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ABSTRACT

TAIL-BASED TEST FOR DIFFERENTIAL EXPRESSION ANALYSIS AND

PATHWAY ANALYSIS IN RNA-SEQUENCING DATA

Jiong Chen, M.A.

Advisory Professor: Jianhua Hu, Ph.D

RNA sequencing data have been abundantly generated in biomedical research for

biomarker discovery and pathway analysis. Such data at the exon-level are usually

heavily tailed and correlated. Conventional statistical tests based on the mean or

median difference for differential expression likely suffer from low power when the

between-group difference occurs mostly in the upper or lower tail of the distribution

of gene expression. We propose a tail-based test to make comparisons between groups

in terms of a specific distribution area rather than a single location. The proposed

test, which is derived from quantile regression, adjusts for covariates and accounts for

within-sample dependence among the exons through a specified correlation structure.

Through Monte Carlo simulation studies, we show that the proposed test is gener-

ally more powerful and robust in detecting differential expression than commonly

used tests based on the mean or a single quantile. An application to TCGA lung

adenocarcinoma data demonstrates the promise of the proposed method in terms of

biomarker discovery. We also extend the proposed test to perform pathway analysis

for a set of genes within the same pathway or share similar biological function. Genes

in such sets are known to be dependent of each other and our test accounts for their

pairwise correlation. Through simulation comparison with commonly used pathway

iv



analysis methods, we show the proposed test yields better results. An application

on non-small cell lung cancer pathways from KEGG pathway Database also demon-

strates the proposed test is a powerful method in detecting differentially expressed

pathways.
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1. Introduction

1.1 Introduction

RNA sequencing (RNA-seq), also known as whole transcriptome shotgun sequenc-

ing, has become a popular technology for measuring gene expression levels. RNA-seq

is designed to perform genome-wide transcriptome profiling. Specifically, this tech-

nology isolates and fragments RNA from cells and converts the RNA fragments into

cDNA. Then the fragments are amplified through polymerase chain reaction, the

cDNAs are sequenced, and the resulting reads are aligned to a reference genome

for annotation. The number of sequencing reads mapped to an exon or a gene in

the reference genome can be the output from the pipeline. RNA-seq is widely used

in biomedical research because of its high efficiency and reproducibility (Auer and

Doerge, 2010). Utilizing such data, researchers are able to extract rich genomic in-

formation from biological systems and advance our knowledge about various diseases,

including cancer.

1.1.1 Differential Expression Analysis

An important objective in cancer research is to detect differential gene expression

between cancer and normal tissue samples, with a goal of discovering cancer biomark-

ers. The Cancer Genome Atlas (TCGA) Research Network data, sponsored by the

National Cancer Institute, has RNA-seq profiling data available for a large number of

human tumor samples from various cancer types. This rich data resource provides an

unprecedented opportunity for researchers to test and validate analytical methods and

make scientific discoveries to advance cancer diagnosis and treatment. In our work,
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we focus on TCGA lung adenocarcinoma data as lung adenocarcinoma has become

the most common form of lung cancer for both smokers and non-smokers, accounting

for nearly 40 % of lung cancer cases diagnosed in the United States (Subramanian

and Govindan, 2007).

Several methods have been developed to detect differential gene expression in

RNA-seq experiments. Jiang and Wong (2009) modeled the count data within a gene

or transcript isoform as an independent random sampling process and used a Poisson

distribution to approximate the observations. Bloom et al. (2009) and McCarthy

et al. (2012) used Fisher’s exact test and the likelihood ratio test for differential

expression analysis. Because the conventional Poisson distribution cannot address

the often-encountered large variation in the data, DESeq2 (Love et al., 2014) and

edgeR (Robinson et al., 2010) adopted the negative binomial distribution to address

the overdispersion problem. The two methods use different approaches to normalize

the data and filter out outliers prior to estimating dispersion.DESeq2 uses a Wald

test to make inference about differential gene expression while edgeR uses an exact

test adapted for overdispersed data. Limma+voom (Ritchie et al., 2015) is another

method commonly used for differential expression (DE) analysis by normalizing the

raw count data into log2 counts per million (logCPM) and then applying a linear

mixed effect model to analyze differential gene expression. Laird and Ware (1982)

detected the group difference while addressing the correlation structure within each

gene. However, the normality assumption is usually not satisfied, even with data

transformation (Bullard et al., 2010), for example, in data sets with excessive zeros

or small counts. In fact, heavy tails are often the characteristic of distributions of

gene intensities in the reads per kilobase per million mapped reads (RPKM) data,

as we see in the lung adenocarcinoma data analyzed in this paper. These methods

may have undesirable properties such as low power and inflated type I error rates

according to Bullard et al. (2010) and Chu et al. (2015).

2



Alternative tests that are not sensitive to data distributions may be constructed

based on quantile regression. Corresponding rank score tests based on single quantiles,

typically the median, have been widely used (Gutenbrunner et al., 1993). Further-

more, Wang and He (2008) described a modified rank score test to account for corre-

lations among smaller units within a gene in microarray studies. However, such tests

based on single quantiles are known to yield low detection power, and it is difficult

to know which specific quantiles should be chosen for testing in a given application.

Current DE analysis methods commonly use gene-level read counts by summariz-

ing exon-level sequenced reads form gene-level data. These methods lose potentially

useful information about the exon-level expression distribution (Laiho and Elo, 2014).

In this paper, we propose a new tail-based test that uses exon-level expression data

and accumulates the information on all the quantiles of a tail region. This is moti-

vated by previous research on microarray expression data that shows that statistical

testing on probe-level data can improve the detection of differential gene expression

over that on gene-level data (Lader et al., 2006). The idea of using quantile aggrega-

tion was initially proposed by He et al. (2010), who focused on detecting treatment

effects in clinical studies with independent observations of a response variable but

ignoring the potential correction of outcomes. RNA degradation renders the read

counts unevenly across the different exon regions and commonly cause biases towards

the 3’ end (Shanker et al., 2015). Hence, we focus on the upper tails in the test

since high gene expression intensities are particularly meaningful in the applications.

Nevertheless, the test can be easily tailored to the lower tails. In addition, exons

belonging to a common gene tend to empirically correlate with each other, as Figure

1.1, which shows a compound symmetry correlation structure on gene FHIT . The

proposed test is capable of adjusting for covariates and accounting for the inter-exon

correlations within a gene.
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Figure 1.1. Heatmap of correlation on exon-level expression for gene
FHIT from TCGA lung adenocarcinoma data.

1.1.2 Pathway Analysis

Pathways or gene sets are a collection of genes that interact with each other and

govern certain biological functions. As genes normally function as a group, analysis

done on pathways or gene sets of interest would provide more biological insights than

individual gene analysis. A current task of biomedical research is to understand the

underlying mechanisms of pathways and their interaction with cancer. Researchers

have assembled detailed information regarding cancer related pathways in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database, which we use to obtain the

pathway information for non-small cell lung cancer (NSCLS) analysis in Chapter 5

(Kanehisa and Goto, 2000). Recently, DE analysis methods have been extended from

the detection of individual differential expressed gene to the detection of differential

4



expressed pathways and gene sets of interest between cancer and normal samples.

This type of methods allows researchers to incorporate biological knowledge into the

study and formalize systematic analysis on the pathological association and functional

significance of pathways and gene sets of interest using hypothesis testing.

Several methods have been proposed to detect the DE of pathways and gene

sets. The first category of these methods is called overrepresentation analysis. In

this category, one of the most popular methods is the test of independence for 2

by 2 contingency table assessing the overrepresentation of the gene set, which has

been discussed by Al-Shahrour et al. (2004); Khatri and Drghici (2005); Boyle et al.

(2004). A threshold is selected to separate the genes into DE group and non-DE

group in the contingency table and fisher exact test and hypergeometric distribution

test are commonly used to conduct the statistical analysis. The popular methods

and softwares in this category include GO-based tools by Rivals et al. (2007), BiNGO

by Maere et al. (2005), and DAVID by Dennis et al. (2003). This approach is often

criticized because the results of the analysis are highly depended on the choice of

threshold for DE gene. As an alternative, Al-Shahrour et al. (2005) improve the 2 by

2 contingency table approach by simultaneously testing at various thresholds.

Another main category of pathway DE analysis methods is called functional class

scoring. Functional class scoring assigns scores to each gene from the gene set of

interest based on their expression level change and calculates the aggregated score

of the gene set based on the individual gene scores. The main advantage of this

approach is it utilizes the information of every gene from the gene set and the analysis

no longer depend on the controversial threshold selection. Pavlidis et al. (2004)

use geometric mean of the p-values as the aggregated score and find it generates

more consistent results than the overrepresentation approach. Gene Set Enrichment

Analysis (GSEA) by Subramanian et al. (2005) and Mootha et al. (2003) is one of the

most popular methods developed in this category. Mootha et al. (2003) calculate the
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p-values of the genes from the gene set and use a weighted Kolmogorov-Smirnov test

to detect whether the ranking order of the p-values differ from a uniform distribution.

Subramanian et al. (2005) improve the GSEA by including an ad-hoc modification and

generate the null distribution using sample permutation approach. Tian et al. (2005)

use an aggregation of t-test statistics and use permutation based method to assess

the test significance. Irizarry et al. (2009) argue that the t-test statistics from Tian et

al. (2005) are empirically independent and assess the significance of aggregated test

statistics using a normal distribution. Unlike GSEA which uses sample permutation

method to assess the significance of the test statistics, Generally Applicable Gene set

Enrichment (GAGE) proposed by Luo et al. (2009) uses gene permutation method

instead. GAGE significantly decreases the computation time and is able to handle

data with different samples sizes and experiment designs. Vremo et al. (2013) present

R Package Piano with a wide range of available functional class scoring methods

which allow the choice of gene or sample permutation method.

Current pathway analysis methods for RNA-seq data commonly rely on standard

gene DE analysis methods like Limma, edgeR, and DESeq2 to obtain the initial inputs

such as Log Fold changes or test statistics for the pathway analysis. In this paper,

we propose a tail-based pathway test for RNA-seq data that falls in the category

of functional class scoring. The proposed pathway test utilizes the test statistics

of individual genes from the tail-based test we proposed in the section 1.1.1 and

computes the pathway test statistics. We hypothesize incorporating test statistics

from our robust and powerful DE method will strengthen the downstream pathway

analysis. Furthermore, many popular pathway analysis methods such as GAGE by

Luo et al. (2009) and method by Irizarry et al. (2009) assume independence among the

genes or test statistics. For NSCLC data, we observe a pairwise compound symmetry

correlation structure for Calcium signaling pathway and ErbB signaling pathway as

shown in Figure 5.2. Our proposed pathway test adjusts for this correlation structure

6



and the test statistics follows a standard normal distribution under null hypothesis,

which is a desired property for hypothesis testing.

1.1.3 Covariate-adjusted Expected Shortfall Test

Our proposed tail-based test for individual genes is motivated by the COVariate-

adjusted Expected Shortfall (COVES) test proposed by He et al. (2010) and Hsu

(2010), who use quantile aggregation approach to accommodate observations with

heavy tail distribution. He et al. (2010) focus on detecting treatment effects in clinical

studies with independent observations of a response variable. This method adjusts

for covariates effects which are influential to the outcomes but are independent of the

treatment effect, then compare the distribution of the upper quantile region between

groups. The limiting distribution of COVES’s test statistics follows a standard normal

distribution under null hypothesis. Simulation studies from He et al. (2010); Hsu

(2010) have shown when the true difference lies in the upper quantile, COVES test

performs significantly better than conventional tests such as t-test. However, this

method ignores the potential correction of outcomes and cannot be directly applied

to DE analysis for RNA-seq data, which is demonstrated in section 2.2.1. In this

paper, we built on and tailored COVES test to address the characteristic of RNA-seq

data. Our proposed test for DE gene detection is able to account for the correlation

structure of inter-exon regions within a gene, and the test statistics can be used in

the downstream pathway analysis.

This paper is organized as follows. In chapter 2, we introduce the model and

notations and present the tail-based test for DE analysis and its limiting distribution

under the null hypothesis. We perform Monte Carlo simulations on correlated data

and make comparisons with several conventional tests and popular DE analysis meth-

ods. In chapter 3, we analyze TCGA lung adenocarcinoma data using the proposed

test and compare with other methods. In Chapter 4, we propose the tail-based path-

7



way test and introduce its properties. We also conduct Monte Carlo simulations on

correlated pathway data and make comparisons with several popular pathway anal-

ysis methods. In Chapter 5, we analyze NSCLS pathway data using the proposed

pathway test and compare with other methods.
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2. A tail-based test for differential expression analysis in

RNA-sequencing data

2.1 Methodology

In biomedical applications of microarray studies involving, for example, exon-level

RNA-seq data, it is often of interest to detect differential gene expression between

disease groups. The proposed method is devised to meet this objective. We first

introduce the notations. Let Z denote the gene expression intensity, which is treated

as the response measure, wherein Zij indicates the intensity measurement of the jth

exon location in a gene of interest for the ith sample. We use a dummy variable

D = 0, 1 to denote the control and diseased patient groups, respectively, wherein Di

corresponds to the disease status of sample i. We use C to indicate K covariates and

assume them to be independent of D, and a K× 1 design vector Ci corresponding to

the covariates with sample i. The integers n0 and n1 respectively indicate the number

of patient samples for the groups of D = 0 and D = 1, and n = n0 + n1. We use mi

to denote the total number of exon locations belonging to the target gene for the ith

sample and Nd to denote the total number of exon locations belonging to the target

group of D = 0 and D = 1.

We express the τth quantile of Z, given D and C, as

QZ(τ | D,C) = α(τ) +Dδ(τ) + Cγ(τ) = Xβ(τ), (2.1)

where X = (1n×1,Dn×1,Cn×K) and β(τ) = (α(τ), δ(τ),γ(τ)TK×1)
T . Correspondingly,

the model for the individual gene intensity measure Zij can be written as

Zij = α(τ) +Diδ(τ) + Ci
Tγ(τ) + eij(τ), (2.2)
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where the residuals eij(τ) have the value of 0 as the τth conditional quantile. We

assume that the inter-exon correlation satisfies cov(eij, eij′) 6= 0 and cov(eij, ei′j′) =

0. Given (Zij, Di,Ci), we obtain the consistent estimate α̂(τ), δ̂(τ), γ̂(τ) at the τth

quantile via quantile regression (Koenke et al., 1978). We denote the corresponding

empirical residuals as êij(τ) = Zij − α̂(τ)−Diδ̂(τ)−Ci
T γ̂(τ).

To detect the between-group difference in the gene expression intensity, we define

a new tail-based test statistic (TTS) as follows:

T TTSτ (n1, n0) = TTSτ (1)− TTSτ (0), (2.3)

where TTSτ (d) =
∑

Di=d

∑mi

j=1wd,i,j(Zij − Ci
T γ̂(τ)), d = 0, 1. Let e+ij = I(eij > 0)

and e−ij = I(eij < 0). Herein, wd,i,j = S−1d e+ij(τ), Sd =
∑

Di=d

∑mi

j=1 e
+
ij(τ), and wd,i,j

serves as a weight for the ith sample at the jth exon location within group d = 0 or

1.

Note that TTSτ (d) includes the information on residual directions and covariate

adjusted residuals, and hence measures the average expression intensity above the

τth quantile in group d after adjusting for the covariates. For example, if τ is chosen

as the 50th quantile, TTS0.5(d) measures the information for the whole region above

the 50th quantile for group d. Accordingly, the test statistic is powered to detect the

distributional difference above the 50th quantile between two groups.

Let D̄τ (d), C̄τ (d), and ēτ (d) be the averages of all the Di, Ci, and eij, re-

spectively, in group d that are above the τ -th conditional quantile. Specifically,

C̄τ (d) = S−1d
∑

Di=d

∑mi

j Ciê
+
ij(τ), and ēτ (d) = S−1d

∑
Di=d

∑mi

j (Zij−α(τ)−Diδ(τ)−

Ci
Tγ(τ))ê+ij(τ). Replacing Zij with eij(τ)+α(τ)+Diδ(τ)+Ci

Tγ(τ) in T TTSτ (n1, n0),

we can express the test statistic as

T TTSτ (n1, n0) = δ(τ)− (C̄
T
τ (1)− C̄T

τ (0))(γ̂(τ)− γ(τ)) + (ēτ (1)− ēτ (0)). (2.4)

To perform the test, we establish the asymptotic distribution of T TTSτ (n1, n0) as

n0, n1 → ∞ under the null hypothesis of no difference between the two groups. We

10



first estimate the conditional density function fij of eij given (Di, Ci) evaluated

at 0, denoted as f̂n(0). Then, we let (Uf )K×K =
∑

i f̂n(0)C
∗
iC
∗
i
T , in which Uf is a

combination of the fij and can be estimated consistently even when the conditional

densities vary with Ci (He et al., 2010). We also denote the transformed D and C

via Gram-Schmidt orthogonalization as follows,

D∗i = Di − n−1d
∑
i

DiI(Di = d) (2.5)

C∗i = Ci − n−1d
∑
i

CiI(Di = d), (2.6)

In addition, let

Vd =
∑
Di=d

mi∑
j=1

var(eije
+
ij) +

∑
Di=d

∑
j 6=j′

cov(eije
+
ij, eij′e

+
ij′), (2.7)

and ζ = P (eij < 0, eij′ < 0).

