83) 

60 (24-
88) 

56 (32-88) 

Male, No. (%) 70 (49) 73 (68) 31 (44) 38 (51) 66 (75) 36 (61) 
Stage, No. (%) 
   III/M1a/M1b 42 (29) 29 (27) 31 (44) 24 (32) 37 (42) 33 (56) 
   M1c 101 (71) 78 (73) 39 (56) 50 (68) 51 (58) 26 (44) 
LDH >ULN,  
No. (%)a 

68 (48) 44 (41) 23 (33) 37 (50) 36 (41) 23 (39) 

ECOG PS, No. (%) 
  0 95 (66) 77 (72) 46 (66) 55 (74) 63 (72) 38 (64) 
  ≥1 48 (34) 30 (28) 24 (34) 19 (26) 25 (28) 21 (36) 
Mutation, No. (%)b 
  BRAF mutant 143 (100) 107 (100) 70 (100) - - - 
    V600E 132 (92) 94 (88) 62 (89) - - - 
    Other V600 8 (5) 10 (9) 5 (7) - - - 

aData missing for 1 patient in DTIC-G cohort. bSpecific BRAF mutation data (V600E vs other 
V600) missing for 9 patients in DTIC cohort. 
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Table 14: Outcomes for patients treated with dacarbazine (DTIC) 

 
 
 
Population 

 
 
BMI  

 
 
Patient 
No. 
(%) 

PFS OS 
Univariate 
Adjusted  
HR (95% 
CI) 

Multivariate 
Adjusted  
HR (95% 
CI) 

Univariate  
Adjusted  
HR (95% 
CI) 

Multivariate 
Adjusted  
HR (95% 
CI)  

DTIC (BRIM3)a 
  All 
patients  
  (n=320)    

18.5-
24.9 

143 
(45) 

1 1 1 1 

25-29.9 107 
(33) 

0.93 (0.70-
1.23) 

0.94 (0.70-
1.25) 

1.05 (0.79-
1.39) 

0.98 (0.73-
1.31) 

≥30 70 (22) 0.86 (0.62-
1.25) 

0.91 (0.64-
1.26) 

0.92 (0.66-
1.28) 

0.94 (0.66-
1.32) 

  Male 
  (n=174) 

18.5-
24.9 

70 (40) 1 1 1 1 

25-29.9 73 (42) 0.87 (0.61-
1.25) 

0.91 (0.63-
1.32) 

1.09 (0.76-
1.57) 

0.97 (0.66-
1.41) 

≥30 31 (18) 0.75 (0.46-
1.20) 

0.73 (0.43-
1.17) 

1.05 (0.64-
1.68) 

0.92 (0.56-
1.51) 

  Female 
  (n=146) 

18.5-
24.9 

73 (29) 1 1 1 1 

25-29.9 34 (23) 0.97 (0.60-
1.53) 

0.84 (0.49-
1.40) 

1.00 (0.61-
1.60) 

0.85 (0.50-
1.40) 

≥30 39 (27) 0.97 (0.60-
1.53) 

1.02 (0.63-
1.65) 

0.82 (0.51-
1.29) 

0.94 (0.57-
1.52) 

DTIC (CA 184-024)b 
  All 
patients  
  (n=221)    

18.5-
24.9 

74 (33) 1 1 1 1 

25-29.9 88 (40) 0.73 (0.52-
1.01) 

0.81 (0.58-
1.14) 

0.85 (0.61-
1.19) 

0.91 (0.64-
1.28) 

≥30 59 (27) 0.83 (0.59-
1.18) 

0.96 (0.67-
1.39) 

0.95 (0.66-
1.37) 

1.16 (0.79-
1.70) 

  Male 
  (n=140) 

18.5-
24.9 

38 (27) 1 1 1 1 

25-29.9 66 (47) 0.62 (0.41-
0.94) 

0.77 (0.50-
1.18) 

0.72 (0.48-
1.10) 

