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ABSTRACT

NOVEL BAYESIAN ADAPTIVE CLINICAL TRIAL DESIGNS IN

EARLY PHASES

Haitao Pan, Ph.D.

Advisory Professor: Ying Yuan, Ph.D.

Early phase, or phase I and phase II, trials are the first step in testing new

medicines that have been developed in the lab. The main goal of phase I clinical

trials is to establish the recommended dose of new drugs for phase II trials. For

the cytotoxic drugs, the goal is to find maximum tolerated dose (MTD). The guiding

principle for dose escalation in phase I trials is to avoid exposing too many patients to

subtherapeutic doses while preserving safety and maintaining rapid accrual. There-

fore, dose escalation methods, especially Bayesian designs, are recommended to be

used in phase I trials. There are many proposed Bayesian phase I adaptive designs,

among them, continual reassessment method (CRM) is the firstly proposed pioneered

Bayesian design. The CRM needs pre-specification of a series of prior guesses of toxic-

ity probabilities of each investigated doses, known as the skeleton, using a parametric

model, and then continuously updates the estimate of the dose-toxicity curve based

on accumulating data. By using a dose-toxicity model, the CRM efficiently pools

data across doses and adaptively makes the decision of dose assignment and selec-

tion. Two chapters of the thesis devote to development of the CRM design (chapter

2) and to extend the CRM design (chapter 3). Specifically, chapter 2 deals with

the issue of skeleton pre-specification in the CRM design. We propose an automatic
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way to generate multiple skeletons for Bayesian model averaging CRM (BMA-CRM),

an extension of robust version of the CRM, to avoid arbitrary specification of skele-

tons with improving performances compared to the original CRM and BMA-CRM

designs. Chapter 3 deals with bridging studies, or follow-up trials. The emergence

of bridging studies is due to different ethnic populations with different responses to

a same drug and consequentially attaining different MTDs. Therefore, conventional

one-size-fit-all paradigm cannot work. But, despite variations among different eth-

nic populations, their drug responses still show somewhat similarities. Commonly,

a landmark trial has been conducted and a MTD dose has also been established for

a certain population. Thus, independent conducting a trial for a new population of

ignoring information of the landmark trial is wasteful. Therefore, challenges of the

bridging studies include: how to effectively use/borrow information of the historical

landmark trial, and how to design trials to accommodate heterogeneities of different

populations. In this chapter, we develop a novel design, Bridging-CRM, B-CRM, to

borrow the landmark trial information based on a proposed mixture estimator and

the CRM framework, and to acknowledge different populations’ heterogeneities of us-

ing the idea of multiple skeletons. Chapter 4 focuses on phase II design for biosimilar

drug development. Biosimilar is a term that describes the equivalence of a generic

version to an innovator’s biologic drug product; biosimilars are close, but not exact

copies of biologic drugs already on the market. Guidelines for statistical methods to

establish biosimilarity remain nonspecific because of the newness of biosimilars. It is

therefore of high urgency to develop appropriate and reliable statistical methodolo-

gies for developing biosimilars. Some statistical methods have been proposed to assess

biosimilarity, but none of them proposed designs in this field. However, biosimilar

trials come with several challenges that are beyond the scope of the conventional ran-

domized comparative trial design. First, when a biosimilar is ready to be tested in a

randomized trial, the innovative reference drug has been in the market for many years
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and a huge amount of data on that drug has accumulated. It is critical to incorporate

these rich historical data into the biosimilar trial design to improve trial efficiency.

Another challenge when designing biosimilar trials is determining how to quantify

and monitor the biosimilar during the trial. To address these issues, in chapter 4,

we develop a new approach, the calibrated power prior (CPP), to allow the design

to adaptively borrow information from the historical data according to the congru-

ence between the historical data and the data collected in the current trial. We also

propose the Bayesian biosimilarity index (BBI) to assess the similarity between the

biosimilar and the innovative reference drug. In our design, we evaluate the BBI in a

group sequential fashion based on the accumulating interim data, and stop the trial

early once there is enough information to conclude or reject the similarity.
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1. Introduction

1.1 Background

The primary goal of a phase I clinical trial is to identify the maximum tolerated

dose (MTD) of a new drug, which is defined as the dose with the toxicity probability

closest to the target toxicity rate. Numerous statistical methods have been developed

for phase I dose-finding studies, for example, the conventional 3+3 design [1], the

continual reassessment method (CRM) [2], the decision-theoretic approach [3], the

dose escalation method with overdose control [4], the improved up-and-down design

[5], biased coin design [6], sequential testing approach [7], the modified toxicity prob-

ability interval design [8], and the newly developed Bayesian optimal interval design

[9], among others.

The CRM is an important phase I trial design that pioneered the model-based

adaptive dose-finding approach. The CRM prespecifies an initial shape of the dose-

toxicity curve, known as the skeleton, using a parameter model, and then continu-

ously updates the estimate of the dose-toxicity curve based on accumulating data.

The CRM adaptively makes the decision of dose assignment and selection. By us-

ing a dose-toxicity model, the CRM efficiently pools data across doses; however, this

means that it is also subject to the effects of model misspecification. Although the

CRM is generally robust [10, 11], its performance can be undermined if the skeleton

substantially deviates from the true dose-toxicity curve [12, 13, 14]. Before the phase

I trial is conducted, there is typically limited prior information on the shape of the

skeleton and thus the prespecification of the skeleton can be rather arbitrary. To

overcome this issue, Yin and Yuan [12] proposed Bayesian model averaging CRM
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(BMA-CRM), which specifies multiple skeletons, say three. By treating each skele-

ton as an independent model, the BMA-CRM uses a Bayesian model averaging or

selection approach to automatically favor the best fitting skeleton and thus improve

the robustness of the CRM. Standalone software with a graphic user interface for

BMA-CRM is freely available at the MD Anderson Department of Biostatistics. The

software has been downloaded more than 700 times since its completion. BMA-CRM

has been used for a number of ongoing phase I trials at MD Anderson Cancer Center

and other institutions.

The most common question we have received from the users of the BMA-CRM

is how to specify the three skeletons. This is a daunting task for most practitioners.

Specifying even a single skeleton for the standard CRM is not an easy task in prac-

tice. However, based on the desirable results of using multiple skeletons in the paper

[12], it’s worthwhile to refine the current version of the BNA-CMR method. Lee and

Cheung [15] proposed a systematic method to simplify the specification of the skele-

ton of the CRM on the basis of the indifference interval. That method works well

in practice, however, it cannot be directly used to specify multiple skeletons. The

rationale of the BMA-CRM is to use different skeletons to cover different possible

shapes of the dose-response curve, such that as long as one of them is close to the

true dose-toxicity curve, the BAM-CRM will perform well. Therefore, the natural

guidance is that we should choose the skeletons in such a way that each of them

represents different shapes of the dose-toxicity curve [12]. For example, we can set a

skeleton to represent a slowly increasing dose-toxicity curve with a high dose as the

MTD; while another skeleton represents a quickly increasing dose-toxicity curve with

a low dose as the MTD. However, as we show, the specification of multiple skeletons

is actually more complicated than that because seemingly different skeletons can lead

to an equivalent model.
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1.2 Research One

In the chapter 2, we propose an automatic method to help practitioners specify

multiple skeletons for BMA-CRM. We first define the equivalence of multiple skele-

tons and then convert the problem of measuring the equivalence of skeletons into

a collinearity problem. Combining the proposed nonequivalence measure of multiple

skeletons with the calibration method proposed by Lee and Cheung [15], we devise an

automatic way to specify the optimal multiple skeletons that maximize the average

percentage of correct selection of the MTD and meanwhile ensure sufficient nonequiv-

alence among the skeletons. Simulation studies show that the proposed method has

desirable operating characteristics. Software to implement the proposed method is

available for free downloading at www.trialdesign.org.

1.3 Research Two

Traditionally, phase I trials are conducted in a “one-size-fits-all” fashion. That

is, once the MTD of a drug is established in a landmark study based on a certain

ethnic population (e.g., a Caucasian population), the results are directly extrapolated

to other ethnic populations (e.g., an Asian population). Unfortunately, accumulat-

ing evidence shows that such a one-size-fits-all dose-finding paradigm is problematic,

and ethnicity plays an important role in a patient’s response to a drug [21]. The

genetic and environmental differences among ethnic populations influence both the

pharmacokinetics and pharmacodynamics of drugs [22]. As a result, different eth-

nic populations may have different MTDs. For example, a recent study of sorafenib

administered in patients with hepatocellular carcinoma (HCC) has found that the

MTD of sorafenib is significantly lower among Asian patients than among non-Asian

patients [23]. According to the manufacturer and the United States Food and Drug

Administration (FDA), the recommended dose of sorafenib is 400 mg bid. That dose
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has been used in the pivotal phase III Sorafenib HCC Assessment Randomized Pro-

tocol (SHARP) trial, which involves a patient population drawn from Europe, North

America and South America [24]. However, the study of Barrera et al. [23] showed

that Asian patients demonstrated poor tolerance to the manufacturer’s recommended

initial dose of the drug. Among a total of 36 Asian patients evaluated with this drug,

97% did not tolerate the FDA-indicated dose of 400 mg bid. Another example of

inter-ethnic difference in drug tolerance is the administration of docetaxel, a broad

spectrum taxane commonly used to treat solid tumors, such as lung, breast, gastric,

ovarian and prostate tumors. The main side effects of docetaxel are myelosuppression

and peripheral neuropathy. Different doses of docetaxel are administered in different

geographic populations. In Caucasians, the common starting dose of docetaxel for the

first-line treatment is 100mg/m2 [25]; whereas in countries with Asian populations,

such as China, the common starting dose is 70 to 75mg/m2 [26], and in Japan, the

approved starting dose for docetaxel is 60 mg/m2 [27]. Despite using the reduced

doses, the incidence of febrile neutropenia was still higher among Asians than among

Caucasians [26, 27]. Such inter-ethnic differences in docetaxel tolerance may arise

from different clearance and exposure rates in Asians and Caucasians [28]. Goh et

al. [29] reported that docetaxel clearance is approximately 40% lower, while the area

under the curve for docetaxel (i.e., drug exposure) is approximately 25% higher in

Asians than in Caucasians.

The inter-ethnic differences have being recognized by drug regulatory authorities.

In 1999, the FDA published the guidance, “Ethnic Factors in the Acceptability of For-

eign Clinical Data” (i.e., E5 Guidance), which suggested the need to distinguish three

ethnic categories (i.e., Asian, Black, and Caucasian) in drug development. The guid-

ance identified situations for which drugs could be ethnically sensitive and suggested

the types of bridge studies that may be required to extrapolate clinical trial results

from one region to another. In 2005, the FDA updated the guidance and extended
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the race category further to include 5 minimum ethnic groups, namely, Caucasian,

Black/African American, Asian, American Indian/Alaskan Native, and Native Hawai-

ian/other Pacific Islander. In the same year, the FDA approved the first race-specific

drug, isosorbide dinitrate and hydralazine hydrochloride (proprietary name: BiDil),

for the treatment of congestive cardiac failure in black patients.

The goal of the chapter 3 is to address the following bridge trial design question:

given that a landmark phase I trial has been conducted in a landmark population and

the corresponding MTD has been established, how do we design a follow-up trial (i.e.,

a bridge trial) to find the MTD for a new population. A straightforward approach

is to ignore the early landmark trial and conduct another independent phase I trial

(e.g., using the CRM) to find the MTD for the new population. While this approach

fully acknowledges the inter-ethnic heterogeneity, it is not efficient because the dose-

toxicity relationships in different ethnic populations are expected to be closely related,

even though there are some inter-ethnic differences. This is true because, after all, we

are concerned with the same drug acting through the same biological mechanism in

human beings. In other words, the dose-toxicity response observed in the landmark

trial should inform the basic dose-toxicity behavior of the drug in the new population.

Ignoring the data from the landmark trial is wasting useful information.

To address this issue, we propose the bridging CRM (B-CRM) design, which

utilizes the dose-toxicity data obtained from the landmark trial to achieve efficient

dose finding in the follow-up trial, while also acknowledging inter-ethnic heterogeneity.

Specifically, we first estimate the dose-toxicity curve using the data from the landmark

trial, and then use that estimate to form a prior dose-toxicity curve, which is also

known as the skeleton of the CRM, for the follow-up trial. To accommodate the

inter-ethnic heterogeneity, we form multiple skeletons, by shifting the estimate of

the dose-toxicity curve one dose level up or down, to represent a more conservative

or aggressive dose response in the new population. We employ the Bayesian model
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averaging approach [?] to draw inference across multiple skeletons and adaptively

make the decision of dose assignment and selection. This article focuses on ethnic

heterogeneity, but the proposed method can be used to handle other types of patient

heterogeneity, e.g., patient subgroups defined by prognostic factors or biomarkers.

Some research has been done for bridging studies. Shih [30] proposed a method to

determine whether a study is capable of bridging the foreign data to the new study.

Lan et al. [31] proposed weighted Z-tests in which incorporate the prior observed data

in bridging studies using weights. Gould et al. [32] developed a Bayesian predictive

approach for designing and analyzing bridging studies that fully incorporates the in-

formation provided by the original trials. Gandhi et al. [33] proposed a Bayesian

approach for inference from a bridging study with binary outcomes. Chow et al. [34]

provided a review of statistical methods for bridging studies. Most of the aforemen-

tioned works focus on statistical inference, and limited research has been done from

the trial design perspective. Morita [35] proposed a phase I trial design that uses an

informative prior to incorporate previous study information into the bridging study

based on the CRM.

1.4 Research Three

According to the Patient Protection and Affordable Care Act (Affordable Care

Act) [47], signed into law by President Obama, a biosimilar product is defined as

“a biological product that is highly similar to its reference product notwithstanding

minor differences in clinically inactive components and there are no clinically mean-

ingful differences in terms of safety, purity, and potency.” In other words, biosimilar

is a term that describes the equivalence of a generic version to an innovator’s biologic

drug product; biosimilars are close, but not exact copies of biologic drugs already

on the market. Examples of biological products include vaccines, blood products for

transfusion, human cells and tissues used for transplantation, gene therapies, and cel-
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lular therapies [48]. Many biological drugs are important life-saving products but are

extremely expensive, which severely limits their accessibility to the general patient

population. As the patents of many blockbuster proprietary biologic products reach

their expirations, such as those for rituximab, infliximab, palivizumab, omalizumab

and trastuzumab, biosimilars provide great potential to increase the accessibility of

biologic products for patients with life-threatening diseases. Currently, more than 80

biosimilars are under development, and global sales of biosimilars have been estimated

to reach $3.7 billion in 2015 [49].

Before a biosimilar can be used to treat patients, it must demonstrate “biosimilar-

ity” to its innovative reference product in terms of quality characteristics, biological

activity, safety and efficacy based on comprehensive comparability studies [50]. Be-

cause the development of biological products is much more complicated than that of

conventional small-molecule-based drugs, and biologics are sensitive to small proce-

dural or environmental changes during the manufacturing process, the conventional

approach to evaluating bioequivalence based on pharmacokinetic responses cannot be

directly applied to establish biosimilarity. Biosimilars cannot be regarded as generic

equivalents (or biogenerics) of innovative drugs because of the impossibility of the

active ingredients in biosimilars being identical to their innovative counterparts [51];

whereas generic small-molecule drugs can be considered therapeutically equivalent to

an innovative drug if pharmaceutical equivalence and bioequivalence can be demon-

strated. Guidelines for statistical methods to establish biosimilarity remain nonspe-

cific because of the newness of biosimilars, even though regulatory agencies, such as

the U.S. Food and Drug Administration (FDA), the European Medicines Agency, and

the World Health Organization, have provided detailed guidance for demonstrating

comparability in terms of quality, safety and efficacy. It is therefore of high urgency to

develop appropriate and reliable statistical methodologies for developing biosimilars.
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Some statistical methods have been proposed to assess biosimilarity. Lin et al.

[52] proposed a way to assess biosimilar products for binary endpoints using a parallel

line assay method; Li et al. [61] proposed a method for considering biosimilar clinical

efficacy trials with asymmetrical margins; Kang et al. [60] proposed a similarity crite-

rion using a relative distance method based on the absolute mean difference between a

biosimilar product and the innovative reference product; Chow et al. [57,58,59] made

important comments and discussed several scientific and practical issues raised in the

FDA guidance; Endrenyi et al. [56] discussed the differences between small-molecule

drugs and biologicals with respect to the interchangeability of drug products; for the

quality control of biosimilars, Yang et al. [55] proposed an adapted F-test for homo-

geneity of the variances to assess biosimilarity in variability; and that issue was also

considered by Zhang et al. [54] and Liao et al. [53]. Combest et al. [63] reviewed

the existing methods and demonstrated on a conceptual level that a Bayesian ap-

proach can reduce the sample size compared to the traditional frequentist approach

and batch-to-batch methods when developing a biosimilar. These existing methods

have mainly focused on the statistical assessment of biosimilarity; little research has

been done on designing clinical trials for biosimilars, especially from the Bayesian

perspective. A monograph by Chow [62] provides an excellent review of biosimilar

drug development.