Lemma 2.1.1

If limn1,n0→∞(n1 + n0)
−1Uf exists, E‖Ci‖31 < ∞, the number of exon region mi is

some fixed number, and fij are uniformly bounded away from 0 and infinity for all ij,

then we have the Bahadur representation of γ̂(τ),

γ̂(τ)− γ(τ) = U−1f
∑

im
−1
i

∑mi

j=1C
∗
iψτ (eij(τ)) + op((n0 + n1)

− 1
2 ),

and the representation of ēτ (d),

ēτ (d) = (
∑

Di=d

∑mi

j e+ij(τ))−1
∑

Di=d

∑mi

j eij(τ)e+ij(τ) + op((n0 + n1)
− 1

2 ).

Proof of Lemma 2.1.1

This proof is based on the Lemma 2.1.1 from Hsu (2010) with few modifications.

The Bahadur representation of the (K+2)×1 parameter estimator β̂(τ), according

to Koenker (2005) equation 4.4, can be written as

β̂(τ)− β(τ) = D−1β (n0 + n1)
−1∑

im
−1
i

∑mi

j=1 xi
∗ψτ (eij(τ)) + (n0 + n1)

−1/2Rn,

11



where diagonal matrix Dβ = lim(n0+n1)→∞(n0 + n1)
−1∑

i f̂n(0)x
∗
i x
∗
i
T, f̂n(0) is the

estimated conditional density function of eij given (Di,Ci) evaluated at 0, x∗i =

(1, D∗i ,Ci
∗),Rn = op(1), and ψτ (eij(τ)) = τ − e−ij.

Then, as n0, n1 →∞,
∑

i f̂n(0)x
∗
ix
∗
i
T =

(∑
i f̂n(0) 0 0

0
∑

i f̂n(0)D
∗2
i 0

0 0
∑

i f̂n(0)C
∗
iC

∗T
i

)
,

so the diagonal matrix Dβ =


∑

i f̂n(0)
(n0+n1)

0 0

0

∑
i f̂n(0)D

∗2
i

(n0+n1)
0

0 0

∑
i f̂n(0)C

∗
iC

∗T
i

(n0+n1)

+ op(1).

Using the right bottom corner of D−1β , we can obtain the following,

γ̂(τ)− γ(τ)

=

[{∑
i f̂n(0)C

∗
iC

∗T
i

(n0+n1)

}−1
+ op(1)

]
(n0 + n1)

−1∑
im
−1
i

∑mi

j=1C
∗
iψτ (eij(τ)) + op((n0 +

n1)
− 1

2 ).

=
(∑

i f̂n(0)C
∗
iC
∗T
i

)−1∑
im
−1
i

∑mi

j=1C
∗
iψτ (eij(τ)) + op((n0 + n1)

− 1
2 ).

The last equality follows from the central Limit Theorem for
∑

im
−1
i

∑mi

j=1C
∗
iψτ (eij(τ))

. The proof of the second part of Lemma 2.1.1 is equivalent to proving

{∑
Di=d

m−1i

mi∑
j

ê+ij(τ)

}−1 ∑
Di=d

m−1i

mi∑
j

ei(τ)ê+ij(τ)

−{nd(1− τ)}−1
∑
Di=d

m−1i

mi∑
j

eij(τ)e+ij(τ)

= op((n0 + n1)
− 1

2 )

Then, we need to verify the first and second equations below:

n−1d
∑
Di=d

m−1i

mi∑
j

ê+ij(τ) = 1− τ + op((n0 + n1)
− 1

2 ) (2.8)

n−1d
∑
Di=d

m−1i

mi∑
j

eij(τ)
{
ê+ij(τ)− e+ij(τ)

}
= op((n0 + n1)

− 1
2 ). (2.9)
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We can demonstrate the first equation (2.8) by the second inequality in corollary

2.1 of Koenker (2005),

n−1d
∑

Di=d
m−1i

∑mi

j ê+ij(τ) ≤ 1− τ ≤ n−1d
∑

Di=d
m−1i

∑mi

j ê+ij(τ) + n−1d p;

hence, n−1d
∑

Di=d
m−1i

∑mi

j ê+ij(τ) = (1− τ) + op(n
−1
d ) = (1− τ) + op((n1 + n0)

−1/2).

To prove the second equation (2.9), we can use Lemma 4.6 of He and Shao (1996)

and Lemma 11.2 of Owen (2001).

Assume {xi, i ≥ 1} are independent random variables drawn from probability dis-

tributions Fi,θ = 1, ..., n, with a unknown parameter θ ∈ Θ, an open subset ofRm,m ≥

1. Let a score function ψ(xi, θ) with λi(θ) = Eψ(xi, θ) and Λn(θ) =
∑n

i=1Eψ(xi, θ),

the M-estimator θ̂n of θ0 that satisfies
n∑
i=1

ψ(xi, θ̂n) = o(δn),

where δn is a sequence of positive numbers. Let µ(x, θ, d) = supυ−θ|ψ(x, υ)−ψ(x, θ)|,

where |.| is defined as |θ| = max(|θ1|, ..., |θm|), and Zn(υ, θ) = |
∑n

i=1{ψ(xi, υ) −

ψ(xi, θ)− λi(υ) + λi(θ)}|.

Lemma 4.6 of He and Shao (1996) requires the following conditions:

(B1) ψ(x, θ) is Borel measurable for fixed θ ∈ Θ,.

(B2) There exists θ0 ∈ Θ such that Λn(θ0) = 0 and |θ̂0 − θ0| → 0 a.s. as n→∞.

(B3) There exist r > 0, d0 > 0 and positive numbers {ai, i ≤ 1} such that Eu2(xi, θ, d) ≤

a2i d
r for |θ − θ0| ≤ d0 and d ≤ d0.

(B4) A2n = O(An), where An =
∑n

i=1 a
2
i .

(B5’) For decreasing sequence of positive numbers dn such that dn = O(d2n) = o(1),

max1≤i≤nu(xi, θ0, dn) = O(A
1/2
n d

r/2
n (logn)−2) a.s.

Lemma 4.6 of He and Shao (1996)

Assume that (B1), (B3), and (B5’) are satisfied. Then we have

lim supn→∞sup|υ−θ0|≤dn
Zn(υ, θ0)

(Andrn + 1)1/2(loglog(n+ An))1/2
≤ C a.s.,
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for some constant C <∞.

Let θ0 = 0, m−1i
∑mi

j eij(τ) = e∗i (τ) which is independent between samples,

ψ(e∗i , θ) = e∗i (τ){I(e∗i (τ) > xTi θ)− I(e∗i (τ) > 0}, then

λi(θ) = Eψ(e∗i (τ), θ) = E(e∗i (τ)I(e∗i (τ) > xTi θ)− I(e∗i (τ) > 0)),

Znd(υ, θ0) = |
∑
Di=d

{ψ(e∗i (τ), υ)− ψ(e∗i (τ), θ0)− λi(υ) + λi(θ0)}|

= |
∑
Di=d

ei{I(e∗i (τ) > xTi υ)− I(e∗i (τ) > 0)}

+
∑
Di=d

E(e∗i (τ){I(e∗i (τ) > 0)− I(e∗i (τ) > xTi υ)})|.

First, we have

n−1d
∑
Di=d

E(e∗i (τ){I(e∗i (τ) > 0)− I(e∗i (τ) > xTi υ)}) = n−1d
∑
Di=d

∫ xTi υ

0

e∗i (τ)f(e∗i (τ))de∗i (τ)

= n−1d
∑
Di=d

xTi υξif(ξi) ≤ n−1d
∑
Di=d

(xTi )2f(ξi) = υT (
∑
Di=d

f(ξi)xix
T
i /nd)υ

= O(‖υ‖22),

where ξi is between 0 and xTi υ. Therefore,

n−1d Znd(υ, θ0) = |n−1d
∑
Di=d

e∗i (τ){I(e∗i (τ) > xTi υ)− I(e∗i (τ) > 0)}|+O(‖υ‖22)

Conditions(B1), (B3), and (B5’) are checked as:

(B1) ψ(e∗i (τ), θ) = e∗i (τ){I(e∗i (τ) > xTi θ)− I(e∗i (τ) > 0)} is Borel measurable for fixed

θ.

(B3)u(e∗i (τ), θ, d) = sup|υ−θ|≤d|e∗i (τ){I(e∗i (τ) > xTi υ)− I(e∗i (τ) > xTi θ)}|

= sup|υ−θ|≤d|e∗i (τ)I(xTi υ < e∗i (τ) < xTi θ)| = |e∗i (τ)I(xTi υ∗ < e∗i (τ) < xTi θ)|, where

υ∗ = θ − d(1, 1, sgn(CT
i ))T .
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Eu2(e∗i (τ), θ, d) =
∫ xTi θ
xTi υ

∗ e
∗
i (τ)2f(e∗i (τ))de∗i (τ) ≤M(xTi θ)

2‖xi‖1d ≤Md20‖xi‖31d,

where |θ| ≤ d0, and ‖xi‖1 = 1 + Di + ‖Ci‖1. Condition (B3) holds if we take r = 1,

and a2i = Md20‖xi‖31.

(B5’) Let dnd
= n

−1/2
d log nd, we have

max1≤i≤nd
u(e∗i (τ), θ0, dnd

)

A
1/2
nd d

1/2
nd (log nd)−2

=
max1≤i≤nd

|e∗i (τ)I(xTi υ
∗ < e∗i (τ) < 0)|

{Md20
∑

Di=d
‖xi‖31}1/2d

1/2
nd (log nd)−2

(2.10)

≤ dnd
max1≤i≤nd

‖xi‖1
M1/2d0(

∑
Di=d
‖xi‖31)1/2d

1/2
nd (log nd)−2

= M−1/2d−10

max1≤i≤nd
‖xi‖1n−1/2d

(
∑

Di=d
‖xi‖31/nd)1/2

d1/2nd
(log nd)

2 → 0 a.s.

as nd →∞,

where max1≤i≤nd
‖xi‖1 ≤ 2 + max1≤i≤nd

‖Ci‖1 = O(n
1/2
d ) according to Lemma 11.2 in

Owen (2001),
∑

Di=d
‖xi‖31/nd is bounded away from 0, and d

1/2
nd (log nd)

2 = o(1).

Lemma 11.2 of Owen (2001) Let Yi be independent random variables with a

common distribution and E(Y 2
i ) <∞. Let Zn = max1≤i≤n|Yi|. Then Zn = o(n1/2).

When (B1), (B3) and (B5’) are hold, according to Lemma 4.6 of He and Shao

(1996), we have

lim supnd→∞sup|υ−θ0|≤dn
n−1d Zn(υ, θ0)

n−1d (Andrn + 1)1/2(loglog(n+ An))1/2
≤ C a.s.,
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The denominator is

n−1d Zn(υ, θ0)n
−1
d (And

r
n + 1)1/2(loglog(n+ An))1/2

= n−1d (Md20
∑
Di=d

‖xi‖31)n−1d (nddnd + 1)1/2(loglog(nd +Md20
∑
Di=d

‖xi‖31))1/2

= O(n−1d (ndn
−1/2
d lognd)

1/2(loglognd)
1/2) = o((n1 + n0)

−1/2),

where
∑

Di=d
‖xi‖31n−1d = O(1).

And the numerator is

n−1d Zn(υ, θ0) = op((n1 +N0)
−1/2), uniformly in {υ : |υ − θ0| ≤ dnd

}.

Take υ = β̂(τ)− β(τ), we have

n−1d [
∑
D−i=d

e∗i (τ){I(ê∗i (τ) > 0)−I(e∗i (τ) > 0)}]+O(‖β̂(τ)−β(τ)‖22) = op((n1+n0)
−1/2),

where O(‖β̂(τ)− β(τ)‖22) = O((n1 + n0)
−1) = op((n1 + n0)

−1/2).

Therefore, we have

n−1d
∑
Di=d

m−1i

mi∑
j

eij(τ)
{
ê+ij(τ)− e+ij(τ)

}
= op((n0 + n1)

− 1
2 ).
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Theorem 2.1.1

If limn1,n0→∞
n0

n0+n1
→ q ∈ (0, 1) and limn1,n0→∞(n1 + n0)

−1Uf exists, E‖Ci‖31 < ∞,

and fij are uniformly bounded away from 0 and infinity, then under the null hypoth-

esis, in which the distribution of the two groups FZ|C,D=1=FZ|C,D=0, we have

T TTSτ (n1, n0)/sn0,n1 → N(0, 1) as n1, n0 →∞. (2.11)

Proof of Theorem 2.1.1

According to Lemma 2.1.1, and δ(τ) = 0, under the null hypothesis, we can write

T TTSτ (n1, n0) =

{∑
Di=1

mi∑
j=1

eij(τ)e+ij(τ)/N1 −
∑
Di=0

mi∑
j=1

eij(τ)e+ij(τ)/N0

}
(1− τ)−1

−(C̄
T
τ (1)− C̄T

τ (0))U−1f

n∑
i=1

m−1i

mi∑
j=1

C∗iψτ (eij(τ)) + op((n0 + n1)
−1/2)

= T ∗τ (n1, n0) + op((n0 + n1)
−1/2).

where

T ∗τ (n1, n0) =

{∑
Di=1

mi∑
j=1

eij(τ)e+ij(τ)/N1 −
∑
Di=0

mi∑
j=1

eij(τ)e+ij(τ)/N0

}
(1− τ)−1

−(C̄
T
τ (1)− C̄T

τ (0))U−1f

n∑
i=1

m−1i

mi∑
j=1

C∗iψτ (eij(τ)).

Under the null hypothesis, the mean and variance of the test statistics are

E(T ∗τ (n1, n0)) =

{∑
Di=1

mi∑
j=1

E(eij(τ)e+ij)/N1 −
∑
Di=0

mi∑
j=1

E(eij(τ)e+ij)/N0

}
(1− τ)−1

= (1− τ)−1E(eij(τ)e+ij)(1− 1) = 0.
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V ar(T ∗τ (n1, n0)) =

(1− τ)−2(V1/N
2
1 + V0/N

2
0 )

+
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

{∑
i

m−2i

mi∑
j=1

C∗iC
∗T
i τ(1− τ)

}
U−1f

{
C̄τ (1)− C̄τ (0)

}
+
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

{∑
i

m−2i
∑
j 6=j′

C∗iC
∗T
i (ζ − τ 2)

}
U−1f

{
C̄τ (1)− C̄τ (0)

}
+(1− τ)−1

{∑
Di=1

mi∑
j=1

eij(τ)e+ij(τ)/N1

}{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

n∑
Di=1

m−1i

mi∑
j=1

C∗iψτ (eij(τ))

−(1− τ)−1

{∑
Di=0

mi∑
j=1

eij(τ)e+ij(τ)/N0

}{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

n∑
Di=0

m−1i

mi∑
j=1

C∗iψτ (eij(τ))

−(1− τ)−1
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N1

n∑
Di=1

mi∑
j=1

C∗im
−1
i eije

+
ijψτ (eij(τ))

+(1− τ)−1
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N0

n∑
Di=0

mi∑
j=1

C∗im
−1
i eije

+
ijψτ (eij(τ))

= (1− τ)−2(V1/N
2
1 + V0/N

2
0 )

+
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

[∑
i

m−2j

{
mj∑
k=1

C∗iC
∗T
i τ(1− τ) +

∑
j 6=j′

C∗iC
∗T
i (ζ − τ 2)

}]
×U−1f

{
C̄τ (1)− C̄τ (0)

}
−(1− τ)−1

{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N1

×

{
n∑

Di=1

mi∑
j1=1

mi∑
j2=1

C∗im
−1
i eij1e

+
ij1
ψτ (eij2(τ))−

n∑
Di=1

mi∑
j1=1

eij1e
+
ij1

mi∑
j2=1

m−1i C
∗
iψτ (eij2(τ))

}
+(1− τ)−1

{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N0

×

{
n∑

Di=0

mi∑
j1=1

mi∑
j2=1

C∗im
−1
i eij1e

+
ij1
ψτ (eij2(τ))−

n∑
Di=0

mi∑
j1=1

eij1e
+
ij1

mi∑
j2=1

m−1i C
∗
iψτ (eij2(τ))

}

where
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Vd =
∑
Di=d

mi∑
j=1

var(eije
+
ij) +

∑
Di=d

∑
j 6=j′

cov(eije
+
ij, eij′e

+
ij′),

and ζ = P (eij < 0, eij′ < 0).

which can be estimated by s2n0,n1
.

s2n0,n1
= (1− τ)−2

V1/
(∑
Di=1

mi

)2

+ V0/

(∑
Di=0

mi

)2


+
{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f

[∑
i

m−2j

{
mj∑
k=1

C∗iC
∗T
i τ(1− τ) +

∑
j 6=j′

C∗iC
∗T
i (ζ − τ 2)

}]
×U−1f

{
C̄τ (1)− C̄τ (0)

}
−(1− τ)−1

{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N1

×

{
n∑

Di=1

mi∑
j1=1

mi∑
j2=1

C∗im
−1
i êij1 ê

+
ij1
τ −

n∑
Di=1

mi∑
j1=1

êij1 ê
+
ij1

mi∑
j2=1

m−1i C
∗
iψτ (êij2(τ))

}
+(1− τ)−1

{
C̄
T
τ (1)− C̄T

τ (0)
}
U−1f /N0

×

{
n∑

Di=0

mi∑
j1=1

mi∑
j2=1

C∗im
−1
i êij1 ê

+
ij1
τ −

n∑
Di=0

mi∑
j1=1

êij1 ê
+
ij1

mi∑
j2=1

m−1i C
∗
iψτ (êij2(τ))

}

By the central limit theorem, T ∗τ (n1, n0) is asymptotically normal with mean 0

and variance. Thus, by Lemma 2.1.1 and Tτ (n1, n0)− T ∗τ (n1, n0) = op((n0 + n1)
−1/2),

we prove the asymptotic normality of the test statistic Tτ (n1, n0).

