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Abstract 

IMAGE REGISTRATION TO MAP ENDOSCOPIC VIDEO TO COMPUTED TOMOGRAPHY 

FOR HEAD AND NECK RADIOTHERAPY PATIENTS 

 

William Scott Ingram, B.S. 

Advisory Professor: Laurence Court, Ph.D. 

 

The purpose of this work was to explore the feasibility of registering endoscopic 

video to radiotherapy treatment plans for patients with head and neck cancer without 

physical tracking of the endoscope during the examination. Endoscopy-CT registration 

would provide a clinical tool that could be used to enhance the treatment planning 

process and would allow for new methods to study the incidence of radiation-related 

toxicity. 

 Endoscopic video frames were registered to CT by optimizing virtual endoscope 

placement to maximize the similarity between the frame and the virtual image. Virtual 

endoscopic images were rendered using a polygonal mesh created by segmenting the 

airways of the head and neck with a density threshold. The optical properties of the 

virtual endoscope were matched to a calibrated model of the real endoscope. A novel 

registration algorithm was developed that takes advantage of physical constraints on 

the endoscope to effectively search the airways of the head and neck for the desired 

virtual endoscope coordinates. 
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This algorithm was tested on rigid phantoms with embedded point markers and 

protruding bolus material. In these tests, the median registration accuracy was 3.0 mm 

for point measurements and 3.5 mm for surface measurements. The algorithm was also 

tested on four endoscopic examinations of three patients, in which it achieved a median 

registration accuracy of 9.9 mm. The uncertainties caused by the non-rigid anatomy of 

the head and neck and differences in patient positioning between endoscopic 

examinations and CT scans were examined by taking repeated measurements after 

placing the virtual endoscope in surface meshes created from different CT scans. Non-

rigid anatomy introduced errors on the order of 1-3 mm. Patient positioning had a 

larger impact, introducing errors on the order of 3.5-4.5 mm. 

Endoscopy-CT registration in the head and neck is possible, but large registration 

errors were found in patients. The uncertainty analyses suggest a lower limit of 3-5 

mm. Further development is required to achieve an accuracy suitable for clinical use. 
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1 

Introduction 

Cancer of the head and neck consists of a diverse set of malignancies that develop 

in the epithelial cells of the nasal cavity, paranasal sinuses, oral cavity, pharynx, and 

larynx. In the United States, there were an estimated 61,760 new cases of head and neck 

cancer and 13,190 deaths from it in 2016. These account for 3.7% of all new cancer 

cases and 2.2% of all cancer deaths, respectively1. As with many types of cancer, the use 

of tobacco and alcohol are two of the major risk factors, and the effects of these two 

substances are synergistic2, 3. There is also a causal association between human 

papillomaviruses (HPV) and a subset of head and neck cancers4. There is some evidence 

for familial inheritance of the disease, and an association of increased risk has been   

reported for numerous hereditary cancer syndromes5. 

 The anatomy of the head and neck is essential not only for basic physiological 

functions such as eating and breathing, but also for social interaction. This makes organ 

preservation and minimization of disfigurement especially important goals in the 

treatment of head and neck cancer. Surgery and radiotherapy are the primary 

treatment modalities for early-stage disease, and the addition of concurrent 

chemotherapy improves outcomes for patients with advanced disease, albeit with 

increased incidence of toxicity6. Head and neck radiotherapy is traditionally delivered 
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in daily fractions of 2 Gy to a total dose of 60-70 Gy. Many clinical trials have 

investigated the efficacy of unconventional fractionation schemes, including 

hyperfractionation and accelerated radiotherapy. In general, these studies have found 

that both schemes improve survival and locoregional control, but hyperfractionation 

has the greatest benefit7. 

 Radiotherapy treatment plans for head and neck cancer are created using a 

computed tomography (CT) image set as a 3D representation of the patient on which to 

define anatomical volumes, including normal tissue structures to avoid and  target 

volumes that encompass the tumor, its range of motion, and uncertainties in patient 

positioning8. This CT image set is referred to as the planning CT or simulation CT, and it 

is fundamental to the design, delivery, and evaluation of modern radiotherapy. It 

contains all of the spatial information about the radiation dose distribution within the 

patient, so it is also used extensively in retrospective studies that seek to evaluate novel 

treatment planning techniques or to understand the dosimetric characteristics that 

influence the incidence of radiation-related toxicity. CT is the modality of choice for 

treatment planning because the value at each voxel is determined by how much it 

attenuates x-rays in the diagnostic energy range (120-140 kVp on modern CT 

scanners), so the images can be used to simulate the deposition of dose in the 

therapeutic energy range (6-18 MV on modern linear accelerators). However, other 

imaging modalities provide additional information that can be valuable in designing 

treatment plans or assessing patient response. 

One of the most commonly-used modalities for this purpose is positron emission 

tomography (PET) with 18F-fluorodeoxyglucose (FDG), which allows for imaging of 
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tumors via the high glucose uptake exhibited by cancer cells.9 FDG-PET can be used in 

conjunction with CT to improve target delineation in the lungs10, head, and neck11, and 

there is preliminary evidence supporting its utility in many other disease sites12. It also 

allows for novel treatment planning strategies, such as delineating metabolically-active 

sub-regions within the tumor to treat more aggressively13. Similar to PET is single-

photon emission computed tomography (SPECT), which allows for imaging based on a 

different set of biological functions using a different class of radioactive tracers. It is less 

commonly used for radiotherapy treatment planning, but there is some experience 

supporting the use of SPECT lung perfusion images to reduce the dose to regions of the 

lungs that contribute the most to overall function14. Another useful imaging modality is 

magnetic resonance imaging (MRI), which allows for imaging based on differences in 

the magnetic resonance relaxation properties of tissues. MRI provides greater contrast 

between different types of soft tissue than CT, which facilitates the visual identification 

of a tumor’s extent. It is used extensively for target volume delineation in the central 

nervous system, and it can improve delineation in the head, neck, and pelvis15. Despite 

the utility of these imaging modalities, the calculation and optimization of radiation 

dose must be done on CT. For this reason, any supplemental imaging modality must still 

be registered to the simulation CT if it is to be used in an objective and quantitative way 

to design radiotherapy treatment plans, or to access the dosimetric information that the 

plans contain. 

Image registration is the process of establishing spatial correspondence between all 

points in a pair of related images. In general, image registration has three components: 

 



4 
 

1. The similarity measure, a value representing the relative configuration of the 

two images that is maximized when their alignment is optimal. 

2. The transformation, a mathematical expression that defines how the image 

points are allowed to move. 

3. The search strategy, an optimization algorithm that updates the transformation 

to maximize the similarity measure. 

 

In the case of integrated PET-CT scanners, the only difference between the two images 

is the known translation of the patient between the two detectors, so image registration 

is trivial provided that the patient remains motionless on the scanner couch. When the 

images are acquired on different devices at different points in time, the relationship 

between the two coordinate systems is unknown, and there may be large differences in 

patient positioning and anatomical configuration. In this case, registering the two 

images is more challenging, and the methods to do so have been the subject of extensive 

research16. A concept related to image registration is image fusion, which is the 

combination of information from multiple images, typically from different modalities, 

into a single image. The most common example of image fusion in radiation oncology is 

PET-CT, in which the CT image is displayed in grayscale with the PET image overlaid as 

a color wash. Image registration is a prerequisite for image fusion, but image fusion is 

not a necessary output of image registration. 