0.89 (0.58-
1.36) 

≥30 36 (26) 0.70 (0.44-
1.12) 

1.06 (0.63-
1.78) 

0.97 (0.60-
1.56) 

1.55 (0.91-
2.66) 

  Female 
  (n=81) 

18.5-
24.9 

36 (44) 1 1 1 1 

25-29.9 22 (27) 1.08 (0.62-
1.90) 

1.13 (0.63-
2.01) 

1.06 (0.60-
1.88) 

1.29 (0.70-
2.36) 

≥30 23 (28) 1.04 (0.61-
1.77) 

1.02 (0.58-
1.77) 

0.88 (0.50-
1.55) 

0.91 (0.51-
1.64) 

aAdjusted for age, gender, stage, LDH, mutation,  and ECOG performance status.  bAdjusted 
for age, gender, stage, LDH, and ECOG performance status 
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Figure 9. Outcomes by BMI in metastatic melanoma patients treated with DTIC.  A. All 

patients progression-free survival. B. All patients overall survival C. Male overall survival. D. 

Female overall survival. E. Male progression-free survival. F. Female progression-free survival. 

Red lines, normal BMI; Green lines, overweight; Blue lines, obese 
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Overall PFS Overall OS 
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Discussion 
In contrast to the results observed with targeted and immune therapy, BMI was not 

associated with outcomes in patients treated with chemotherapy. Interestingly, in some other 

malignancies, obesity has been associated with improved survival and one posited mechanism 

is via improved metabolic reserve in obese patients to allow them to better withstand 

chemotherapy which commonly causes anorexia, weight loss, nausea and vomiting, and 

diarrhea.(75) In contrast, in metastatic melanoma the paradoxical association is observed in 

patients treated with immunotherapy and targeted therapy which do not commonly cause 

weight loss, and not in those treated with chemotherapy. 

One potential explanation for why a BMI association is not seen with chemotherapy is 

that the activity is so low that it would in essence be difficult to “move the needle.” However, the 

activity of ipilimumab is low as well and in males treated with that therapy, the multivariable HR 

for overall survival was 0.4. Moreover, a test for interaction in the trial that randomized patients 

to ipilimumab + DTIC vs DTIC alone, a 6-way interaction for BMI, sex, and treatment was 0.35, 

supporting that these effects are predictive of response to contemporary therapies and not 

merely prognostic.   
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Chapter 5: Functional characterization of obesity in preclinical models of melanoma 
 

Introduction 
In order to functionally test the impact of obesity on melanoma tumor, I utilized a mouse 

model of diet-induced obesity. This model, in which male C57/Bl6 mice are fed a 60% high-fat 

diet, is well-validated in the literature and commonly used to test the impact of obesity on 

cancer initiation and progression.(76, 77) Compared to age-matched controls who have been 

fed a matched purified ingredient low-fat diet, diet-induced obesity (DIO) mice have higher body 

weight and adiposity by body composition analysis, as well as altered levels of obesity related 

cytokines such as insulin, IGF-1, leptin, and adiponectin. In other cancers, this model has been 

used to show that system-level metabolism can affect tumor biology and lead to increased 

tumor growth.(14-16, 78) Previously, models of B16 melanoma had demonstrated that diet-

induced obesity can increase melanoma tumor growth and progression though the mechanism 

has not been worked out. (52-54) Moreover, B16 melanoma is not a genetically relevant model 

with a defined driver mutation. Newer models now exist that are based on the driver mutations 

found in metastatic melanoma, specifically the BRAF mutation.  

Thus, in order to test the impact of energy balance in melanoma, I used a BRAF-mutant 

mouse melanoma cell lines injected into DIO and control mice. As the hypothesis was that 

energy balance would impact melanoma tumor growth and therapeutic sensitivity via the PI3K 

pathway, cell lines were chosen that were PTEN intact so that the PI3K pathway would not be 

constitutively activated.  As this model was BRAF-mutant and was in an immunocompetent 

mice, I was also able to examine the effect of obesity on response to both MAPK-pathway 

directed targeted therapy and immune therapy.  
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Results 
Cell line characterization 

Two BRAF mutant, PTEN intact mouse melanoma cell lines were obtained from the lab of Dr. 