Remark (a): A consistent estimate of Uf can be obtained using the kernel den-

sity estimate of fij based on empirical residuals êij(τ) (Hardcastle and Kelly, 2010;
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Koenker, 2005). We use a Gaussian kernel function to carry out the kernel density esti-

mation in our analysis and select a rule of thumb bandwidth as h = 0.9A(n1+n0)
(−1/5),

as provided by Silverman (1986), where A is the minimum of the standard deviation

and interquartile range/1.34 of the empirical residuals.

Remark (b): The term ζ is intended to account for the dependence of exons within

a common gene. If the residuals are independent, ζ becomes τ 2 and the rightmost

term in the expression of s2n0,n1
becomes 0. Empirically, we can estimate ζ and Vd

based on êij, as follows,

ζ̂ =

{∑
i

mi(mi − 1)/2−K

}−1∑
i

∑
j 6=j′

ê−ij ê
−
ij′ , (2.12)

V̂d =
∑
Di=d

mi∑
j=1

(
ê2ij ê

+
ij

)
−N−1d

(∑
Di=d

mi∑
j=1

êij ê
+
ij

)2

(2.13)

+
∑
Di=d

∑
j 6=j′

{∑
Di=d

mi(mi − 1)

}−1 ∑
Di=d

∑
j 6=j′

êij ê
+
ij êij′ ê

+
ij′ − nd

−1

(∑
Di=d

∑
j

êij ê
+
ij

)2


where K is the dimension of Ci. We can plug in the estimate of fij to obtain the

variance estimate of T TTSτ (n1, n0).

2.2 Simulation

2.2.1 Simulation studies versus quantile rank score test, linear mixed

effect model, and COVariate-adjusted Expected Shortfall test

We conducted simulation studies to investigate the statistical validity and power

of the proposed test, TTS. In the first set of simulation studies, we compared TTS to

conventional statistical tests, including the quantile rank score test, assuming inde-

pendent errors (called QRS), the quantile rank score test, assuming correlated errors
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(called QRSc), the Wald test for coefficient estimates of the linear mixed effect model

(called LME), and the COVariate-adjusted Expected Shortfall test (called COV ES)

by He et al. (2002). We generated exon-level gene expression data from the following

model,

Zij = 5 + γCi + δ1I(Di = 1) + δ2I(eij > 0)I(Di = 1)eij + eij,where (2.14)

Zij is the intensity value of exon j of a gene for subject sample i, Ci indicates the

covariate value, and Di indicates the disease status, normal tissue or cancer, of the

patient sample i. The corresponding error terms are denoted by eijs. We investigated

the following four scenarios.

Scenario 1: Ci ∼ N(2.5, 0.52), δ2 = 0, δ1 = 0 under H0 or δ1 = 0.5 under H1.

Scenario 2: Ci ∼ N(2.5, 0.52), δ1 = 0, δ2 = 0 under H0 or δ2 = 1.35 under H1.

Scenario 3: Ci ∼ N(2.5, 0.52) for Di = 0; and Ci ∼ N(2.5, 1) for Di = 1, δ1 = 0,

δ2 = 0 under H0 or δ2 = 1.35 under H1.

Scenario 4: Ci ∼ N(2.5, 0.52) for Di = 0; and Ci ∼ N(3, 0.52) for Di = 1, δ1 = 0,

δ2 = 0 under H0 or δ2 = 1.35 under H1.

In all the scenarios, γ = 1 and the error terms are normally distributed with unit

variance and an exchangeable correlation structure cor(eij, eij′) = 0.8 and cor(eij, ei′j′) =

0. To study the impact of sample size and gene length on the test, we considered

the sample sizes of 50, 75, and 100 subjects per group and gene lengths of 5, 10 and

30 exon locations within a gene, respectively. In each scenario, we ran 5, 000 Monte

Carlo samples. For the quantile related test, we used τ = 0.5 for testing H0 at nomi-

nal levels of 1% and 5%, and τ = 0.5 and 0.75 for testing H1 at the nominal level of

5%.

Scenario 1. In this scenario, the difference between the cancer and normal tissue

samples is constant across all the quantiles. The type I error rates are shown in the

upper panel of Table 2.1. We observe that QRS and COV ES fail to maintain appro-

priate type I error rates due to high correlation among the exons as their assumptions
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Table 2.1
Type I error rates at the nominal levels of 1% and 5% for scenarios 1, 2,
and 3. Scenarios 1 and 2 have identical type-I error rates. The values in
the table are percentages.

Scenario 1, 2 Nominal Level 1% 5%

Gene Sample

Length Size TTS COV ES QRSc QRS LME TTS COV ES QRSc QRS LME

5 50 1.26 12.72 0.96 16.46 0.78 5.60 25.04 5.46 30.78 4.94

75 0.98 11.40 0.70 16.12 0.96 4.86 22.74 4.74 28.26 4.74

100 0.86 12.04 0.96 16.22 0.74 5.16 23.84 5.18 29.00 4.90

10 50 1.44 26.96 1.08 30.44 1.02 5.98 39.86 4.94 43.34 4.44

75 1.22 27.28 0.98 30.56 0.78 5.72 40.12 5.04 44.40 5.12

100 1.10 27.16 1.12 29.98 1.04 5.18 40.08 5.20 43.16 4.76

30 50 1.52 51.86 1.20 53.96 1.16 6.14 61.90 5.34 64.04 4.68

75 1.36 51.16 1.24 54.96 1.16 5.62 61.52 5.20 64.86 5.02

100 1.32 51.48 1.26 53.72 1.10 5.64 61.86 5.26 63.92 5.38

Scenario 3 Nominal Level 1% 5%

Gene Sample

Length Size TTS COV ES QRSc QRS LME TTS COV ES QRSc QRS LME

5 50 1.48 12.80 1.02 16.18 0.78 5.82 25.30 5.24 30.66 4.80

75 1.06 11.02 0.86 15.76 0.90 5.06 22.14 5.12 28.78 4.84

100 0.94 11.94 1.00 17.32 0.84 5.24 23.52 5.24 29.00 4.60

10 50 1.42 26.68 1.10 30.34 0.98 5.98 40.24 5.34 43.62 4.76

75 1.24 27.68 0.92 31.36 0.70 5.68 40.70 5.30 44.46 5.14

100 1.02 27.24 1.06 30.18 1.02 5.22 39.78 4.86 44.20 4.78

30 50 1.56 51.08 1.26 54.46 1.20 6.14 61.90 5.48 65.06 4.68

75 1.32 50.78 1.32 55.04 1.10 5.58 61.82 5.56 64.62 4.98

100 1.36 51.46 1.46 53.80 1.32 5.88 62.20 5.26 63.54 5.00

are violated. In contrast, TTS, QRSc, and LME are able to preserve the type I error

rates in various cases.

The power results are shown for TTS, QRSc, and LME in the top panel of

Table 2.4. We did not investigate QRS and COV ES further due to its statistical
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Table 2.2
Type I error rates at the nominal levels of 1% and 5% for scenario 4.
Scenarios 1 and 2 have identical type-I error rates. The values in the
table are percentages.

Scenario 4 Nominal Level 1% 5%

Gene Sample

Length Size TTS COV ES QRSc QRS LME TTS COV ES QRSc QRS LME

5 50 1.36 13.90 0.84 16.40 0.74 5.94 26.42 5.44 29.16 4.94

75 1.10 11.88 0.88 16.42 0.88 4.84 23.42 5.20 29.22 4.56

100 0.84 13.02 0.76 16.46 0.96 5.16 24.24 5.10 29.30 4.64

10 50 1.58 27.78 1.12 30.50 1.06 6.18 41.04 5.40 42.84 5.02

75 1.08 28.30 1.04 31.00 1.04 5.64 41.72 5.40 43.10 5.18

100 1.06 28.12 0.98 30.18 1.04 5.28 40.88 5.28 44.56 5.34

30 50 1.52 52.66 1.38 55.30 1.14 5.88 62.78 5.32 64.66 5.00

75 1.30 51.64 0.86 54.44 0.98 5.12 62.08 5.56 64.66 4.82

100 1.28 51.44 1.18 53.42 1.00 5.36 62.38 5.08 63.48 4.80

Table 2.3
Difference of mean and quantiles, and the ratio of the variances between
cancer and normal groups in scenario 2.

Quantile τ 0.5 0.6 0.7 0.75 0.8 0.9 0.99 Mean Var ratio

0.02 0.3 0.68 0.89 1.25 1.61 3.43 0.55 2.58

invalidity. With a constant group difference across the quantiles, it appears that

the tests conducted at a single quantile had satisfactory performance. In fact, TTS

displayed slightly lower power than LME and QRSc, which could be caused by the

inclusion of additional noise in the upper tails.

Scenario 2. In this scenario, the cancer group (Di = 1) has a heavier right tail

and larger variance than the normal group (Di = 0). The difference between the two
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groups is relatively small at the median and becomes larger in the upper quantiles as

shown in 2.3.

For example, the difference is 0.02 at the median versus 0.89 at the 75th quantile.

The ratio of the two groups’ variances under H1 is 2.58. The type I error rates are the

same as those in Scenario 1. The power results are shown in the middle panel of Table

2.4. In this case, QRSc shows extremely poor performance at τ = 0.5 since the median

group difference is small. TTS, with its capability of utilizing the information in the

upper quantile region, shows superior performance at different values of τ compared

to both LME and QRS, which only utilize the information of a single, prespecified

quantity. The advantage of TTS is more prominent when analyzing smaller sample

sizes (e.g., 50), which are often encountered in practice. For example, TTS achieves

improvements in power of 40% and 77%, respectively, compared to that achieved by

QRSc and LME in the case of 50 subjects and 5 exons in a gene at τ = 0.75.

Scenarios 3 and 4. These two cases are similar to Scenario 2, except that the

covariate Ci is generated with either different variances between the two groups in

Scenario 3 or different means in Scenario 4. The type I error rates are shown in the

lower panel of Table 2.1 and 2.2. The type I error rates of the proposed test, TTS,

are well maintained at the corresponding nominal level in the various setups. The

power results displayed in Table 2.5 support the superior performance of TTS over

that of the other two tests in both scenarios.

Remark: Without prior knowledge of which quantiles show the true difference

between groups, TTS shows satisfactory detection power overall as it utilizes infor-

mation across multiple quantiles in a tail region.
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Table 2.4
Power for scenarios 1 and 2 at quantiles τ = 0.5 and 0.75 at the significance
level of 0.05. The values in the table are percentages.

Scenario 1 τ = 0.5 τ = 0.75

Gene Sample

Length Size TTS QRSc LME TTS QRSc LME

5 50 65.62 65.90 75.10 53.84 59.00 75.10

75 83.48 83.78 90.82 70.30 78.32 90.82

100 91.80 92.14 96.66 81.58 88.28 96.66

10 50 68.70 71.14 78.36 56.52 64.04 78.36

75 83.88 86.24 91.40 72.00 80.48 91.40

100 92.10 93.56 96.68 82.34 89.52 96.68

30 50 69.32 71.92 77.62 57.58 65.16 77.62

75 85.42 87.40 92.00 73.92 83.22 92.00

100 92.82 94.04 96.46 83.76 91.30 96.46

Scenario 2 τ = 0.5 τ = 0.75

Gene Sample

Length Size TTS QRSc LME TTS QRSc LME

5 50 85.60 6.92 55.00 97.92 69.62 55.00

75 96.06 6.42 72.44 99.72 84.22 72.44

100 99.04 6.68 83.80 100.00 92.56 83.80

10 50 86.12 6.74 54.88 98.32 71.40 54.88

75 96.14 6.16 73.64 99.88 86.12 73.64

100 99.28 6.14 85.00 100.00 93.44 85.00

30 50 87.96 6.74 57.20 98.78 75.24 57.20

75 96.80 6.12 74.22 99.92 87.52 74.22

100 99.34 6.60 86.24 100.00 94.96 86.24
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Table 2.5
Power for scenarios 3 and 4 at quantiles τ = 0.5 and 0.75 at the significance
level of 0.05. The values in the table are percentages.

Scenario 3 τ = 0.5 τ = 0.75

Gene Sample

Length Size TTS QRSc LME TTS QRSc LME

5 50 86.08 6.58 55.10 98.06 70.32 55.10

75 96.26 6.18 72.86 99.80 85.08 72.86

100 99.00 6.26 83.22 100.00 92.76 83.22

10 50 86.54 6.42 54.76 98.44 71.86 54.76

75 96.18 6.12 73.68 99.92 86.48 73.68

100 99.28 5.88 84.86 100.00 93.68 84.86

30 50 88.14 6.62 57.20 98.82 75.72 57.20

75 96.88 6.12 74.58 99.94 87.92 74.58

100 99.26 6.04 86.14 100.00 95.18 86.14

Scenario 4 τ = 0.5 τ = 0.75

Gene Sample

Length Size TTS QRSc LME TTS QRSc LME

5 50 78.66 6.30 42.00 94.66 57.58 42.00

75 93.20 6.44 58.80 99.32 74.82 58.80

100 97.06 6.10 65.56 99.72 81.22 65.56

10 50 79.52 6.00 41.26 95.92 59.06 41.26

75 93.58 6.56 59.96 99.64 76.66 59.96

100 97.68 5.84 67.94 99.92 83.44 67.94

30 50 82.06 6.34 43.08 96.84 62.12 43.08

75 94.86 6.20 61.12 99.58 79.62 61.12

100 98.12 5.74 67.30 99.94 85.42 67.30
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2.2.2 Simulation studies versus edgeR, DESeq2, and Limma, part 1

In the second set of simulation studies, we compared TTS to state-of-the-art DE

analysis methods including edgeR (called edgeR), DESeq2 (called DESeq2), and

Limma+voom (called Limma). We generated exon level gene expression data in

Log2-RPKM format from the following model to fit our model, and converted the

measurement to gene-level raw counts to fit other DE analysis methods.

Zij = α + γCi + δI(eij > 0)I(Di = 1)eij + eij,where (2.15)

Zij is the intensity value of exon j of a gene for subject sample i, Ci indicates the

covariate value, and Di indicates the disease status, normal tissue or cancer, of the

patient sample i. The corresponding error terms are denoted by eijs. We investigated

the following two scenarios.

Scenario DE-1 (null hypothesis): δ = 0.

Scenario DE-2 (alternative hypothesis): δ = 0 for 90% of the expression data to

simulate non-DE genes and δ ∼ uniform(1, 2) for 10% of the expression data to

simulate DE genes.

In both scenarios, we used α ∼ uniform(2, 10) to denote the baseline gene ex-

pression. We used Ci ∼ N(2.5, 0.52) to denote the covariates and let γ = 1. The error

terms are normally distributed with unit variance and an exchangeable correlation

structure cor(eij, eij′) = 0.8 and cor(eij, ei′j′) = 0. To study the impact of sample size

and gene length on the test, we considered the sample sizes of 40, 60, and 80 subjects

per group and gene lengths of 5, 10 and 30 exon locations within a gene, respectively.

In each scenario, we ran 5, 000 Monte Carlo samples. For quantile related tests, we

used τ = 0.5 for testing scenario DE-1 at the nominal levels of 1% and 5%, and

τ = 0.5 for testing scenario DE-2 at the nominal level of 5%.
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Table 2.6
FPRs at the nominal levels of 1% and 5% for scenario DE-1. The values
in the table are percentages.

Scenario Nominal 1% 5%

DE-1 Level

Gene Sample

Length Size TTS edgeR DESeq2 Limma TTS edgeR DESeq Limma

5 40 1.20 1.68 1.84 0.92 5.56 7.32 7.48 4.92

60 1.38 1.82 2.02 0.96 5.56 7.66 8.02 5.24

80 1.46 2.16 2.30 1.20 5.34 7.76 8.16 5.30

10 40 1.38 2.26 2.38 0.88 5.72 7.62 8.50 5.12

60 1.34 2.06 2.30 1.02 6.04 7.68 7.88 4.68

80 1.34 2.26 2.40 0.96 5.64 8.30 8.82 4.98

30 40 1.56 2.02 2.36 0.98 6.04 7.72 8.68 5.30

60 1.20 1.74 2.16 1.08 5.60 7.58 8.26 4.68

80 1.28 1.86 2.04 0.86 5.74 7.72 8.62 4.84

We calculated the average false positive rates (FPRs) and true positive rates

(TPRs) to measure and compare the performance of the aforementioned 4 methods.