Despite the growing prevalence of supplementary imaging modalities and their 

demonstrated utility for head and neck radiotherapy, endoscopy has received very little 

attention in this context. An endoscope is an optical device consisting of a control 
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section that is manipulated by the operator and a rigid or flexible insertion tube that is 

used to inspect luminal organs. An external light source is fiber-optically coupled to the 

distal end of the insertion tube, which can often be angulated via controls on the body. 

Modern endoscopes have an image sensor at the distal end, which allows digital video 

to be displayed for multiple viewers in the procedure room and recorded for later use. 

There are many types of endoscopes specialized for different portions of the 

respiratory and gastrointestinal tracts, and for organs such as the bladder and kidneys. 

Insertion tube diameters range from approximately 3 to 15 mm with working lengths 

up to 2200 mm17. Some have instrument channels that allow for retrieval of tissue 

samples and other procedures, and there are echoendoscopes that have an ultrasound 

transducer at the distal end for imaging of anatomy beyond the luminal wall. 

 Registration and fusion of endoscopic video and CT has received considerable 

attention for guidance of surgical and bronchoscopic procedures. Some of the earliest 

work used electromagnetic sensors attached to the endoscope and a receiver headset 

worn by the patient to track the endoscope during endoscope-guided sinus surgeries18, 

19. This tracking system allowed for the display of coronal, sagittal, and axial CT images 

corresponding to the endoscope’s position. Around the same time, a method was 

developed to localize the bronchoscope during transbronchial biopsies by registering 

real bronchoscopic images to virtual bronchoscopic images derived from CT20. Since 

then, several groups have developed image-based methods to track bronchoscope 

position and provide navigational assistance during bronchoscopic procedures21–33. 

These methods employ a variety of computer vision techniques, including optical flow, 

detection of corresponding image features, and structure from motion. They include the 
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development of novel optimization algorithms and image similarity measures to 

improve tracking performance, and they all share one thing in common: comparison of 

real endoscopic images to virtual endoscopic images derived from CT. Electromagnetic 

tracking has also been used for CT-based bronchoscope navigation34, and an image-

based method has been developed to register endoscopic video to CT for guidance 

during skull base surgery35. In this method, the position of a rigid endoscope was 

calculated by tracking infrared markers on its control section with cameras in the 

operating room. This position was then refined by detecting matching features 

extracted from real and virtual endoscopic images. 

 Registration and fusion of endoscopic video and CT for interventional procedures 

has been an active field of research for over 20 years, the development of which is 

catalogued in review articles on endoscopic surgical guidance36 and endoscopic 

navigation based on computer vision37. However, very little attention has been given to 

endoscopy-CT registration in the head and neck and its applications for radiotherapy 

patients. Endoscopic examination is an important tool for the initial evaluation of a 

large portion of these patients38. It provides a clear visual inspection of tumor extent 

that can reveal early-stage disease or mucosal irregularities that are not appreciable on 

CT. This information may be valuable for target delineation, but without a method to 

register the endoscopic video to the planning CT, it can only be used subjectively based 

on the physician’s expertise. Endoscopic examinations are also used to assess patients 

during and after radiotherapy. In this setting, endoscopy-CT registration could be used 

to overlay the radiation dose distribution from the planning CT on the endoscopic 
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video. This would allow the physician to accurately assess the dose delivered to various 

anatomical structures seen in the video. 

Outside of routine clinical use, endoscopy-CT registration could play a role in 

improving our understanding of the dosimetric factors that influence radiation-related 

normal-tissue toxicity. Mucositis, which is an inflammation and ulceration of epithelial 

cells, is a common and often debilitating side effect that occurs for about 80% of head 

and neck radiotherapy patients39. Severe symptoms occur in up to 56% of patients, and 

it requires hospitalization in up to 32%. However, mucositis is visible only by 

endoscopy when it occurs outside of the oral cavity. Current studies of the dosimetric 

factors that influence toxicity generally rely on dose-volume histograms derived from 

the treatment plan40, but these histograms, which have inherently limited spatial 

information, are not ideal for studying mucositis, which has a limited spatial extent that 

is not visible on CT. Endoscopy-CT registration would provide a method to segment 

areas of mucositis on the treatment plan, which would allow for more detailed toxicity 

studies that could improve the quality of life of head and neck radiotherapy patients. 

Unlike most forms of medical image registration, endoscopic video and CT have 

different dimensionality: endoscopic video is a 2D projection of 3D space, and CT is a 

volumetric representation of 3D space. This disparity is one of the biggest challenges, 

and there are two broad categories of approaches to overcome it: project CT space to 

2D via virtual endoscopy, or reconstruct a 3D surface from endoscopic video. The other 

major distinction in endoscopy-CT registration methods is whether or not prospective 

endoscope tracking is used, generally with electromagnetic sensors as previously 

discussed. In recent years, two groups have studied the registration and fusion of 
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endoscopic video and CT in the head and neck. One group has used electromagnetic 

endoscope tracking and virtual endoscopy to improve target delineation41 and to 

overlay radiation dose from the planning CT on endoscopic video42. The other group 

does not use prospective tracking, and has published preliminary results using 

structure-from-motion techniques to reconstruct the 3D surface of the airways and 

register it to the planning CT43–45.  

Both of these approaches have drawbacks. In order to use electromagnetic tracking, 

the patient be in exactly the same position for the endoscopic examination and the 

planning CT in order that the coordinate systems match. In standard clinical practice, 

the endoscopic examination is a simple procedure performed in the seated position that 

may take no more than 15 minutes. However, the planning CT is acquired in the supine 

position with the patient’s head, neck, and sometimes shoulders secured in a molded 

thermoplastic mask for positioning reproducibility throughout the course of 

radiotherapy. The burden of using a CT couch and thermoplastic mask for the 

endoscopic examination, as well as the fact that electromagnetic tracking endoscopes 

require customization with expensive equipment that is not available in most clinics, 

means that the tracking approach is not suitable for routine clinical use. On the other 

hand, the 3D reconstruction approach requires multiple views of the surface from 

different viewpoints, and automatically identifying corresponding points in those views. 

This may be difficult with endoscopic video in the head and neck, which contains 

highly-variable illumination and a large degree of muscle motion.  

The motivation for the work presented in this dissertation was to develop an 

endoscopy-CT image registration framework for the airways of the head and neck that 
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avoids these drawbacks, and to investigate the sources of uncertainty in this poorly-

characterized form of image registration. All methods were developed with the explicit 

goal of requiring only images and equipment that are available in routine clinical 

practice. This ensures that this work can serve as a foundation to implement 

endoscopy-CT image registration with the widest possible availability for head and 

neck cancer patients. 
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2 

Principal hypothesis and specific aims 

Principal hypothesis: Endoscopic video in the head and neck can be registered to CT 

without prospective physical endoscope tracking through the use of virtual endoscopy. 

 

Specific aim 1: Develop, test, and optimize a method to register endoscopic video of the 

head and neck to CT 

 

Hypothesis: Endoscopic video frames can be registered to CT with an accuracy of 5 

mm in rigid phantoms and 10 mm in patients. 

 

To achieve this aim, an algorithm was developed to search virtual endoscope 

coordinate space for the virtual image that best matches a given endoscopic video. 