Marcus Bosenberg at Yale University, YUMM 3.1 (BrafV600E::Cdkn2a-/-) and YUMM 5.2 

(BrafV600E::Cdkn2a+/-::p53-/-).  Reverse-phase protein array (RPPA) was performed on 

protein lysates extracted from the cell lines to quantitatively measure the expression levels of 

217 total- and phospho-proteins. Using a paired t-test with a cut-off of p<0.05, 141 proteins 

were identified which were differentially expressed between the two cell lines (Figure 10A).  To 

further drill down on the most significantly changed proteins, I introduced a new filter and 

examined those proteins with a fold change in mean protein expression >2.0 and identified 38 

differentially expressed proteins (Figure 10B). This analysis revealed Yumm 3.1 has significant 

higher expression of insulin-like growth factor (p<0.0001, average ratio YUMM 3.1/YUMM 5.2 = 

2.6) and insulin receptor (IR) (p<0.001, average ratio YUMM 3.1/YUMM 5.2 = 2.4) compared to 

YUMM 5.2. To validate these findings, I next performed western blot for IR and IGF1-R using 

the cell line Mel624 as a positive control and A375 as a negative control for IGF1-R. This 

analysis confirmed that YUMM 3.1 had high levels of both IR and IGF1-R and YUMM 5.2 had 

low levels (Figure 11).  
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Figure 10. YUMM 3.1 and YUMM 5.2 cell line reverse phase protein array 

Supervised clustering of RPPA data of 217 proteins in YUMM3.1 and YUMM 5.2 cell lines. A. 

Using a threshold of p<0.05, 141 proteins were identified which differentially expressed 

between the two cell lines. B. Applying an additional filter of > 2-fold change in mean protein 

expression between the two lines identified 38 proteins that were the most differentially 

expressed. Blue=decreased expression. Yellow=increased expression.  
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Figure 11. Western blot for IR and IGF1R 

Western blotting for IR on left and IGF1-R demonstrating high levels of both proteins in YUMM 

3.1 cells. Y3.1=YUMM 3.1, Y5.2=YUMM 5.2, 375=A375 (negative control), 624=Mel 624.   
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Mouse model characterization 

Mouse models of diet-induced obesity (DIO) and matched control mice were obtained 

from Jackson laboratories. Male C57/Bl6 mice are fed a 60% high fat diet (Research Diets Inc) 

since weaning at 6 weeks of age to produce a validated DIO phenotype.(77)  Control mice of the 

same background were fed a matched purified ingredient 10% fat diet (Research Diets Inc). 18 

week old DIO and control mice were received and then acclimated for 3 weeks before 

experiments were started. Throughout the experiment, they were continued on the same diets 

as fed at Jackson laboratories.    

In order to characterize and validate the metabolic phenotypes of the DIO vs control 

mice, baseline body weight, and fasting serum IGF-1, IGFBP-1 and glucose were measured 

(Figure 12). DIO mice were found to have significantly higher body weight (DIO 39.5 g vs. 

control 28.1 g, p<0.001) serum IGF-1 (DIO 454.5 ng/ml vs. control 322.6 ng/ml, p<0.001), and 

fasting glucose (DIO 153.8 mg/dl, vs. control 120.9 mg/dl, p=0.01) and lower IGFBP-1 (DIO 6.7 

ng/ml vs. control 25.3 ng/ml. p=0.0029). These values are consistent with the published 

literature on this model and indicate the expected phenotypes were achieved.   
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Figure 12. Baseline metabolic characteristics of DIO and control mice.   

DIO mice have higher A. body weight, B. serum IGF-1, and C. fasting glucose and lower D. 