Scenario DE-1. The FPRs are shown in Table 2.6. We observe that edgeR and

DESeq2 are sensitive to noise and show inflated FPRs. In contrast, TTS and Limma

can maintain the FPRs around the nominal value.

Scenario DE-2. In this scenario, the cancer group (Di = 1) has a heavier right

tail and larger variance than the normal group (Di = 0) for DE genes. The difference

between the two groups is relatively small at the median and becomes larger in the

upper quantiles as shown in Figure 2.1. As shown in Table 2.7, edgeR and DESeq2

are sensitive to noise and result in inflated FPRs, while TTS is able to preserve the
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Figure 2.1. Quantile intensity plots of normal tissue and cancer samples
for scenario DE-2

FPRs at appropriate levels. For TPRs, TTS has the same performance compared to

both edgeR and DESeq2, while Limma has inferior performance. Overall, TTS has

better performance than edgeR, DESeq2, and Limma as it outperforms edgeR and

DESeq2 in FPRs and Limma in TPRs.
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Table 2.7
FPRs and TPRs at the nominal level of 5% for scenarios DE-2. The values
in the table are percentages.

Scenario FPR TPR

DE-2

Gene Sample

Length Size TTS edgeR DESeq2 Limma TTS edgeR DESeq Limma

5 40 6.18 8.11 9.68 5.53 96.40 98.40 98.00 82.60

60 5.42 8.96 10.84 6.82 99.60 99.60 99.60 95.60

80 5.89 10.27 11.72 7.89 100.00 100.00 100.00 96.00

10 40 5.96 7.98 10.32 5.62 97.20 98.00 98.00 84.60

60 5.53 9.47 10.96 6.71 99.40 99.40 99.40 93.40

80 5.91 10.18 11.40 7.71 99.80 99.60 99.60 96.60

30 40 6.33 8.49 11.36 6.60 95.20 96.80 97.40 84.40

60 5.62 9.44 12.04 6.93 99.80 99.60 99.80 96.00

80 5.58 9.24 12.12 6.78 99.80 99.80 99.80 98.40
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2.2.3 Simulation studies versus edgeR, DESeq2, and Limma, part 2

In the third set of the simulation, we generated raw counts of gene-level expres-

sion data. We fitted edgeR, DESeq2, and Limma+voom using raw count data and

converted the gene level measurements to exon-level Log2-RPKM measurements to

fit our methods.

For a gene g, its mean expression level γg was generated from an exponential

distribution with mean 100. We generated covariate Ci from a normal distribution

N(2.5, 0.52). Then we let the regulating factor δg = 1 for the normal group. We

generated the count data for Ngj of gene g for subject i from a negative binomial

distribution.

We investigated the following two scenarios.

Scenario DE-3 (null scenario): δg = 1 for all genes in the cancer group.

Scenario DE-4 (alternative scenario): For the cancer group, δg = 1 + Xg for 5%

of the expression data to simulate up-regulated DE genes and δg = (1 + Xg)
−1 for

5% of the expression data to simulate down-regulated DE genes, where Xg follows

an exponential distribution with rate=2. Let δg = 1 for the remaining 90% of the

expression data to simulate non-DE genes.

In each scenario, we ran 5, 000 Monte Carlo samples. For the quantile related test,

we used τ = 0.5 for testing both scenarios at a nominal level of 5%.

To convert the gene-level count data to exon-level count data, we allocated the count

of gene g from subject i to mi exon regions with probabilities pg1, ..., pgj and
∑mi

j=1 p
g
j =

1. Following the allocation method of Lin and Sun (2012), we generated pgj by pgj =

P g
j /
∑mi

j=1 P
g
j , where P g

j follows the standard exponential distribution. The majority

of the reads were mapped to 1 or 2 exon regions when k ≤ 5.

The results for scenario DE-3 are shown in Table 2.8. The FPRs of the four tests

considered here are all around the nominal level.
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Table 2.8
FPRs at the nominal level of 5% for scenario DE-3. The values in the
table are percentages.

Scenario Nominal 5%

DE-3 Level

Gene Sample

Length Size TTS edgeR DESeq2 Limma

5 40 5.60 4.34 5.04 4.94

60 5.38 4.30 5.00 5.06

80 5.64 4.62 5.08 5.10

10 40 5.48 4.50 5.08 4.96

60 5.38 4.76 5.46 4.96

80 5.16 4.52 5.02 5.00

30 40 5.26 3.98 4.74 4.54

60 5.60 4.22 5.04 4.94

80 5.02 4.20 4.82 4.80

The results for scenario DE-4 are shown in Table 2.9. All methods have correct

FPRs at the appropriate level and achieve similar TPRs for various exon lengths

and sample sizes. Such results demonstrate that the proposed test is robust and

comparable with edgeR, DESeq2, and Limma even when the data do not follow our

assumed model.

Remark: In scenario DE-1 and DE-2, TTS is able to control FPRs appropriately

while edgeR and DESeq2 have inflated FPRs. TTS also achieves better TPRs than

Limma. In scenarios DE-3 and DE-4, TTS controls FPRs and achieve similars TPRs

similar to those of state-of-the-art DE methods.
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Table 2.9
FPRs and TPRs at the nominal level of 5% for scenarios DE-4. The values
in the table are percentages.

Scenario FPR TPR

DE-4

Gene Sample

Length Size TTS edgeR DESeq2 Limma TTS edgeR DESeq Limma

5 40 5.60 4.29 5.53 5.60 60.80 60.20 61.80 60.40

60 5.47 4.69 5.36 5.84 72.60 71.80 73.60 71.00

80 5.49 4.73 5.33 5.00 75.80 76.60 76.80 75.40

10 40 5.69 4.36 5.22 5.18 62.00 61.40 63.60 59.60

60 4.93 4.09 4.71 5.02 71.60 72.00 72.00 70.60

80 5.40 4.40 5.07 5.69 78.80 77.80 79.00 76.80

30 40 5.47 4.33 5.18 5.07 65.40 63.00 65.00 61.60

60 4.98 4.47 4.87 5.56 71.80 70.80 72.00 69.60

80 5.00 4.51 4.87 5.18 77.00 75.40 76.80 76.40
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3. An application on TCGA lung adenocarcinoma data to

detect differential expressed Genes

3.1 Introduction

We analyzed the lung adenocarcinoma data accessible at the TCGA public data

portal, with the RNA-seq data profiled from 50 cancer and 50 normal tissue sam-

ples at the exon-level and gene-level. The gene expression data were normalized

into Log2-RPKM following standard protocols, then the non-expressed genes in both

groups were eliminated (Mortazavi et al., 2008) prior to our downstream analysis.

As ancillary clinical information, we also considered gender and smoking status in

our study. The objective was to detect genes differentially expressed between cancer

and normal tissue samples. In particular, our focus was chromosome 3, which has

been shown to harbor genes that have potentially important associations with lung

adenocarcinoma (Marileila, 2010). We applied the proposed test, TTS, the quantile

rank score test, QRSc of (Wang and He, 2008) at single quantile levels, and the Wald

test from the linear mixed model, LME, to each gene, and used a 5% false discov-

ery rate (FDR) adjustment to control for multiple testing (Benjamini and Hochberg,

1995). We also applied standard gene-level differential expression analysis methods

including likelihood ratio test from edgeR (Robinson et al., 2010), Wald test from

DESeq2 (Love et al., 2014), and ordinary linear model t-test from Limma (Ritchie et

al., 2015).
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3.2 Results

We included gender and smoking status, defined as current smoker, reformed

smoker, and nonsmoker, as covariates in the analysis. TTS detected 537 and 465

genes at τ = 0.5 and 0.75, respectively; and QRSc detected 484 and 519 genes

at τ = 0.5 and 0.75, respectively, while LME detected 501 genes. The top Venn

diagrams in Figure 3.1 show the number of overlapping gene among the three tests.

We observed that 75% and 84% of the genes detected by TTS were also detected by

QRSc at τ = 0.5 and 0.75, respectively. Moreover, 83% and 77% of the genes selected

by TTS at τ = 0.5 and 0.75, respectively, also appear in the list of genes selected by

LME. Limma detected 684 genes, edgeR detected 700 genes, and DESeq2 detected

70 genes. The bottom Venn diagrams in Figure 3.1 show the number of overlapping

gene among the four tests. We observed that 91% and 86% of the genes detected

by TTS were also detected by limma at τ = 0.5 and 0.75, respectively; 91% and

90% of the genes selected by TTS were also detected by edgeR at τ = 0.5 and 0.75

respectively; and 6% and 5% of the genes selected by TTS were also detected by

DESeq2 at τ = 0.5 and 0.75, respectively.

Some of the genes detected by TTS were not detected by the other tests. To evalu-

ate the performance of the proposed test, we used prior knowledge from the literature

regarding the important genes associated with lung adenocarcinoma. Specifically, six

tumor suppressor genes on chromosome 3 have been reported to have strong asso-

ciations with lung adenocarcinoma, namely, FHIT , RASSF1, TUSC2, SEMA3B,

SEMA3F , and MLH1 (Marileila, 2010). For example, FHIT is an identified tumor-

suppressor gene that has abnormal expression in lung cancer. In Table 3.1, we report

the p-value of these six genes obtained by TTS and QRSc at τ = 0.5 and by LME

with and without the covariates of gender and smoking status.

TTS, LME, Limma, and edgeR were able to detect SEMA3B, RASSF1. TTS

and edgeR also detected FHIT , while LME detected SEMA3F with a modest FDR
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Figure 3.1. Venn diagram of number of overlapping genes among TTS,
QRSc, LME at top and TTS, edgeR, DESeq2, Limma at bottom, for
τ = 0.5 at left and 0.75 at right.

of 0.03. In contrast, QRSc detected only SEMA3B and SEMA3F , where SEMA3F

was discovered with a modest FDR of 0.02. DESeq2 detected only TUSC2 with a

modest FDR of 0.04.

To understand the discrepancy in the results between the methods, we first com-

pared the results from our methods with those from conventional test methods, includ-

ing QRSc and LME. We plot the exon-level group differences at various covariate-

adjusted quantiles for the genes RASSF1 and SEMA3B in Figure 3.2.

It is not surprising that SEMA3B could be detected by TTS, QRSc, and LME

due to its large group differences at most quantiles, including the median. QRSc

failed to detect RASSF1, which is understandable because of the trivial differences
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Table 3.1
P-values of the six genes based on TTS, QRScor, and LME are reported.
The detected genes with false discovery rates ≤ 0.05 are highlighted in
blue.

Gene TTS QRSc LME Limma edgeR DESeq2

FHIT 2.35e-03 3.81e-01 5.11e-02 1.16e-01 3.17e-03 3.18e-01

RASSF1 2.28e-19 7.61e-01 3.39e-06 9.10e-15 8.38e-15 8.40e-01

TUSC2 4.23e-01 3.38e-01 9.19e-01 9.93e-01 5.63e-01 4.33e-02

SEMA3B 9.30e-13 2.60e-14 3.10e-18 1.05e-17 4.50e-09 9.97e-01

SEMA3F 6.67e-02 2.00e-02 3.23e-02 5.82e-02 1.57e-01 7.85e-01

MLH1 9.91e-01 3.81e-01 2.92e-01 9.31e-01 4.75e-01 7.55e-01

between the normal tissue and cancer samples at the single point of the median. In

contrast, TTS’s ability to leverage the information across quantiles in the tail region

substantially increased the detection power, since the upper quantiles show much

larger group differences than the median. For example, the group differences at the

median versus the 75% quantile were respectively 0.50 versus 0.72 for RASSF1.

Moreover, 32 other genes detected by TTS at τ = 0.5 but not by QRSc are likely

associated with lung cancer according to the medical literature. The complete list of

genes and their associated citations are presented in the upper part of Table 7.1 in

Appendix.

Here are some examples. Expression of FOXP1 improves the survival rate of

non-small cell lung cancer patients. SIAH2 suppresses lung carcinoma cells by an-

tagonizing TY K2 − STAT3 signaling. CTNNB1 is involved in tumorigenesis of a

subset of lung cancer. GSK3B has been validated as a prognostic factor for lung

carcinomas. Knockdown of V HL has been shown to promote epithelial-mesenchymal
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Figure 3.2. Top two rows are exon-level covariate-adjusted quantile in-
tensity plots of normal tissue and cancer samples for genes RASSF1,
SEMA3B, ADCY 5, and CMTM8; bottom row is QQ-plot of the stan-
dardized residuals obtained from linear mixed model for gene BAP1.

transition in lung cancer cells, and EAF2 knockout has been found to cause lung

adenocarcinoma.

We also looked into the genes that were detected by QRSc but not by TTS,

which account for 17% and 25% of genes detected by QRSc at τ = 0.5 and 0.75,
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respectively. For example, with the FDR of 4.25 × 10−6, QRSc identified ADCY 5

as being associated with lung adenocarcinoma. In Figure 3.2, we plot the group

difference at various quantiles for ADCY 5. We observe that the quantiles from cancer

and normal tissue samples cross each other and the group differences are overturned

in the upper tail region. As a result, QRSc claims the group difference at the median.

In contrast, TTS measures all the information across the quantiles in the upper tail

region and concludes that the two groups are insignificantly different due to the offset

of the opposite effects in the upper tail region.

In addition, 20 genes that were detected by TTS but not by LME have been

shown to be associated with lung cancer in the literature. They are listed in the

lower panel of Table 7.1 in Appendix.

Among these genes, IQCB1 displays patterns of alternative splicing in primary

non-small cell lung tumors that are different from those of normal tissues. RPL14

has a lower heterozygous rate in non-small cell lung cancer cell lines compared to

normal cells and has been shown to be a useful marker for lung cancer. Examination

of human non-small cell lung cancer tissue shows positive correlation with V PRBP

expression.

We noticed that LME missed these genes mainly because of the violation of the

required normal distribution assumption. As an example, we show the QQ-plot of the

standardized residuals, obtained from linear mixed models, for BAP1 in the bottom

row of Figure 3.2. It is clear that normality does not hold for this gene.

We also looked into the genes that were detected by LME but not by TTS at

τ = 0.5 and 0.75, which respectively account for 28% and 11% of genes detected by

LME. For example, with the respective FDR of 0.0076, LME identified CMTM8

as being associated with lung adenocarcinoma. In the second row of Figure 3.2,

we plot the group differences at various quantiles for CMTM8. We observe that

the group difference is overall relatively small, especially the difference is gradually
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diminishing in the upper tail region. Therefore, TTS concludes that the two groups

are insignificantly different due to the modest difference in the upper tail region.

Then we compared the results of our method with those of standard DE analysis

methods including Limma, edgeR, and DESeq2. Likely associated with lung cancer

according to the medical literature are 15 genes detected by TTS at τ = 0.5 but

not by Limma, 12 genes detected by TTS at τ = 0.5 but not by edgeR, and 143

genes detected by TTS at τ = 0.5 but not by DESeq2. The complete list of genes

and their literature citations are presented in Tables 7.2, 7.3, and 7.4 in Appendix.

For example, GSK3B is involved in the histogenesis of lung carcinomas, and its

overexpression indicates worse prognosis in lung carcinoma. SETD2 is a potential

tumor suppressor in lung adenocarcinoma and its inactivation has led to accelerated

tumor progression. TRIM59 upregulates cell-cycle-related proteins to promote the

proliferation and migration of non-small cell lung cancer cells.

We plot the group differences at various exon-level covariate-adjusted quantiles

and gene-level read counts for the genes TP63 and GSK3B in Figure 3.3. TP63

was detected by TTS but missed by Limma and DESeq2. GSK3B was detected

by TTS but missed by edgeR and DESeq2. Both TP63 and GSK3B show trivial

differences between the normal tissue and cancer samples before the median, which

also causes shrinkage of the mean difference. Hence, the standard mean-based DE

analysis methods are unable to detect these genes. In contrast, TTS’s focus on the tail

region substantially increased the detection power, since the upper quantile regions

show much larger group differences than the mean.

We also looked into the genes that were detected by standard DE analysis methods

but not by TTS. Genes that were detected by Limma but not by TTS account for

29% and 42% of genes detected by edgeR at τ = 0.5 and 0.75, respectively. Genes that

were detected by edgeR but not by TTS account for 30% and 40% of genes detected

by edgeR at τ = 0.5 and 0.75, respectively. Genes that were detected by DESeq2 but
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Figure 3.3. Left column: exon-level covariate-adjusted quantile intensity
plots of normal tissue and cancer samples for genes TP63, GSK3B, and
CCDC14; right column: gene-level read count quantile plot for the cor-
responding genes.

not by TTS account for 57% and 66% of genes detected by DESeq2 at τ = 0.5 and

0.75, respectively. For example, Limma, edgeR, and DESeq2 identified CCDC14

with the respective FDRs of 0.018, 0.033, and 0.008. In Figure 3.3, we plot the

group difference at various quantiles for CCDC14 regarding the exon-level covariate-
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adjusted intensity and gene level read counts. We observe that the quantiles from

cancer and normal tissue samples cross each other, and exon-level group differences are

only modest across all quantiles, and the difference is larger at gene-level. As a result,

Limma, edgeR, and DESeq2 claim a group difference. However, TTS concludes that

the two groups are insignificantly different due to the modest difference in the upper

tail region.