In the chapter 4, we propose a two-arm randomized Bayesian group sequential

design to evaluate the biosimilarity between an investigational biosimilar and the

innovative reference drug. Biosimilar trials come with several challenges that are be-

yond the scope of the conventional randomized comparative trial design. First, when

a biosimilar is ready to be tested in a randomized trial, the innovative reference drug

has been in the market for many years and a huge amount of data on that drug has

accumulated. It is critical to incorporate these rich historical data into the biosimi-

lar trial design to improve trial efficiency. An efficient trial design not only leads to
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tremendous cost saving for the pharmaceutical industry, but translates into saving

lives because it allows patients to access the biosimilars earlier by expediting their de-

velopment. Another challenge when designing biosimilar trials is determining how to

quantify and monitor the biosimilar during the trial. To address these issues, we have

developed a new approach, the calibrated power prior (CPP), to allow the design to

adaptively borrow information from the historical data according to the congruence

between the historical data and the data collected in the current trial. We have also

proposed the Bayesian biosimilarity index (BBI) to assess the similarity between the

biosimilar and the innovative reference drug. In our design, we evaluate the BBI in a

group sequential fashion based on the accumulating interim data, and stop the trial

early once there is enough information to conclude or reject the similarity. Simula-

tion studies show that our method is statistically powerful, with well controlled type

I error rates.

This thesis interpolates material from three papers by the author [80,81,82]. Chap-

ter 2 uses material from Reference [80], coauthored with Ying Yuan. Meanwhile,

Chapter 3 is based on Reference [81], coauthored with Suyu Liu, Jielai Xia, Qin

Huang and Ying Yuan. Finally, Chapter 4 is based on Reference [82], coauthored

with Ying Yuan and Jielai Xia. Some material from each of these papers has also

been incorporated into this introductory Chapter.
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2. A default method to specify skeletons for Bayesian model

averaging continual reassessment method for phase I clinical

trials

2.1 Introduction

This chapter is based on ”A default method to specify skeletons for Bayesian

model averaging continual reassessment method for phase I clinical trials” published

in Statistics in Medicine (2016) [80] coauthored with Ying Yuan. Permission from

the journal has been granted for use in conjunction with the thesis.

As introduced above, the primary goal of a phase I clinical trial is to identify the

maximum tolerated dose (MTD) of a new drug and the CRM is an important phase

I trial design that pioneered the model-based adaptive dose-finding approach. The

BMA-CRM is an extension of the original version by specifying multiple skeletons

to produce more robust results than the original CRM design. But, how to specify

multiple skeletons is a challenging task.

In this chapter, we propose an automatic method to help practitioners specify

multiple skeletons for BMA-CRM. We first define the equivalence of multiple skele-

tons and then convert the problem of measuring the equivalence of skeletons into

a collinearity problem. Combining the proposed nonequivalence measure of multiple

skeletons with the calibration method proposed by Lee and Cheung [15], we devise an

automatic way to specify the optimal multiple skeletons that maximize the average

percentage of correct selection of the MTD and meanwhile ensure sufficient nonequiv-

alence among the skeletons. Simulation studies show that the proposed method has
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desirable operating characteristics. Software to implement the proposed method is

available for free downloading at www.trialdesigns.org.

The remainder of the chapter is organized as follows. In Section 2.2, after briefly

reviewing the BMA-CRM and the calibration method of Lee and Cheung, we intro-

duce the concept of equivalency of skeletons and the procedure to choose the optimal

skeletons for the BMA-CRM. In Section 2.3, we investigate the operating charac-

teristics of the proposed approach and conclude with a brief discussion in Section

2.4.

2.2 Method

2.2.1 Bayesian model averaging CRM (BMA-CRM)

Let d1 < · · · < dJ denote a set of J prespecified doses of a new drug under

investigation, and φ be the target toxicity rate. The standard CRM assumes a working

dose-toxicity model, and then based on the accumulating data, continuously updates

the estimate of the dose-toxicity model and makes the decision of dose escalation/de-

escalation. A commonly used working model is the following power (or empirical)

model,

Pr(toxicity at dj) = πj = p
exp(α)
j , j = 1, · · · , J (2.1)

where α is an unknown parameter, and (p1, · · · , pJ) are a set of prespecified constants,

known as skeletons. The skeleton can be interpreted as the prior guess of toxicity

probabilities at J doses. A normal prior distribution N(0, σ2) is often assumed for α,

e.g., α ∼ N(0, 2).

Although the CRM is generally robust, it is still influenced by the misspecifi-

cation of the dose-toxicity model. If the assumed dose-toxicity model substantially

deviates from the true dose-toxicity relationship, the performance of the CRM can be
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compromised under small sample sizes. The BMA-CRM addresses this issue by speci-

fying multiple skeletons, each of them leading to a dose-toxicity model, and then using

Bayesian model averaging to automatically favor the best fitting model for the decision

of dose escalation/de-escalation. Specifically, let {(p11, · · · , p1J), · · · , (pK1, · · · , pKJ)}

denote K prespecified skeletons, and (M1, · · · ,MK) be the corresponding models gen-

erated by each of these skeletons, with Mk given by

πkj = p
exp(αk)
kj . (2.2)

Assume that at a certain stage of the trial, nj patients are treated at dose j, and yj of

them experience dose-limiting toxicity (DLT), for j = 1, · · · , J . Given the observed

data D = {(nj, yj), j = 1, · · · , J}, the likelihood function under model Mk is

L(D|αk,Mk) ∝
J∏
j=1

{pexp(αk)
kj }yj{1− pexp(αk)

kj }nj−yj . (2.3)

Let Pr(Mk) be the prior probability that model Mk is the true model. The posterior

model probability for Mk is given by

Pr(Mk|D) =
L(D|Mk)Pr(Mk)∑K
i=1 L(D|Mi)Pr(Mi)

, (2.4)

where L(D|Mk) is the marginal likelihood for model Mk, and

L(D|Mk) =

∫
L(D|αk,Mk)f(αk|Mk)dαk, (2.5)

with αk denoting the parameter of model Mk, and f(αk|Mk) denoting the prior dis-

tribution of αk under model Mk. When there is no preference a priori for any single

model, we set equal prior probabilities Pr(Mk) = 1
K

.
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The BMA estimate for the toxicity probability at each dose level is given by

π̄j =
K∑
k=1

Pr(Mk|D)π̂kj , j = 1, · · · , J, (2.6)

where π̂kj is the posterior mean of the toxicity probability of dose level j under model

Mk, i.e.,

π̂kj =

∫
p

exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)∫
L(D|αk,Mk)f(αk|Mk)dαk

dαk. (2.7)

By assigning π̂kj a weight of Pr(Mk|D), the BMA method automatically identifies

and favors the best fitting model, thus π̄j is always the best estimate. Based on

π̄j, we can make the decision of dose escalation and de-escalation. The dose-finding

algorithm for the BMA-CRM can be described as follows:

1. Patients in the first cohort are treated at the lowest dose d1, or the physician-

specified dose.

2. At the current dose level jcurr, we obtain the BMA estimates for the toxicity

probabilities, π̄j (j = 1, . . . , J), based on the cumulated data. We then find

dose level j∗ that has a toxicity probability closest to φ, i.e.,

j∗ = argminj∈(1,...,J)|π̄j − φ|.

If jcurr > j∗, we de-escalate the dose level to jcurr − 1; if jcurr < j∗, we escalate

the dose level to jcurr + 1; otherwise, the dose stays at the same level as jcurr for

the next cohort of patients.

3. Once the maximum sample size is reached, the dose that has the toxicity prob-

ability closest to φ is selected as the MTD.
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In addition, we add a stopping rule in our algorithm:

if pr(toxicity rate at d1 > φ) =
K∑
k=1

pr{πk1(αk) > φ|Mk, D}pr(Mk|D) > 0.9,

the trial is terminated for safety.

2.2.2 Lee and Cheung’s method for choosing a single skeleton

Lee & Cheung [15] proposed a practical method for choosing a single skeleton for

the standard CRM based on the indifference interval, which is defined as an inter-

val of toxicity probabilities associated with the neighboring doses of the true MTD

such that these neighboring doses may be selected instead of the true MTD under

large samples. In that approach, one specify the target probability of toxicity φ, the

location of the MTD and an acceptable indifference interval δ. Then a skeleton will

be uniquely determined and the chosen skeleton guarantees that the target proba-

bility of the DLT will fall in the specified indifference interval. This process can be

conveniently implemented using function getprior(·) in R package ”dfcrm”. As the

indifference interval is a large sample property, in order to ensure good performance

in finite samples, Lee and Cheung [15] suggested numerically searching a range of

acceptable indifference intervals, rather than prespecifying a fixed value of the indif-

ference interval, to identify the optimal skeleton that yields the highest percentage

of correct dose selection (PCS) based on a set of prespecified toxicity scenarios. The

authors showed that this calibration method yields a skeleton with good operating

characteristics. The method of Lee and Cheung is useful for selecting a single skeleton

for the standard CRM, but cannot be used for selecting multiple skeletons. We will

extend this method to selecting multiple skeletons, for example, which can be use for

the BMA-CRM method.
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2.2.3 Equivalency of skeletons

As introduced previously, the rationale behind the BMA-CRM is to use multiple

skeletons (or models) to represent different dose-toxicity relationships, such that as

long as one of them is close to the truth, we will obtain good design performance,

thanks to the property that the BMA automatically identifies and favors the best

fitting model. Therefore, ideally, we would like these skeletons to be as different as

possible to maximize the coverage of the model space (i.e., all possible shapes of the

dose-response relationship). Achieving this goal, however, is trickier than it appears.

For example, Figure 2.1 shows three skeletons, which represent rather different prior

opinions on the dose-toxicity profile. Skeleton 1 represents an aggressive prior opinion

that the first dose is the MTD (with target toxicity probability of 0.3) and the dose-

toxicity curve takes a concave shape; skeleton 2 represents a neutral prior opinion

that the middle (i.e., 3rd) dose level is the MTD and toxicity increases linearly with

the dose; skeleton 3 represents a conservative opinion that the dose starts with a low

toxicity and the highest dose is the MTD. Although the three skeletons appear to

be rather different, they are actually equivalent (see below). We use the following

definition to determine equivalency of multiple skeletons.

Definition 1 Two skeletons p = {p1, . . . , pJ} and p′ = {p′1, . . . , p′J} are equivalent

if p′j = pcj, for j = 1, · · · , J , where c is a constant.

This definition matters since the equivalent skeletons lead to equivalent dose-

toxicity models (or likelihood) and thus the same posterior of estimate π̂kj. To see

this, the model using skeleton p′ is

πj = (p
′

j)
exp(α).
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Plugging in p
′
j = pcj, we obtain

πj = pj
exp(α+log(c)). (2.8)

Applying the reparameterization γ = α + log(c), model (2.8) becomes

πj = pj
exp(γ),

which is the same as the model that uses skeleton p.

Letting p ∼ p′ denote that p is equivalent to p′, it is easy to see that equivalence

has property of transitivity.

Lemma 1 If p ∼ p′ and p′ ∼ p′′, then p ∼ p′′.

The implication of the above results is that when the skeletons of the BMA-CRM

are equivalent, it is the same as using a single skeleton and thus Bayesian model

averaging cannot function for that purpose, i.e., to decrease the dependence of the

CRM on a single skeleton and improve the robustness of the design. Hereafter, we

discuss a way to measure the degree of equivalence among multiple skeletons and

propose a method to optimize the choice of multiple skeletons.

An interesting application of the above Definition 1 and Lemma 1 is that we can

prove that the skeletons generated by varying the MTD locations of parameter nu in

the function getprior in the R package dfcrm proposed by Lee&Cheung (2009) are

equivalent following the Definition 1.

Lemma 2 If p and p′ are two skeletons generated by the method of Lee&Cheung.

For these two skeletons, only initial guesses of location for the MTD are different,

then p ∼ p′.

A proof is in the Appendix of this chapter.
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There are two points should be noted here. One is that in the paper of Jia et

al. (2014), the authors discussed a concept ”irrelevant”, which is easy to be confused

with our above proposed concept ”invariant”. In Theorem 1 of their paper, they

proved that the choice of prior location v is ”irrelevant to the performance of the

likelihood continual reassessment method”. Therefore, the ”irrelevant” in Jia et al.

paper, they proved that the performance of using the likelihood approach of the CRM

design will not be influenced by the choose of parameter v, simply speaking, the

”irrelevant” concept is associated with the final performance of the CRM. However,

our ”invariant” means that the ratios of logarithm of multiple skeletons are constant

based on the different choice of parameter v. In this paper, the ”invariant” is based

on our proposed skeletons equivalence definition, which is totally different from Jia

et al. ”irrelevant” concept.

The other one point we should mention is that Jia et al. (2014 [11]) discussed

many characterization of the CRM design. In their paper, they proposed a concept

of ψ−equivalent functions. By using this concept, one can systematically expand the

scope of the dose-toxicity functions for the CRM design instead of just focusing on

the three commonly mentioned models of power function, hyperbolic tangent function

and logistic function. Their work makes big theoretical contributions to the CRM

design, however, our proposed ”equivalence” aims for the selection of skeletons when

using the CRM instead of choosing toxicity response models. Therefore, the two

concepts are totally different. Readers should not be confused by them.

2.2.4 Optimize the choice of skeletons

As shown in Figure 2.1, though we now have the Definition 1, it is still difficult

to evaluate the equivalency of multiple skeletons on the basis of a visual inspection.

A quantitative measure that gauges the degree of equivalence among multiple skele-
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ton needs to be developed. To do that, the key observation is that the equivalence

condition p′j = pcj can be rewritten as

log(p′j) = c log(pj), j = 1, · · · , J.

Hence, if we view {log(p′j)} and {log(pj)} as observations from two independent ran-

dom variables, the equivalency of two skeletons is the same as the logarithm of these

two skeletons being in perfect collinearity. This result is simple but powerful be-

cause it converts the problem of determining the equivalence of skeletons into a well-

studied, classical collinearity problem in linear regression analysis. Specifically, the

problem of measuring the equivalence among K skeletons, p1 = (p11, · · · , p1J), · · · ,

pK = (pK1, · · · , pKJ), can be converted into the problem of measuring the collinearity

among K vectors q1 = (log(p11), · · · , log(p1J)), · · · , qK = (log(pK1), · · · , log(pKJ)).

Following Weinberg [17] (page 214-216), a common way to measure the collinearity

among K skeletons, q1, · · · , qK , is given by

R̄2 =
1

K

K∑
k=1

R2
k, (2.9)

where R2
k is the R2 obtained by regressing qk on the other K − 1 skeletons, i.e.,

{qk′ , k′ 6= k}. The value of R̄2 is between 0 and 1. A small value indicates less

collinearity, i.e., the K skeletons are less equivalent, and R̄2 = 1 indicates perfect

collinearity, i.e., the K skeletons are equivalent. Given a set of K skeletons, we define

a measure for quantifying nonequivalency of the skeletons, denoted as Q, as follows,

Q = 1− R̄2 =
1

K

K∑
k=1

R2
k

.
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Our method of choosing K skeletons for BMA-CRM is based on the nonequiva-

lence measure Q and the skeleton calibration method of Lee and Cheung [15], which

can be described as follows.

1. For each of K skeletons to be specified, generate a pool of candidate skeletons

using Lee and Cheung’s method based on a sequence of indifference intervals

ranging from [a, b] with a step of c. This results in K skeleton pools, each of

which contains S = (a− b)/c candidate skeletons.

2. Randomly select one skeleton from each of the K skeleton pools to form a

K-skeleton set. This results in a total of SK possible K-skeleton sets.

3. Calculate the value of the nonequivalence measure Q for each of the K-skeleton

sets and sort them by the value of Q from large to small.

4. Pick the top 20 K-skeleton sets with the largest values of Q, and simulate

1,000 trials with each of them using the BMA-CRM under a set of prespecified

toxicity scenarios. We choose the K-skeleton set that maximizes the average

PCS (across the scenarios) as the recommended skeletons to be used in the

BMA-CRM for conducting the actual trial.

Several remarks are warranted. In the above algorithm, we do not directly choose

the K-skeleton set with the largest value of Q as the final recommended skeletons

because, as pointed out by Lee and Cheung [15], the skeleton generated by the in-

difference interval only guarantees a good performance in a large sample. To ensure

good finite-sample performance, following Lee and Cheung’s approach, we choose the

recommended skeleton as the skeleton set that yields the highest average PCS from

the top 20 skeleton sets (i.e., step 4 of the algorithm). Note that, rather than max-

imizing the average PCS, other criteria, e.g., maximizing the lowest PCS among the

simulation scenarios (i.e., the minimax criterion), can also be used to select the final

recommended skeletons. The numerical studies we present show that the use of the

19



highest average PCS generally performs better than the minimax criterion. Last, in

step 1, to generate a candidate skeleton, Lee and Cheung’s method (i.e., function

getprior(·) in R package “dfcrm”) requires specifying three parameters: the target

toxicity probability φ, the location of the MTD ν and an indifference interval δ. We

know that φ have set the indifference interval as a sequence from [a, b] with a step

of c. To specify the location of the MTD (i.e., ν), we have proven in Lemma 2 that

the skeleton generated by getprior(·) is actually equivalent under different values of

ν. In other words, the skeleton generated by the method of Lee and Cheung is in-

variant to the location of the MTD. Therefore, without loss of generality, we simply

set ν = [(k/K)J ] (i.e., the MTD is the k/K percentile of the investigational doses)

when generating the candidate skeleton pool for the kth skeleton, k = 1, · · · , K.