IGFBP-1 compared to control mice.  
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Tumor growth experiments 

In the initial pilot study on melanoma tumor growth, 21 week old DIO and control mice 

were injected subcutaneously into the left flank with 1x106 YUMM 3.1 cells or YUMMM 5.2 

murine melanoma cells. Tumor size was measured 3X weekly and followed until tumor size 

reached 1.5 cm, or mice became moribund and were sacrificed. DIO increased tumor growth in 

both the YUMM 3.1 (Day 15 tumor size DIO 1059 ± 146 mm3 vs. control 282 ± 86 mm3, p=0.01) 

and YUMM 5.2 models (DIO 717.2 ± 229 mm3 vs control 62.13 ± 62.13 mm3, p=0.04) (Figure 

13).  As tumor growth was more consistent in the YUMM 3.1 model and our cell line 

characterization had shown that this line had higher levels of IR and IGF-R, follow-up studies 

were conducted with this model. A validation study conducted in 10 DIO and 10 control mice 

showed that tumors grew faster in DIO mice, with significantly greater day 14 tumor weight 

(p=0.012)  (Figure 14). 
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YUMM 3.1 

YUMM 5.2 

Figure 13. Tumor growth in DIO vs. control mice 

1.0 x 106 cells were injected subcutaneously into the flank of DIO or control mice.  

Increased tumor growth was observed in the DIO mice with both a. YUMM 3.1 cells 

and b. YUMM 5.2 cells 
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Figure 14. Tumor growth in DIO vs. control mice with YUMM 3.1 model.  DIO led to 

increased day 14 tumor weight (p=0.012).    
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Molecular and immunological correlates of obesity 

On reverse phase protein array analysis comparing the tumor samples from the DIO 

xenografts to those of the control mice, there were significant differences in 99 of the 298 

proteins assessed, demonstrating that obesity impacts the molecular biology of melanoma 

(Figure 15A). Two of the most differentially expressed proteins were pS6 residues, highly 

sensitive markers of PI3K pathway activation (Figure 15B). This was confirmed by 

immunohistochemistry (Figure 15C). Significant differences were also seen in pAMPK, a key 

marker of cellular metabolism, between the DIO and control mice (Figure 15B). 

By flow cytometry, there was decreased immune infiltration in DIO xenografts compared 

to the control mice. However, there were no significant differences in spleen immunocytes 

indicating that this was specific to tumor infiltration and not a global decrease in immune 

populations (Figure 16).  
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Figure 15. Diet induced obesity and melanoma molecular signaling.   

A. Heat map shows 99 proteins differentially expressed between DIO and control mice. B. pS6 

residues significantly increased and pAMPK significantly decreased in DIO vs. control mice. C. 

Immunohistochemistry of representative samples demonstrating increased pS6 staining in DIO 

tumor samples.   
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Figure 16 Effects of DIO on immune cell populations.  

A. Tumors from DIO mice exhibit decreased CD8, CD4, MDSC, and CD4/25 cells. B. splenic 

immunocytes do not differ by dietary group  
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Therapeutic response 

Finally, I examined the impact of DIO on response to targeted and immune therapy in 

the subcutaneous YUMM 3.1 model. 21 week old DIO and control mice were injected 

subcutaneously into the left flank with 1x106 YUMM 3.1 cells murine melanoma cells. When 

tumors were measurable in >75% of mice, treatments were started.  

In the first experiment, mice were treated with twice weekly IP injections of anti-PD1 

antibody or vehicle control. Tumors in both the DIO and control mice were resistant to PD1 

immunotherapy with no tumor regression seen in either model and there was no significant 

difference in tumor kinetics (Figure 17 A&B).  