In summary, TTS shows better performance than QRSc and LME due to its

ability to utilize all the information in the upper quantile region and its robustness to

model distributions and individual outliers. TTS is also a good supplement method

to use along with standard DE methods, as it is able to include potential biomarkers

that are missed by Limma, edgeR, and DESeq2. Our proposed method can detect

many exclusive genes when there are consistent and considerable differences between

two groups across the upper quantile region. TTS loses it power advantage when the

group difference is overturned or is very modest in the upper tail region, but those are

cases in which caution must be exercised when inferring statistical significance from

other tests. Overall, our proposed method offers a powerful and robust supplement

for biomarker discovery by utilizing the information in the whole region of interest.
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4. A tail-based test for pathway analysis in RNA-sequencing

data

4.1 Methodology

In biomedical applications of genome-wide expression studies, pathway analysis,

rather than individual gene analysis, is gaining popularity. In pathway analysis, we

incorporate known biological information of pathways to generate gene set, and then

test whether the generated gene set of interest has differential expression between

disease groups. The proposed method is devised to meet this objective. The test

first conducts TTS test on individual gene in the pathway to obtain the TTS test

statistics, then combine the individual TTS test statistics and compute the pathway

test statistics PTTS.

Since we are introducing the gene set concept, we redefine the notations to add

a new layer for the TTS test. Let Z denote the gene expression intensity, which is

treated as the response measure, wherein Zijk indicates the intensity measurement of

the kth exon location in jth gene of interest for the ith sample. We use a dummy

variable D = 0, 1 to denote the control and diseased patient groups, respectively,

wherein Di corresponds to the disease status of sample i. We use C to indicate P

covariates and assume them to be independent of D, and a P × 1 design vector Ci

corresponding to the covariates with sample i. The integers n0 and n1 respectively

indicate the number of patient samples for the groups of D = 0 and D = 1, and

n = n0 + n1. We use mj to denote the total number of exon locations belonging to

the jth gene in one sample. We also use Nj,d to denote the total number of exon
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locations belonging to the jth gene in the target group of D = 0 and D = 1, and Nj

to denote the total number of exon locations of all samples in the jth gene.

We express the τth quantile of Z, given D, C, as

QZ(τ |D,C) = α(τ) +Dδ(τ) + Cγ(τ) = Xβ(τ), (4.1)

where X = (1N×1,DN×1,CN×P ) and β(τ) = (α(τ), δ(τ),γ(τ)TP×1)
T .

We perform the Gram-Schmidt orthogonalization for D and C to D∗ = D − D̄ and

C∗ = C − n−1d
∑

iCiI(Di = d). D̄ is the overall mean for D.

Correspondingly, the model for the jth gene intensity measure Zijk can be written

as

Zijk = αj(τ) +Diδ(τ) + Ci
Tγ(τ) + eijk(τ), (4.2)

where the residuals eijk(τ) have the value of 0 as the τth conditional. We assume the

following correlation: (1) the inter-exon correlation satisfies cov(eijk, eijk′) 6= 0 where

k 6= k′. (2) the gene-wise correlation satisfies cov(eijk1 , eij′k2) 6= 0 where j 6= j′ and

for all k. (3) no sample-wise correlation such that cov(eijk, ei′j′k′) = 0 where i 6= i′.

(4) the inter-exon correlation and the gene-wise correlation are compound symmetry.

Given (Zijk, Di,Ci), we obtain the estimate α̂(τ), δ̂(τ), γ̂(τ) at the τth quantile

via quantile regression (Koenke et al., 1978). We denote the corresponding empirical

residuals as êijk(τ) = Zijk − α̂(τ)−Diδ̂(τ)−Ci
T γ̂(τ).

To detect the between-group difference in the gene expression intensity, we define a

new tail-based test statistic (TTS) as follows:

T TTSτ (n1, n0) = TTSτ (1)− TTSτ (0), (4.3)

where TTSτ (d) =
∑

Di=d

∑mi

k=1wd,i,j[Zij − Ci
T γ̂(τ)], d = 0, 1. Let e+ij = I(eijk > 0)

and e−ij = I(eijk < 0). Herein, wd,i,j,k = S−1d ê+ijk(τ), Sd =
∑

Di=d

∑mi

k=1 ê
+
ijk(τ), and

wd,i,j,k serves as a weight for the ith sample at the jth gene and kth exon location

within group d = 0 or 1.
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Note that TTSτ (d) includes the information on residual directions and covariate

adjusted residuals, and hence measures the average expression intensity above the

τth quantile in group d after adjusting for the covariates.

Let D̄τ (d), C̄τ (d), and ēτ (d) be the averages of all the Di, Ci, and eijk, respec-

tively, in group d that are above the τ -th conditional quantile.

Specifically, C̄τ (d) = S−1d
∑

Di=d

∑mi

k Ciê
+
ijk(τ),

and ēτ (d) = S−1d
∑

Di=d

∑mj

k [Zijk − α(τ)−Diδ(τ)−Ci
Tγ(τ)]ê+ijk(τ).

Replacing Zijk with eijk(τ) + α(τ) + Diδ(τ) + Ci
Tγ(τ) in T TTSτ , we can express

the individual gene test statistic as

T TTSτ (n1, n0) = δ(τ)− (C̄
T
τ (1)− C̄T

τ (0))(γ̂(τ)− γ(τ)) + (ēτ (1)− ēτ (0)). (4.4)

To perform the test, we establish the asymptotic distribution of T TTSτ (n1, n0) as

n0, n1 → ∞ under the null hypothesis of no difference between the two groups. We

first estimate the conditional density function fijk of eijk given (Di, Ci) evaluated

at 0, denoted as f̂n(0). Then, we let (Uf )P×P =
∑

i f̂n(0)C
∗
iC
∗T
i in which Uf is a

combination of the fijk and can be estimated consistently even when the conditional

densities vary with Ci (He et al., 2010). We also denote the transformed D and C

via Gram-Schmidt orthogonalization as follows,

D∗i = Di − n−1d
∑
i

DiI(Di = d) (4.5)

C∗i = Ci − n−1d
∑
i

CiI(Di = d), (4.6)

Note that, when conducted on each individual gene, this model is essentially the

same as the model in Section 2.1 in this paper. We can use the Lemma 2.1.1 and

Theorem 2.1.1 and convert them into Lemma 4.1.1 and Theorem 4.1.1 with some

notation adjustments.
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After we calculate the TTS test statistics for each gene in the gene set, we

let X = (T TTSτ,1 , ..., T TTSτ,j ) be the vector of TTS test statistics on j genes. Let

Σ denote the covariance matrix of the test statistics. In Lemma 4.1.2, we obtain

X∗ = Σ−1/2X ∼ Nn(0, Ij×j), and T TTS
∗

τ,j in X∗ = (T TTS
∗

τ,1 , ..., T TTS
∗

τ,j ) follows a stan-

dard normal distribution.

The proposed tail-based pathway test statistics PTTS for the hypothesis of no

difference between disease groups is defined as

PTTS =
√
jT̄ TTS

∗

τ , with T̄ TTS
∗

τ =
1

j

j∑
p=1

T TTS
∗

τ,p , (4.7)

with j being the number of genes in pathway of interest. We use Theorem 4.1.2 to

establish the standard normal distribution of PTTS under null hypothesis.

Lemma 4.1.1

If limn1,n0→∞(n1 + n0)
−1Uf exists, E‖Ci‖31 < ∞, the number of exon region mi is

some fixed number, and fijk are uniformly bounded away from 0 and infinity, then we

have the Bahadur representation on γ̂(τ),

γ̂(τ)− γ(τ) = U−1f
∑

im
−1
j

∑mj

j=1C
∗
iψτ (eijk(τ)) + op((n0 + n1)

− 1
2 ),

and the representation of ēτ (d),

ēτ (d) = (
∑

Di=d

∑mj

j e+ijk(τ))−1
∑

Di=d

∑mj

j eijk(τ)e+ijk(τ) + op((n0 + n1)
− 1

2 ).

Proof of Lemma 4.1.1

Refer to proof of Lemma 2.1.1.

Theorem 4.1.1

If limn1,n0→∞
n0

n0+n1
→ q ∈ (0, 1) and limn1,n0→∞(n1 + n0)

−1Uf exists, E‖Ci‖31 < ∞,

and fijk are uniformly bounded away from 0 and infinity, then under the null hypoth-

esis, in which the distribution of the two groups FZ|C,D=1=FZ|C,D=0, we have

T TTSτ (n1, n0)/sn0,n1 → N(0, 1) as n1, n0 →∞. (4.8)
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Proof of Theorem 4.1.1

According to Lemma 4.1.1, and δ(τ) = 0, under the null hypothesis, we can write

T TTSτ =

{∑
Di=1

mj∑
k=1

eijk(τ)e+ijk(τ)/N1 −
∑
Di=0

mj∑
k=1

eijk(τ)e+ijk(τ)/N0

}
(1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m−1j

mj∑
k=1

C∗iψτ (eijk(τ)) + op((n0 + n1)
−1/2)

= T ∗τ (n1, n0) + op((n0 + n1)
−1/2).

where

T ∗τ (n1, n0) =

{∑
Di=1

mj∑
k=1

eijk(τ)e+ijk(τ)/N1 −
∑
Di=0

mj∑
k=1

eijk(τ)e+ijk(τ)/N0

}
(1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0))U−1f

n∑
i=1

m−1j

mj∑
k=1

C∗iψτ (eijk(τ)}

Under the null hypothesis, the mean of the test statistics are

E(T ∗τ (n1, n0)) =

{∑
Di=1

mj∑
k=1

E(eijk(τ)e+ijk)/N1 −
∑
Di=0

mj∑
k=1

E(eijk(τ)e+ijk)/N0

}
(1− τ)−1

= (1− τ)−1E(eijk(τ)e+ijk)(1− 1)

= 0.
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And the variance are

V ar(T ∗τ (n1, n0)) =

(1− τ)−2(V1/N
2
1 + V0/N

2
0 )

+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2k

mj∑
k=1

C∗iC
∗T
i τ(1− τ)

}
×U−1f {C̄τ (1)− C̄τ (0)}

+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2j
∑
k 6=k′

C∗iC
∗T
i ψτ (eijk(τ))ψτ (eijk′(τ))

}
×U−1f {C̄τ (1)− C̄τ (0)}

+(1− τ)−1

{∑
Di=1

mj∑
k=1

eijk(τ)e+ijk(τ)/N1

}
{C̄T

τ (1)− C̄T
τ (0)}U−1f

×
n∑

Di=1

m−1j

mj∑
k=1

C∗iψτ (eijk(τ))

−(1− τ)−1

{∑
Di=0

mj∑
k=1

eijk(τ)e+ijk(τ)/N0

}
{C̄T

τ (1)− C̄T
τ (0)}U−1f

×
n∑

Di=0

m−1j

mj∑
k=1

C∗iψτ (eijk(τ))

−(1− τ)−1{C̄T
τ (1)− C̄T

τ (0)}U−1f /N1

n∑
Di=1

mj∑
k=1

C∗im
−1
j eijke

+
ijkψτ (eijk(τ))

+(1− τ)−1{C̄T
τ (1)− C̄T

τ (0)}U−1f /N0

n∑
Di=0

mj∑
k=1

C∗im
−1
j eijke

+
ijkψτ (eijk(τ))

= (1− τ)−2(V1/N
2
1 + V0/N

2
0 )

+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2k

mj∑
k=1

C∗iC
∗T
i τ(1− τ)

}
U−1f {C̄τ (1)− C̄τ (0)}

+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2j
∑
k 6=k′

C∗iC
∗T
i ψτ (eijk(τ))ψτ (eijk′(τ))

}
×U−1f {C̄τ (1)− C̄τ (0)}

−(1− τ)−1{C̄T
τ (1)− C̄T

τ (0)}U−1f /N1

48



×

{
n∑

Di=1

mj∑
k1=1

mj∑
k2=1

C∗im
−1
j eijk1e

+
ijk1

ψτ (eijk2(τ))

−
n∑

Di=1

mj∑
k1=1

eijk1e
+
ijk1

mj∑
k2=1

m−1j C
∗
iψτ (eijk2(τ))

}
+(1− τ)−1(C̄

T
τ (1)− C̄T

τ (0))U−1f /N0

×

{
n∑

Di=0

mj∑
k1=1

mj∑
k2=1

C∗im
−1
j eijk1e

+
ijk1

ψτ (eijk2(τ))

−
n∑

Di=0

mj∑
k1=1

eijk1e
+
ijk1

mj∑
k2=1

m−1j C
∗
iψτ (eijk2(τ))

}

where

Vd =
∑
Di=d

mj∑
k=1

var(eijke
+
ijk) +

∑
Di=d

∑
k 6=k′

cov(eije
+
ijk, eijk′e

+
ijk′),

=
∑
Di=d

mj∑
k=1

(
e2ijkê

+
ijk

)
−N−1d

(∑
Di=d

mj∑
k=1

eijke
+
ijk

)2

+
∑
Di=d

∑
k 6=k′

[{∑
Di=d

mj(mj − 1)

}−1 ∑
Di=d

∑
k 6=k′

eijke
+
ijkeijk′e

+
ijk′

−nd−1
{∑
Di=d

∑
k

eijke
+
ijk

}2 ]
,
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which can be estimated by s2n0,n1
.

s2n0,n1
= {1− τ)−2

V1/(∑
Di=1

mj

}2

+ V0/

(∑
Di=0

mj

)2


+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2k

mj∑
k=1

C∗iC
∗T
i τ(1− τ)

}
U−1f {C̄τ (1)− C̄τ (0)}

+{C̄T
τ (1)− C̄T

τ (0)}U−1f

{∑
i

m−2j
∑
k 6=k′

C∗iC
∗T
i ψτ (êijk(τ))ψτ (êijk′(τ))

}
×U−1f {C̄τ (1)− C̄τ (0)}

−(1− τ)−1{C̄T
τ (1)− C̄T

τ (0)}U−1f /N1

{
n∑

Di=1

mj∑
k1=1

mj∑
k2=1

C∗im
−1
j êijk1 ê

+
ijk1

ψτ (êijk2(τ))

−
n∑

Di=1

mj∑
k1=1

êijk1 ê
+
ijk1

mj∑
k2=1

m−1j C
∗
iψτ (êijk2(τ))

}

+(1− τ)−1(C̄
T
τ (1)− C̄T

τ (0))U−1f /N0

{
n∑

Di=0

mj∑
k1=1

mj∑
k2=1

C∗im
−1
j êijk1 ê

+
ijk1

ψτ (êijk2(τ))

−
n∑

Di=0

mj∑
k1=1

êijk1 ê
+
ijk1

mj∑
k2=1

m−1j C
∗
iψτ (êijk2(τ))

}

By the central limit theorem, T ∗τ (n1, n0) is asymptotically normal with mean 0

and variance. Thus, by lemma 4.1.1 and Tτ (n1, n0)− T ∗τ (n1, n0) = op((n0 + n1)
−1/2),

we prove the asymptotic normality of the test statistic Tτ (n1, n0).
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To construct the pathway test, we let T TTSτ,j denote the test statistics for jth

gene, V ar(T TTSτ,j ) denotes the variance for jth gene, Cov(T TTSτ,j1
, T TTSτ,j2

) denotes the

covariance for the test statistics between j1th and j2th gene.

Lemma 4.1.2

Let X = (T TTSτ,1 , ..., T TTSτ,j ) be the vector of the TTS test statistics on j genes from a

gene set. Let Σ denote the covariance matrix of the test statistics.

For X ∼ Nn(0,Σ) under the null hypothesis and Σ is positive definite, we have

X∗ = Σ−1/2X ∼ Nn(0, Ij×j), and T TTS
∗

τ,j in X∗ = (T TTS
∗

τ,1 , ..., T TTS
∗

τ,j ) follows a stan-

dard normal distribution.

Proof of Lemma 4.1.2

According to Theorem 4.1.1 and the gene-wise correlation structure specified in equa-

tion (4.2), X ∼ Nn(0,Σ) under null hypothesis. The covariance matrix of the test

statistics vector X is as following

Σ =


V ar(T TTSτ,1 ) Cov(T TTSτ,j1

, T TTSτ,j2
) ... ...

Cov(T TTSτ,j2
, T TTSτ,j1

) V ar(T TTSτ,2 ) ... ...

... ... ... ...