This algorithm was developed initially in rigid phantoms that contain fiducial 

markers. Its accuracy was tested by mapping video-frame measurements of these 

markers to CT space and comparing them with the ground truth. Then the algorithm 

was tested on head and neck radiotherapy patients using endoscopic examinations 

and CT scans acquired as part of standard clinical practice. The patient data set was 
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also used to optimize the image processing parameters that influence registration 

accuracy.  

 

Specific aim 2: Investigate the sources of uncertainty in projective mapping via virtual 

endoscopy and determine their impact on endoscopy-CT registration. 

 

Hypothesis: Patient positioning will have the largest impact on registration errors. 

 

To achieve this aim, the impacts of daily variations in non-rigid anatomy and patient 

positioning differences between CT scans and endoscopic videos were investigated 

using virtual endoscopic measurements on CT scans of the same patients taken on 

different days and different positions. In addition to these sources of uncertainty, 

the impacts of the focal length and radial distortion of the endoscope’s camera on 

virtual endoscopic measurements were investigated. 
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3 

Image acquisition 

3.1 Introduction 

 

 This chapter describes the equipment and software that were used to acquire 

endoscopic video and virtual endoscopic images. This is largely foundational material 

that will be referenced throughout the remainder of this dissertation. The endoscope 

and some characteristics of the recorded videos are described in Section 3.2. Virtual 

endoscopy and the software used to render virtual images are discussed in Section 3.3. 

Section 3.4 presents the methods and results of camera calibration, which is the process 

of measuring the optical characteristics of the endoscope’s camera. 

 

3.2 Endoscopic video 

 

Endoscopic videos were acquired using an ENF-VQ rhinolaryngoscope (Olympus 

America, Center Valley, PA). It is a flexible video endoscope with a 300-mm working 

length. Its outer diameter is 3.6 mm along the working length, and 3.9 mm at the distal 

end, which houses the lens and the image sensor. The distal end can be angulated up 

and down 130 degrees by manipulating a lever on the control section. The endoscope 
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was operated using the Visera Pro OTV-S7Pro camera control unit and the Visera Pro 

CLV-S40Pro light source. The videos were recorded using the nStream G3 HD medical 

digital recording and image management device (Image Stream Medical, Littleton, MA), 

which produced MPEG-2 video files at a frame rate of 30 frames per second and a 

resolution of 720 x 486 pixels2. These auxiliary devices and a monitor that displays the 

endoscope’s live output are housed in a mobile tower, which is kept in a dedicated 

procedure room that includes an exam chair for the patient. The endoscope and the 

procedure room setup are shown in Figure 1. 

 

 

 

 

Figure 1: The endoscope and auxiliary equipment. Left: the Olympus ENF-VQ 
rhinolaryngoscope used to acquire endoscopic videos. Right: The exam chair and 
endoscope control tower in the head and neck clinic.  
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3.3 Virtual endoscopy 

 

3.3.1 General approach 

 

Virtual endoscopy is the rendering of 2D images using 3D models generated from 

CT or MRI, providing images similar to those produced by an endoscope placed inside 

the anatomy. It was developed in the mid-1990s as a non-invasive diagnostic tool, and it 

was quickly applied in a variety of settings, including neurosurgical planning46,  training 

for endoscope operators47, and anatomical evaluation in the aorta48, colon49, and the 

airways of the head and neck50–52. There are two basic approaches to virtual endoscopy: 

volume rendering and surface rendering53. With volume rendering, every voxel is 

assigned an opacity and a color, and the virtual image is generated by casting rays 

through the volume. With surface rendering, an explicit geometrical representation of 

one or more structures of interest are created, typically by segmenting the images with 

a threshold and applying an algorithm such as marching cubes54 to generate a polygonal 

mesh. Surface rendering is more common in virtual endoscopic applications because 

the anatomy of interest is typically an air-tissue interface, and it is the approach used 

for the work presented in this dissertation. 

Virtual endoscopic images were rendered using the Visualization Toolkit (VTK) 

(Kitware, Inc., Clifton Park, NY), an open-source software library55. VTK is written in the 

C++ programming language, and the Python programming language binding was used 

for the work presented in this dissertation. The VTK rendering process is an object-

oriented pipeline with a scene containing a vtkCamera, vtkLights, vtkActors 
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representing the objects to be rendered, and a vtkRenderWindow that produces the 

image. Throughout this dissertation, the terms virtual image, virtual endoscopic image, 

and virtual frame will be used to refer to the rendered image. The principal input to the 

rendering pipeline is a .vtk file containing a triangular mesh that represents the surface 

to be displayed. These meshes will be referred to as surface meshes or virtual 

endoscopy meshes. They were created with an extension of the class 

vtkVoxelContoursToSurfaceFilter that read .roi files from the Pinnacle3 

radiotherapy treatment planning software (Philips Healthcare, Andover, MA). These 

files contained the voxel coordinates of CT-based contours representing air-tissue 

interfaces. Additional details on how these interfaces were segmented are provided in 

Sections 5.2.2, 6.2.2, and 7.2.2. 

When virtual endoscopy is used as a diagnostic tool, the optical properties of the 

images are required to meet only the user’s subjective criteria for adequate 

visualization. However, for applications to endoscopy-CT image registration, these 

properties should match those of the real endoscope: 

 

1. Focal lengths of the real and virtual cameras 

2. Distortion introduced by the endoscope camera’s lens and image sensor 

3. Scene lighting, including reflectance properties and attenuation with distance 

from the camera 

 

Focal length and distortion are discussion in section 3.3, and the lighting model is 

discussed in section 3.2.2. 
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3.3.2 Lighting model 

 

The endoscope has two lights on the distal end. They are displaced 1.5 mm laterally 

from the center of the camera lens. Rather than circular points, they are shaped as small 

arcs concentric with the lens; this configuration is illustrated in Figure 2. In the VTK 

rendering pipeline, lighting is handled by creating one or more vtkLight objects, 

setting their intensities and other properties, and placing them in the scene. The 

endoscope’s lights were modeled by placing two lights 1.5 mm left and right of the 

virtual camera. The lights were set as camera lights, which means that their position 

and orientation were tied to the virtual camera as it moved around the scene. In 

preliminary tests, virtual images rendered with this configuration were visually 

indistinguishable from those rendered with a single light that was coincident with the 

camera. For this reason, no attempt was made to model the extent of the light arcs 

above and below the camera. 
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Figure 2: The configuration of lights on the endoscope. The distal ends of the fiberoptic 
light guides are small arcs concentric with the camera lens.  

 

 

 

There are three flavors of light available in VTK: ambient, diffuse, and specular. 

Ambient light comes from all directions, so all surfaces are lit equally and the brightness 

does not depend on the orientation of the camera relative to the surface. Diffuse light 

comes from a single direction, but is reflected equally in all directions. This means that 

the brightness depends on the orientation of the light relative to the surface, but not on 

that of the camera. Specular light also comes from a single direction, but the angle of 

incidence is preserved when it is reflected. Specular brightness depends on the 

orientations of both the light and the camera relative to the surface, and it produces 

highlights that give the surface a shiny appearance.  
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In the work presented in this dissertation, only diffuse lighting was used for virtual 

images. Ambient lighting was rejected on the basis that the endoscope is inside a dark 

cavity with only its own source of light. Specular reflections are certainly present in 

endoscopic video. However, it was determined empirically that diffuse lighting is 

sufficient to reproduce overall variations in brightness. Furthermore, specular 

reflections are highly dependent on the local structure and texture of the surface. The 

virtual endoscopy meshes did not have exactly the same structure as the anatomical 

surfaces seen in the endoscopic videos, and it was not feasible to reproduce either the 

tissue textures or the presence of saliva and other fluids in the virtual images, so it was 

unlikely that specular reflections would coincide in the real and virtual images. In VTK, 

each flavor of light has its own color defined by red, green, and blue channels. To 

achieve diffuse lighting only, the vtkLight ambient and specular colors were set to 

(0, 0, 0) and their diffuse color was set to (1, 1, 1) to produce grayscale virtual 

images. 