2.3 Simulation studies

2.3.1 Operating characteristics

We used the simulation setting previously used by Yin and Yuan [12]. We assumed

J = 8 dose levels, the target toxicity rate φ = 0.3 and 8 toxicity scenarios (see Table

1). Following the recommendation of Yin and Yuan [12], we used 3 skeletons to run

the BMA-CRM. To apply the proposed procedure to determine 3 skeletons, we set the

indifference interval range as [0.02, 0.15], with a step of 0.01, i.e., a = 0.02, b = 0.15,

and c = 0.01 in step 1 of the algorithm. This generated 14 different indifference

intervals. Cheung [16] recommended the indifference interval range [0.04, 0.10] for

the target toxicity rate of 0.33. We slightly expanded that range to [0.02, 0.15] to

obtain a broader coverage of the skeleton space. We considered two versions of the

proposed procedure, one maximizing the average PCS and one maximizing the lowest

PCS. We refer to the two sets of resulting skeletons as optimal skeletons and minimax

skeletons, respectively. We compared the performance of these two sets of skeletons
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with a set of “empirical skeletons” specified by varying the prior location of the MTD

and shape of the dose curve (see Figure 2.2):

Skeleton 1: 0.30, 0.39, 0.48, 0.57, 0.64, 0.71, 0.76, 0.81

Skeleton 2: 0.15, 0.19, 0.22, 0.26, 0.30, 0.34, 0.38, 0.42

Skeleton 3: 0.0001, 0.002, 0.01, 0.038, 0.095, 0.19, 0.30, 0.42

Although they appear to be very different, these three arbitrarily specified skeletons

are actually close to being equivalent, with Q = 0.03.

Table 2.1 shows the results based on 1,000 simulated trials, including the selection

percentage of each dose as the MTD, the average number of patients treated at each

dose, and average number of toxicity events. In scenario 1, the third dose is the MTD.

The empirical skeletons yielded the lowest PCS of 66.5% and the optimal skeletons

yielded the highest PCS of 72.1%. The PCS achieved by the minimax skeletons is

slightly lower than that achieved by the optimal skeletons (i.e., 70.3%). The number

of patients treated at each dose using the empirical skeletons (12.8) is also less than

the number obtained when using the optimal (13.2) and minimax (13.5) skeletons.

Scenario 2 has the MTD at the fifth dose level, and the optimal skeletons performed

best with the highest PCS (71.7%) and the largest number of patients treated at the

MTD (10.1). The minimax skeletons performed the second best while the empirical

skeletons performed the worst. Similar results are observed in scenarios 3, 4 and 5. In

scenario 6, the sixth dose is the MTD, and the PCS obtained when using the optimal

skeletons is the highest (40.3%), but that obtained when using the minimax skeletons

is lowest (37%). Similar results are observed in scenario 7. In scenario 8, the MTD

is located at the sixth dose. In this case, the empirical skeletons yielded the highest

PCS of 45.3%. The PCS obtained when using the optimal skeletons is 43.3%, which

is very close to the best one. The PCS obtained when using the minimax skeletons is
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37.0%. The average numbers of patients treated at the MTD are similar among the

three sets of skeletons.

For thorough exploration of our proposed method, we also compare our method

to the CRM method using just one single skeleton. For the one single skeleton CRM,

we use the getprior() to produce the skeletons. Specifically, we set the indifference

to be 0.10, and set the location parameter v = 5 (if we set v = 4, the results are

similar by our simulations). From Table 1, we can see that, if the dose level is evenly

distributed, for example, in Scenarios 1,4,5, the CRM with one single skeleton have

an average 9% higher PCS than those of our proposed method; however, in other

scenarios (2,3,6,7,8), our proposed method produced much better performances, an

average 128% higher PCS, than the CRM with just a single skeleton.

In summary, the simulations show that using the proposed optimal skeletons can

improve the performance of the BMA-CRM. The minimax skeletons performed rea-

sonably well but not as well as the optimal skeletons. The BMA-CRM equiping with

our proposed skeletons choice procedure has better performance than using one single

skeleton CRM design. We recommend the optimal skeletons of using the BMA-CRM

for practical use.

2.3.2 Sensitivity analysis

Our algorithm picks the skeleton set that maximizes the average PCS from the top

20 skeleton sets (with the largest values of Q) as the recommended optimal skeletons.

To investigate the effect of the nonequivalence measure Q on the performance of the

design, we considered two other ways to choose the optimal skeletons. Specifically,

after calculating the value of the nonequivalence measure Q for all possible K-skeleton

sets and sorting them by the value of Q from large to small (i.e., step 3 of the

algorithm), rather than picking the top 20 skeleton sets, we picked the middle or

bottom 20 skeleton sets, among which we chose the skeleton set that maximized the
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average PCS as the optimal skeletons. We compared the performance of these three

ways of choosing the optimal skeletons under 8 scenarios. Figures 2.3 and 2.4 display

the PCS and the number of patients treated at the MTD. We can see that in general,

the optimal skeleton set selected from the sets with the top 20 Q values performed

better than that based on the sets with the middle 20 Q values, which performed

better than that based on the sets with the bottom 20 Q values. This result shows that

using skeletons with larger values of Q, i.e., using more diverse skeletons, generally

improves the performance of the BMA-CRM. Across the 8 scenarios, although the

optimal skeleton set based on the sets with the top 20 Q values has the best or near

best performance in terms of both the PCS and the number of patients treated at the

MTD, it is not always the best. This is reasonable because, in the BMA-CRM, the

objective of using multiple skeletons is to improve the robustness of the design and

ensure that the design generally has good performance across various scenarios, not

to guarantee that the design always perform the best in every single scenario. The

details of the simulation results are provided in Table 2.

2.4 Summary

The BMA-CRM is an extension of the CRM that improves the robustness of

the design by specifying multiple skeletons and then using Bayesian model averaging

to automatically favor the best fitting model for robust dose finding. The major

difficulty for practitioners when using the BMA-CRM is the requirement of specifying

multiple skeletons. To overcome this issue, we propose a default, automatic method

to help practitioner specify multiple skeletons when using the BMA-CRM. We define

a measure to gauge the difference among multiple skeletons and then, based on that

measure, we develop a model calibration method to select the optimal skeletons.

The simulation studies show that the proposed method produces robust operating

characteristics. The algorithm is straightforward and easy to implement, and we
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provide the R function to facilitate the use of the method in practice. We are in the

process of incorporating the proposed method into the existing BMA-CRM software.
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Appendix Proof of Lemma 2 in Chapter 2

Lemma 2 If p and p′ are two skeletons generated by the method of Lee&Cheung.

For these two skeletons, only initial guesses of location for the MTD are different,

then p ∼ p′.

Proof: Assume v1 < v2, without loss of generality, let v2 = v1 + 1.

According to the algorithm by Lee & Cheung (2009) in their paper, for v1,

pi+1 = exp(
log(pT + δ)log(pi)

log(PT − δ)
), i = v1, · · · , k − 1

pv1 = pT

pi−1 = exp(
log(pT − δ)log(pi)

log(PT + δ)
), i = 2, · · · , v1

For v2:

p?i+1 = exp(
log(pT + δ)log(p?i )

log(PT − δ)
), i = v1 + 1, · · · , k

p?v1+1 = pT

p?i−1 = exp(
log(pT − δ)log(pi)

log(PT + δ)
), i = 2, · · · , v1 + 1

Given any k, if k ∈ [v1, · · · , k − 1], without loss of generality, let k = v1, we have

log(pk+1)

log(p?k+1)
=

log(pT +δ)log(pk)
log(pT−δ)

log(pT +δ)log(p?k)

log(pT−δ)

=
log(pv1)

log(p?v1
)

=
log(pv1)

log(pv1−1)
=

log(pv1)
log(pT−δ)log(pv1 )

log(pT +δ)

=
log(pT + δ)

log(pT − δ)
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If k ∈ [2, v1], without loss of generality, let k = v1, we have

log(pk−1)

log(p?k−1)
=

log(pT−δ)log(pv1 )

log(pT +δ)

log(pT−δ)log(p?v1
)

log(pT +δ)

log(pv1)

log(p?v1
)

=
log(pT + δ)

log(pT − δ)

Thus, for any two skeletons generated by the method of LL & Cheung, the ratio

of logarithm of the two skeleton is constant, that is, the two skeletons are equivalent

based on the Definition 1 proposed in the paper, irrespective of prior guess of the

MTD location.
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Table 2.1: Simulation Results

Dose level Avg # of
Skeletons 1 2 3 4 5 6 7 8 toxicity

Scenario 1
Tox rate 0.06 0.15 0.30 0.55 0.60 0.65 0.68 0.70

Empirical Sel % 0.8 15.9 66.5 15.7 0.9 0.1 0 0 8.7
# Pts 4.0 6.8 12.8 5.3 0.9 0.1 0 0

Optimal Sel % 0.2 16.5 72.1 10.5 0.5 0 0 0.1 8.5
# Pts 4.0 6.9 13.2 5.2 0.7 0 0 0

Minimax Sel % 0 15.4 70.3 13.5 0.6 0 0 0 8.5
# Pts 3.9 6.4 13.5 5.4 0.7 0.1 0 0

CRM Sel % 0 13 75.8 10.4 0.3 0 0 0 7.8
# Pts 3.8 7.7 14.6 3.5 0.2 0 0 0

Scenario 2
Tox rate 0.02 0.03 0.05 0.07 0.30 0.50 0.70 0.80

Empirical Sel % 0 0 0 10.1 61.5 26.3 1.9 0.2 7.2
# Pts 3.2 3.0 3.1 4.4 9.1 6.1 1.0 0

Optimal Sel % 0 0 0 9.5 71.7 17.1 1.1 0.6 6.7
# Pts 3.2 3.0 3.2 4.8 10.1 4.9 0.8 0

Minimax Sel % 0 0 0.2 12.1 64.6 21.0 1.4 0.7 6.8
# Pts 3.2 3.0 3.1 4.7 9.7 5.2 0.9 0.1

CRM Sel % 0 0 0 16 68 14 0 0 5.4
# Pts 3.2 3.3 4.4 5.9 10.2 2.8 0.2 0

Scenario 3
Tox rate 0.02 0.03 0.05 0.06 0.07 0.09 0.10 0.30

Empirical Sel % 0 0 0 0.5 1.0 2.7 17.4 78.4 3.4
# Pts 3.2 3.1 3.2 3.3 3.4 3.6 4 6.4

Optimal Sel % 0 0 0 0 0.4 1.6 9.3 88.7 3.6
# Pts 3.2 3.0 3.1 3.2 3.2 3.3 3.5 7.5

Minimax Sel % 0 0 0 0 1.0 3.7 14.3 81.0 3.3
# Pts 3.2 3.0 3.1 3.3 3.4 3.6 3.9 6.4

CRM Sel % 0 0 0 10.2 14.8 19.2 22.5 32.4 2.4
# Pts 3.2 3.3 4.4 4.9 4.9 3.9 3.0 2.5

Scenario 4
Tox rate 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Empirical Sel % 2.7 21.8 41.4 27.3 5.8 0.6 0.1 0 8.3
# Pts 5.6 7.5 8.9 5.6 1.9 0.4 0 0

Optimal Sel % 1.8 20.1 49.7 23.1 4.0 0.7 0 0.2 8.1
# Pts 5.4 7.4 9.7 5.6 1.6 0.3 0 0

Minimax Sel % 1.8 20.1 49.7 23.1 4.0 0.7 0 0.2 8.1
# Pts 5.4 7.4 9.7 5.6 1.6 0.3 0 0

CRM Sel % 1.3 26.6 53 17.7 1.3 0.1 0 0 7.5
# Pts 4.9 9.9 11.3 3.4 0.4 0 0 0
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Table 1 (continued)

Dose level Avg # of
Skeletons 1 2 3 4 5 6 7 8 toxicity

Scenario 5
Tox rate 0.20 0.30 0.40 0.50 0.60 0.65 0.70 0.75

Empirical Sel % 22.7 40.6 26.7 4.9 0.5 0 0 0 8.9
# Pts 10.4 9.4 6.8 2 0.3 0 0 0

Optimal Sel % 21.3 46.4 20.7 5.1 0.4 0.5 0.2 0 8.7
# Pts 11.0 9.6 5.9 1.9 0.4 0.1 0 0

Minimax Sel % 23.1 43.0 23.3 4.9 0.4 0.1 0 0 8.7
# Pts 11.6 9.1 6.1 1.9 0.3 0 0 0

CRM Sel % 18.9 53.9 24.4 2.7 0.1 0 0 0 8.8
# Pts 10.1 12.9 6.1 0.8 0 0 0 0

Scenario 6
Tox rate 0.02 0.06 0.08 0.12 0.20 0.30 0.40 0.50

Empirical Sel % 0 0 0.2 4.1 25.9 38.8 23.4 7.6 5.8
# Pts 3.2 3.1 3.3 4.2 6.2 6.1 3.1 0.8

Optimal Sel % 0 0 0.2 5.4 27.5 40.3 17.1 9.5 5.5
# Pts 3.3 3.1 3.5 4.6 6.4 5.8 2.4 0.9

Minimax Sel % 0 0 0.4 5.3 29.5 37.0 15.6 12.2 5.6
# Pts 3.2 3.1 3.4 4.6 6.6 5.5 2.7 0.9

CRM Sel % 0 0 0.4 22.5 41.9 23.4 6.9 1.1 4.2
# Pts 3.2 3.7 5.5 6.8 6.6 3.3 0.8 0.1

Scenario 7
Tox rate 0.02 0.03 0.04 0.06 0.08 0.10 0.30 0.50

Empirical Sel % 0 0 0 0 1.1 17 50.9 31 4.9
# Pts 3.2 3.0 3.1 3.2 3.5 4.4 6.1 3.5

Optimal Sel % 0 0 0 0 2.3 16.5 53.4 27.8 4.6
# Pts 3.2 3 3.1 3.3 3.6 4.9 6.5 2.4

Minimax Sel % 0 0 0 0.1 1.9 18.6 48.3 31.1 4.7
# Pts 3.2 3.0 3.1 3.3 3.5 4.6 5.8 3.5

CRM Sel % 0 0 0.5 10 15.1 25.1 41.7 7.5 3.1
# Pts 3.2 3.3 4.2 4.8 5.0 4.6 3.9 0.9

Scenario 8
Tox rate 0.03 0.07 0.10 0.15 0.20 0.30 0.50 0.70

Empirical Sel % 0 0 0.8 6.4 28 45.3 17.9 1.6 6.1
# Pts 3.3 3.2 3.7 4.6 5.9 5.9 2.9 0.4

Optimal Sel % 0 0 1.1 9.2 31.1 43.3 10.1 5.2 5.8
# Pts 3.3 3.2 3.7 4.9 6.4 5.9 2.2 0.4

Minimax Sel % 0 0.1 1.7 8.8 33.4 37.0 11.9 7.1 5.8
# Pts 3.3 3.2 3.7 4.9 6.4 5.9 2.2 0.4

CRM Sel % 0 0 8.6 30.5 35.1 21.0 4.4 0 4.4
# Pts 3.3 4.1 6.4 7.3 5.5 2.7 0.6 0.128
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Figure 2.3.: The percentage of correct dose selection (PCS) of the MTD in eight
scenarios based on the top, middle and bottom 20 skeleton sets.
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Figure 2.4.: The average number of patients treated at the MTD in eight scenarios
based on the top, middle and bottom 20 skeleton sets.
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Table 2.2: Simulation results when the recommended skeleton set selected from skele-
ton sets with top, middle and bottom 20 Q values

Dose level Avg # of
Q value 1 2 3 4 5 6 7 8 toxicity

Scenario 1
Tox rate 0.06 0.15 0.30 0.55 0.60 0.65 0.68 0.70

Top Sel % 0.2 16.5 72.1 10.5 0.5 0 0 0.1 8.5
# Pts 4.0 6.9 13.2 5.2 0.7 0 0 0

Middle Sel % 0.1 15.3 68.3 15.1 0.9 0.2 0 0 8.6
# Pts 4.0 6.5 13.0 5.6 0.8 0.1 0 0

Bottom Sel % 0.3 17.2 69.7 11.7 0.9 0 0 0 8.6
# Pts 4.1 6.9 12.9 5.3 0.6 0.1 0 0

Scenario 2
0.02 0.03 0.05 0.07 0.30 0.50 0.70 0.80

Top Sel % 0 0 0 9.5 71.7 17.1 1.1 0.6 6.7
# Pts 3.2 3.0 3.2 4.8 10.1 4.9 0.8 0

Middle Sel % 0 0 0 8.2 67.4 23.5 0.9 0 6.7
# Pts 3.3 3.1 3.2 4.7 9.8 5.1 0.8 0

Bottom Sel % 0 0 0.3 9.0 66.1 23.3 1.3 0 6.7
# Pts 3.2 3.0 3.2 4.8 9.7 5.2 0.8 0

Scenario 3
0.02 0.03 0.05 0.06 0.07 0.09 0.10 0.30

Top Sel % 0 0 0 0 0.4 1.6 9.3 88.7 3.6
# Pts 3.2 3.0 3.1 3.2 3.2 3.3 3.5 7.5

Middle Sel % 0 0 0 0.6 1.2 5.9 25.5 66.8 3.2
# Pts 3.2 3.0 3.2 3.4 3.6 3.9 4.4 5.3

Bottom Sel % 0 0 0.1 1.2 3.3 11.8 25.2 58.4 3.2
# Pts 3.2 3.0 3.2 3.7 3.9 4.1 3.9 4.8