... ... ... V ar(T TTSτ,j )


where the variances V ar(T TTSτ,j ) have been derived in Theorem 4.1.1. and
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pairwise covariance is as following

Cov(T TTSτ,j , T TTSτ,j′ )

= E
(
T TTSτ,j T TTSτ,j′

)
− E

(
T TTSτ,j

)
E
(
T TTSτ,j′

)
= E

([{∑
Di=1

mj∑
k1=1

eijk1(τ)e+ijk1(τ)/N1 −
∑
Di=0

mj∑
k1=1

eijk1(τ)e+ijk1(τ)/N0

}
(1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m−1j

mj∑
k1=1

C∗iψτ (eijk1(τ))

]

×
[∑

Di=1

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N1 −
∑
Di=0

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N0

 (1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

C∗iψτ (eij′k2(τ))

])

−E
[{

(
∑
Di=1

mj∑
k1=1

eijk1(τ)e+ijk1(τ)/N1 −
∑
Di=0

mj∑
k1=1

eijk1(τ)e+ijk1(τ)/N0

}
(1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m−1j

mj∑
k1=1

C∗iψτ (eijk1(τ))

]

×E
[∑

Di=1

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N1 −
∑
Di=0

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N0

 (1− τ)−1

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

C∗iψτ (eij′k2(τ))

]
= E(A1B1 − A1B2 − A1B3 − A2B1 + A2B2 + A2B3 − A3B1 + A3B2 + A3B3)−

{E(A1)E(B1)− E(A1)E(B2)− E(A1)E(B3)− E(A2)E(B1) + E(A2)E(B2) +

+E(A2)E(B3)− E(A3)E(B1) + E(A3)E(B2) + E(A3)E(B3))

Where A1 = (1− τ)−1
∑

Di=1

∑mj

k1=1 eijk1(τ)e+ijk1(τ)/N1

A2 = (1− τ)−1
∑

Di=0

∑mj

k1=1 eijk1(τ)e+ijk1(τ)/N0

A3 = (C̄
T
τ (1)− C̄T

τ (0))U−1f
∑n

i=1m
−1
j

∑mj

k1=1C
∗
iψτ (eijk1(τ))
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B1 = (1− τ)−1
∑

Di=1

∑m′j
k2=1 eij′k2(τ)e+ij′k2(τ)/N1

B2 = (1− τ)−1
∑

Di=0

∑m′j
k2=1 eij′k2(τ)e+ij′k2(τ)/N0

B3 = (C̄
T
τ (1)− C̄T

τ (0))U−1f
∑n

i=1m
′−1
j

∑m′j
k2=1C

∗
iψτ (eij′k2(τ))

E(A1B1)− E(A1)E(B1)

= E

(1− τ)−2/N2
1

∑
Di=1

mj∑
k1=1

eijk1(τ)e+ijk1(τ)
∑
Di=1

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)


−(1− τ)−2/N2

1

∑
Di=1

mj∑
k1=1

E
{
eijk1(τ)e+ijk1(τ)

} ∑
Di=1

m′j∑
k2=1

E
{
eij′k2(τ)e+ij′k2(τ)

}
= (1− τ)−2/N2

1

[Di=1∑
i1=i2

mj∑
k1=1

m′j∑
k2=1

E
{
eijk1(τ)e+ij1k1(τ)eij′k2(τ)e+ij′k2(τ)

}
+

Di=1∑
i1 6=i2

mj∑
k1=1

E
{
ei1jk1(τ)e+ij1k1(τ)

} m′j∑
k2=1

E
{
ei2j′k2(τ)e+ij′k2(τ)

}]

−(1− τ)−2/N2
1

∑
i1

∑
i2

mj∑
k1=1

E{ei1jk1(τ)e+ij1k1(τ)}
m′j∑
k2=1

E{ei2j′k2(τ)e+ij′k2(τ)}


= (1− τ)−2/N2

1

[Di=1∑
i1=i2

mj∑
k1=1

m′j∑
k2=1

E{eijk1(τ)e+ij1k1(τ)eij′k2(τ)e+ij′k2(τ)}

−
Di=1∑
i1=i2

mj∑
k1=1

E{eijk1(τ)e+ij1k1(τ)}
m′j∑
k2=1

E{eij′k2(τ)e+ij′k2(τ)}
]

E(A1B2)− E(A1)E(B2)

= (1− τ)−2/(N0N1)E

∑
Di=1

mj∑
k1=1

eijk1(τ)e+ijk1(τ)
∑
Di=0

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)

−
(1− τ)−2/(N0N1)

∑
Di=1

mj∑
k1=1

E
[
eijk1(τ)e+ijk1(τ)

] ∑
Di=0

m′j∑
k2=1

E
{
eij′k2(τ)e+ij′k2(τ)

}
= 0
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E(A1B3)− E(A1)E(B3)

= E

{
(1− τ)−1/(N1)

∑
Di=1

mj∑
k1=1

eijk1(τ)e+ijk1(τ)

×(C̄
T
τ (1)− C̄T

τ (0))U−1f

n∑
i=1

m′−1j

m′j∑
k2=1

C∗iψτ (eij′k2(τ))

}

−(1− τ)−1/(N1)
∑
Di=1

mj∑
k1=1

E{eijk1(τ)e+ijk1(τ)}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

E{C∗iψτ (eij′k2(τ))}

= (1− τ)−1/(N1){C̄
T
τ (1)− C̄T

τ (0)}U−1f

×
[∑
Di=1

mj∑
k1=1

m′j∑
k2=1

E
{
eijk1(τ)e+ijk1(τ)m′−1j C∗iψτ (eij′k2(τ))

}
+

Di=1∑
i1 6=i2

mj∑
k1=1

E{eijk1(τ)e+ij1k1(τ)}
m′j∑
k2=1

E{m′−1j C∗iψτ (eij′k2(τ))}
]

−(1− τ)−1/(N1)
∑
Di=1

mj∑
k1=1

E{eijk1(τ)e+ijk1(τ)}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

E{C∗iψτ (eij′k2(τ))}

= (1− τ)−1/(N1){C̄
T
τ (1)− C̄T

τ (0)}U−1f

×
[∑
Di=1

mj∑
k1=1

m′j∑
k2=1

E
{
eijk1(τ)e+ijk1(τ)m′−1j C∗iψτ (eij′k2(τ))

}
−
∑
Di=1

mj∑
k1=1

m′j∑
k2=1

E{eijk1(τ)e+ijk1(τ)}E{m′−1j C∗iψτ (eij′k2(τ))}
]

E(A2B1)− E(A2)E(B1)

= (1− τ)−2/(N0N1)E{
∑
Di=0

mj∑
k1=1

eijk1(τ)e+ijk1(τ)
∑
Di=1

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)} −

(1− τ)−2/(N0N1)
∑
Di=0

mj∑
k1=1

E{eijk1(τ)e+ijk1(τ)}
∑
Di=1

m′j∑
k2=1

E{eij′k2(τ)e+ij′k2(τ)}

= 0
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E(A2B2)− E(A2)E(B2)

= E

(1− τ)−2/N2
0

∑
Di=0

mj∑
k1=1

eijk1(τ)e+ijk1(τ)
∑
Di=0

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)


−(1− τ)−2/N2

0

∑
Di=0

mj∑
k1=1

E
{
eijk1(τ)e+ijk1(τ)

} ∑
Di=1

m′j∑
k2=1

E
{
eij′k2(τ)e+ij′k2(τ)

}
= (1− τ)−2/N2

0

[Di=0∑
i1=i2

mj∑
k1=1

m′j∑
k2=1

E
{
eijk1(τ)e+ij1k1(τ)eij′k2(τ)e+ij′k2(τ)

}
+

Di=0∑
i1 6=i2

mj∑
k1=1

E
{
ei1jk1(τ)e+ij1k1(τ)

] m′j∑
k2=1

E
[
ei2j′k2(τ)e+ij′k2(τ)

}]

−(1− τ)−2/N2
0

∑
i1

∑
i2

mj∑
k1=1

E{ei1jk1(τ)e+ij1k1(τ)}
m′j∑
k2=1

E{ei2j′k2(τ)e+ij′k2(τ)}


= (1− τ)−2/N2

0

[Di=0∑
i1=i2

mj∑
k1=1

m′j∑
k2=1

E{eijk1(τ)e+ij1k1(τ)eij′k2(τ)e+ij′k2(τ)}

−
Di=0∑
i1=i2

mj∑
k1=1

E{eijk1(τ)e+ij1k1(τ)}
m′j∑
k2=1

E{eij′k2(τ)e+ij′k2(τ)}
]
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E(A2B3)− E(A2)E(B3)

= E

[
(1− τ)−1/(N0)

∑
Di=0

mj∑
k1=1

eijk1(τ)e+ijk1(τ)

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

C∗iψτ (eij′k2(τ))

]

−(1− τ)−1/(N0)
∑
Di=0

mj∑
k1=1

E{eijk1(τ)e+ijk1(τ)}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

E{C∗iψτ (eij′k2(τ))}

= (1− τ)−1/(N0){C̄
T
τ (1)− C̄T

τ (0)}U−1f

×
[∑
Di=0

mj∑
k1=1

m′j∑
k2=1

E
{
eijk1(τ)e+ijk1(τ)m′−1j C∗iψτ (eij′k2(τ))

}
−
∑
Di=0

mj∑
k1=1

m′j∑
k2=1

E{eijk1(τ)e+ijk1(τ)}E{m′−1j C∗iψτ (eij′k2(τ))}
]

E(A3B1)− E(A3)E(B1)

= E

[
{C̄T

τ (1)− C̄T
τ (0)}U−1f

n∑
i=1

m−1j

mj∑
k1=1

C∗iψτ (eijk1(τ))

×(1− τ)−1
∑
Di=1

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N1

]

−(1− τ)−1/(N1)
∑
Di=1

mj∑
k1=1

E{eij′k2(τ)e+ij′k2(τ)}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

mj∑
k1=1

E{C∗iψτ (eijk1(τ)))}

= (1− τ)−1/(N1){C̄
T
τ (1)− C̄T

τ (0)}U−1f

×
[∑
Di=1

mj∑
k1=1

m′j∑
k2=1

E{eij′k2(τ)e+ij′k2(τ)m−1j C
∗
iψτ (eijk1(τ))}

−E{eij′k2(τ)e+ij′k2(τ)}E{m−1j C∗iψτ (eijk1(τ))}
]
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E(A3B2)− E(A3)E(B2)

= E

[
{C̄T

τ (1)− C̄T
τ (0)}U−1f

n∑
i=1

m−1j

mj∑
k1=1

C∗iψτ (eijk1(τ))

×(1− τ)−1
∑
Di=0

m′j∑
k2=1

eij′k2(τ)e+ij′k2(τ)/N0

]

−(1− τ)−1/(N1)
∑
Di=0

mj∑
k1=1

E{eij′k2(τ)e+ij′k2(τ)}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

E{C∗iψτ (eijk1(τ))}

= (1− τ)−1/(N0){C̄
T
τ (1)− C̄T

τ (0)}U−1f

×
[∑
Di=0

mj∑
k1=1

mj∑
k2=1

E{eij′k2(τ)e+ij′k2(τ)m′−1j C∗iψτ (eijk1(τ))}

−E{eij′k2(τ)e+ij′k2(τ)}E{m′−1j C∗iψτ (eijk1(τ))}
]

E(A3B3)− E(A3)E(B3)

= E

[
{C̄T

τ (1)− C̄T
τ (0)}U−1f

n∑
i=1

m−1j

mj∑
k1=1

C∗iψτ (eijk1(τ))

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

C∗iψτ (eij′k2(τ))

]

−{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m−1j

mj∑
k1=1

E{C∗iψτ (eijk1(τ))}

×{C̄T
τ (1)− C̄T

τ (0)}U−1f
n∑
i=1

m′−1j

m′j∑
k2=1

E{C∗iψτ (eij′k2(τ))}

= {C̄T
τ (1)− C̄T

τ (0)}U−1f
[ n∑
i=1

m−1j m′−1j

mj∑
k1=1

m′j∑
k2=1

C∗iC
∗T
i ψτ (eijk1(τ))ψτ (eij′k2(τ))

−
mj∑
k1=1

E{m−1j C∗iψτ (eijk1(τ))}
m′j∑
k2=1

E{m′−1j C∗iψτ (eij′k2(τ))}
]
U−1f {C̄τ (1)− C̄τ (0)}

Thus, we have derived the covariance matrix of Σ. When Σ is positive definite,

we can use Σ−1/2 to standardize X into X∗ = Σ−1/2X ∼ Nn(0, Ij×j),
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and T TTS
∗

τ,p in X∗ = (T TTS
∗

τ,1 , ..., T TTS
∗

τ,j ) follows a standard normal distribution.

Theorem 4.1.2

If T TTS
∗

τ,p follow standard normal distribution, we have

PTTS =
√
jT̄ TTS

∗

τ , with T̄ TTS
∗

τ =
1

j

j∑
p=1

T TTS
∗

τ,p , (4.9)

and

PTTS ∼ N(0, 1) (4.10)

with j being the number of genes in pathway of interest.

Proof of Theorem 4.1.2

According to Lemma 4.1.2 and under null hypothesis, we are able to have T TTS
∗

τ,p ∼

N(0, 1). Let T̄ TTS
∗

τ = 1
j

∑j
p=1 T

TTS∗
τ,p . Then the moment generating function of PTTS =

√
jT̄ TTS

∗
τ is given by

MPTTS
(t) = E

[
exp

{
t(

√
j

j

j∑
p=1

T TTS
∗

τ,p )

}]

= exp

{
t

(√
j

j

j∑
p=1

µ

)
+
t2

2

(
(
√
j)2

j2

j∑
p=1

σ2

)}

= exp

{
t

(
1√
j
jµ

)
+
t2

2

(
1

j
(jσ2)

)}
= exp

{√
jµt+

t2

2
σ2

}
Using the moment generating function, we have shown that PTTS follows a normal

distribution with mean
√
jµ and variance σ2, where µ and σ2 are the mean and

variance of T TTS
∗

τ,p . According to Lemma 4.1.2 that T TTS
∗

τ,p ∼ N(0, 1), PTTS has mean
√
jµ = 0 and variance σ2 = 1. Hence, we have proved PTTS ∼ N(0, 1).
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4.2 Simulation

We conducted simulation studies to investigate the statistical validity and power of

the proposed pathway test, PTTS. We compared PTTS to popular pathway and gene

set analysis methods, including the Gene Set Enrichment Analysis (called GSEA)

by Subramanian et al. (2005) using R package by Vremo et al. (2013), the Generally

Applicable Gene set Enrichment (called GAGE) by Luo et al. (2009) using R package

by Luo and Brouwer (2013), and the Fishers combined probability test adapted to

pathway analysis (called Fisher) by Vremo et al. (2013). We generated exon-level

gene expression data in Log2-RPKM format from the following model to fit our model,

and converted the measurement to gene-level raw counts to fit other analysis methods.

Zijk = 5 + γCi + δe+ranI(Di = 1) + eijk,where (4.11)

Zijk is the intensity value of exon k of gene j for subject sample i, Ci indicates

the covariate value and Ci ∼ N(2.5, 0.52). Di indicates the disease status, nor-

mal tissue or cancer, of the patient sample i. The corresponding error terms are

denoted by eijks, and eijk = eexon,ijk + egene,ij. The inter-exon error term eexon,ijk

are normally distributed with unit variance and compound symmetry correlation

structure cor(eexon,ijk, eexon,ijk′) = 0.8. And gene-wise error term egene,ij are nor-

mally distributed with unit variance and compound symmetry correlation structure

cor(egene,ij, egene,ij′) = 0.5. eran follows an standard normal distribution and e+ran is

the indicator function. Using this setting, we only apply group effect δ on cancer

group expression data which are above the 50th quantile. We used certain number of

genes to form the pathway and investigated the following three scenarios.

Scenario 1 (null hypothesis): δ = 0 for all pathways of 10 and 30 gene.

Scenario 2 (alternative hypothesis 1): For pathways of 10 genes, 75% of the pathways

are none DE with δ = 0. And 25% of the pathway have 5 or 8 DE genes in each

pathway. The group effect δ ∼ uniform(1, 2) while the rest of the genes have δ = 0.
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Scenario 3 (alternative hypothesis 2): For pathways of 30 genes, 75% of the pathways

are none DE with δ = 0. And 25% of the pathway have 15, 20, or 24 DE genes in

each pathway. The group effect δ ∼ uniform(1, 2) while the rest of the genes have

δ = 0.

We used Monte Carlo to generate 1, 000 pathway samples for scenario 1 and 1, 200

pathway samples for scenario 2 and 3. Each generated gene has a gene length of 30

exon regions. To implement the other pathway analysis methods, we followed the

standard procedure recommended by the authors. We first performed DE analysis use

Limma, edgeR, and DESeq2 for each individual gene, then used the outputs of these

test as inputs for the pathway analysis methods. We used Limma’s test statistics

for GSEA, Limma’s p-values to perform Fisher, and the logFCs of Limma, edgeR,

and DESeq2 to conduct GAGE (called GAGELimma, GAGEedgeR, and GAGEDESeq2

respectively). For the proposed test, we used τ = 0.5 for testing all scenario at the

nominal levels of 5% and calculated the average false positive rates (FPRs) and true

positive rates (TPRs).