In the next experiment, mice were treated with daily oral gavage of either dabrafenib + 

trametinib or vehicle control.  Tumors in both the DIO and the control mice were rapidly 

eradicated by the targeted therapy combination, again with no significant differences by diet 

group (Figure 17 C and D) 

 

Discussion 
In a genetically relevant subcutaneous mouse melanoma model, diet-induced obesity 

increases melanoma tumor growth.  Importantly, the phenotype of the mice was validated prior 

to initiating therapy and I demonstrated that these mice did have higher fasting glucose and 

IGF-1 in addition to higher body weight.  Tumors from DIO mice exhibited increased PI3K 

pathway activation and decreased pAMPK, consistent with the initial hypothesis. Interestingly, 

the tumors of the DIO mice had decreased tumor infiltrating immune cells. To my knowledge, 

this is the first time that RPPA and tumor flow cytometry have been used to examine the 

molecular and immunological impact of obesity. These studies support the clinical association 

of higher BMI with worse outcomes in patients with early stage melanoma. To definitively 

demonstrate that PI3K pathway activation underlies this relationship, future studies should 
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examine whether the effect of DIO can be abolished with PI3K inhibitors, fasting, and/or fasting 

mimetics.   

In this subcutaneous model, there were no differences in sensitivity to either PD1 

immunotherapy or dabrafenib + trametinib targeted therapy.  This cell line (YUMM 3.1) was 

resistant to immunotherapy and exquisitely sensitivity to combination targeted therapy which 

makes it very difficult to be able to show differences in sensitivity to therapy between two 

organism metabolic phenotypes. Further, this subcutaneous model may not reflect the biology 

of metastatic melanoma. Finally, the implantation of a tumor into a host that has been fattened 

for 15 weeks may not reflect the biology of a tumor that develops in a patient with a lifetime of 

obesity.  
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Figure 17. Effects of diet-induced obesity on response to immune and targeted therapy. 

YUMM 3.1 tumors are resistant to PD1 in both A. control and B. DIO mice. Dabrafenib + 

trametinib combination results in rapid tumor elimination in both C. control and D. DIO mice.  
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Chapter 6: Summary and Future Directions 
 

Little is known about the clinical and therapeutic significance of obesity in melanoma.   

Our recent analysis of melanoma patients with clinically localized disease demonstrated that 

obesity is associated with worse outcomes in this population. (50)  My findings in a preclinical 

mouse melanoma subcutaneous model that diet-induced obesity increases melanoma tumor 

growth support these epidemiological associations. Further, the findings that diet-induced 

obesity leads to increased PI3K pathway activation and decreased tumor infiltrating 

immunocytes in this model suggest a biological basis for these findings.  

In contrast, my analysis of multiple large, independent cohorts of metastatic melanoma 

patients treated with contemporary targeted and immune therapies unexpectedly revealed that 

obesity was associated with significantly improved outcomes. In aggregate, these data support 

the presence of an “obesity paradox” across the spectrum of melanoma development, 

progression, and treatment response. Future work will be directed at understanding the 

biological basis of this paradox. In the subcutaneous mouse model, I did not observe 

differences in sensitivity to either targeted or immune therapy between obese and non-obese 

mice.  

There are several possible explanations for why the mouse findings on therapeutic 

response do not reflect those observed in humans. First, targeted and immune therapies are 

used in humans in the metastatic setting and the mouse experiments were conducted using a 

subcutaneous model with rapid tumor growth which does not allow time for the development of 

metastases. Second, the cell lines used have the advantage of being genetically relevant 

(BRAF-mutant) and as they are mouse cell lines are able to be used in immunocompetent 

models and thus this model can be used to test sensitivity to both MAPK pathway directed 

targeted therapies and immune therapies. However, these driver-mutation driven cell lines do 

not reflect the many stochastic mutations that occur in UV-induced human melanoma. 
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Therefore, they are poorly immunogenic as reflected by the complete lack of sensitivity to PD1 

inhibition with either diet. To address these issues, future studies will be conducted using 

metastatic models (tail-vein injection and survival surgery) in which BRAF-mutant cell lines are 

first irradiated to make them more immunogenic and a GEMM model to try to recapitulate the 

biology of a tumor that develops in the setting of obesity rather than being injected into a model 

of obesity.  