Positional lighting was used for all virtual images, which means that the light rays 

diverged from the source. This was necessary to reproduce the appearance of 

endoscopic video, in which the lights were very close to the surface. Within the VTK 

rendering pipeline, positional lights can be attenuated as the rays travel through space. 

The light incident on a surface point is attenuated by the following factor: 

 

 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
cos𝑒(𝜙)

𝑎𝑐 + 𝑎𝑙𝑑 + 𝑎𝑞𝑑2
 (1) 
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In the numerator, which governs the spotlight effect, 𝜙 is the angle between the light’s 

direction and a vector pointing from the light’s position to the surface point. The 

spotlight exponent 𝑒 can be set by the user to determine how the light falls off towards 

the edges of the image. In the denominator, 𝑑 is the distance between the light’s 

position and the surface point. The constant, linear, and quadratic attenuation 

coefficients 𝑎𝑐, 𝑎𝑙, and 𝑎𝑞 can be set by the user to determine how the light falls off in 

distal regions of the image. Details on how the values for the attenuation parameters 

were determined are provided in Sections 5.2.2 and 6.2.4. A summary of the virtual 

endoscopy lighting model used for the work presented in this dissertation is given in 

Table 1. The VTK rendering pipeline uses the OpenGL software library (Khronos Group, 

Beaverton, OR), so it uses the same lighting model, which is discussed in detail in the 

OpenGL Programming Guide56. 
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Table 1: Summary of the virtual endoscopy lighting model.  

Parameter Value Comment 
   

Light type Camera light Position and orientation tied to 
virtual camera 
 

Position (±1.5 mm, 0, 0)  Two lights, left and right of 
virtual camera 
 

Color Ambient = (0, 0, 0) 
Diffuse = (1, 1, 1) 
Specular = (0, 0, 0) 
 

Grayscale images with diffuse 
lighting only 

Positional lighting On Light rays diverge from source 
 

Intensity Variable Different values used for 
phantom and patient images 
(see Sections 5.2.2 and 6.2.4) 
 

Spotlight exponent Variable See Equation 1. Different 
values used for phantom and 
patient images (see Sections 
5.2.2 and 6.2.4) 
 

Constant, linear, and 
quadratic attenuation 
coefficients 

Variable See Equation 1. Different 
values used for phantom and 
patient images (see Sections 
5.2.2 and 6.2.4) 

   

 

 

 

3.4 Camera calibration 

 

 Virtual endoscopic images are rendered with a perfect pinhole camera, but real 

endoscopic images have distortion introduced by imperfections in the lens and image 

sensor. All real cameras have some degree of distortion, but it is particularly 
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pronounced for endoscopes, which typically use wide-angle “fisheye” lenses to increase 

the field of view. This distortion must be removed so that the real and virtual images 

represent the same 3D scene. Doing so requires a set of values called intrinsic 

parameters, which are defined in sections 3.3.1. The measurement of the intrinsic 

parameters is known as camera calibration, and it is a foundational procedure in a wide 

variety of photogrammetric applications57–62. The methods used to perform the 

calibration are described in section 3.3.2, and the results of the calibration are 

discussed in section 3.3.3. 

 

3.4.1 The camera model 

 

Let 𝑾 = (𝑋, 𝑌, 𝑍) be a point in the camera’s reference frame, which is defined 

such that the camera is looking down the positive z axis with its optical center at the 

origin, the +X axis points to the right, and the +Y axis points down. This reference frame 

is also referred to as the camera-centered coordinate system. 𝑾 is mapped to the image 

plane by perspective projection, which is simply normalization by the z component: 

 

 𝒘𝒏 = [ 
𝑋 𝑍⁄

𝑌 𝑍⁄
 ] = [ 

𝑥
𝑦 ]  (2) 

 

This is illustrated in Figure 3. Let 𝑟 = √𝑥2 + 𝑦2. Distortion is incorporated by displacing 

the projected point with radial and tangential components: 
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 𝒘𝒅 = (1 + 𝑐1𝑟2 + 𝑐2𝑟4 + 𝑐3𝑟6)𝒘𝒏 + [ 
2𝑐4𝑥𝑦 + 𝑐5(𝑟2 + 2𝑥2)

𝑐4(𝑟2 + 2𝑦2) + 2𝑐5𝑥𝑦
 ] = [ 

𝑥𝑑

𝑦𝑑
 ] (3) 

 

In this equation, the coefficients 𝑐1, 𝑐2, and 𝑐3 determine the radial distortion, and the 

coefficients 𝑐4 and 𝑐5 determine the tangential distortion. Finally, the distorted point is 

transformed to its pixel address 𝒖 = (𝑢, 𝑣) in the image: 

 

 𝑲 ≡ [ 
𝑓𝑥 𝛼𝑓𝑥 𝑝𝑥

0 𝑓𝑦 𝑝𝑦

0 0 1

 ] (4) 

 

 𝑲 [ 
𝑥𝑑

𝑦𝑑

1
 ] = [ 

𝑢
𝑣
1

 ] (5) 

 

The matrix 𝑲 will be referred to as the calibration matrix. The entries 𝑓𝑥 and 𝑓𝑦 are the 

focal length of the camera expressed in units of horizontal and vertical pixels. The skew 

coefficient 𝛼 is determined by the angle between the physical X and Y axes of the image 

sensor. It will be 0 if this angle is 90 degrees or very close to it, which is generally the 

case with modern image sensors. The entries 𝑝𝑥 and 𝑝𝑦 are the coordinates of the 

principal point, which is the projected pixel address of the point (0, 0, 0). The 

parameters defined thus far, summarized Table 2, constitute the intrinsic parameters. 

 Given a point 𝑾′ = (𝑋′, 𝑌′, 𝑍′) in a coordinate system that is not camera-centered, 

it must be rotated and translated into the camera’s reference frame before perspective 

projection and distortion can be applied. This is accomplished by incorporating 

extrinsic parameters into the camera model, which consist of a 3 x 3 rotation matrix 𝑹 
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that defines the camera’s orientation and a 3 x 1 translation vector 𝒕 that gives the 

position of the origin in the camera’s reference frame. These are stacked into a 3 x 4 

matrix that transforms the world coordinates to camera-centered coordinates: 

 

 [ 𝑹 | 𝒕 ] [ 

𝑋′
𝑌′
𝑍′
1

 ] = [ 

𝑟00 𝑟01 𝑟02 𝑡0

𝑟10 𝑟11 𝑟12 𝑡1

𝑟20 𝑟21 𝑟22 𝑡2

 ] [ 

𝑋′
𝑌′
𝑍′
1

 ] = [ 
𝑋
𝑌
𝑍

 ] (6) 

 

The extrinsic and intrinsic parameters combine to form the camera matrix 𝑷, which 

governs projection of points in the world coordinate system onto an image taken by a 

camera placed in the scene: 

 

 𝑷 ≡ 𝑲 [ 𝑹 | 𝒕 ] (7) 

 

 𝑷 [ 

𝑋′
𝑌′
𝑍′
1

 ] = [ 
𝑢
𝑣
1

 ] (8) 
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Figure 3: Schematic of perspective projection. In this side view, the black triangle 
represents camera’s field of view and the image plane, and the blue lines are the +Y and 
+Z axes. The +X axis points out of the page. The camera-centered point (𝑋, 𝑌, 𝑍) is 
projected to its position in the image plane (𝑥, 𝑦, 1) by division by the Z component. 𝑓 
and 𝜃 are the camera’s focal length and angle of view, and 𝐻 is the height of the image.  