In scenario 1, the FPRs are shown in Table 4.1. We observed that GAGELimma,

GAGEedgeR, and GAGEDESeq2 have relatively conservative FPRs. GSEA, which uses

a sample based permutation methods, is sensitive to the noise and shows inflated

FPRs. Fisher shows modestly inflated FPRS. In contrast, FPRs of our proposed

method PTTS is able to converge to the nominal value.

In scenario 2, the FPRs are shown in the top of Table 4.2. We observed that

GAGELimma, GAGEedgeR, GAGEDESeq2, and Fisher have relatively conservative

FPRs. GSEA are sensitive to noise and show inflated FPRs while PTTS can maintain

the FPRs around the nominal value. When the group effect is present, the cancer

group (Di = 1) has a heavier right tail and larger variance than the normal group

(Di = 0) for DE genes. The difference between the two groups is relatively small at

the median and gradually increases in the upper quantiles.
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Table 4.1
FPRs at the nominal levels of 5% for scenario 1. The values in the table
are percentages.

Scenario 1 FPR

Pathway Sample

Gene Number Size PTTS GAGELimma GAGEedgeR GAGEDESeq2 GSEA Fisher

10 60 6.70 3.90 2.30 2.60 28.50 9.00

30 60 7.70 3.80 1.90 2.20 26.80 10.90

10 80 5.90 3.30 2.50 2.40 28.90 8.80

30 80 7.20 3.20 1.50 1.70 24.70 6.80

10 100 6.50 4.00 2.00 1.90 26.60 8.60

30 100 5.70 3.00 1.90 1.90 23.90 9.00

10 150 5.40 4.40 2.60 2.60 26.40 8.60

30 150 6.50 3.20 2.30 2.40 27.40 8.30

10 200 4.00 2.90 1.50 1.50 27.70 8.70

30 200 5.40 3.40 2.50 2.40 31.30 8.10

The TPRs are shown in bottom of Table 4.2. PTTS has the best performance

comparing with all other methods. The advantage of PTTS is more prominent when

analyzing smaller sample sizes (e.g., 60) and fewer number of DE genes within the

pathway (e.g., 5), which are often encountered in practice. GSEA has the second best

TPRs but the result is less trustworthy considering its abnormal FPRs. GAGELimma,

GAGEedgeR, and GAGEDESeq2 shows weaker FPRs. As GAGE assumes independent

correlation of the genes, it does not make use of the gene-wise correlation and loses

its power. Fisher performs better than these three methods but is still worse than

PTTS.

In scenario 3, the FPRs are shown in the top of Table 4.3. We observed that

GAGELimma, GAGEedgeR, GAGEDESeq2, and Fisher have relatively conservative
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Table 4.2
FPRs and TPRs at the nominal levels of 5% for scenario 2. The values in
the table are percentages.

Scenario 2 Nominal Level FPR

Pathway Sample DE

Gene Number Size Genes PTTS GAGELimma GAGEedgeR GAGEDESeq2 GSEA Fisher

10 60 5 6.11 0.67 0.56 0.56 19.11 0.11

10 60 8 7.00 0.78 0.56 0.56 23.78 0.44

10 80 5 5.89 0.67 0.11 0.11 20.67 0.44

10 80 8 6.00 0.78 0.11 0.11 22.00 0.44

10 100 5 6.78 0.56 0.56 0.56 15.56 0.11

10 100 8 6.67 0.56 0.56 0.56 21.11 0.22

10 150 5 5.78 0.00 0.11 0.11 15.00 0.00

10 150 8 5.22 0.00 0.11 0.11 21.44 0.00

Scenario 2 TPR

Pathway Sample DE

Gene Number Size Genes PTTS GAGELimma GAGEedgeR GAGEDESeq2 GSEA Fisher

10 60 5 87.00 23.67 18.67 20.00 68.00 70.00

10 60 8 98.33 68.33 57.33 55.33 88.67 79.33

10 80 5 91.33 31.00 23.67 24.00 67.00 77.33

10 80 8 99.67 76.67 62.67 61.33 89.33 80.67

10 100 5 96.33 32.33 25.33 26.00 67.33 76.67

10 100 8 100.00 81.67 73.00 72.00 94.00 86.67

10 150 5 98.67 40.33 35.00 34.00 73.33 79.00

10 150 8 100.00 88.33 82.33 80.33 96.67 91.67

FPRs. GSEA is sensitive to noise and shows inflated FPRs while PTTS can maintain

the FPRs around the nominal value.

The TPRs are shown in bottom of Table 4.3. Fisher has the best performance

comparing with all other methods. Our methods PTTS has the second best TPRs.

All the methods perform equally for larger sample size and more DE genes in the

pathway.
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Table 4.3
FPRs and TPRs at the nominal levels of 5% for scenario 3. The values in
the table are percentages.

Scenario 3 FPR

Pathway Sample DE

Gene Number Size Genes PTTS GAGELimma GAGEedgeR GAGEDESeq2 GSEA Fisher

30 60 15 8.22 1.89 0.89 1.00 46.33 0.44

30 60 20 7.56 1.89 0.78 0.78 52.22 0.33

30 60 24 8.00 2.00 0.89 0.89 57.44 0.56

30 80 15 7.44 1.78 0.78 0.78 45.00 0.22

30 80 20 7.11 0.78 0.44 0.67 51.22 0.11

30 80 24 7.33 0.78 0.67 0.78 59.00 0.22

30 100 15 5.56 0.67 0.67 0.67 45.00 0.11

30 100 20 5.89 0.67 0.56 0.78 53.11 0.11

30 100 24 5.56 0.67 0.44 0.56 62.00 0.11

30 150 15 6.56 0.33 0.56 0.67 44.33 2.22

30 150 20 6.78 0.33 0.56 0.67 57.33 0.00

30 150 24 6.56 0.22 0.56 0.56 64.78 2.22

Scenario 3 TPR

Pathway Sample DE

Gene Number Size Genes PTTS GAGELimma GAGEedgeR GAGEDESeq2 GSEA Fisher

30 60 15 92.33 87.67 84.00 84.00 92.00 97.00

30 60 20 98.33 98.67 93.00 92.67 97.33 97.33

30 60 24 100.00 97.67 93.33 93.67 99.67 96.00

30 80 15 98.33 92.00 95.00 95.00 97.00 99.33

30 80 20 99.67 99.33 97.67 96.33 97.33 98.33

30 80 24 100.00 98.67 96.67 96.00 99.67 98.00

30 100 15 98.67 100.00 98.00 98.00 96.00 99.00

30 100 20 100.00 99.67 98.67 98.33 99.00 99.33

30 100 24 100.00 100.00 98.67 98.33 100.00 99.00

30 150 15 99.33 100.00 99.33 99.00 97.00 99.67

30 150 20 100.00 100.00 100.00 100.00 99.67 99.67

30 150 24 100.00 100.00 100.00 100.00 100.00 99.67
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5. An application on non-small cell lung cancer data to

detect differential expressed pathway

5.1 Introduction

To detect differential expressed non-small cell lung cancer (NSCLC) pathway, we

used lung adenocarcinoma data accessible at the TCGA public data portal, with the

RNA-seq data profiled from 50 cancer and 50 normal tissue samples at the exon-

level and gene-level. The gene expression data were normalized into Log2-RPKM

following standard protocols. Then we eliminated the non-expressed genes in both

groups prior to our downstream analysis. As ancillary clinical information, we also

considered gender and smoking status in our study. The objective was to utilize

biological knowledge on NSCLC pathways to form gene sets of interest, and then

detect the gene sets that are differentially expressed between cancer and normal tissue

samples. In particular, we used the biological knowledge on the NSCLC from KEGG

database (Kanehisa and Goto, 2000). We formed 7 pathway gene sets and 1 whole

NSCLC gene set which includes all the associated genes of NSCLC. The complete

pathway information and gene lists are list in Table 5.1.

We applied the proposed test, PTTS, to each gene at 50th quantile and used a

10% false discovery rate (FDR) adjustment to control for multiple testing. PTTS

first conducts exon-level TTS test on each individual gene in the pathway, then

combine the individual TTS test statistics and compute a pathway test statistics.

For comparison methods, we first applied standard gene-level DE analysis methods

including edgeR, DESeq2, and Limma. Then we followed the standard procedure

recommended by the authors and used the outputs of these test as inputs for the
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pathway analysis methods. We used Limma’s test statistics for GSEA, Limma’s p-

values to perform Fisher, and the logFCs of Limma, edgeR, and DESeq2 to conduct

GAGE (called GAGELimma,GAGEedgeR, and GAGEDESeq2 respectively).

Table 5.1
Pathway and gene sets related to non-small cell lung cancer

Pathway Name Gene

Ras signaling pathway CCND1, KRAS, RASSF1, RASSF5, STK4

ErbB signaling pathway AKT1, AKT2, AKT3, BAD, CASP9, FOXO3, KRAS,

PDPK1, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2, PIK3R3

MAPK signaling pathway ARAF , BRAF , CCND1, EGF , EGFR, ERBB2, GRB2,

HRAS, KRAS, MAP2K1, MAP2K2, MAPK1, MAPK3, NRAS,

RAF1, SOS1, SOS2, TGFA

Calcium signaling pathway EGF , EGFR, ERBB2, PLCG1, PLCG2, PRKCA, PRKCB,

TGFA

PI3K − Akt signaling pathway AKT1, AKT2, AKT3, BAD, CASP9, EGF , EGFR,

ERBB2, FOXO3, PDPK1, PIK3CA, PIK3CB, PIK3CD, TGFA

Cell Cycle CCND1, CDK4, CDK6, CDKN2A, E2F1, E2F2, E2F3, RB1

RAR/RXR signaling Pathway RARB, RXRA, RXRB, RXRG,

Whole NSCLC gene set AKT1, AKT2, AKT3, ARAF , BAD, BRAF , CASP9,

CCND1, CDK4, CDK6, CDKN2A, E2F1, E2F2, E2F3,

EGF , EGFR, ERBB2, FHIT , FOXO3, GRB2, HRAS,

KRAS, MAP2K1, MAP2K2, MAPK1, MAPK3, NRAS, PDPK1,

PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3

PIK3R5, PLCG1, PLCG2, PRKCA, PRKCB, RAF1

RARB, RASSF1,RASSF5, RB1, RXRA, RXRB, RXRG

SOS1, SOS2, STK4, TGFA, TP53
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5.2 Results

We included gender and smoking status, defined as current smoker, reformed

smoker, and nonsmoker, as covariates in the analysis. We first compared the DE

analysis results. Among 53 genes associated with NSCLC pathways, TTS detected 34

genes at τ = 0.5; Limma detected 39 genes, edgeR detected 29 genes, while DESeq2

detected 41 genes. The Venn diagrams in Figure 5.1 show the number of overlapping

gene among the four methods. We observed that 85% of the genes detected by TTS

were also detected by Limma; 76% of the genes selected by TTS were also detected

by edgeR; and 85% of the genes selected by TTS were also detected by DESeq2 at

τ = 0.5. The complete p-values of the four methods for the 53 genes associated with

NSCLC pathways are shown in Table 5.2. TTS have similar performance and the

identified DE genes tend to overlap with other standard DE methods.

Figure 5.1. Venn diagram of number of overlapping genes among TTS,
edgeR, DESeq2, and Limma, for τ = 0.5.
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Table 5.2
P-values of genes associated with non-small cell lung cancer pathways.

Gene TTS Limma edgeR DESeq2 Gene TTS Limma edgeR DESeq2

AKT1 0.282 0.115 0.639 0.001 PDPK1 0.564 0.044 0.300 0.048

AKT2 0.002 0.003 0.005 0.000 PIK3CA 0.501 0.393 0.953 0.689

AKT3 0.051 0.000 0.000 0.000 PIK3CB 0.000 0.008 0.015 0.001

ARAF 0.250 0.018 0.339 0.000 PIK3CD 0.586 0.250 0.623 0.507

BAD 0.001 0.008 0.091 0.006 PIK3CG 0.373 0.002 0.142 0.107

BRAF 0.000 0.000 0.004 0.000 PIK3R1 0.000 0.000 0.000 0.000

CASP9 0.528 0.613 0.565 0.599 PIK3R2 0.000 0.000 0.000 0.000

CCND1 0.979 0.084 0.735 0.552 PIK3R3 0.013 0.000 0.000 0.000

CDK4 0.000 0.000 0.000 0.000 PIK3R5 0.000 0.000 0.000 0.000

CDK6 0.002 0.041 0.907 0.903 PLCG1 0.494 0.604 0.395 0.495

CDKN2A 0.000 0.000 0.000 0.000 PLCG2 0.020 0.000 0.003 0.001

E2F1 0.000 0.000 0.000 0.000 PRKCA 0.000 0.917 0.090 0.119

E2F2 0.000 0.000 0.000 0.000 PRKCB 0.876 0.000 0.005 0.003

E2F3 0.000 0.000 0.000 0.000 RAF1 0.237 0.001 0.329 0.000

EGF 0.000 0.000 0.000 0.001 RARB 0.181 0.004 0.108 0.021

EGFR 0.042 0.331 0.006 0.000 RASSF1 0.000 0.000 0.000 0.000

ERBB2 0.000 0.000 0.000 0.002 RASSF5 0.000 0.000 0.000 0.000

FHIT 0.002 0.236 0.114 0.000 RB1 0.001 0.000 0.033 0.000

FOXO3 0.001 0.000 0.000 0.000 RXRA 0.000 0.000 0.000 0.677

GRB2 0.223 0.130 0.528 0.089 RXRB 0.917 0.548 0.949 0.000

HRAS 0.188 0.535 0.347 0.000 RXRG 0.000 0.000 0.000 0.000

KRAS 0.000 0.000 0.000 0.000 SOS1 0.035 0.022 0.089 0.000

MAP2K1 0.013 0.485 0.454 0.015 SOS2 0.054 0.000 0.053 0.000

MAP2K2 0.000 0.022 0.124 0.014 STK4 0.219 0.001 0.046 0.000

MAPK1 0.689 0.005 0.322 0.000 TGFA 0.000 0.000 0.000 0.056

MAPK3 0.000 0.000 0.002 0.000 TP53 0.000 0.000 0.000 0.619

NRAS 0.000 0.069 0.068 0.029
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Then we focused on the results of the pathway and gene set analysis. Among

the 7 pathway gene sets and 1 whole gene set, PTTS is able to detect 7 of these

and only misses ErbB signaling pathway. GSEA and Fisher can detect Cell Cy-

cle and RAR/RXR signaling pathway and misses all other pathways. GAGEedgeR,

GAGELimma, and GAGEDESeq2 can detect none of these pathways.

Table 5.3
The FDR adjusted P-values of 7 pathway gene sets and 1 whole gene set
associated with non-small cell lung cancer.

Ras ErbB MAPK Calcium PI3K − Akt Cell Cycle RAR/RXR Whole NSCLC

signaling pathway signaling pathway signaling pathway signaling pathway signaling pathway signaling pathway signaling pathway gene set

PTTS 3.23E-05 4.44E-01 3.75E-11 5.78E-12 5.88E-04 6.57E-30 6.69E-26 1.83E-07

GAGEedgeR 7.63E-01 9.36E-01 8.76E-01 4.84E-01 7.75E-01 2.29E-01 4.02E-01 8.87E-01

GAGELimma 6.69E-01 8.81E-01 9.08E-01 5.59E-01 8.03E-01 1.42E-01 2.68E-01 6.92E-01

GAGEDESeq2 7.60E-01 9.42E-01 8.83E-01 4.79E-01 7.73E-01 2.11E-01 3.84E-01 8.79E-01

GSEA 4.10E-01 6.12E-01 8.97E-01 6.18E-01 9.50E-01 1.62E-02 3.35E-02 5.67E-01

Fisher 2.00E-01 6.83E-01 9.19E-01 7.32E-01 8.97E-01 6.56E-02 3.73E-02 3.80E-01

To understand the results of PTTS, we first plotted the correlation structure of

Calcium signaling pathway and ErbB signaling pathway for cancer samples and nor-

mal samples. PTTS is able to detect Calcium signaling pathway because we observed

a clear pattern of compound symmetry correlation structure for inter-exon regions

within the gene and most gene-wise correlations. Only ERBB2 tends to have non

compound symmetry correlation with PLCG2 and PRKCB in cancer sample and

EGF tends to have non compound symmetry correlation with ERBB2 and PLCG1

in normal samples. As for ErbB signaling pathway which PTTS fails to detect, we

also observed a clear pattern of compound symmetry correlation structure for all

inter-exon regions within genes. As for gene-wise correlation, we observe that AKT1,

CASP9, and PIK3R2 have non compound symmetry correlation with other most

of the genes in this pathway. Since our model assumption of compound symmetry

correlation structure fails, PTTS is unable to correctly detect ErbB signaling pathway.
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Figure 5.2. Correlation Heatmap of the Calcium signaling pathway and
ErbB signaling pathway for cancer samples on the left and normal samples
on the right.