Scenario 4
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Top Sel % 1.8 20.1 49.7 23.1 4.0 0.7 0 0.2 8.1
# Pts 5.4 7.4 9.7 5.6 1.6 0.3 0 0

Middle Sel % 1.1 19.8 51.8 22.4 4.3 0.3 0 0 8.0
# Pts 5.1 7.5 10.6 5.3 1.3 0.2 0 0

Bottom Sel % 1.7 21.8 48.3 22.9 4.9 0.4 0 0 8.1
# Pts 5.1 7.9 9.7 5.5 1.5 0.2 0 0
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Table 2 (continued)

Dose level Avg # of
Q value 1 2 3 4 5 6 7 8 toxicity

Scenario 5
0.20 0.30 0.40 0.50 0.60 0.65 0.70 0.75

Top Sel % 21.3 46.4 20.7 5.1 0.4 0.5 0.2 0 8.7
# Pts 11.0 9.6 5.9 1.9 0.4 0.1 0 0

Middle Sel % 20.5 49.3 23.4 3.6 0.1 0 0 0 8.7
# Pts 11.3 10.3 5.9 1.5 0.3 0 0 0

Bottom Sel % 21.7 47.2 22.7 3.7 0.3 0 0 0 8.7
# Pts 10.6 10.1 6.4 1.7 0.3 0 0 0

Scenario 6
0.02 0.06 0.08 0.12 0.20 0.30 0.40 0.50

Top Sel % 0 0 0.2 5.4 27.5 40.3 17.1 9.5 5.5
# Pts 3.3 3.1 3.5 4.6 6.4 5.8 2.4 0.9

Middle Sel % 0 0.1 0.2 5.3 27.0 43.7 19.2 4.5 5.4
# Pts 3.3 3.1 3.4 4.6 6.5 5.8 2.7 0.7

Bottom Sel % 0 0 0.3 6.2 32.9 41.9 15.3 3.4 5.3
# Pts 3.2 3.1 3.5 4.9 7.0 5.5 2.2 0.5

Scenario 7
0.02 0.03 0.04 0.06 0.08 0.10 0.30 0.50

Top Sel % 0 0 0 0 2.3 16.5 53.4 27.8 4.6
# Pts 3.2 3 3.1 3.3 3.6 4.9 6.5 2.4

Middle Sel % 0 0 0 0.3 3.0 18.0 54.0 24.7 4.4
# Pts 3.2 3.1 3.1 3.4 3.7 4.9 5.9 2.8

Bottom Sel % 0 0 0 0.6 2.9 22.2 53.3 21.0 4.2
# Pts 3.2 3.0 3.1 3.5 4.0 4.9 5.7 2.6

Scenario 8
0.03 0.07 0.10 0.15 0.20 0.30 0.50 0.70

Top Sel % 0 0 1.1 9.2 31.1 43.3 10.1 5.2 5.8
# Pts 3.3 3.2 3.7 4.9 6.4 5.9 2.2 0.4

Middle Sel % 0 0 1.4 10.4 28.8 46.8 12.1 0.5 5.6
# Pts 3.4 3.2 3.7 5.4 6.5 5.7 1.9 0.2

Bottom Sel % 0 0 1.8 11.9 32.6 42.0 11.2 0.5 5.5
# Pts 3.4 3.2 4.0 5.6 6.7 5.2 1.7 0.2
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3. Bridging continual reassessment method for phase I

clinical trials in different ethnic populations

3.1 Introduction

This chapter is based on ”Bridging continual reassessment method for phase I clin-

ical trials in different ethnic populations” published in Statistics in Medicine (2015)

[81] coauthored with Suyu Liu, Jielai Xia, Qing Huang and Ying Yuan. Permission

from the journal has been granted for use in conjunction with the thesis.

As introduced in Chapter 1, traditionally, phase I trials are conducted in a “one-

size-fits-all” fashion. That is, once the MTD of a drug is established in a landmark

study based on a certain ethnic population (e.g., a Caucasian population), the results

are directly extrapolated to other ethnic populations (e.g., an Asian population).

Unfortunately, accumulating evidence shows that such a one-size-fits-all dose-finding

paradigm is problematic, and ethnicity plays an important role in a patient’s re-

sponse to a drug [21]. The inter-ethnic differences have being recognized by drug

regulatory authorities. In 1999, the FDA published the guidance, “Ethnic Factors

in the Acceptability of Foreign Clinical Data” (i.e., E5 Guidance), which suggested

the need to distinguish three ethnic categories (i.e., Asian, Black, and Caucasian)

in drug development. The guidance identified situations for which drugs could be

ethnically sensitive and suggested the types of bridge studies that may be required

to extrapolate clinical trial results from one region to another.

The goal of this chapter is to address the following bridge trial design question:

given that a landmark phase I trial has been conducted in a landmark population

and the corresponding MTD has been established, how do we design a follow-up trial
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(i.e., a bridge trial) to find the MTD for a new population. To address this issue,

we propose the bridging CRM (B-CRM) design, which utilizes the dose-toxicity data

obtained from the landmark trial to achieve efficient dose finding in the follow-up

trial, while also acknowledging inter-ethnic heterogeneity.

The remainder of the chapter is organized as follows. In Section 3.2, after a

very brief review of the original CRM again, we propose a novel mixture estimate

of the dose-toxicity curve using the landmark trial data. Based on this estimate, we

present the procedure of using multiple skeletons to accommodate the inter-ethnic

heterogeneity and that of using Bayesian model averaging to make the decision of

dose assignment. In Section 3.3, we investigate the operating characteristics of the

proposed B-CRM using simulation studies. In Section 3.4, we illustrate the proposed

design using a phase I clinical trial for advanced solid tumors, and conclude with a

brief discussion in Section 3.5.

3.2 Methods

3.2.1 Continual Reassessment Method

Let (d1, . . . , dJ) denote a set of J prespecified doses for the drug under investiga-

tion. We assume that the dose-limiting toxicity (DLT) is recorded as a binary outcome

and the true dose toxicity monotonically increases with respect to the dose level. Let

(p1, . . . , pJ) be the prespecified toxicity probabilities of the J doses, p1 < . . . < pJ ,

which are also known as the skeleton. The CRM links the true toxicity probability

at dose dj, denoted as π(dj), with the prespecified prior toxicity probability pj, using

a working dose-toxicity model, such as

π(dj) = p
exp(α)
j (3.1)
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for j = 1, . . . , J , where α is an unknown parameter. To conduct the trial, the CRM

continuously updates the estimate of the dose-toxicity model using the accrued in-

formation, and adaptively assigns incoming patients to the dose with an estimated

toxicity probability closest to the prespecified target toxicity probability, φ. Once the

maximum sample size is reached, the dose with a posterior toxicity probability closest

to φ is selected as the MTD.

One important feature of the CRM is that the prior information on the dose-

toxicity curve can be naturally incorporated into the model through the specification

of the skeleton, which enhances the performance of the design. In the proposed B-

CRM, we exploit this feature of the CRM to borrow the dose-toxicity information from

the landmark trial for finding the MTD in the follow-up trial. In the next subsection,

we first describe a method to estimate the dose-toxicity curve based on the dose-

toxicity data generated by the landmark trial, and then discuss how to incorporate

such rich prior information into the follow-up trial by specifying multiple skeletons.

3.2.2 Estimation of dose-toxicity curve in landmark population

We assume that a landmark phase I trial has been conducted in a (landmark)

population, with JL prespecified doses, b1 < . . . < bJL . The trial identified dose bj∗

as the MTD and resulted in binomial data DL = (xj,mj), where xj is the number

of patients who experienced toxicity, and mj is the total number of patients treated

at dose bj, for j = 1, . . . , JL. Given DL, a straightforward way to estimate the dose-

toxicity curve is to fit a probit model

π
(P )
j ≡ π(P )(bj) = Φ(β0 + β1bj), (3.2)

where the superscript in π
(P )
j indicates it is a parametric estimate; Φ(·) is the cumu-

lative density function of the standard normal distribution; β0 and β1 are intercept
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and slope parameters, respectively. We require β1 > 0 such that toxicity monoton-

ically increases with the dose. We adopt the probit model because of its intuitive

toxicity tolerance interpretation [36]. The tolerance is defined as the dose intensity

level below which toxicity does not occur and above which toxicity occurs. If we

assume that the tolerance varies from subject to subject and is normally distributed,

then the dose-toxicity curve follows a probit model of the form given by (3.2). This

parametric approach is simple, but when the model is misspecified, the resulting es-

timate may be severely biased. Alternatively, we can nonparametrically estimate the

toxicity probability of dose bj using isotonic regression [37,38],

π̂
(NP )
j = max0≤u≤jminj≤v≤JL

∑v
k=u xk∑v
k=umk

.

This isotonic estimate satisfies the monotonic constraint π
(NP )
1 ≤ . . . ≤ π

(NP )
JL

, and

can be easily obtained by applying the pooled–adjacent-violators algorithm (PAVA)

[39] to the observed toxicity rate γj = xj/mj, j = 1, . . . , JL. Operatively, the PAVA

replaces any adjacent γj’s that violate the nondecreasing order by their (weighted)

average so that the resulting estimates, π̂
(NP )
j , become monotonic. Bhattacharya

and Kong [38] showed that π̂
(NP )
j is consistent under mild conditions. The drawback

of isotonic regression is that the resulting estimates can be highly variable, and it

is difficult to estimate the toxicity probabilities for doses outside the observed dose

range, [b1, bJL ].

To inherit the merits of parametric regression and nonparametric isotonic regres-

sion, we propose a mixture (or weighted average) estimator of toxicity probabilities,

π̂j = wjπ̂
(P )
j + (1− wj)π̂(NP )

j , (3.3)

where weight wi is chosen in a data-driven way such that if π̂
(P )
j is more accurate,

more weight is assigned to the probit regression, and if π̂
(NP )
j is more accurate, more
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weight is assigned to the isotonic regression. We propose the following data-based

weight,

wj =
λj

λj + 1
,

where

λj =

(
π̂

(P )
j

)xj (
1− π̂(P )

j

)mj−xj

(
π̂

(NP )
j

)xj (
1− π̂(NP )

j

)mj−xj (3.4)

is the (estimated) likelihood ratio evaluated at dose level j under the probit model

and isotonic regression. Using the likelihood ratio as a weight, the parametric or

nonparametric estimate that fits the data better will receive a higher weight. As a

result, the proposed mixture estimator has the consistency property described in the

following theorem (see the Appendix for the proof).

Theorem 1. The proposed mixture estimator in (3.3) is a consistent estimate of πj.

Although {π̂(P )
j } and {π̂(NP )

j } are both monotonic, as weight wj varies across doses,

the mixture estimator {π̂j} may occasionally violate the monotonicity assumption in

finite samples. If that occurs, we can apply the PAVA algorithm to the π̂j’s to impose

monotonicity. The transformed estimate will not take a form exactly same as that

given by (3.3), but it remains to be a consistent estimate of πj. For an arbitrary

dosage d between bj and bj+1, its toxicity probability can be estimated using linear

interpolation

π̂(d) = π̂j +
d− bj
bj+1 − bj

(π̂j+1 − π̂j), bj ≤ d ≤ bj+1.

Other more sophisticated methods, such as smoothing splines, can also be used to

extrapolate the π̂j’s and obtain the estimate of π(d). However, the simple linear

interpolation is typically adequate because our goal here is not to pursue a precise
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estimate of the entire dose-response curve for the landmark population, but to utilize

the landmark trial data to provide a ballpark estimate of the toxicity probabilities at

some prespecified doses (i.e., skeleton) for the follow-up population to facilitate the

dose finding for the follow-up trial. Actually, as we never observe any data between

bj and bj+1, all extrapolation methods are based on certain untestable model assump-

tions, and the observed data cannot inform us as to which extrapolation method

is better. In addition, similar to the standard CRM, under the proposed B-CRM

described below, the accumulating data collected in the follow-up trial will quickly

dominate the skeleton and limit the influence of the skeleton.

3.2.3 Bridging CRM

We now consider how to design the follow-up trial to find the MTD for a new

population, given that the estimate of the dose-toxicity curve has been obtained from

the landmark trial as described above. We assume that a set of J doses, d1 < . . . < dJ ,

are under investigation in the follow-up trial. These doses do not have to be the same

set of doses previously studied in the landmark trial (i.e., b1, . . . , bJL), and can be

chosen based on the data collected from the landmark trial. For example, based on

the dose-toxicity estimate (3) obtained from the landmark trial, we can choose the dj’s

locally to the MTD. This can be done by taking the MTD identified in the landmark

trial as the middle dose, and then determining other candidate doses by backsolving

the dose-toxicity function such that the estimated toxicity probabilities of the other

doses are equally spaced around the MTD. In general, no matter which approach is

taken, the MTD identified in the landmark trial, i.e., bj∗ , should be included as one

of the investigational doses in the follow-up trial. Without a loss of generality, we

assume that this dose corresponds to dose level t in the follow-up trial (i.e., dt = bj∗).

Because of inter-ethnic heterogeneity, we do not expect the dose-toxicity curve

for the new population to be exactly the same as that of the landmark population.
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On the other hand, we also do not expect that these two curves dramatically differ

from each other because they concern the same drug used to treat patients with the

same type of disease. In practical use, the dose-toxicity curve of the new population

should mostly resemble that of the landmark population, with some deviation. As a

result, the MTD for the new population should be in the neighborhood of that of the

landmark population (e.g., one dose level difference). Let p̂j = π̂(dj), j = 1, . . . , J ,

denote the estimate of toxicity probability of dj based on the landmark trial data.

Under the CRM framework, we incorporate such prior information using three sets

of skeletons:

skeleton 1 : pj = p̂j

skeleton 2 : pj = p̂j+1 for j = 1, . . . , J − 1,

pJ =
p̂J + 1

2

skeleton 3 : pj = p̂j−1 for j = 2, . . . , J,

p1 =
p̂1

2
.

That is, skeleton 1 represents that a priori the new population has the same toxicity

profile as that of the landmark population; whereas skeletons 2 and 3 shift the dose-

toxicity curve one level up and one level down, respectively. Under skeletons 1, 2 and

3, the MTD for the new population is a priori the same as, one level lower or one

level higher than that for the landmark population. For skeleton 2, when we shift the

toxicity probabilities one level up, the toxicity probability of the highest dose level

(i.e., pJ) will move out of the existing range, and thus we take pJ as the middle value

between p̂J and 1. Similarly, we set the toxicity probability of the lowest dose level

(i.e., p1) as the middle value between 0 and p̂1 in skeleton 3 when shifting the toxicity

probability one level down. Following Yin and Yuan [12], we regard each skeleton

as a CRM model and use the Bayesian model averaging (BMA) [40, 41] approach to
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estimate toxicity probabilities across multiple skeletons for adaptive dose assignment

and selection.

Specifically, let (M1, . . . ,MK) be the models corresponding to each set of prior

guesses of the toxicity probabilities {(p11, . . . , p1J), . . . , (pK1, . . . , pKJ)}, where K = 3.

Model Mk (k = 1, . . . , K) in the CRM is given by

πkj(αk) = p
exp(αk)
kj , j = 1, . . . , J,

which is based on the kth skeleton (pk1, . . . , pkJ). Let pr(Mk) be the prior proba-

bility that model Mk is the true model, i.e., the probability that the kth skeleton

(pk1, . . . , pkJ) matches the true dose-toxicity curve. The value of pr(Mk) should re-

flect the prior knowledge of whether the new population is likely to be less or more

tolerable to the drug. For example, Asians are often expected to be less tolerable

to certain drugs than Caucasians. Thus, if the landmark population is Caucasian,

we may assign a high prior probability to skeleton 2 and a low prior probability to

skeleton 3 when the new population is Asian. When there is no prior information re-

garding the relative tolerance between landmark and new populations, we can assign

equal weights to the different skeletons by simply setting pr(Mk) = 1/K. Suppose

at a certain stage of the trial, among nj patients treated at dose level j, yj patients

have experienced DLT. Let D = {(nj, yj), j = 1, . . . , J} denote the observed data,

the likelihood function under model Mk is

L(D|αk,Mk) =
J∏
j=1

{pexp(αk)
kj }yj{1− pexp(αk)

kj }nj−yj .

The posterior model probability for Mk is given by

pr(Mk|D) =
L(D|Mk)pr(Mk)∑K
i=1 L(D|Mi)pr(Mi)

,
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where L(D|Mk) is the marginal likelihood of model Mk,

L(D|Mk) =

∫
L(D|αk,Mk)f(αk|Mk)dαk,

αk is the power parameter in the CRM associated with model Mk, and f(αk|Mk) is

the prior distribution of αk under model Mk, e.g., f(αk|Mk) ∼ N(0, 2). The BMA

estimate for the toxicity probability at each dose level is given by

π̄j =
K∑
k=1

π̂kjpr(Mk|D), j = 1, . . . , J, (3.5)

where π̂kj is the posterior mean of the toxicity probability of dose level j under model

Mk, i.e.,

π̂kj =

∫
p

exp(αk)
kj

L(D|αk,Mk)f(αk|Mk)∫
L(D|αk,Mk)f(αk|Mk)dαk

dαk.