The other possibility for the discrepancy between the findings in humans and mice on 

the effect of obesity on sensitivity to therapy is that the associations observed in humans are 

spurious or artificial and represent a methodological issue rather than a true clinical 

association. Indeed, an “obesity paradox” has been demonstrated in other diseases but 

remains controversial for this reason. Possible methodological explanations for an obesity 

paradox include BMI as an imperfect measure of adiposity, confounding, selection bias, collider 

stratification bias, detection bias, or reverse causality.(75) However, several features of the 

current study suggest a biological role of adiposity in the survival advantage associated with 

obesity with metastatic melanoma.   In other diseases in which the obesity paradox has been 

observed, the survival advantage is often limited to overweight or only mildly obese patients. In 

several diseases, either the cancer or its treatment (i.e., chemotherapy) often cause weight 

loss, raising the possibility that this association may represent reversal causality.(75, 79) 

However, in the current study, there was a dose-dependent effect of BMI with modestly 

improved outcomes in overweight patients and strong, consistent associations in obese 

patients, and a nearly linear association between increasing BMI and PFS that extended to 

morbid obesity in the large D+T cohort. Further, the magnitude of the benefit seen with obesity, 

particularly in men, was equal to or greater than that seen in the registration trials that led to 

drug approval, and were seen in both test and validation cohorts for targeted and immune 

therapy, again supporting this association is unlikely to be spurious. I also accounted for the 

potential contribution of traditional prognostic factors and the use of concomitant medications 
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which may have anti-cancer activity, including metformin,(80, 81) statins,(82) beta blockers,(83) 

and aspirin.(84) To interrogate other potential causes of the observed differences, I examined 

rates of adverse events and available pharmacokinetic data (cobimetinib).  These analyses 

again showed no significant differences by BMI category, supporting that treatment tolerance 

and drug exposure are unlikely to explain the observed associations.  Differences in drug 

absorption are also an unlikely cause given that associations were seen with agents given 

orally at a fixed dose (targeted therapies) and with weight-based intravenous dosing 

(immunotherapies). As BMI was analyzed at a single time point (therapy initiation), I cannot rule 

out potential antecedent weight loss.  However, the BMI distribution of each cohort mirrored 

that of the general population,(55) with over 60% of patients classified as overweight or obese, 

and <2% underweight. ECOG PS and albumin levels (PD-1/PDL-1 cohort) also did not differ by 

BMI category.  Further, the targeted and immune therapy regimens examined are not usually 

associated with significant weight loss, which instead is more typical of chemotherapy, for 

which no associations with BMI were detected.  

The strength and consistency of these associations support the need for focused 

investigations into their biological basis. Although targeted and immune therapy are 

fundamentally different modalities, cross-talk between oncogenic signaling pathways and 

immune response has been implicated in response and resistance to both treatments in 

melanoma.(70, 71, 85-87) The tumor that develops in an obese individual could have a 

fundamentally different, more indolent, biology. In order to examine differences in molecular 

signaling pathways between obese and non-obese individuals, we will analyze the molecular 

data from the Melanoma The Cancer Genome Atlas (TCGA) by BMI. The TCGA project 

includes comprehensive molecular profiling (whole exome sequencing (WES), RNA 

sequencing, and DNA methylation) on 471 melanoma patients. Through collaborations with 

other institutions I have been able to get BMI data for about 2/3 of these patients. We will 

examine this data using an unbiased approach but also in a directed fashion to investigate 

64 
 



specific hypotheses. For example, whole exome sequencing data will be used to examine 

mutation burden as high mutation load has been associated with response to therapy as these 

tumors are more immunogenic.(88, 89) Alternatively, obesity may impact tumor gene 

expression profiles or epigenetics. As previously noted, PI3K pathway alterations have been 

found to mediate resistance to both targeted and immune therapy.(25, 28) Given the fact that, 

consistent with my initial hypothesis, obesity was found to increase PI3K pathway activation in 

the mouse model, it is necessary to assess the association of BMI and PI3K pathway in 

humans.   