 

 

 

Table 2: Summary of the intrinsic camera parameters.  

Symbol Name Comment 
   

𝑐1, 𝑐2, 𝑐3  Radial distortion coefficients 
 

See Equation 3 

𝑐4, 𝑐5 Tangential distortion coefficients 
 

See Equation 3 

𝑓𝑥, 𝑓𝑦 Focal lengths 
 

See Equation 3 

𝛼 Skew coefficient 
 

See Equations 4 and 5 

𝑝𝑥, 𝑝𝑦 Principal point See Equations 4 and 5 
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3.4.2 Methods 

 

Camera calibration was performed by acquiring a set of endoscopic video frames 

viewing a planar checkerboard pattern, identifying the locations of the checkerboard 

corners in each frame, and determining the intrinsic parameters that best model the 

projection of these corners to the frames. Corner detection and parameter computation 

were accomplished using the Camera Calibration Toolbox for MATLAB programming 

environment (The MathWorks, Inc., Natick, MA). This toolbox, which can be found at 

http://www.vision.caltech.edu/bouguetj/calib_doc/, is a freely-available, user-friendly 

implementation of the calib3d module of OpenCV, an open-source computer vision 

software package. The computational details of this module are documented 

elsewhere63, so they will not be discussed here. The intrinsic camera model presented 

in Section 3.3.1 is very general, and the full set of parameters is not always necessary to 

accurately characterize a camera. For this reason, a series of calibrations was 

performed to eliminate superfluous parameters, and determine those that are 

necessary to remove distortion from the video frames and to match the virtual camera 

to the endoscope’s camera. 

The calibration rig, shown in Figure 4, was created by printing a grid of 5-mm 

squares in a checkerboard pattern and fixing it to a piece of acrylic to minimize any 

physical distortions. The square dimensions were verified manually after printing. To 

ensure that the endoscope’s entire field of view was characterized, the rig was created 

with a large grid that extended beyond the field of view. An endoscopic video of the rig 
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was recorded, and 20 frames from a variety of orientations and distances were 

manually selected.  

 

 

 

 

Figure 4: The calibration rig, which consisted of a 5-mm checkerboard grid fixed to a 
piece of acrylic. 

 

 

 

3.4.3 Results 

 

 An initial calibration was run optimizing all of the intrinsic parameters (see Table 

2). In this run, the value of 𝛼 was equal to 0 within its uncertainty. This justified 

removing 𝛼 from the model and treating the axes of the image sensor as exactly 
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perpendicular. A second calibration was run with 𝛼 fixed at 0, and the resulting values 

are given in Table 3. This model was used with the OpenCV function undistort to 

remove distortion from the calibration frames, and from all endoscopic video frames in 

the remainder of the work discussed in this dissertation. The effect of this distortion 

removal is illustrated in Figure 5. Note that the measured principal point (𝑝𝑥, 𝑝𝑦) was 

displaced from the center of the image ((𝑤𝑖𝑑𝑡ℎ − 1) 2⁄ , (ℎ𝑒𝑖𝑔ℎ𝑡 − 1) 2⁄ ) =

(359.5, 242.5) by about 5 pixels in both directions. For a perfect pinhole camera, such 

as the virtual camera, the principal point is located exactly at the center. To account for 

this, the principal point was shifted to the image center using the newCameraMatrix 

argument of undistort. 

 A third calibration was run after distortion was removed from the calibration 

frames. The resulting values of the distortion coefficients 𝑐1−5 were all equal to 0 and 

the coordinates of the principal point were equal to (359.5, 242.5) within their 

respective uncertainties. This justified removing these parameters from the model. A 

fourth calibration was run with 𝑐1−5 fixed at 0 and (𝑝𝑥, 𝑝𝑦) fixed at (359.5, 242.5), and 

the resulting values are given in Table 4. 

 

 

 



28 
 

 

Figure 5: An example of distortion removal from an endoscopic video frame. Left: One 
of the frames used for calibration. The red dots were added digitally to provide 
reference points. The black borders were present in all videos produced by the 
recording device. Right: The same frame with distortion removed using the intrinsic 
model in Table 3. 

 

 

 

Table 3: Optimized intrinsic parameters without skew. This model was used to remove 
distortion from endoscopic video frames. 𝑐1−5 and 𝛼 are unitless. 𝑓𝑥, 𝑓𝑦, 𝑝𝑥, and 𝑝𝑦 are 

expressed in pixels. 

Parameter Value 
  

𝑐1  -0.3858 ± 0.0071 
𝑐2  0.212 ± 0.024 
𝑐3  -0.00115 ± 0.00030 
𝑐4  0.00083 ± 0.00022 
𝑐5  -0.075 ± 0.023 
𝑓𝑥  575.1 ± 1.0 
𝑓𝑦  526.0 ± 0.9 
𝛼  0 
𝑝𝑥  353.9 ± 1.0 
𝑝𝑦  238.4 ± 0.8 
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Table 4: Optimized intrinsic parameters for distortion-free frames. This model was used 
to determine the focal lengths of the endoscopic camera. 𝑐1−5 and 𝛼 are unitless. 𝑓𝑥, 𝑓𝑦, 

𝑝𝑥, and 𝑝𝑦 are expressed in pixels. 

Parameter Value 
  

𝑐1  0 
𝑐2  0 
𝑐3  0 
𝑐4  0 
𝑐5  0 
𝑓𝑥  575.2 ± 1.0 
𝑓𝑦  526.1 ± 0.9 
𝛼  0 
𝑝𝑥  359.5 
𝑝𝑦  242.5 
  

 

 

 

 This calibration indicated that the horizontal focal length 𝑓𝑥 was about 9% larger 

than the vertical focal length 𝑓𝑦. There was nothing inherently wrong with this, but it 

did pose a problem for determining the focal length to use for the virtual camera. In the 

VTK rendering pipeline, the focal length is not set directly. Instead, the view angle 𝜃 of 

the virtual camera is set by the user. These two properties are mathematically related, 

as shown in Figure 3: 

 

 tan (
𝜃

2
) =

𝐻

2𝑓
 (9) 
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where 𝐻 is the height of the image. VTK allows for vertical or horizontal view angles to 

be specified, but not both independently, so virtual images cannot be rendered with 

𝑓𝑥 ≠ 𝑓𝑦. There are a few scenarios that can cause this inequality: 

 

1. Asymmetrical optics in the camera 

2. Different pixel dimensions or spacing along the axes of the image sensor 

3. Digital modification of the image dimensions when the video file is encoded 

4. Some combination of these three scenarios 

 

It is not possible to determine the cause of the inequality from image measurements, 

but it can be accounted for in any case. 