Alternatively, we can use the model selection approach to estimate the toxicity

probabilities and make the decision of dose assignment. That is, at each point of

decision making for dose assignment, we select the model with the highest posterior

probability, i.e., model k∗ = argmaxk∈(1,...,K)(pr(Mk|D)), and use that model to make

inference and dose assignment. However, our numerical study shows that the BMA

approach performs slightly better than the model selection approach (results not

shown), thus we focus on the BMA approach hereafter.

3.2.4 Dose-finding Algorithm

The dose-finding algorithm for our B-CRM design is described as follows,

1. Patients in the first cohort are treated at dose dt−1, i.e., the dose one level lower

than the MTD identified in the landmark trial (i.e., dt). Note that we choose

dt−1, rather than dt, as the starting dose to fit the physician’s inclination to be

conservative for safety purposes.
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2. At the current dose level, jcurr, based on the observed data, we calculate the

BMA estimates for the toxicity probabilities, π̄j (j = 1, . . . , J), and identify

dose level jbest that has a toxicity probability closest to φ, i.e.,

jbest = argminj∈(1,...,J)|π̄j − φ|.

If jcurr > jbest, we de-escalate the dose level to jcurr − 1; if jcurr < jbest, we

escalate the dose level to jcurr + 1; otherwise, the dose stays at the same level

as jcurr for the next cohort of patients. Being conservative, we restrict the dose

change to one level at a time.

3. Once the maximum sample size is reached, the dose that has the toxicity prob-

ability closest to φ is selected as the MTD.

In addition, we impose the following safety stopping rule: if pr(π1 > φ|D) > 0.9, the

trial is terminated for safety. That is, if the lowest dose has a high probability of being

overly toxic, we should stop the trial early for safety. The software to implement the

proposed B-CRM design (written in R) can be found in Supplementary Materials,

and also is available for free download at http://odin.mdacc.tmc.edu/∼yyuan/.

3.3 Simulation Studies

We investigated the operating characteristics of the proposed B-CRM design

through simulation studies. We considered 6 dose levels with a target toxicity prob-

ability of φ = 30%. The maximum sample size for the follow-up trial was 21 pa-

tients in cohorts of size 3. Suppose that the landmark trial has been done using

a certain phase I trial design (e.g., the “3+3” design), which yielded the following

data: the number of patients treated at each dose (m1, . . . ,m6) = (3, 3, 3, 6, 3, 0),

and the number of patients who experienced dose-limiting toxicity at each dose

(x1, . . . , x6) = (0, 0, 0, 1, 2, 0). Dose level 4 was identified as the MTD in the land-
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mark trial. For the follow-up trial, we considered 6 toxicity scenarios that differ in

the location of the true MTD. We note that the actual dosage of these 6 dose levels

can be different from that in the landmark trial. In addition, in practice, the number

of doses studied in the follow-up trial is not necessarily the same as that of the land-

mark trial. We compared the proposed B-CRM to two methods: the conventional

CRM (for a stand-alone trial), which does not actively borrow information from the

landmark trial, and the method proposed by Morita [35], which borrows information

from the landmark trial using an informative prior under the CRM (referred to as the

IP-CRM). For the IP-CRM method, a one-parameter logistic regression model was

used,

πj =
exp(β0 + β1bj)

1 + exp(β0 + β1bj)
,

where β0 ≡ 3, and dosage bj was specified using “backward fitting” [42] such that

the prior estimates of the toxicity probabilities match the estimates from the land-

mark trial, which are obtained by fitting a logistic model to the landmark trial data.

Following Morita [35], we assumed that β1 follows a gamma prior Ga(5, 5). For the

conventional CRM, we chose the skeleton (0.12, 0.20, 0.30, 0.40, 0.50, 0.6) based on

the method of Lee and Cheung [43], assuming an indifference interval of 0.1. We

used the same starting dose (i.e., dose level 3) for all three designs. Strictly speaking,

because this starting dose is chosen based on the landmark trial data, the CRM we

considered here actually borrowed some information from the landmark trial.

Table 3.1 shows the simulation results, including selection percentages and the

number of patients treated at each dose, based on 1,000 simulated trials. In scenario

1, the MTD is the fourth dose, the same dose level as the MTD of the landmark trial.

Compared to the CRM, the B-CRM yielded a 7.8% higher percentage of correct

selection (PCS), and assigned about 2 more patients to the MTD. In addition, the

B-CRM was also 9.6% less likely to select the overly toxic doses (i.e., dose levels 5 and

6) than the CRM. The IP-CRM performed best with the highest PCS. However, as we
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will see, when the MTD of the follow-up trial differs from that of the landmark trial,

the performance of the IP-CRM can be poor. Scenarios 2 and 3 respectively present

the cases in which the MTD in the follow-up trial is one level higher or lower than

that identified in the landmark population. In these cases, the B-CRM outperformed

the CRM with 6%-8% higher PCS and also lower probabilities of selecting the overly

toxic doses. The IP-CRM showed large variation: it performed reasonably well in

scenario 3 (PCS=54.0%), but poorly in scenario 2 (PCS=36.8%). In scenarios 4 and

5, the MTD in the follow-up trial is two levels different from that in the landmark

trial. The B-CRM consistently performed well, with the PCS ranging from 58.6%

to 63.1%. The CRM and IP-CRM were less stable. The CRM performed very well

in scenario 4, but not as well in scenario 5; whereas the IP-CRM performed well in

scenario 5, but very poorly in scenario 4. Scenario 6 has the first dose as the MTD,

which is three levels different from the MTD identified in the landmark trial. In this

case, the B-CRM and IP-CRM yielded similar PCS, but the B-CRM was 18.1% less

likely to select doses above the MTD. The PCS of the CRM is about 8% lower than

those of the B-CRM and IP-CRM. As a sensitivity analysis, we also investigated the

operating characteristics of the designs given a different set of landmark trial data,

i.e., (m1, . . . ,m6) = (3, 3, 6, 3, 0, 0) and (x1, . . . , x6) = (0, 0, 1, 2, 0, 0), for which dose

level 3 was identified as the MTD of the landmark trial. The pattern of the results is

generally similar to that given above (see Table 3.2).

As we noted previously, in practice, we do not expect the dose-toxicity curve for

the new population to dramatically differ from that for the landmark population

because they concern the same drug that is used to treat patients with the same type

of disease. The MTD for the new population should be in the neighborhood of that

of the landmark population, i.e., scenarios 1, 2 and 3 are more likely encountered

in practice than other scenarios. In the case when there is strong prior knowledge

that the MTD for the new population is much lower than the MTD for the landmark
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population, when specifying the investigational doses for the follow-up trial, we should

choose more dose levels that are lower than the MTD identified in the landmark trial.

Specifically, we can choose the dose that is most likely to be the MTD (for the new

population) as dose level 4 (of the follow-up trial), and then add other doses. By

doing so, we ensure that the MTD for the follow-up trial is still in the neighborhood

of that of the landmark trial in terms of dose level (i.e., dose level 4), although they

may be very different in terms of actual dosage. One advantage of using the power

model (3.1) is that the actual dosages are not directly used in the model; rather we

use their associated toxicity probabilities (i.e., the skeleton). For example, in our

simulation, we did not need to specify the actual dosages for the follow-up trials.

3.4 Application

A multi-center phase I study was recently conducted to find the MTD of BKM120

in adult patients with advanced solid tumors [44]. BKM120 is a potent, highly specific

oral inhibitor of the intracellular phosphatidylinositol-3-kinase (PI3K) pathway, which

regulates cellular functions, such as cell proliferation, growth, survival and apoptosis.

Selective inhibition of the PI3K pathway provides a promising therapeutic approach

to treat cancer. A total of six doses were investigated, i.e., 12.5, 25, 50, 80, 100,

or 150 mg. Dose-limiting toxicities (DLTs) were evaluated during the first treatment

cycle (28 days). The main DLTs were defined as any grade-3 or higher hematologic or

nonhematologic toxicity according to the Common Terminology Criteria for Adverse

Events (CTCAE), version 3.0. The MTD was defined as the highest dose of BKM120

yielding a DLT rate not higher than 33%. A total of 35 patients were treated in

the trial. The resulting dose-toxicity data are shown in Table 3.3, with a dose of

100mg selected as the MTD. As the patients in this trial came entirely from the

United States, Canada, the Netherlands and Spain, the identified MTD may not be

applicable to Asian populations. Our collaborators at the Fourth Military Medical
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University in China are interested in conducting a follow-up phase I bridge trial to

establish the MTD of BKM120 in Chinese patients.

We applied the proposed B-CRM to design the follow-up trial, in which we con-

sidered the same six doses that were evaluated in the landmark trial. The maximum

sample size was 24 patients. Based on the dose-toxicity data from the landmark trial

(see Table 3.3), we estimated the toxicity probabilities of the doses using the proposed

mixture estimator, yielding (π̂1, . . . , π̂6) =(0.002, 0.004, 0.014, 0.137, 0.220, 0.546).

Accordingly, we constructed three skeletons:

skeleton 1 : (p1, . . . , p6) = (0.002, 0.004, 0.014, 0.137, 0.220, 0.546)

skeleton 2 : (p1, . . . , p6) = (0.004, 0.014, 0.137, 0.220, 0.546, 0.773)

skeleton 3 : (p1, . . . , p6) = (0.001, 0.002, 0.004, 0.014, 0.137, 0.220),

where skeletons 1 to 3 represent that the MTD for Chinese patients is a priori the

same as, one level lower or one level higher than that for non-Asian patients. To

evaluate the operating characteristics of the B-CRM for this trial, we considered four

scenarios that differ in both the location of the MTD and the shape of the true

dose-toxicity curve for the follow-up trial (see Figure 3.1). We simulated 1,000 trials

under each scenario. For the purpose of comparison, we also applied the CRM and

IP-CRM. The results (see Table ??) show that, compared to the CRM and IP-CRM,

the proposed B-CRM has the most reliable operating characteristics. It selected the

true MTD consistently with high probabilities (62.5% to 68.5%) and assigned the

majority of the patients (i.e., about 10 or more) to the MTD. The CRM and IP-

CRM performed well in some scenarios (e.g., scenario 2 for the CRM, and scenario 4

for the IP-CRM), but worse in other scenarios (e.g., scenarios 1 and 4 for the CRM,

and scenario 2 for the IP-CRM).
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3.5 Summary

We have proposed the B-CRM to find the MTD of a drug for a new ethnic pop-

ulation, given that a landmark trial has been conducted to establish the MTD in a

landmark population. Our method borrows dose-toxicity information from the land-

mark trial and also accounts for inter-ethnic differences. We propose a novel mixture

estimator to estimate the dose-toxicity curve using the data yielded by the landmark

trial. Based on the resulting estimate, we form multiple skeletons to borrow informa-

tion from the landmark trial and also accommodate the inter-ethnic heterogeneity.

We use the Bayesian model averaging approach to make inference across multiple

skeletons and make the decision of dose assignment. Simulation studies show that

the proposed method yields higher MTD selection percentages and also assigns more

patients to the MTD than the conventional dose-finding method, which does not

borrow information across trials.

This article focuses on ethnic heterogeneity, but the proposed method can be

used to handle other types of patient heterogeneity. For example, based on certain

prognostic factors or biomarkers, patients often can be divided into several subgroups

that have different levels of sensitivity to a drug. In this case, we can first use

the conventional method to find the MTD in one subgroup, and then employ the

proposed B-CRM to find the MTD in other subgroups. In some situations, certain

modifications are needed for the proposed method to accommodate different types of

prior information. For example, suppose a drug has been tested in adults, but we

are interested in finding the MTD of that drug for children. Because children are

typically more susceptible to toxicity and the MTD for children is most likely lower

than that for adults, we may want to modify our three elicited skeletons such that the

MTDs of the three skeletons are the same as, one level lower and two levels lower than

the MTD of the landmark population. That is, we replace the skeleton that is one
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level higher with a skeleton that is two levels lower than the MTD of the landmark

population.

In the proposed B-CRM, we use the point estimate (i.e., posterior mean) of toxi-

city probability to determine the dose escalation and deescalation (i.e., step 2 of the

dose-finding algorithm described in Section 2.4). Ishizuka and Ohashi [45] and Neuen-

schwander et al. [68] pointed out that the use of the point estimate may cause the

tendency of aggressively allocating patients to toxic doses, at least under the logistic

dose-toxicity model. To address this issue, Neuenschwander et al. [68] proposed to

divide the toxicity probability into four intervals (i.e., under-dosing, targeted toxic-

ity, excessive toxicity and unacceptable toxicity) and use the posterior probabilities of

these intervals for the decision making in the CRM. The same strategy can be readily

adopted here to enhance the performance of the B-CRM.

Appendix: Proof of Theorem 1

Let πj denote the true toxicity probability of dose j. Because the nonparametric

estimate is generally consistent (Bhattacharya and Kong, 2007), i.e., π̂
(NP )
j → πj, the

consistency of π̂ depends on the property of the parametric estimate π̂
(P )
j . When the

probit model is correctly specified, π̂
(P )
j is a consistent estimate of πj. Therefore, π̂j

is consistent since

π̂j = wiπ̂
(P )
j + (1− wi)π̂(NP )

j → wiπj + (1− wj)πj = πj.

We now show that π̂j is still consistent when the probit model is misspecified. In

this case, the parametric estimate π̂
(P )
j is generally not consistent with π̂

(P )
j → π∗j ,

where π∗j is a constant not equal to πj. Define yij as the binary toxicity indicator for
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the ith subject treated at dose j. The likelihood ratio of the two binomial distribu-

tions, as shown in (3.4), can be rewritten using the Bernoulli density, as follows,

λj =

∏mj

i=1 f(yij|π̂(P )
j )∏mj

i=1 f(yij|π̂(NP )
j )

,

where f(yij|π̂(P )
j ) = (π̂

(P )
j )yij(1−π̂(P )

j )1−yij and f(yij|π̂(NP )
j ) = (π̂

(NP )
j )yij(1−π̂(NP )

j )1−yij .

Thus,

log(λj) =

mj∑
i=1

log
f(yij|π̂(P )

j )

f(yij|π̂(NP )
j )

,

where each term in the summation has a mean of

E

(
log

(
f(yij|π̂(P )

j )

f(yij|π̂(NP )
j )

))
→ E

(
log

(
f(yij|π∗j )
f(yij|πj)

))
= E

(
log

(
f(yij)

f(yij|πj)

)
− log

(
f(yij)

f(yij|π∗j )

))
= H(πj)−H(π∗j ),

with H(θ) denoting the Kullback-Leibler information of the form

H(θ) = E

(
log

(
f(yij)

f(yij|θ)

))
=

∫
log

(
f(yij)

f(yij|θ)

)
f(yij) dyij

Based on Jensen’s inequality, H(θ) is minimized at the true parameter value, θ = πj,

with a minimum value of 0. Therefore,

E

(
log

(
f(yij|π̂(P )

j )

f(yij|π̂(NP )
j )

))
< 0.
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That is, log(λj) is the sum of mj iid random variables with negative mean. By the

law of large numbers, log(λj)→ −∞ as mj →∞. As a result, wj = λj/(1 +λj)→ 0.

So we have

π̂j = wjπ̂
(P )
j + (1− wj)π̂(NP )

j → 0π∗j + (1− 0)πj = πj.
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Table 3.1: Simulation study comparing the CRM, CRM using an informative prior
(IP-CRM) and B-CRM. The underlined dose is the target dose.

Dose level
Scenario Design 1 2 3 4 5 6

1 Pr(toxicity) 0.04 0.08 0.15 0.33 0.45 0.60
CRM selection(%) 0.0 2.3 23.0 48.3 22.6 3.4

# of patients 0.1 2.0 7.1 7.0 3.9 0.9
IP-CRM selection(%) 0.0 0.3 25.3 72.4 2.0 0.0

# of patients 0.0 0.4 7.9 12.4 0.4 0.0
B-CRM selection(%) 0.0 1.0 26.5 56.1 15.6 0.8

# of patients 0.1 0.5 8.4 9.1 2.6 0.3

2 Pr(toxicity) 0.02 0.05 0.08 0.10 0.30 0.45
CRM selection(%) 0.0 0.1 1.4 15.5 53.7 29.2

# of patients 0.0 0.8 4.1 4.5 6.5 5.0
IP-CRM selection(%) 0.0 0.0 3.3 59.9 36.8 0.0

# of patients 0.0 0.1 4.4 12.2 4.3 0.0
B-CRM selection(%) 0.0 0.0 2.3 21.1 59.5 17.1

# of patients 0.0 0.1 4.5 6.1 7.6 2.6

3 Pr(toxicity) 0.05 0.12 0.25 0.42 0.55 0.65
CRM selection(%) 0.6 11.4 48.0 31.9 6.9 0.2

# of patients 0.4 4.0 8.9 5.2 2.1 0.3
IP-CRM selection(%) 0.1 6.1 54.0 39.1 0.7 0.0

# of patients 0.0 1.8 11.3 7.7 0.1 0.0
B-CRM selection(%) 0.1 8.7 56.3 31.7 2.9 0.1

# of patients 0.3 1.9 11.6 6.1 1.0 0.0

4 Pr(toxicity) 0.02 0.03 0.04 0.06 0.10 0.33
CRM selection(%) 0.0 0.0 0.1 1.1 18.8 80.0

# of patients 0.0 0.4 3.5 3.2 4.5 9.3
IP-CRM selection(%) 0.0 0.0 0.4 40.2 59.4 0.0

# of patients 0.0 0.0 3.5 10.4 7.1 0.0
B-CRM selection(%) 0.0 0.0 0.2 3.0 33.7 63.1

# of patients 0.0 0.0 3.5 4.2 6.0 7.3

5 Pr(toxicity) 0.15 0.26 0.50 0.60 0.70 0.75
CRM selection(%) 16.8 45.6 21.4 1.7 0.2 0.0

# of patients 3.3 7.8 6.4 0.9 0.2 0.0
IP-CRM selection(%) 9.7 56.9 31.1 1.9 0.0 0.0

# of patients 1.7 8.4 9.4 1.4 0.0 0.0
B-CRM selection(%) 15.9 58.6 21.6 0.6 0.1 0.0

# of patients 3.2 7.8 8.7 0.9 0.0 0.0

6 Pr(toxicity) 0.30 0.46 0.55 0.65 0.75 0.85
CRM selection(%) 40.9 19.0 3.5 0.3 0.0 0.0

# of patients 6.3 5.4 4.1 0.5 0.1 0.0
IP-CRM selection(%) 48.2 35.0 9.2 0.8 0.0 0.0

# of patients 5.7 7.6 6.7 0.7 0.0 0.0
B-CRM selection(%) 48.6 21.5 5.2 0.2 0.0 0.0

# of patients 6.4 5.3 6.0 0.5 0.0 0.0
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Table 3.2: Sensitivity analysis of the CRM, IP-CRM and B-CRM, given landmark
trial data (m1, . . . ,m6) = (3, 3, 6, 3, 0, 0) and (x1, . . . , x6) = (0, 0, 1, 2, 0, 0). The un-
derlined dose is the target dose.