Then we focused on the results of GAGE. We listed the logFCs of NSCLC

genes from three DE analysis methods in Table 5.4, and plotted the distribution

of logFCs in Figure 5.3. The reason that GAGE is not able to detect any pathway

is because it uses a two sample t-test on the mean difference between LogFCs of

the gene set and whole data set. Then it uses gene permutation method to assess
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the significance of its test statistics. When the logFCs of the gene set are relatively

small comparing to the whole data set, the effect is not significant. Another reason

GAGE fails to detect any pathway is because its assumption of independence between

observations. As we have shown in Figure 5.2, the genes from the Calcium signaling

pathway and the ErbB signaling pathway are correlated. For example, PIK3R1 has

strong positive correlation with PIK3R3, PIK3CA, PIK3CB, PIK3CD, PDPK1,

KRAS, FOXO3, and AKT3 in the ErbB signaling pathway for both cancer and

normal samples. Ignoring the correlation between genes yields poor result for GAGE.
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Table 5.4
LogFcs of genes associated with non-small cell lung cancer pathways.

Gene Limma edgeR DESeq2 Gene Limma edgeR DESeq2

AKT1 -0.11 -0.06 0.28 PDPK1 -0.17 -0.13 -0.16

AKT2 0.24 0.36 0.33 PIK3CA -0.08 -0.01 -0.04

AKT3 -0.96 -0.69 -0.69 PIK3CB 0.24 0.32 0.29

ARAF -0.14 -0.12 -0.89 PIK3CD -0.15 -0.07 -0.09

BAD -0.25 -0.22 -0.25 PIK3CG -0.65 -0.28 -0.30

BRAF 0.54 0.59 0.56 PIK3R1 -0.88 -0.85 -0.87

CASP9 -0.05 0.09 0.06 PIK3R2 0.52 0.55 0.52

CCND1 -0.31 -0.06 -0.10 PIK3R3 -0.82 -0.68 -0.70

CDK4 0.93 1.23 1.20 PIK3R5 -1.34 -1.08 -1.10

CDK6 -0.33 0.02 -0.02 PLCG1 0.05 0.11 0.07

CDKN2A 2.60 3.60 0.47 PLCG2 -0.57 -0.42 -0.44

E2F1 1.01 1.21 1.18 PRKCA 0.02 0.26 0.23

E2F2 2.15 2.23 2.20 PRKCB -0.75 -0.49 -0.50

E2F3 1.48 1.60 1.56 RAF1 -0.14 -0.13 1.56

EGF 1.77 2.72 -0.54 RARB -0.43 -0.31 0.32

EGFR 0.19 0.59 2.66 RASSF1 -0.81 -0.82 -0.84

ERBB2 0.50 0.71 0.22 RASSF5 -0.59 -0.48 1.60

FHIT 0.18 0.43 -3.15 RB1 -0.35 -0.27 -0.30

FOXO3 -0.56 -0.56 -0.42 RXRA -0.88 -0.81 -0.02

GRB2 -0.10 -0.09 -0.11 RXRB -0.04 0.01 -3.12

HRAS 0.06 0.14 -1.09 RXRG -4.12 -3.17 -0.44

KRAS 0.54 0.73 0.69 SOS1 0.20 0.22 -0.28

MAP2K1 0.06 0.10 0.17 SOS2 -0.29 -0.25 -2.90

MAP2K2 0.16 0.20 -0.32 STK4 -0.29 -0.25 -0.28

MAPK1 -0.16 -0.13 -1.05 TGFA 1.16 1.62 0.30

MAPK3 -0.46 -0.39 -0.42 TP53 0.47 0.59 0.05

NRAS 0.18 0.23 0.21

71



Figure 5.3. Distribution of LogFCs of Limma, edgeR, and DESeq2.

We then looked at the results of GSEA and Fisher. GSEA used a sample based

permutation test in order to produce a null distribution for the test statistics. The

construction of null distribution strongly depends on the distribution of DE analysis

results (Limma’s output) and the size of the gene set. The KolmogorovSmirnov-like

statistic is also known to be low on power. When the distribution of Limma’s test

statistics are widely spread as shown in the left of Figure 5.4 and test statistics of
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Limma are modest for the genes of interest, GSEA loses it power and only detects

two pathways.

Fisher constructs the null distributions by a gene sampling based permutation

approach. For each gene set, Fisher randomly took a group of genes of same size and

calculated the gene set statistic. The fraction of random generated gene set statistics

that are equal or larger than the original gene set statistics is the final P-value. Hence

Fisher is also very sensitive to the distribution of the DE analysis results (Limma’s

output). When the p-values from Limma are modest for the genes of interest and the

distribution of the p-values are concentrated near 0 as shown in the right of Figure 5.4,

Fisher has trouble construct good null distributions and only detects two pathways.

Figure 5.4. Distribution of test statistics and P-values of Limma.

In summary, PTTS shows better performance than GAGE, GSEA, and Fisher

due to its ability to utilize all the information in the upper quantile region and its

robustness to model distributions and individual outliers in the DE analysis step by

using TTS method. Then in the pathway analysis, PTTS is able to account for gene-

wise correlation for the gene set and hence gain more information from the data. Our
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proposed test is also a good supplement method to use along with standard pathway

analysis methods, as it is able to include pathways that are missed by GAGE, GSEA,

and Fisher. PTTS loses it power advantage when the gene-wise correlation structure

is not exchangeable as the it violates the assumption of our model.

Overall, our proposed method offers a powerful and robust supplement for de-

tecting differentially expressed pathway by utilizing the information in the region of

interest and account for inter-exon and gene-wise correlation.
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6. Discussion

6.1 Discussion and future work

We have proposed a new test based on quantile regression that can detect dif-

ferential gene expression in RNA-seq data. This covariate-adjusted test utilizes the

information of quantiles in a tail region of the distribution instead of a single quantile

level to make substantial improvement in power. The intrinsic correlation among

exons within a gene can be directly accounted for in the proposed method. The

quantile-based test is also robust to a heavy tailed distribution in RNA-seq data.

Simulation results and real data analysis of TCGA lung adenocarcinoma data demon-

strate the merit of the proposed method. The method has been further extend to

conduct pathway analysis for RNA-seq data. The proposed pathway test incorpo-

rates biological knowledge of pathways to generate gene set of interest, then utilizes

the test statistics of differential gene expression from our tail-based test and com-

putes the pathway test statistics. By accounting for intrinsic gene wise correlation,

this method is a powerful and robust tool to detect differential expressed pathway in

RNA-seq data. Simulation results and real data analysis on NSCLC pathway using

KEGG pathway database demonstrate the advantage of the proposed method over

other popular pathway analysis methods.

In this paper, we focus on the compound symmetry correlation structure among

exons within a gene, which has been empirically shown to be sensible for RNA-

seq data. In further investigations, we plan to broaden the study to account for

more flexible correlation structures for other applications. We also want to explore

the possibility to borrow information across genes in biological pathways to improve
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test efficiency. In the lung cancer study, we find that the outliers in the tail region

sometimes cause the quantile difference to overturn in the extreme tail region. In

future investigations, we will explore how to handle outliers of this type.
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7. Appendix

Tables 7.1, 7.2, 7.3, and 7.4 list genes that are detected by TTS but not by the QRSC ,

LME, Limma, edgeR, and DESeq2 with the supporting medical literature.
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Table 7.1
List of genes detected by TTS but missed by QRSc nad LME

Test method Gene list

QRSc ADAMTS9, C3ORF21, MBD4, ZMAT3, FOXP1, GSK3B

PLD1, SIAH2, C3orf33, EHHADH, IQCB1

RPL14, BTLA, TP63, CCR5, DOCK3

CTNNB1, IGF2BP2, MYD88, LIPH

PFKFB4, PIK3CB, V PRBP , TLR9, V HL

LRRN1, PAK2, PPP1R2, EAF2

TF , V GLL4, RASSF1, FHIT , BAP1, FLNB

Reference (Kumar et al., 2012; Zhang et al., 2012; Shin et al., 2006)

(Wen et al., 2012; Feng et al., 2012; Zheng et al., 2007)

(Chen et al., 2012; Mller et al., 2014; Hu et al., 2015)

(Comtesse et al., 2007; de Miguel et al., 2014; Shriver et al., 1998)

(Thommen et al., 2015; Wang et al., 2011; Cheng et al., 2016)

(Zhou et al., 2015; Shigemitsu et al., 2001; Bell et al., 2013)

(Coste et al., 2010; Seki et al., 2014; Minchenko et al., 2014)

(Wee et al., 2008; Wang et al., 2013; Belmont et al., 2014)

(Zhou et al., 2012; Dmitriev et al., 2012; Kikuchi et al., 2012)

(Takakura et al., 2001; Xiao et al., 2008; Regina et al., 2008)

(Zhang et al., 2014; Pelosi et al., 2010; Zchbauer-Mller et al., 200)

(Carbone et al., 2013; Bandaru et al., 2014)

LME ADAMTS9, BAP1, C3orf33

CCR5, CTNNB1, EHHADH, FHIT , FLNB

GSK3B, IGF2BP2, IQCB1

LIPH, NKIRAS1, PAK2, PPP1R2

RPL14, SENP2, SIAH2, TP63

UBA3, V PRBP , V GLL4

Reference (Kumar et al., 2012; Carbone et al., 2013; Hu et al., 2015)

(Cheng et al., 2016; Shigemitsu et al., 2001; Comtesse et al., 2007)

(Zchbauer-Mller et al., 200; Bandaru et al., 2014; Zheng et al., 2007)

(Bell et al., 2013; de Miguel et al., 2014; Seki et al., 2014)

(Braga et al., 2015; Kikuchi et al., 2012; Takakura et al., 2001)

(Shriver et al., 1998; Wang et al., 2013; Mller et al., 2014; Wang et al., 2011)

(Li et al., 2014; Wang et al., 2013; Zhang et al., 2014)
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Table 7.2
List of genes detected by TTS but missed by Limma and edgeR

Test method Gene list

Limma ADAMTS9, BAP1, C3orf33

CCR5, FHIT , GSK3B

IGF2BP2, LIPH, PAK2

PPP1R2, RABL3, RBM5

SETD2, TF , TP63

Reference (Kumar et al., 2012; Comtesse et al., 2007; Hu et al., 2015)

(Cheng et al., 2016; Zchbauer-Mller et al., 200; Zheng et al., 2007)

(Bell et al., 2013; Seki et al., 2014; Kikuchi et al., 2012)

(Takakura et al., 2001; Zhang et al., 2016; Sutherland et al., 2010)

(Walter et al., 2017; Regina et al., 2008; Wang et al., 2011)

edgeR BAP1, CACNA2D3, CAMK1

CCR5, CD86, FBXL2

GSK3B, LIPH, NKIRAS1

PPP1R2, SETD2, SLC6A20

Reference (Comtesse et al., 2007; Li et al., 2013; Liu et al., 2015)

(Cheng et al., 2016; Wroblewski et al., 2001; Chen et al., 2012)

(Zheng et al., 2007; Seki et al., 2014; Braga et al., 2015)

(Takakura et al., 2001; Walter et al., 2017; Tsou et al., 2007)
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Table 7.3
List of genes detected by TTS but missed by DESeq2, part 1

Gene list

ABCC5, ABHD5, ACTL6A, AGTR1, ALDH1L1, ATP11B

ATP1B3, ATR, B3GALNT1, BAP1, BCHE, BTLA

C3orf1, C3orf21, C3orf33, CACNA2D2, CACNA2D3, CAMK1

CBLB, CCDC37, CCR5, CD86, CDC25A, CDCP1

CHL1, CLDN18, COPB2, CSTA, CTDSPL, CTNNB1

CX3CR1, DCBLD2, DCUN1D1, DLEC1, DOCK3, DTX3L,

DV L3, EAF2, EHHADH, EIF2A, EIF4A2, EIF4G1

EIF5A2, EPHB3, ETV 5, FAM107A, FBXL2, FGD5

FHIT , FLNB, FNDC3B, FOXP1, FXR1, GATA2

GORASP1, GSK3B, HDAC11, HES1, HY AL1, HY AL2

IGF2BP2, IL17RD, IL17RE, IQCB1, IQSEC1, KIAA1524

LEPREL1, LIMD1, LIPH, LMCD1, LPP , LRIG1,

LRRN1, LTF , LZTFL1, MAGI1, MASP1, MBD4

MCM2, METTL6, MINA, MME, MYD88, MY LK

NEK10, NEK4, NISCH, NKIRAS1, NPRL2

Reference

(Pelosi et al., 2006; Ou et al., 2014; Sun et al., 2017; Guo et al., 2015; Oleinik et al., 2011; Qian et al., 2015)

(Mesri et al., 2013; Beumer et al., 2015; Umeyama et al., 2014; Comtesse et al., 2007; Brass et al., 1997; Thommen et al., 2015)

(Wu et al., 2014; Zhang et al., 2012; Hu et al., 2015; Carbone et al., 2003; Li et al., 2013; Liu et al., 2015)

(Li et al., 2016; Tessema et al., 2015; Cheng et al., 2016; Wroblewski et al., 2001; He et al., 2005; Chiu et al., 2015)

(Senchenko et al., 2011; Micke et al., 2014; Erdogan et al., 2009; Butler et al., 2011; Senchenko et al., 2010; Shigemitsu et al., 2001)

(Schmall et al., 2015; Butler et al., 2011; Yoo et al., 2012; Kwong et al., 2006; Zhou et al., 2015; Thang et al., 2015)

(Wei et al., 2008; Xiao et al., 2008; Comtesse et al., 2007; He et al., 2011; Shaoyan et al., 2013; Cao et al., 2016)

(Xu et al., 2017; Ji et al., 2011; Zhang et al., 2017; Pastuszak-Lewandoska et al., 2015; Chen et al., 2012; Dmitriev et al., 2012)

(Zchbauer-Mller et al., 200; Bandaru et al., 2014; Cai et al., 2012; Feng et al., 2012; Comtesse et al., 2007; Kumar et al., 2012)

(Dmitriev et al., 2012; Zheng et al., 2007; Koeneke et al., 2015; Baumgart et al., 2015; Wang et al., 2008)

(Bell et al., 2013; Wu et al., 2016; de Miguel et al., 2014; Dmitriev et al., 2012; De et al., 2014)

(Sheng et al., 2016; Sharp et al., 2008; Seki et al., 2014; Chang et al., 2012; Kuriyama et al., 2016; Kvarnbrink et al., 2015)

(Dmitriev et al., 2012; Iijimai et al., 2006; Wei et al., 2016; Dorr et al., 2015; Kang et al., 2009; Shin et al., 2006)

(Ramnath et al., 2001; Tan et al., 2011; Thakur et al., 2015; Leithner et al., 2014; Coste et al., 2010; Tan et al., 2014)

(Moniz et al., 2011; Nguyen et al., 2012; Ostrow et al., 2011; Braga et al., 2015; Ueda et al., 2006)
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Table 7.4
List of genes detected by TTS but missed by DESeq2, part 2

Gene list

OPA1, P2RY 14, PAK2, PDCD6IP

PFKFB4, PIK3CB, PLD1, PLS1

POLQ, PPP1R2, PTH1R, PTPRG

RABL3, RAP2B, RASSF1, RFC4

RNF7, RPL14, RPL22L1, RUV BL1

RY BP , SATB1, SEMA3B, SENP2

SETD2, SIAH2, SLC4A7, SLC6A20

SLCO2A1, SMARCC1, SPCS1

TBL1XR1, TF , TFRC

TGFBR2, THPO, THRB, TIGIT

TKT , TLR9, TNFSF10, TP63

TRAIP , TRIM59, UBA3, UBE2E2

V GLL4, V HL, V PRBP , WWTR1

XPC, ZMAT3, ZMYND10

Reference

(Roberts et al., 2013; Wu et al., 2012; Kikuchi et al., 2012; Li et al., 2014)

(Minchenko et al., 2014; Wee et al., 2008; Chen et al., 2012; Erdogan et al., 2009)

(Wood et al., 2016; Takakura et al., 2001; Montgrain et al., 2015; Pitterle et al., 1998)

(Zhang et al., 2016; Peng et al., 2016; Pelosi et al., 2010; Erdogan et al., 2009)

(Lazar et al., 2013; Shriver et al., 1998; O’Leary et al., 2013; Yuan et al., 2016)

(Voruganti et al., 2015; Selinger et al., 2011; Loginov et al., 2015; Wang et al., 2013)

(Walter et al., 2017; Mller et al., 2014; Gorbatenko et al., 2014; Tsou et al., 2007)

(Zhu et al., 2015; DelBove et al., 2011; Too et al., 2012)

(Liu et al., 2007; Regina et al., 2008; Jiang et al., 2010)

(Xu et al., 2007; Lazar et al., 2013; Buchhagen, DL., 1996; Zhang et al., 2016)

(Xu et al., 2016; Belmont et al., 2014; He et al., 2012; Wang et al., 2011)

(Soo et al., 2016; Zhan et al., 2015; Li et al., 2014; Dmitriev et al., 2012)

(Zhang et al., 2014; Zhou et al., 2012; Wang et al., 2013; Noguchi et al., 2014)

(Zhang et al., 2015; Wen et al., 2012; Guo et al., 2015)
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