 The horizontal and vertical focal lengths of the distortion-free calibration frames 

were made equal by decreasing their size while maintaining the same view angle. This 

was accomplished by downsampling them in the horizontal direction from 720 pixels to  

 

 
𝑓𝑦

𝑓𝑥
∙ 720 =

526.1

575.2
∙ 720 = 659 𝑝𝑖𝑥𝑒𝑙𝑠 (10) 

 

According to Equation 9, the corresponding focal length, as measured in pixels, should 

have decreased by the same factor. To verify that this was the case, a fourth calibration 

was run on the distortion-free, downsampled calibration frames. As expected, the 

resulting focal lengths were equal within their uncertainties. A final calibration was run 

with 𝑓𝑥 fixed to equal 𝑓𝑦 and (𝑝𝑥, 𝑝𝑦) fixed at the downsampled image center 
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(329, 242.5), and the resulting values are given in Table 5. This calibration was used 

with Equation 9 to set the view angle of the virtual cameras used for the remainder of 

the work discussed in this dissertation: 

 

 

𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑐𝑎𝑚𝑒𝑟𝑎 𝑣𝑖𝑒𝑤 𝑎𝑛𝑔𝑙𝑒 = 2 ∙ arctan (
𝐻

2𝑓
)

= 2 ∙ arctan (
486

2 ∙ 526.5
) = 49.6 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

(11) 

 

 

 

Table 5: Optimized intrinsic parameters for distortion-free, horizontally-downsampled 
frames. This model was used to determine the view angle for virtual endoscopic 
images. 𝑐1−5 and 𝛼 are unitless. 𝑓𝑥, 𝑓𝑦, 𝑝𝑥, and 𝑝𝑦 are expressed in pixels. 

Parameter Value 
  

𝑐1  0 
𝑐2  0 
𝑐3  0 
𝑐4  0 
𝑐5  0 
𝑓𝑥  526.5 ± 1.0 
𝑓𝑦  526.5 ± 1.0 
𝛼  0 
𝑝𝑥  329 
𝑝𝑦  242.5 
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3.4.4 Summary 

 

 Camera calibration is an important foundational step for endoscopy-CT registration 

because it is used to remove distortion from endoscopic video frames and to match the 

focal length of the virtual endoscope to that of the real endoscope. Calibration was 

performed by recording an endoscopic video of a planar checkerboard pattern, 

selecting 20 frames from a variety of orientations and distances, automatically 

detecting the corners of the checkerboard, and calculating the intrinsic camera 

parameters that best model their projection onto the image. The outputs of camera 

calibration were the endoscope’s focal length and principal point, as well as five 

coefficients that describe its radial and tangential distortion. 

 

 

 

 

  



33 
 

 

4 

Image registration methods 

Parts of this chapter are based on the following publication64: 

W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The 

feasibility of endoscopy-CT image registration in the head and neck without prospective 

endoscope tracking.” PLoS One 12(5), 1-23 (2017). 

No permission is required for reuse of this material, which was published under the 

Creative Commons Attribution license (CC-BY). 

 

4.1 Introduction 

 

 The registration of endoscopic video to CT was carried out in three general steps: 

 

1. Choose an endoscopic video frame to be registered. In a clinical application, this 

would be a frame containing a structure of interest such as a tumor or an area of 

mucositis. 

2. Find the endoscope’s CT-space coordinates in the selected frame. These 

coordinates consist of position and orientation. 
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3. Use the endoscope coordinates to establish spatial correspondence between the 

two modalities via virtual endoscopy. 

 

The frame selected in step 1 will be referred to as the registration frame, and the 

coordinates found in step 2 will be referred to as the registered endoscope coordinates. 

In general, registered endoscope coordinates were found by maximizing the similarity 

between the registration frame and virtual endoscopic images as a function of the 

virtual endoscope’s coordinates. More details on the calculation and maximization of 

similarity are given later in this section. Spatial correspondence was established by 

using the virtual endoscopic images to project pixels in the registration frame into the 

CT-space surface mesh. The computational methods used to do so are discussed in 

Section 4.4. 

 One of the most challenging aspects of endoscopy-CT registration is searching for 

the registered coordinates in a robust and efficient way. The prototypical method is to 

track the endoscope across the recorded video by updating the coordinates of a virtual 

endoscope frame-to-frame, either by maximizing image similarity between the frame 

and the virtual image or by estimating motion based on point correspondences in 

adjacent frames21, 22. This method has the advantage that the search space is quite small 

at each iteration, given that the endoscope does not travel very far between frames. 

However, it requires establishing an anchor point from which to start tracking, and it 

requires registration of frames prior to the desired registration frame. If the virtual 

endoscope becomes lost at any point in this process, the registration will fail without 

manual intervention. 
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The frame-to-frame tracking method was tested on phantom and patient images. 

Algorithm details for the frame-to-frame tracking method are provided in Section 4.2. It 

was tested on phantom and patient images. The methods of the phantom tests are 

presented in Section 5.2.4, and the results are presented in Sections 5.3.1.2 and 5.3.2.2. 

The methods and results of the patient tests are presented in Sections 6.2.5 and 6.3.1. 

Preliminary tests suggested that its robustness suffers when applied to patient videos, 

so a novel registration algorithm was devised that avoids the limitations of frame-to-

frame tracking. This method searches the volume of the airways to directly find the 

registered coordinates for the desired frame, and it does so efficiently by utilizing 

physical constraints on the endoscope to reduce the size of the search space. This 

method will be referred to as the path-based volumetric search, and the algorithm 

details are provided in Section 4.3. It was also tested on phantom and patient images. 

The methods of the phantom tests are presented in Section 5.2.5, and the results are 

presented in Sections 5.3.1 and 5.3.2. The methods and results of the patient tests are 

presented in Sections 6.2.6 and 6.3.1. 

Both methods rely on calculations of image similarity between endoscopic video 

frames and virtual endoscopic images. This similarity was calculated using a 

combination of mutual information and gradient alignment65. The virtual endoscope 

has a position and orientation in CT space, giving six degrees of freedom: 

 

 𝐶 = (𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) (12) 
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Let 𝐹 and 𝑉(𝐶) denote an endoscopic video frame and the virtual image rendered at the 

coordinates 𝐶. The similarity measure 𝑀𝐼𝑔𝑟𝑎𝑑 is defined by 

 

 𝑀𝐼𝑔𝑟𝑎𝑑(𝐹, 𝑉(𝐶)) ≡ 𝑀𝐼(𝐹, 𝑉(𝐶)) ∙ 𝐺𝑊(𝐹, 𝑉(𝐶))  (13) 

 

In this equation, 𝑀𝐼(𝐹, 𝑉(𝐶)) is the mutual information between the two images66. 