Our approach of examining BMI associations in the melanoma TCGA is supported by a 

recent investigation in renal cell carcinoma (RCC) (another cancer in which an obesity paradox 

exists) where an analysis of BMI in the RCC TCGA found that alterations in fatty acid 

metabolism were associated with both high BMI and improved outcomes.(36)   Given emerging 

evidence implicating tumor metabolism in melanoma therapeutic response,(90-92) the 

relationship between tumor metabolism and clinical metabolic phenotype should also be 

explored in this disease.  

Alternatively, rather than impacting the tumor biology, obesity could impact the host 

response to the tumor, namely the immune response. The immune response is important to 

response not only to immune therapy, but to targeted therapy as well.(68, 93) The presence of 

tumor infiltrating lymphocytes (TILs) has long been recognized as a favorable prognostic factor 

in melanoma.(94) The initial melanoma TCGA analysis also identified an “immune signature” 

that was associated with improved survival.(95) Immune signatures have also been shown to 

correlate with response to both targeted and immune therapy.(68, 96, 97) The impact of obesity 

on tumor immunology is unknown. Obesity is a state of chronic inflammation and this is one of 

the key mechanisms linking obesity to increased risk of many malignancies.(37)  Obesity has 

been shown to impair response to vaccines and infections. However, the impact of obesity on 

anti-tumor immunology, and specifically in the setting of immune and targeted therapy, has not 
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been examined. Thus, I will examine the association of BMI with tumor infiltrating lymphocytes, 

and PD-L1 expression. In addition, I will examine BMI associations with peripheral blood cell 

populations and cytokines as these have also been associated with response to therapy.(98, 

99)   Given recent data implicating the microbiome in response to immunotherapy in 

melanoma(100-102), and prior evidence linking the microbiome with diet and obesity,(103) I will 

also examine the microbiome as a potential mediator of the observed effects. 

The striking differences in BMI and outcome associations by sex observed here suggest 

a potential hormonal mediator. Strong and consistent associations of higher BMI with improved 

outcomes was seen in male metastatic melanoma patients treated with both targeted and 

immune therapy while BMI was not associated with outcomes in females (Figure 18). Female 

sex has long been recognized as a predictor of improved outcomes in melanoma.(104, 105) 

Intriguingly, higher BMI seems to overcome the survival disadvantage among males, as the 

outcomes of obese males were similar to females of any BMI in the targeted therapy and 

immunotherapy cohorts, whereas normal BMI males had significantly inferior outcomes.   

Interrogation of TCGA data in other malignancies has demonstrated gender-specific 

differences in tumor biology, notably in metabolic and immune pathways.(57)  In melanoma, 

there is emerging evidence of differential tumor immunology by gender, with female melanoma 

patients exhibiting improved autologous tumor infiltrating lymphocytes (TIL) expansion(106) 

and increased tumor-antigen specific T cells compared to their male counterparts.(107) 

Preclinical data showed increased sensitivity to immune checkpoint blockade in female vs male 

mice, and pointed towards an estrogen-mediated functional reduction in T regulatory cells as 

the mechanism.(108) This data is consistent with the key role estrogen has been shown to play 

in sex differences in autoimmune disease and immune response to vaccination and 

infections.(109)  
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Figure 18. Forest plot of hazard ratios for OS and PFS for high vs. low BMI by sex.  