Dose level
Scenario Design 1 2 3 4 5 6

1 Pr(toxicity) 0.05 0.12 0.35 0.42 0.55 0.65
CRM selection(%) 0.4 23.6 46.9 23.6 5.1 0.1

# of patients 1.4 6.8 7.1 4.3 1.1 0.2
IP-CRM selection(%) 0.0 21.5 76.2 2.3 0.0 0.0

# of patients 0.2 7.2 13.2 0.4 0.0 0.0
B-CRM selection(%) 0.0 22.3 59.6 16.5 1.4 0.0

# of patients 0.4 7.7 9.6 2.9 0.3 0.0

2 Pr(toxicity) 0.04 0.08 0.15 0.26 0.45 0.60
CRM selection(%) 0.0 1.4 15.6 47.9 31.2 3.8

# of patients 1.0 4.3 4.7 6.2 3.9 0.8
IP-CRM selection(%) 0.0 3.8 70.1 25.3 0.8 0.0

# of patients 0.1 4.5 13.3 3.1 0.0 0.0
B-CRM selection(%) 0.0 3.0 23.7 56.4 16.0 0.9

# of patients 0.2 4.7 6.6 7.1 2.2 0.2

3 Pr(toxicity) 0.15 0.26 0.50 0.60 0.70 0.75
CRM selection(%) 19.6 50.5 23.0 2.1 0.2 0.0

# of patients 5.1 9.1 4.8 1.3 0.1 0.0
IP-CRM selection(%) 9.1 63.4 26.8 0.0 0.0 0.0

# of patients 2.1 12.4 6.4 0.0 0.0 0.0
B-CRM selection(%) 10.0 64.3 22.4 1.1 0.0 0.0

# of patients 2.5 12.3 5.2 0.5 0.0 0.0

4 Pr(toxicity) 0.02 0.05 0.08 0.10 0.30 0.45
CRM selection(%) 0.0 0.1 1.2 14.9 50.3 33.5

# of patients 0.5 3.6 3.3 4.3 5.6 3.7
IP-CRM selection(%) 0.0 0.8 49.0 34.0 16.2 0.0

# of patients 0.0 3.7 11.3 5.4 0.6 0.0
B-CRM selection(%) 0.0 0.4 5.6 33.3 46.7 14.0

# of patients 0.1 3.7 4.7 5.7 5.4 1.4

5 Pr(toxicity) 0.30 0.46 0.55 0.65 0.75 0.85
CRM selection(%) 48.1 17.7 1.9 0.2 0.1 0.0

# of patients 9.4 6.0 1.1 0.3 0.0 0.0
IP-CRM selection(%) 52.9 32.7 4.6 0.0 0.0 0.0

# of patients 8.7 9.5 1.8 0.0 0.0 0.0
B-CRM selection(%) 54.4 22.3 3.1 0.3 0.0 0.0

# of patients 8.9 8.0 1.5 0.1 0.0 0.0

6 Pr(toxicity) 0.02 0.03 0.04 0.06 0.10 0.25
CRM selection(%) 0.0 0.0 0.2 1.6 14.9 83.3

# of patients 0.3 3.3 3.1 3.3 3.9 7.1
IP-CRM selection(%) 0.0 0.1 29.6 30.7 39.6 0.0

# of patients 0.0 3.3 9.2 7.2 1.2 0.0
B-CRM selection(%) 0.0 0.0 1.0 14.3 22.7 62.0

# of patients 0.0 3.4 3.8 4.6 4.5 4.7
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Table 3.3: The number of DLTs at six doses in the phase I trial of BKM120 for
patients with advanced solid tumors.

Dose (mg)
12.5 25 50 80 100 150

Number of patients 1 2 5 6 17 4
Number of DLTs 0 0 0 1 4 2

1 2 3 4 5 6
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Figure 3.1.: Four dose-toxicity curves for the new population and the estimate of the
dose-toxicity curve for the landmark population (represented by the thick line). The
horizontal dotted line indicates the target toxicity probability.
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4. A calibrated power prior approach to borrow information

from historical data with application to biosimilar clinical

trials

4.1 Introduction

This chapter is based on ”A calibrated power prior approach to borrow information

from historical data with application to biosimilar clinical trials” published in Journal

of Royal Statistical Science- Series C (2017) [82] coauthored with Ying Yuan and Jielai

Xia. Permission from the journal has been granted for use in conjunction with the

thesis.

As introduced in Chapter 1, biosimilar is a term that describes the equivalence

of a generic version to an innovator’s biologic drug product; biosimilars are close,

but not exact copies of biologic drugs already on the market. Since the patents of

many blockbuster proprietary biologic products reach their expirations, biosimilars

provide great potential to increase the accessibility of biologic products for patients

with life-threatening diseases. A biosimilar must demonstrate “biosimilarity” to its

innovative reference product in terms of quality characteristics, biological activity,

safety and efficacy based on comprehensive comparability studies before going to the

market. However, the development of biological products is much more complicated

than that of conventional small-molecule-based drugs, and biologics are sensitive to

small procedural or environmental changes during the manufacturing process, the con-

ventional approach to evaluating bioequivalence based on pharmacokinetic responses

cannot be directly applied to establish biosimilarity. Furthermore, guidelines for sta-

tistical methods to establish biosimilarity remain nonspecific because of the newness

56



of biosimilars, even though regulatory agencies, such as the U.S. Food and Drug

Administration (FDA), the European Medicines Agency, and the World Health Or-

ganization, have provided detailed guidance for demonstrating comparability in terms

of quality, safety and efficacy. It is therefore of high urgency to develop appropriate

and reliable statistical methodologies for developing biosimilars.

In this project, we propose a two-arm randomized Bayesian group sequential de-

sign to evaluate the biosimilarity between an investigational biosimilar and the inno-

vative reference drug. Biosimilar trials come with several challenges that are beyond

the scope of the conventional randomized comparative trial design. First, when a

biosimilar is ready to be tested in a randomized trial, the innovative reference drug

has been in the market for many years and a huge amount of data on that drug has

accumulated. It is critical to incorporate these rich historical data into the biosimi-

lar trial design to improve trial efficiency. An efficient trial design not only leads to

tremendous cost saving for the pharmaceutical industry, but translates into saving

lives because it allows patients to access the biosimilars earlier by expediting their

development. Another challenge when designing biosimilar trials is determining how

to quantify and monitor the biosimilar during the trial.

The remainder of this chapter is organized as follows. In Section 4.2, we briefly

review the power prior and propose the CPP. In Section 4.3, we propose the BBI for as-

sessing the similarity between the biosimilar and the innovative reference drug, based

on which we develop a Bayesian adaptive design for two-arm randomized biosimilar

trials. We investigate the operating characteristics of the proposed design using sim-

ulation studies in Section 4.4. In Section 4.5, we apply the proposed methodology to

design a biosimilar trial for treating arthritis, and conclude with a brief discussion in

Section 4.6.
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4.2 Methods

4.2.1 Power prior

A power prior provides an intuitive approach for borrowing information from

historical data. Let θ denote the parameter of interest, and π0(θ) denote the prior

distribution of θ (before accounting for the historical data), which is typically specified

as the noninformative or flat prior. Let D0 denote the historical data and D denote

the data from the current trial. The basic idea of the power prior is straightforward:

update π0(θ) using D0, and then use the resulting posterior as the (power) prior

to make posterior inference so that the information of D0 is incorporated into the

analysis of D. More precisely, the power prior can be written as

π(θ|D0, δ) ∝ L(θ|D0)δπ0(θ) (4.1)

where L(θ|D0) is the likelihood of θ conditional on historical data D0, and δ ∈ [0, 1]

is the power parameter, which controls how much information we borrow from D0.

When δ = 1, we fully borrow information from D0 and when δ = 0, we do not borrow

any information from D0. When D0 come from the exponential distribution family,

e.g., a normal or binomial distribution, δ can be interpreted as the fraction of the

information borrowed from D0. For example, for n normally distributed observations

with mean θ, L(θ|D0)δ is equivalent to a likelihood obtained by inflating the variance

with a factor of 1/δ, or, equivalently, a discounted historical sample size of nδ.

As the value of δ is typically unknown in practice, the fully Bayesian approach

treats δ as an unknown parameter [72,73] and assigns it a prior distribution π(δ), e.g.,

π(δ) ∼ Unif(0, 1), yielding the power prior as follows:

π(θ, δ|D0) =
L(θ|D0)δπ0(θ)π(δ)

C(δ)
, (4.2)
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where C(δ) =
∫

Θ
L(θ|D0)δπ0(θ)dθ is a normalizing constant. Ye et al. [67], Duan et al.

[69][70] and Neuenschwander and Spiegelhalter [68] noted that it is critical to include

the normalizing constant C(δ) in (4.2), and that ignoring C(δ) leads to pathological

priors, such as in the early literature on power priors [72,73,74]. Given data D from

the current trial, the posterior distribution of θ and δ is given by π(θ, δ|D,D0) ∝

L(θ|D)π(θ, δ|D0).

Although the power prior is intuitive and conceptually attractive, using it in prac-

tice is tricky. Neuenschwander and Spiegelhalter [68] found that the power parameter

δ cannot be estimated accurately based on D and D0, even when the sample size of

each data set is large. In other words, the power prior cannot appropriately determine

how much information we should borrow from D0. This led these authors to recom-

mend fixing the value δ a priori, rather than estimating it from the data. Ideally, δ

should be set close to 1 if D and D0 are congruent, and close to 0 if they are not. Un-

fortunately, this is difficult to implement in practice because a priori we typically do

not know the degree of congruence between D0 and D. As a result, Neuenschwander

and Spiegelhalter [68] concluded that “though the δ is easy to interpret, its elicitation

is challenging.”

4.2.2 Calibrated power prior

To address the aforementioned issues, we propose the CPP, for which δ is defined

as a function of a congruence measure between D0 and D. The key to our approach

is that the function which links δ and the congruent measure is prespecified and

calibrated by simulation such that when D0 is congruent with D, the CPP strongly

borrows information fromD0, thereby improving power, and whenD0 is not congruent

with D, the CPP borrows little information from D0, thereby controlling the type I

error rate.
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We first introduce a measure of congruence between D0 = (x1, · · · , xm) and

D = (y1, · · · , yn), where x and y can be continuous or binary variables. A nat-

ural measure of congruency between D0 and D is the Kolmogorov-Smirnov (KS)

statistic, a nonparametric statistic for testing whether D0 and D have the same

probability distribution. We note that the KS statistics is not the only choice,

and other reasonable measure of congruency can also be used. Specifically, for a

real number t, letting Fm(t) =
∑
I(xj ≤ t)/m and G(t) =

∑
I(yi ≤ t)/n denote

the empirical distribution functions for D0 and D, the KS statistic is defined as

SKS = max−∞<t<∞{|F (t)−G(t)|}. Letting Z(1) ≤ · · · ≤ Z(N) denote the N = m+ n

ordered values for the combined sample of D0 and D, the KS statistic can be calcu-

lated as

SKS = maxi=1,...,N{|F (Z(i))−G(Z(i))|}.

The KS statistic measures the discrepancy or incongruence between the distributions

of D0 and D. A large value of SKS indicates a larger incongruence between the

distributions of D0 and D. In our approach, we adopt a scaled KS statistic, defined

as

S = max(m,n)
1
4SKS.

The reason we choose to use S, rather than the original KS statistic, is to ensure that

the resulting CPP has a desirable property when borrowing information from D0, as

described later in Theorem 1.

We link the power parameter δ with S through

δ = g(S;φ), (4.3)

where g(·) is a monotonically increasing function with parameter φ, known as calibra-

tion function, satisfying the following requirements: when S is small, which indicates

that D0 and D are congruent, g(S;φ) is close to 1 to strongly borrow information
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from D0; and when S is large, which indicates that D and D0 are incongruent, we

require that g(S;φ) is close to 0 to acknowledge the difference between D and D0

and refrain from borrowing information from D0. Although many different forms of

g(·) satisfy these requirements, one particular function form that is simple and yields

good operating characteristics is the two-parameter reciprocal exponential model

δ = g(S;φ) =
1

1 + exp{a+ b× log(S)}
, (4.4)

where φ = (a, b) are tuning parameters that control the relationship between δ and

S. We require b > 0 to ensure that the larger incongruence between D0 and D leads

to a smaller value of δ. The procedure to determine the values of a and b is describe

later. The proposed CPP can be generally expressed as

π(θ|D0, a, b) = L(θ|D0)[1+exp{a+b×log(S)}]−1

π0(θ).

The CPP has the following large-sample property. The proof is provided in the

Appendix.

Theorem 1 When D0 and D have the same distribution (i.e., are congruent), δ

in (4.4) converges to 1 and thus the CPP fully borrows information from D0; and

when D0 and D have different distributions (i.e., are incongruent), δ converges to 0

and thus the CPP does not borrow any information from D0.

In contrast, the original power prior may not have this desirable convergence

property. This is because given only two data sets, the heterogeneity between the

data sets, and thus δ, cannot be estimated precisely, even when the sample size of

each data set is large. As noted by Neuenschwander, Branson, & Spiegelhalter [68],

this is analogous to a hierarchical (random-effects meta-analytic) model, for which it

is difficult to obtain a reasonably precise estimate for the between-trial variability if

only a few trials are available.
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The CPP follows the spirit of empirical Bayesian methodology in the sense that

it depends on the observed data D through S. However, unlike the typical empirical

Bayesian methodology, the determination of the tuning parameters a and b does not

rely on the data D actually observed in the current study. We calibrate the value of

a and b using simulated data, as follows. We first consider the case in which D0 =

(x1, · · · , xm) and D = (y1, · · · , yn) are normally distributed, with xi ∼ N(µ0, σ
2
0) and

yj ∼ N(µ0 + γ, σ2
0), i = 1, · · · ,m and j = 1, · · · , n. Given historical data D0, the

values of the tuning parameters a and b are calibrated as follows,

1. Estimate the mean and variance of D0 by µ̂0 = x̄ and σ̂2
0 =

∑m
i=1(xi−x̄)/(m−1)

with x̄ =
∑m

i=1 xi/m.

2. Elicit from subject experts the maximum practically negligible mean difference

γ, denoted as γc, such that D and D0 can be regarded as congruent, and the

minimal value of γ, denoted as γc̄, such that D is deemed to be substantially

different (i.e., not congruent) from D0. As we describe later, this elicitation

procedure is simple to implement for biosimilar studies.

3. Generate R replicates of D by simulating (y1, · · · , yn) from N(µ̂0 + γc, σ̂
2
0), and

calculate the KS statistics between each of these R simulated dataset and D0.

Let S∗(γc) denote the median of the R resulting KS statistics.

4. Repeat step 3 by replacing γc with γc̄, and let S∗(γc̄) denote the median of the

R resulting KS statistics.

5. Solve a and b in (4) based on the following two equations:

δc = g(S∗(γc);φ) (4.5)

δc̄ = g(S∗(γc̄);φ), , (4.6)
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where δc is a large constant close to 1 (e.g., 0.98), and δc̄ is a small constant

close to 0 (e.g., 0.01). The rationale is that when D0 and D are congruent (i.e.,

γ = γc), we want to strongly borrow information from D0 (i.e., δ is close to 1),

and when D0 and D are not congruent (i.e., γ = γc̄), we want to refrain from

borrowing information from D0 (i.e., δ is close to 0) to avoid bias and inflate

the type I error rate. Solving (4.5) and (4.6) leads to the values of a and b as

follows,

a = log(
1− δc
δc

)−
log( (1−δc)δc̄

(1−δc̄)δc
) log(S∗(rc))

log(S
∗(rc)

S∗(rc̄)
)

(4.7)

b =
log( (1−δc)δc̄

(1−δc̄)δc
)

log(S
∗(rc)

S∗(rc̄)
)
. (4.8)

Several remarks are warranted. First, we can see that the calibration of a and b do

not depend on D, the data collected from the current study. This is an important

and very desirable property because it allows the investigator to determine the values

of a and b and to include them in the study protocol before the onset of the study.