Normalized mutual information67 is not used because the overlap between the video 

frames and virtual images never changes. 𝐺𝑊(𝐹, 𝑉(𝐶)) is a weighting term that favors 

alignment of edges in the two images. It is a sum over all pairs of corresponding pixels 

given by 

 

 𝐺𝑊(𝐹, 𝑉(𝐶)) = ∑
cos(𝜙𝑓,𝑣) + 1

2
∙ min(|∇𝐹(𝑓)|, |∇𝑉(𝑣)|)

(𝑓,𝑣)∈(𝐹,𝑉(𝐶))

 (14) 

 

In this equation, 𝑓 and 𝑣 denote pixels in the two images. To calculate this value, 

horizontal and vertical derivative images are created by convolving the images with 

Sobel filters68. These are used to compute the angle between the derivatives 𝜙𝑓,𝑣 and 

the gradient magnitudes |∇𝐹(𝑓)| and |∇𝑉(𝑣)|. The first term in the sum is maximized 

when the angle between the derivatives is zero, indicating that both images have an 

edge in the same direction. The second term ensures that only strong edges that are 

present in both images are favored. Using Equations 9 and 10, the registered 

coordinates for a registration frame 𝐹 are defined by 
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 𝐶𝑟𝑒𝑔 ≡ argmax
𝐶∈ℝ6

(𝑀𝐼𝑔𝑟𝑎𝑑(𝐹, 𝑉(𝐶))) (15) 

 

𝑀𝐼𝑔𝑟𝑎𝑑 was selected for this application based on the widespread success of mutual 

information in medical image registration69 and the observation that structural edges 

are the most salient features present in both real and virtual endoscopic images. 

 Both registration methods rely on the Nelder-Mead simplex optimization algorithm 

to maximize the similarity measure70. It is a minimization algorithm, so the negative of 

𝑀𝐼𝑔𝑟𝑎𝑑 was used as the objective function. A simplex is a geometric figure that has 𝑛 + 1 

vertices in 𝑛 dimensions. For example, a triangle is a 2D simplex. In the Nelder-Mead 

method, the objective function value is calculated at the simplex vertices, which are 

updated by a series of reflections, expansions, and contractions to reduce the function 

value until convergence criteria are met. It was selected because it does not require 

calculation of the function’s Jacobian or Hessian, which is not feasible in this 

application. It is a local optimization algorithm, and the scale of the search space is 

determined by a vector containing the distance along each coordinate axis that are used 

to create the initial simplex. This vector will be referred to as ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥. The Nelder-Mead 

method is used differently in the two registration methods, which are described in 

Sections 4.2 and 4.3. 
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4.2 The prototypical method: frame-to-frame tracking 

 

4.2.1 Algorithm description 

 

 In this method, the virtual endoscope is repeatedly moved such that the virtual 

image matches the next frame in the video. It consists of the following steps: 

 

1. Select a registration frame 𝐹𝑟𝑒𝑔. 

2. Select a starting frame 𝐹0 and place the virtual endoscope at the corresponding 

coordinates 𝐶0 by mathematically aligning point correspondences. 

3. Get the next frame 𝐹1 and use 𝐶0 as the initial guess for the Nelder-Mead method 

to search for the coordinates 𝐶1 that maximize the similarity between 𝐹1 and the 

virtual endoscopic image 𝑉(𝐶). 

4. Repeat step 3 for frame 𝐹2 using 𝐶1 as the initial guess, and then for frame 𝐹3 

using the resulting 𝐶2 as the initial guess, and so on until 𝐹𝑟𝑒𝑔 is reached. 

 

Frame-to-frame tracking is computationally straightforward, but the results at each 

frame depend on the results of the previous frame. Because the Nelder-Mead method is 

a local optimization algorithm, it can only find the nearest local optimum. This means 

that if the virtual endoscope gets off track at some point and becomes lost, the process 

will fail. 
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4.2.2 Manual determination of initial endoscope coordinates 

 

 Manual input is required for step 2 of frame-to-frame tracking. First, the virtual 

endoscope must be placed at some coordinates 𝐶𝑔𝑢𝑒𝑠𝑠 that are sufficiently close to the 

correct coordinates for 𝐹0 that some of the same structures are visible in 𝐹0 and 

𝑉(𝐶𝑔𝑢𝑒𝑠𝑠). Then, 𝐹0 and 𝑉(𝐶𝑔𝑢𝑒𝑠𝑠) are displayed side by side, and a set of corresponding 

locations are selected by the user. Let (𝑢𝑖,  𝑣𝑖) and (𝑢𝑖
′,  𝑣𝑖

′) denote the pixel addresses of 

the ith correspondence in 𝐹0 and 𝑉(𝐶𝑔𝑢𝑒𝑠𝑠), respectively. The CT-space mesh 

coordinates (𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖′) for each pixel (𝑢𝑖
′,  𝑣𝑖

′) are computed using methods described 

in Section 4.4. The goal then becomes to find the coordinates 𝐶0 that project each 

(𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖′) as close as possible to its expected location (𝑢𝑖,  𝑣𝑖) in 𝐹0. 

Recall that the projection of 3D points onto pixel addresses is performed using the 

camera matrix (Equations 7 and 8 in Section 3.4.1). Given a set of endoscope 

coordinates 𝐶𝑡𝑒𝑠𝑡 = (𝑥𝑡, 𝑦𝑡, 𝑧𝑡, 𝜃𝑥𝑡 , 𝜃𝑦𝑡, 𝜃𝑧𝑡), the camera matrix 𝑷𝒕𝒆𝒔𝒕 =

𝑲 [ 𝑹𝒕𝒆𝒔𝒕 | 𝒕𝒕𝒆𝒔𝒕 ] is composed using 

 

 𝑹𝒕𝒆𝒔𝒕 = 𝑹𝒙(𝜃𝑥𝑡)𝑹𝒚(𝜃𝑦𝑡)𝑹𝒛(𝜃𝑧𝑡) (16) 

 

 𝒕𝒕𝒆𝒔𝒕 = −𝑹 [ 

𝑥𝑡

𝑦𝑡

𝑧𝑡

 ] (17) 

 

In Equation 16, 𝑹𝒙,  𝑹𝒚, and 𝑹𝒛 are the standard coordinate axis rotation matrices. 

Equation 17 is necessary because the endoscope’s position is specified in CT-space, but 
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the translation part of the camera matrix is the position of the origin in the camera’s 

reference frame. The projection of the CT-space coordinates (𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖′) creates a third 

set of pixel addresses: 

 

 𝑷𝒕𝒆𝒔𝒕 [ 

𝑋𝑖
′

𝑌𝑖
′

𝑍𝑖
′

1

 ] = [ 
𝑢𝑡𝑖

′

𝑣𝑡𝑖
′

1

 ] (18) 

 

The distances between (𝑢𝑖,  𝑣𝑖) and (𝑢𝑡
′ , 𝑣𝑡𝑖

′ ) create a set of residuals that are used as 

the objective of a least-squares minimization that provides the desired endoscope 

coordinates 𝐶0. Each correspondence provides two residuals (one for 𝑢 and one for 𝑣), 

so a minimum of three correspondences between 𝐹0 and 𝑉(𝐶𝑔𝑢𝑒𝑠𝑠) must be selected to 

determine the six endoscope coordinates. The determination of endoscope coordinates 

in this manner will be referred to as resectioning. 

 

4.3 The novel method: path-based volumetric search 

 

4.3.1 Algorithm description 

 

In any endoscopic video there are likely to be many scenarios that may cause 

frame-to-frame tracking to fail, including lighting changes from the endoscope’s 

dynamic gain, transient muscle motion causing large structural changes, erratic camera 

motion, and blurry frames. But frame-to-frame tracking requires determination of the 
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coordinates of the endoscope for all frames from 𝐹0 up to 𝐹𝑟𝑒𝑔, even though only the 

coordinates 𝐶𝑟𝑒𝑔 are of interest, and the longer this sequence of frames, the greater the 

chance of encountering an impasse. A more robust method would be to search directly 

for the desired frame’s coordinates without considering any frames before it, and that is 

the goal of the path-based volumetric search. 