Forest plots of hazard ratios for highest BMI group in comparison to normal BMI by cohort and 

sex for A. overall survival (OS) and B. progression-free survival (PFS) in males, and C. OS and 

D. PFS in females with metastatic melanoma receiving the indicated therapies. 
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Obesity leads to higher levels of circulating estrogen due to adipocyte aromatase 

conversion of androgens to estrogen compounds, though this effect is only significant in  men 

and postmenopausal females.(110) Combined with our findings, these data provide a strong 

rationale to examine the role of estrogen signaling on immune and/or tumor cells as a possible 

mediator of the gender-specific associations of obesity in this disease. Notably, although a 

randomized controlled trial of DTIC +/- tamoxifen, a selective estrogen receptor modulator, 

showed no benefit in metastatic melanoma patients overall, higher BMI in men was predictive 

of benefit from the addition of tamoxifen to chemotherapy, but not with chemotherapy 

alone.(111) Interestingly, the rationale for testing tamoxifen in melanoma was based on flawed 

studies showing high expression of estrogen receptor alpha (ERα) based on non-specific 

binding.(112) It has now been demonstrated that melanomas have very low (ERα) expression. 

However, melanoma does have high expression of estrogen-receptor beta (ERβ). (113, 114)  

ERβ has been shown to be anti-proliferative in other malignancies and recently in melanoma as 

well.(115-119)  In order to test this hypothesis, we will examine the TCGA data for correlations 

between BMI and sex and hormonal signaling and also perform functional testing of hormone 

signaling modulation. 

In conclusion, I have found a strong and consistent association of obesity with 

improved outcomes in patients with metastatic melanoma treated with targeted and immune 

therapies across multiple large independent cohorts. These associations appear to be driven 

predominantly by markedly improved outcomes in obese compared to normal BMI males. In 

contrast, I did not observe any significant associations of BMI with outcomes in female patients. 

As obesity is associated with worse outcomes in early stage melanoma, these findings support 

the presence of an obesity paradox in melanoma. The magnitude of the survival benefit 

associated with obesity in patients with metastatic melanoma support the need to include BMI 

as a stratification factor in the design of clinical trials. However, the implications for patient 

guidance at this point is unclear. While obesity at treatment initiation is associated with 
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improved outcomes, we do not know if deliberate change in weight after diagnosis can shift 

outcomes. It should be noted that we also do not know if deliberate weight changes can 

change the outcomes of other malignancies as well. Specifically, though it has now been very 

well-established that obesity is associated with worse outcomes in early stage breast cancer 

patients undergoing adjuvant therapy,(12) we currently lack prospective data examining the 

impact of deliberate weight loss after diagnosis on breast cancer patient outcomes.  There are 

currently ongoing randomized clinical trials assessing this question.  These types of trials are 

critical to establish whether BMI and outcome associations are reversible or whether these are 

non-reversible fixed biological effects, i.e. that the host metabolic phenotype has determined a 

tumor biology that cannot be changed.  

However, while in breast cancer we may lack data supporting that weight loss will 

decrease recurrence risk, there is abundant preclinical and correlative data supporting this 

strategy.(15, 16, 62, 73, 120-123) Moreover, most patients with early stage breast cancer, 

which has a very high cure rate, will ultimately die from other causes. The data linking obesity 

with increased risk of heart disease, stroke, and diabetes as well as second cancers is clear. 

Thus, even lacking the randomized clinical trial data supporting weight loss interventions in 

breast cancer survivors, there is compelling data both for supporting the rationale for trials 

testing this approach and even for supporting weight loss efforts pending these results in breast 

cancer patients as this will reduce their burden of other major causes of mortality and plausibly 

decrease their risk of breast cancer recurrence. 

In contrast, without an understanding of the mechanism underlying the association of 

obesity with improved outcomes in metastatic melanoma, preclinical evidence that obesity may 

increase cancer growth, and the impact of obesity on other potential causes of death, the 

epidemiological evidence presented in this thesis is not sufficient to support a weight gain 

intervention trial in metastatic melanoma patients. Instead, future research should be focused 

on understanding the biological basis for the association of obesity with improved outcomes so 
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that was can design rational therapeutic interventions (e.g. hormonal therapy, metabolic 

modulators) to improve the outcomes of all patients.  
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