This will address the major concern about the methods of borrowing information

from historical data, that is, the method could be abused by choosing the degree

of borrowing to favor a certain result, e.g., statistically significant results. Second,

in step 2, γc and γc̄ are similar to the effect sizes (i.e., mean differences) that are

routinely used in power calculations, and thus can be readily elicited from subject

experts. This elicitation is particularly straightforward for biosimilar studies because

in order to assess biosimilarity, a priori, it is imperative to specify the biosimilar

margin/criterion (i.e., define the level of similarity required). In practice, we often

use the 0.80/1.25 rule, that is, the investigational biosimilar is regarded as being

similar to the reference agent if the difference between their (log-transformed) means
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is within (log(0.80) = −0.223, log(1.25) = 0.223). In this case, it is natural to choose

γc̄ = 0.223, and set γc at the value that represents a practically negligible difference.

In the proposed procedure, a and b are solved on the basis of two elicited values

of γ (i.e., γc and γc̄). If desirable, more than two values of γ can be elicited and

paired with desirable degrees of information borrowing from D0, for example, γ =

(0.223, 0.2, 0.15, 0.1, 0) and δ = (0, 0.25, 0.50, 0.75, 1). This will result in more than

two equations of the form of (4.5) and (4.6). In this case, the least squares method can

be used to solve a and b. We note that a common variance is assumed to simulate

D in step 3. That assumption can be easily relaxed by using a different value of

variance for simulating D. However, as the goal of the above procedure is to calibrate

the value of a and b, not to assess a biosimilar, the common variance assumption is

not critical, as shown later in the sensitivity analysis.

The above calibration procedure can also be used to handle the case in which D

and D0 are binary endpoints with minor modifications. Details are provided in the

Appendix. In the next section, we describe how to use the CPP to design two-arm

randomized biosimilar trials.

4.3 Bayesian design for comparative biosimilar trials

Consider a biosimilar trial in which patients are randomized to receive an investi-

gational biosimilar (T) or an innovative reference (R) drug. Let YT and YR denote the

primary clinical efficacy endpoints for T and R, respectively, which can be a contin-

uous or binary variable. Denote µk = E(Yk) for k = T,R. We assume that historical

data D0 = (x1, · · · , xm) are available for R.

Before describing our design, we propose a new measure, the Bayesian Biosimi-

larity Index (BBI), to quantify the similarity between T and R,

BBI = Pr(λL < µT/µR < λU |data),
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where λL and λU are the prespecified biosimilarity limits. In practice, (λL, λU) are

often chosen as (80%, 125%). For log-transformed normal data, the BBI can be

equivalently defined as BBI = Pr(λ∗L < µT−µR < λ∗U |data), where biosimilarity limits

λ∗L = log(λL) and λ∗U = log(λU) and are often chosen as (-0.223, 0.223). Compared

to the existing approaches based on the frequentist confidence interval of µT/µR,

one important advantage of the BBI is its intuitive interpretation and its ability

to define and assess biosimilarity using easy-to-understand probability statements.

Specifically, the BBI represents the probability that T and R are biosimilar (i.e.,

located within the prespecified biosimilarity limits), given the observed data. For

example, BBI=95% means that there is 95% chance that R and T are similar based

on the observed data. In contrast, the 95% confidence interval of µT/µR only tell us

the range of the values that have 95% chance of covering the true value of µT/µR under

repeated sampling. It does not tell us how likely it is that µT/µR is located within

the prespecified biosimilarity limits (i.e., satisfies the biosimilar criterion). We may

compare the confidence interval with (λL, λU) to see whether the former is located

within the latter, but the confidence interval still does not tell us the probability that

R and T are similar.

With the BBI in hand, the proposed Bayesian design is described as follows,

assuming that K interim looks are planned for the trial after n1, · · · , nK patients

have been enrolled into arms T and R.

1. Enroll 2n1 patients and randomize them to T and R arms.

2. Given the kth interim data DT (nk) = (yT,1, · · · yT,nk
) DR(nk) = (yR,1, · · · yR,nk

),

k = 1, · · · , K

i. (Futility stopping) If BBI < Cf , terminate the trial early and conclude that

T is not similar to R, where Cf is a probability cutoff for futility stopping,;
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ii. (Superiority stopping) If BBI > Cs, terminate the trial early and conclude

that T and R are similar, where Cs is a probability cutoff for superiority

stopping;

iii. Otherwise, continue to enroll patients until the next interim analysis is

reached.

3 Once the maximum sample size is reached, compute the BBI based on all ob-

served data. If BBI > Cs, conclude that T and R are similar; otherwise, they

are not similar.

To ensure that the design possesses good frequentist operating characteristics, proba-

bility cutoffs Cf and Cs should be calibrated through simulations to achieve desirable

type I and II error rates. This simulation-based calibrated procedure is widely used

in Bayesian clinical trial designs [76, 77]. The software to implement the proposed

Bayesian biosimilar design (written in R) will be available at http://odin.mdacc.tmc.edu/∼

yyuan/. The details of calculating BBI at each interim are provided in Appendix.

4.4 Simulation studies

4.4.1 Simulation setting

We investigated the operating characteristics of the proposed Bayesian design via

simulation studies. We considered both the normally distributed endpoint and the

binary endpoint. For the normally distributed endpoint, the maximum total sample

size was 240, with two interim analyses conducted when 80 and 160 patients were

enrolled. Patients were equally randomized into arms T and R. We generated YR from

N(µR, 0.5
2), with µR = 0, and generated YT from N(µT , 0.5

2), with µT = −0.223,

-0.115, 0, 0.115, and 0.223. We adopted the 0.80/1.25 rule to define biosimilarity such

that T and R are similar if −0.223 < µR − µT < 0.223, assuming that YT and YR are
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log-transformed data. In other words, T and R are similar when µT = −0.115, 0 and

0.115, and not similar when µT = −0.223 and 0.223. We generated historical data X

from N(µ0, 0.5
2) with µ0 = 0, -0.5, -0.3, 0.3, 0.5 and sample size N0 =300 and 500.

To obtain the CPP, we elicited γc = 0 and γc̄ = 0.223 with δc = 0.99 and δc̄ = 0.001.

The resulting tuning parameters a and b are displayed in Table 4.1. In our Bayesian

design, we set Cf = 0.4 and Cs = 0.955, which are chosen by calibrating the type I

error rate to the nominal value of 5% when µT = −0.223 and 0.223.

For the binary endpoint, the maximum total sample size was 1800, with two

interim analyses conducted when 600 and 1200 patients were enrolled. To obtain

reasonable power, such as 80%, the binary endpoint requires a much larger sample

size than the normal endpoint. We generated YR from the Bernoulli distribution

Ber(µR), with µR = 0.5, and generated YT from Ber(µT ), with µT = 0.4, 0.45, 0.5,

0.565, and 0.625. Under the 0.80/1.25 rule, T and R are similar when µT = 0.45,

0.5 and 0.565 because in these cases, 0.8 < µT/µR < 1.25, and are not similar when

µT = 0.4 and 0.625 because µT/µR ≤ 0.8 or ≥ 1.25. We generated historical data X

from Ber(µ0), with µ0 = 0.5, 0.2, 0.8, 0.1 and 0.9 and sample size m = 600 and 1000.

To obtain the CPP, we elicited γc = 0 and γc̄ = 0.223, with δc = 0.99 and δc̄ = 0.001.

We set Cf = 0.8 and Cs = 0.96, to ensure appropriate type I error rates.

We compared the proposed CPP design with two alternative designs. The first

alternative design is called the no borrowing (NB) design, which is the same as the

proposed design except that it ignores historical data. The second design uses the

standard power prior (denoted as the PP design) to borrow information from the

historical data. The PP design is a fully Bayesian approach, under which δ is treated

as an unknown parameter and assigned with a uniform prior δ ∼ Unif(0, 1).
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4.4.2 Simulation results

Table 4.2 shows the results for normal endpoints based on 10,000 simulated trials.

As the NB design is not affected by the historical data, its results are shown only

once at the top of the table. In scenario 1, the historical data D0 are congruent with

the reference arm data DR (i.e., µ0 = 0 = µR). The proposed CPP design had higher

power to detect the similarity between R and T than the NB design. Specifically,

when the R and T are similar (i.e., µT = 0, 0.115 and -0.115) and the sample size

of the historical data N0 = 300, the powers of the CPP design were 67.5%, 96.9%

and 67.1%, respectively, while those of the NB design were 58.2%, 95.5% and 58.9%.

The gain was more obvious when N0 = 500, under which the powers of the CPP

design were improved to 69.0%, 97.6% and 69.2%. Such a power improvement is

impressive given that the CPP design used smaller sample sizes than the NB design.

For example, when N0 = 300, the sample sizes of the CPP designs were 88.79, 76.51

and 88.54 when µT = −0.115, 0 and 0.115, while those of the NB design were 93.32,

85.31 and 93.26. When R and T are not similar (i.e., µT = −0.223 or 0.223), both

the NB and CPP designs controlled the type I error rate (i.e., concluding that T

and R are similar when they are actually not) close to the nominal value of 5%. In

scenario 1 (i.e., D0 and DR are congruent), the PP design yielded higher power than

the CPP and NB designs and an appropriate type I error rate. However, when D0

and DR are not congruent, the PP design led to a substantially inflated type I error

rate. For example, in scenario 2, when D0 and DR are not congruent, with µ0 = −0.5

(recall that µR = 0), the type I error rate of the PP design was 17.4% and 22.0%

when N0 = 300 and 500. This result confirms the previous finding regarding the

standard power prior: the power parameter cannot be precisely estimated based on

the data, and thus cannot appropriately determine how much information should be

borrowed from D0. In contrast, the proposed design correctly recognized that D0 and

D are not congruent and thus no information should be borrowed. This is reflected
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by the appropriate type I error rate of the CPP design (i.e., 5.4% and 5.4%) when

µT = 0.223 and −0.223. The power of the CPP design is comparable to that of the

NB design when R and T are similar (i.e., µT = −0.115, 0 or 0.115). In scenarios 3

to 5, D0 and DR are not congruent, with different values of µ0. We observed similar

results. That is, the CPP design well controlled the type I error rate and yielded

power comparable to that of the NB design. The PP design had high power, but did

not control the type I error rate. Figure 4.1 shows the power curve of the CPP design

under different values of µ0, with the NB design as the reference. We can see that the

CPP yielded higher power than the NB design when D0 and D are congruent (i.e.,

µ0 = 0), with well controlled type I error rates.

Table 4.3 provides the simulation results for binary endpoints. The results are

generally similar to those for the normal endpoint. For example, in scenario 1, the

historical data D0 are congruent to the reference arm data DR (i.e., µ0 = 0.5 = µR).

Given the sample size of the historical data N0 = 1000, the powers of the proposed

CPP design were 3.3% to 17.8% higher than those of the NB design when R and T

are similar (i.e., µT = 0, 0.115 and -0.115). In addition, the CPP design controlled

the type I error rate close to 5% when R and T are not similar (i.e., µT = 0.4 or

0.625). Again, although the PP design yielded higher statistical power when D0 and

DR are congruent (i.e., scenario 1), it led to dramatically inflated type I error rates

(see scenarios 2-5). For example, in scenario 2, with N0 = 1000, the type I error rate

of the PP design was 15.2 when µT = 0.4. Figure 4.2 shows the power curves of the

CPP design under different values of µ0, with the NB design as the reference.

4.4.3 Sensitivity analysis

For the normal endpoint, our calibration procedure (Section 4.2.2) for the CPP

assumes that D has the same variance as D0. We conducted a sensitivity analysis

to evaluate the performance of the proposed design when D and D0 actually have
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different variances. Simulation results (see Table 4) show that our design controlled

the type I error rate at the nominal level of 5% when R and T are not similar, and

yielded reasonable power when R and T are similar. In contrast, the PP approach

led to inflated type I error rates up to 15%.

We also conducted a sensitivity analysis to evaluate the impact of the specifi-

cation of δc and δc̄ (in step 5 of the CPP procedure in Section 2.2) on the perfor-

mance of the design. We considered three different specifications of δc and δc̄, i.e.,

(δc, δc̄) = (0.99, 0.001), (0.95, 0.005), (0.95, 0.0001). Figure 4.3 shows that the oper-

ating characteristics of the design are very similar under different values of δc and δc̄,

suggesting that our design is robust to the specification of δc and δc̄ .

4.5 Application

Adalimumab(Humira) is the first fully human monoclonal antibody drug approved

by the FDA in 2002 for treating rheumatoid arthritis (RA) and other types of arthritis.

RA is an autoimmune disease characterized by progressive inflammatory synovitis of

the joints that may result in erosion of articular cartilage and subchondral bone. RA

is a relatively common disease with prevalence from 0.4% to 1.3% worldwide, and

more than 200,000 cases per year in the United States [78]. Due to the high cost

of Humira, e.g., approximately $3,000 per month in 2015, a substantial portion of

patients cannot receive this effective treatment, especially in developing countries such

as China. Given that the patent for this antibody expires in 2016, our collaborators

in China are interested in developing a biosimilar monoclonal antibody of Humira to

reduce the cost of the drug and allow more patients to benefit from the treatment.

A two-arm randomized clinical trial was proposed to evaluate the biosimilarity

between the test agent and Humira. The primary endpoint is clinical response at

week 24, a binary outcome indicating whether the patient achieves an improvement

of at least 20% in the American College of Rheumatology core criteria (ACR20) from
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baseline to week 24. Patients who did not achieve an ACR20 response, who withdrew

from the study, or who received “rescue treatment with traditional disease-modifying

antirheumatic drug therapy on or after week 16 were classified as nonresponders.

A maximum of 345 patients will be equally randomized to receive the test agent

or adalimumab administered at 20mg weekly. The available historical data were

obtained from a randomized clinical trial and included information on 212 patients

who were treated with adalimumab [79]. The response rate of ACR20 was 60.8% in

the historical data. We applied the proposed methodology to design the trial. We

determined the calibration function (4.4) using the procedure described in Section

2.2 and the Appendix. Based on the 0.80/1.25 rule, we set γc = 0.99 and γc̄ = 0.001,

resulting in the solution â = 18.63 and b̂ = 5.53. That is, the power parameter used

in the trial is given by

δ =
1

1 + exp{18.63 + 5.53× log(S)}
.

We examined the operating characteristics of the resulting CPP design under three

scenarios (see Table 5), contrasted with the conventional no-borrowing (NB) design

that ignores the historical data. In scenario 1, for which the test agent is biosimilar to

adalimumab and the historical data is congruent with the control data (i.e., Humira

arm), the proposed design yielded 81% power, whereas the NB design yielded 67%

power, demonstrating that the use of historical data can substantially improve the

power of the study. In scenario 2, the test agent is also biosimilar to adalimumab,

but the historical data are not congruent to the control. The CPP and NB design

yields similar power. Scenario 3 considers the case in which the historical data are

congruent with the control data, but the test agent and adalimumab are not biosim-

ilar. The CPP design well controlled the type I error rate below the nominal value

of 5%, demonstrating that the CPP design correctly recognized that, in this case, no
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information should be borrowed from the historical data to maintain an appropriate

type I error rate.

4.6 Summary

We have proposed a Bayesian group sequential adaptive design for biosimilar tri-

als. To incorporate rich historical data that are almost always available for biosimilar

trials, we developed the CPP, which allows the design to adaptively borrow informa-

tion from historical data. When the historical data are congruent with the new data

collected from the trial, the CPP borrows information from the historical data and

thus improves the power of the design; and when the historical data are not congruent

with the new data from the trial, the CPP well controls the type I error rate. To

facilitate trial monitoring, we proposed the BBI to measure the similarity between the

biosimilar and the innovative reference drug. Our design evaluates the BBI in a group

sequential fashion based on the accumulating interim data, and stops the trial early

once there is enough information to conclude or reject the similarity. Our simulation

studies show that the proposed design has desirable operating characteristics.

This article focuses on biosimilar trials. The proposed CPP approach can be used

to adaptively borrow information from historical data in other settings. For example,

in bridging clinical trials, as the landmark trial has been completed, we could use the

CPP to design a follow-up trial (i.e., a bridging trial). We have considered binary

and normal endpoints. The proposed approach can be extended to time-to-event

endpoints as well. This will be the topic of our future research.
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Appendix in Chapter 4

1. Proof of Theorem 1

Proof Supposing that m,n→∞ and m/n→ O(1), that is, the sample sizes of D0

and D increase on the same order. Without loss of generality, we assume that m ≥ n.

Thus,

S = max(m,n)1/4SKS (4.9)

= m1/4SKS (4.10)

= m−1/4(m/n+ 1)1/2

√
mn

m+ n
SKS (4.11)

Smirnov (1939) showed that when D0 and D have the same distribution (i.e., are

congruent),
√

mn
m+n

SKS converges in distribution to Kolmogorov’s distribution with

the cumulative density function

Q(x) = 1− 2
∞∑
j=1

(−1)j−1e−2j2x2

.

By Slutsky’s theorem, S → 0 when D0 and D are congruent. Thus, given b > 0,

δ =
1

1 + exp{a+ b× log(S)}
→ 1.

When D0 and D are not congruent, since SKS = max−∞<t<∞{|F (t)−G(t)|}, SKS

is bounded from 0. Thus, according to equation (4.10), S →∞ as m→∞, and thus

δ → 0.
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2. Calibration procedure for binary endpoints

We consider the case in which D0 = (x1, · · · , xm) and D = (y1, · · · , yn) are dis-

tributed with xi ∼ Ber(µ0) and yj ∼ Ber(γµ0), i = 1, · · · ,m and j = 1, · · · , n, where

γ is the ratio or odds of the response rate between D and D0. Given historical data

D0, the values of the tuning parameters a and b are calibrated as follows,

1. Estimate the response rate of D0 by µ̂0 =
∑m

i=1 I(xi)

m
with I(xi) as the indicator

function for counting the response.

2. Elicit from subject experts the maximum value of γ, denoted as γc, such that the

difference between D and D0 is practically negligible and they can be regarded

as congruent, and the minimal value of γ, denoted as γc̄, is such that D is

deemed to be substantially different (i.e., not congruent) from D0.

3. Generate R replicates of D by simulating (y1, · · · , yn) from Ber(γcµ̂0), and

calculate the KS statistics between each of these R simulated data sets and D0.

Let S∗(γc) denote the median of the R resulting KS statistics.

4. Repeat step 3 by replacing γc with γc̄, and let S∗(γc̄) denote the median of the

R resulting KS statistics.

5. Solve a and b in (4) based on the two equations (4.5) and (4.6).

3. Evaluation of BBI

To implement the proposed design, we need to evaluate the BBI at each interim

analysis, which depends on the posterior distributions of µT and µR. In what follows,

we describe how to obtain these posterior distributions of µT and µR for evaluating

the BBI at each interim. We first consider the case in which YT and YR are continuous

endpoints following normal distributions N(µT , σ
2
T ) and N(µT , σ

2
T ), respectively. For
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test arm T , we assign (µT , σ
2
T ) Jeffrey’s noninformative prior f(µT , σ

2
T ) ∝ σ−2

T , then

given the interim data DT (nk), the posterior distribution of µT is

f(µT |DT (nk)) ∼ t(ȳT , σ̂
2
T/nk, nk − 1),

where t(a, b, c) denote a t distribution with location parameter a, scale parameter b

and degree of freedom c, and ȳT and σ̂2
T are the sample mean and variance of DT (nK).

For the reference arm R, we employ the CPP approach to take advantage of the

availability of historical data D0. We assume the noninformative prior f(µR, σ
2
R) ∝

σ−2
R before observing D0, and elicit δ following the CPP procedures by solving (4.7)

and (4.8). Given the value of δ and interim data DR(nk), the posterior of µR is given

by

f(µR|δ,DR(nk)) ∼ t

(
δmx̄0 + nȳ

δm+ nk
,

√
2

c(δ)

1

(δm+ nk − 2)(δm+ nk)
, δm− 2

)
,

where c(δ) = 2/{δmnk(x̄0 − ȳ)2/(δm+ nk) + δmσ̂2
0 + nkσ̂2

R}, x̄0 and ȳ are the sample

means of D0 and DR(nk), and σ̂2
0 and σ̂2

R are the sample variances of D0 and DR(nk).

We now turn to the case in which YT and YR are binary and follow Bernoulli distri-

butions Ber(µT ) and Ber(µR), respectively. For arm T , we assign µT noninformative

prior Beta(1, 1), then the posterior of µT is given by

f(µT |DT (nk)) ∼ Beta(1 +

nk∑
i=1

yT,i, 1 + nk −
nk∑
i=1

yT,i).

For arm R, starting from the noninformative prior µR ∼ Beta(1, 1), we first apply

the CPP approach to determine the value of δ. Given δ and DR(nk), the posterior of

µR is given by

f(µR|δ,DR(nk)) ∼ Beta(δ
m∑
i=1

xi +

nk∑
i=1

yR,i + 1, δ(m−
m∑
i=1

xi) + (nk −
nk∑
i=1

yR,i) + 1).
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Here, yT and yR are realizations of YT and YR.
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Table 4.1: The elicited values of a and b for CPP under 5 scenarios for normal
endpoints

Scenarios

1 2 3 4 5
â 15.78 13.83 15.92 15.92 15.92

b̂ 6.18 5.59 6.22 6.22 6.22
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Table 4.2: Simulation results of power and average sample size (n) for the normal
endpoint with µR = 0

Historical data µT

Scenario µ0 N0 Design -0.223a -0.115b 0c 0.115d 0.223e

NB Power 0.054 0.582 0.955 0.589 0.052
n 76.98 93.32 85.31 93.26 76.41

1 0 300 CPP Power 0.053 0.675 0.969 0.671 0.055
n 76.21 88.79 76.51 88.54 76.13

PP Power 0.050 0.770 0.991 0.774 0.057
n 75.76 83.36 60.20 83.88 75.80

500 CPP Power 0.052 0.690 0.976 0.692 0.054
n 76.06 88.06 74.68 88.49 75.92

PP Power 0.041 0.697 0.980 0.694 0.054
n 75.28 81.84 57.76 80.84 75.0

2 -0.5 300 CPP Power 0.054 0.591 0.956 0.591 0.054
n 76.94 94.04 85.24 93.00 76.21

PP Power 0.174 0.764 0.852 0.331 0.016
n 87.8 89.96 83.24 83.48 60.24

500 CPP Power 0.053 0.587 0.958 0.597 0.052
n 76.42 92.66 85.47 92.72 76.64

PP Power 0.220 0.728 0.825 0.313 0.009
n 88.6 88.56 82.2 80.08 58.80

3 -0.3 300 CPP Power 0.053 0.589 0.955 0.579 0.053
n 76.70 93.37 85.22 93.23 76.33

PP Power 0.118 0.712 0.913 0.383 0.013
n 87.44 95.04 86.8 88.12 65.4

500 CPP Power 0.054 0.582 0.955 0.589 0.050
n 76.34 92.84 85.12 92.61 76.78

PP Power 0.141 0.751 0.926 0.366 0.022
n 89.0 92.4 86.72 86.76 64.28

4 0.3 300 CPP Power 0.053 0.587 0.936 0.591 0.056
n 76.55 92.60 83.14 93.24 76.14

PP Power 0.004 0.135 0.689 0.893 0.277
n 47.4 61.56 76.8 77.08 73.36

500 CPP Power 0.051 0.580 0.949 0.601 0.055
n 76.49 92.64 85.32 93.69 76.37

PP Power 0.004 0.099 0.563 0.825 0.227
n 46.28 56.64 70.72 78.32 71.92

5 0.5 300 CPP Power 0.055 0.597 0.954 0.589 0.056
n 76.71 93.56 85.01 93.37 76.86

PP Power 0.013 0.317 0.843 0.768 0.218
n 59.48 79.84 82.12 89.56 88.40

500 CPP Power 0.052 0.589 0.953 0.584 0.055
n 76.63 92.89 84.78 93.30 76.55

PP Power 0.012 0.297 0.823 0.771 0.187
n 58.48 78.76 82.04 88.08 89.40

aType I error rate
bPower
cPower
dPower
eType I error rate
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Table 4.3: Simulation results of power and average sample size (n) for the binary
endpoint with µR = 0.5

Historical data µT

Scenario µ0 N0 Design 0.4a 0.45b 0.5c 0.565d 0.625e

NB Power 0.045 0.615 0.939 0.589 0.05
n 355.68 445.23 382.65 437.31 356.52

1 0.5 600 CPP Power 0.05 0.711 0.966 0.718 0.05
n 359.58 430.68 352.92 425.52 360.60

PP Power 0.045 0.674 0.982 0.703 0.03
n 354 438.6 348.9 450.9 350.4

1000 CPP Power 0.047 0.73 0.972 0.767 0.048
n 358.23 435.21 338.73 420.03 358.77

PP Power 0.042 0.713 0.978 0.686 0.045
n 357.0 442.2 345.3 451.5 351.9

2 0.2 600 CPP Power 0.05 0.612 0.935 0.588 0.046
n 357.48 442.32 385.11 434.82 353.88

PP Power 0.152 0.66 0.820 0.416 0.018
n 376.2 485.1 421.5 463.5 340.2

1000 CPP Power 0.048 0.616 0.935 0.585 0.049
n 356.61 443.70 386.97 436.02 356.04

PP Power 0.175 0.656 0.926 0.454 0.015
n 375.3 489.9 432.0 472.5 342.3

3 0.8 600 CPP Power 0.043 0.612 0.940 0.593 0.047
n 358.17 441.81 383.50 438.27 352.95

PP Power 0.027 0.524 0.943 0.636 0.144
n 345.6 478.2 418.5 478.8 378.3

1000 CPP Power 0.048 0.623 0.941 0.593 0.046
n 355.89 444.60 383.88 439.83 356.37

PP Power 0.019 0.525 0.933 0.629 0.174
n 344.1 462.3 421.8 476.7 381.3

4 0.1 600 CPP Power 0.044 0.625 0.939 0.593 0.046
n 357.87 446.43 385.89 438.0 354.27

PP Power 0.152 0.655 0.921 0.493 0.019
n 369.9 474 420 467.4 342.3

1000 CPP Power 0.043 0.633 0.941 0.598 0.048
n 355.65 446.73 386.04 438.66 355.38

PP Power 0.242 0.634 0.925 0.490 0.026
n 371.7 449.4 401.4 448.5 352.5

5 0.9 600 CPP Power 0.049 0.620 0.938 0.596 0.05
n 357.72 439.20 384.36 437.04 354.56

PP Power 0.029 0.520 0.947 0.575 0.147
n 354.9 474.3 416.7 470.7 370.8

1000 CPP Power 0.047 0.621 0.942 0.595 0.048
n 355.95 438.06 386.10 435.09 354.93

PP Power 0.029 0.519 0.933 0.584 0.148
n 351.3 471.6 416.4 467.7 369.6

aType I error rate
bPower
cPower
dPower
eType I error rate
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Table 4.4: Sensitivity analysis for the normal endpoint with µR = 0 and σ2
R = 0.25

Historical data µT

µ0 σ2
0 N0 Design -0.223a -0.115b 0b 0.115b 0.223a

0 1 500 CPP Power 0.053 0.589 0.953 0.587 0.052
n 76.94 93.98 86.45 94.08 76.8

PP Power 0.036 0.454 0.952 0.580 0.15
n 80.0 98.4 87.6 98.2 79.3

0.3 4 500 CPP Power 0.052 0.579 0.957 0.590 0.055
n 76.55 93.62 85.69 92.12 76.44

PP Power 0.029 0.373 0.909 0.674 0.15
n 74.6 95.84 91.68 100.28 84.92

0.5 1 500 CPP Power 0.053 0.585 0.957 0.582 0.052
n 77.02 93.47 85.37 92.95 76.93

PP Power 0.012 0.333 0.809 0.621 0.154
n 60.8 89.4 91.3 100.16 88.96

0.5 4 500 CPP Power 0.052 0.588 0.956 0.595 0.052
n 76.15 93.88 85.55 93.23 76.63

PP Power 0.016 0.401 0.902 0.562 0.163
n 71.68 92.08 90.2 101.08 87.36

a: Type I error rate; b: Power

Table 4.5: Application of the proposed CPP design to the biosimilar trial of Humira

Scenario
Clinical Response Power Sample Size

Humira Test agent CPP NB CPP NB

1 0.608 0.608 81% 67% 190 188
2 0.486 0.486 76.4% 74.4% 256 259
3 0.608 0.486 4.3% 4.6% 140 137
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Figure 4.1.: Power curve of the proposed CPP design for the normal endpoint when
µ0 = 0, 0.3 and 0.5 and µR = 0. The power curve of the NB design is shown as the
reference.
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Figure 4.2.: Power curve of the proposed CPP design for the binary endpoint when
µ0 = 0.5, 0.2 and 0.8 and µR = 0.5. The power curve of the NB design is shown as
the reference.
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(δc,δc)=(0.99,0.001)
(δc,δc)=(0.95,0.005)
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Figure 4.3.: Sensitivity analysis with different values of (δc, δc̄) under scenario 1 with
N0 = 500.
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5. Conclusions and Future Work

5.1 Conclusions

Several researches have shown that one main contribution to the high attrition

of late phase is due to inefficiently conducting of the early phases, which is a main

source for recommendation of under-therapeutic dose(s) to the subsequent confirma-

tory phase(s). This thesis mainly focuses on developing novel designs for phase I and

II clinical trials.

In Chapter 2, we focus on adaptive phase I designs. Based on the BMA-CRM

design (an extension of the CRM design), an automatic procedure has been proposed

for prespecifying the multiple skeletons. By extensive simulation studies, the pro-

posed method lets the BMA-CRM provide robust and better performance than the

original version and has much higher performance than the CRM design. The algo-

rithm has been developed into a Shiny app, which can be obtained freely online at

www.trialdesigns.org.

In Chapter 3, we focus on an important design type, bridging trial, which gains

special attention from drug administrative across nations and international pharma-

ceutical companies. The challenges of designing a bridge trial have at least two points,

first is how to borrow the landmark trials’ historical information of a certain ethnic

populations into current study for a new ethnic population, second is how to ac-

knowledge the heterogeneities among different ethnic populations. The CRM design

framework has been used and that the toxic probabilities skeleton is a natural way to

borrow the historical landmark trial information. A proposed mixture toxicity prob-

ability estimator is to estimate a dose-toxicity response curve, and from the available
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discrete data on each dose level of landmark trial, a skeleton can be generated which

then be used as a specified skeleton for the current study. This is the solution of

how to efficiently borrow landmark information. Once we have one skeleton, we can

shift this skeleton up and down to generate multiple skeletons, which obviously ac-

commodate the true scenario that the landmark trial and the current trial should be

heterogeneous but also not be deviated from each other so much. The shifting can

be based on practitioner’s experiences and properties of drugs or characteristics of

the ethnic population. The BMA-CRM design introduced in chapter 2 is natural to

incorporate multiple skeletons. The whole proposed structure above forms a novel

bridge trial design, B-CRM design. The simulation studies demonstrate its desirable

properties and a real trial for designing a phase I trial of the BKM120 in adult pa-

tients with advanced solid tumors has been shown to how to design a bridge trial and

how to generate a clinical protocol in practice.

The above two researches deal with phase I trials. In Chapter 4, we focus on

development of biosimilar products, which basically is a phase II trial problem with

a feature of also existence of historical expired/to-be-expired reference drugs. There-

fore, a main task is still to how to borrow historical information from the existing

product. But, different from the above bridge trial, in which we borrow a ”dose-

toxicity curve” from landmark trial data, in biosimilar setting, the aim to conduct

hypothesis testing, so we want to borrow information to enhance our understand-

ing of a ’point’ estimation. A calibrated power prior has been proposed to borrow

information when the reference and historical arms are ’similar’ to each other, and

vice versa. A Bayesian similarity index is also proposed to assess congruence be-

tween the reference and historical arms. Simulation studies have been done to show

that the proposed Bayesian group sequential design has better performance than a

design without borrowing history information and another design with borrowing
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history information but using the original power prior. A real trial for developing

Adalimumab(Humira) biosimilar product has been shown as an example.

5.2 Future Work

Many unsettled issues in early phases are still open questions. Especially in cancer

drug development area,

In Chapter 2, although the automatic algorithm for specifying multiple skeletons

has been proposed, the method is essentially a computer-intensive way, which may

be a daunting task for non-statistician to grasp the idea. Another issue is that the

proposed algorithm lacks a theoretical framework. The optimal multiple skeletons

specification problem is intrinsically an optimization problem, in which target argu-

ment function is PCS (percentage of correctly selection for MTD), different multiple

skeletons produce different PCS values and that a certain multiple-skeletons achieves

maximum PCS value is chosen as the optimal multiple-skeletons. A future work is to

accomplish the proposed algorithm theoretical framework.

For designing trials of an agent for an ethnic population given a trial for another

ethnic population had been conducted, in Chapter 3, a novel design, bridging CRM

(BCRM) has been proposed. However, the ethnic populations can be generalized

to more broader context, for instance, adult and pediatric populations, male and

female patient populations, etc. Phase I trials for any kinds of sub-populations if

they share biological or drug-responsive similarities can be conceptually designed

using our proposed bridging design. An important area is to use the bridging idea for

pediatrics trials since commonly clinical trials for adults have finished then initiation

for children’s trials. The challenge will be that dose range maybe very different

between adult and child patients. Better use of the proposed should be discussed.

This will be a future direction to modify the proposed method for pediatric drug

development. Other fields including phase II and III bridging trials. The similar

86



idea for phase I can also be explored for late phases. For instance, in phase II

dose-range trial, we still can model the trial’s data to derive a dose-efficacy curve,

based on response data on various doses, we can regard this curve as a ’skeleton-

generated’ curve, then the similar strategies of using BMA-CRM framework can be

used naturally. However, for phase II and III hypotheses setting, the current method

cannot be adopted straightforward, which will be future directions.

In Chapter 4, Bayesian group sequential design for biosimilar product with contin-

uous and binary endpoints have been proposed. Therefore, design for time-to-event

endpoint is a future work. Another interesting future work include: biosimilar phase

I/II and II/III seamless designs under all kinds of endpoints scenarios.

Finally, all the topics covered in this thesis deal with single agent, especially for

the previous two projects. Therefore, designs for combination trial for dual agents

can use the proposed methods, but detailed discussion or extra modifications should

be made in the future researches.
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