The approach for this method is motivated by the observation that at any given 

location in the airways of the head and neck, only a small subset of the endoscope’s 

orientation space (𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) is realistically possible. For example, the endoscope will 

never be positioned near the epiglottis, but looking in the superior direction, and the 

roll angle of the camera is constrained by the operator’s hand on the endoscope’s 

control section. These physical constraints can be used to initialize the virtual 

endoscope’s view direction close to the correct direction, and a large majority of the 

orientation space can be excluded from the search. The endoscope’s position space 

(𝑥, 𝑦, 𝑧) must be searched as well. This is accomplished by generating a sparse set of 

seed points to perform a coarse search that places the virtual endoscope near the 

correct location. This result is refined with a local search to obtain the final coordinates 

𝐶𝑟𝑒𝑔. The path-based volumetric search algorithm consists of the following steps, which 

are also illustrated in Figure 6: 

 

1. Select a registration frame 𝐹𝑟𝑒𝑔 

2. Create a possible path through the volume for the virtual endoscope. 

a. Manually select a small set of points covering the length that the 

endoscope can travel. 
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b. Interpolate between these points at an interval 𝛿. 

c. Assign view directions to each point such that the virtual endoscope looks 

at the next point in the path. 

3. At each path point, create a set of seed points that samples the cross-sectional 

area of the surface mesh. 

a. Slice the surface mesh in the plane perpendicular to the virtual 

endoscope’s view direction. 

b. Calculate the desired number of seed points 𝜂 based on the area of the 

slice 𝐴𝑠. 

c. Use k-means clustering71 to generate seed points within the slice. 

d. Assign to each seed point the same view direction as that of the path 

point from which the slice was created. 

4. Perform the coarse search by starting from each seed point in each slice and 

searching for the virtual endoscope coordinates that maximize the similarity 

between 𝐹𝑟𝑒𝑔 and the virtual image 𝑉(𝐶). In this step, the virtual endoscope’s 

position (𝑥, 𝑦, 𝑧) is fixed at each seed point, and the view direction (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) 

is optimized. 

5. Create a 3 x 3 x 3 grid of points with spacing 𝛾 centered on the best overall result 

from step 4. Assign each grid point the same view direction as this result. 

6. Perform the fine search by starting from each grid point and searching for the 

virtual endoscope coordinates that maximize the similarity measure between 

𝐹𝑟𝑒𝑔 and the virtual image 𝑉(𝐶). In this step, all six coordinates 

(𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧) are optimized. 
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The path-based volumetric search is more complex than frame-to-frame tracking, 

particularly for the slicing of the mesh and clustering of points in step 3, which are 

described in greater detail in Section 4.3.2. This algorithm has the advantage that the 

results for a given frame do not depend on any frames before or after, and manual input 

is required only for the selection of the initial path points in step 2. This selection is a 

simple process because it does not matter if the selected path is the same as the actual 

path the endoscope takes in the recorded video. The path is only used to initialize the 

seed point view directions to be reasonably close to what can be expected at any given 

location in the anatomy. In general, the path was created by manually selecting ~10 

points on a single CT slice, and more details are provided in Sections 5.2.5 and 6.2.6. 

There are several variables in the algorithm that can be adjusted. The first is 𝛿, the 

interpolation interval along the path in step 2b. If this value is too large, there may not 

be a seed point close enough to the correct location to produce a virtual image that is a 

good match for the registration frame.  If it is too small, an excessive amount of 

computation time will be required. The determination of this value is discussed in 

Sections 5.2.5, 5.3.1.1, and 5.3.2.1. The second variable is 𝜂, the number of seed points in 

step 3b. This number must vary from slice to slice to avoid under-sampling of large 

slices and over-sampling of small ones. The considerations for the number of seed 

points are similar to those for the interpolation spacing, so it is reasonable to specify 

this number such that the distance between the seed points is comparable to the 

interpolation spacing. The calculation of the number of seed points is discussed in 
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Section 4.3.2. The third variable is 𝛾, the spacing of the grid for the fine search in step 5. 

It is set to half the interpolation spacing. These variables are summarized in Table 6. 

 

 

Table 6: Description of the variables in the path-based volumetric search algorithm.  

Symbol Name Comment 
   

𝛿  Path interpolation interval 
 

See step 2b. Specified by user. 
Evaluation of different values 
discussed in Sections 5.2.5, 
5.3.1.1, and 5.3.2.1. 

𝜂 Number of seed points in a slice 
 

See step 3b. Calculation described 
in Section 4.3.2. 

𝛾 Grid spacing for fine search See step 5 and 6. Set to equal 𝛿 2⁄ . 
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Figure 6: Flowchart showing the steps of the path-based volumetric search registration 
algorithm. 

This figure has been reproduced and modified from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

4.3.2 Slicing the surface mesh and clustering seed points 

 

 Step 3 of the path-based volumetric search involves slicing the surface mesh to 

create a cross-section perpendicular to the virtual endoscope’s view direction. This is 

accomplished using VTK methods to render an image of the cross section, and an 

example is shown in Figure 7. A vtkCutter object is created with its input set as the 

surface mesh and its cut function is set as a vtkPlane defined with its origin at the 
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virtual camera’s position and its normal along the virtual camera’s direction of 

projection. The output of the vtkCutter is a list of CT-space points defining the 

intersection between the plane and the surface mesh. These points are transformed to 

camera-centered coordinates using Equation 6, and their X and Y extents are used to 

calculate the distance behind the virtual endoscope from which the image must be 

rendered in order to contain the entire slice. The rendered image is an outline of the 

slice, which is flood-filled from the virtual endoscope’s position. Any non-filled regions 

are discarded to eliminate unnecessary seed points in unconnected regions, such as the 

contralateral nasal cavity. 

 Next, the pixel addresses in the filled slice are treated as a set of individual 

observations and partitioned with k-means clustering. The number of clusters 𝜂 is 

calculated based on the area of the filled slice 𝐴𝑠. The distance from which the slice 

image was rendered and the intrinsic parameters of the virtual camera are known, so it 

is possible to express this area in cm2. The end goal is to create the seed points such that 

their spacing is approximately equal to the path interpolation interval 𝛿 in step 2b. It 

was observed that k-means clustering tends to produce patterns similar to a hexagonal 

lattice when applied to large, uniform areas, so 𝜂 is calculated as the area of the filled 

slice divided by the area of a regular hexagon whose size is such that the spacing 

between hexagon centers in a lattice is equal to 𝛿: 

 

 𝜂 =
𝑠𝑙𝑖𝑐𝑒 𝑎𝑟𝑒𝑎

ℎ𝑒𝑥𝑎𝑔𝑜𝑛 𝑎𝑟𝑒𝑎
=

2𝐴𝑠

√3𝛿2
 (19) 
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This is illustrated in Figure 8. After running k-means clustering with 𝜂 clusters, the 

centroid of each cluster is converted to a 3D point in CT-space using the known distance 

from which the slice image was rendered and the intrinsic parameters of the virtual 

camera. This produces the seed points for the slice, and each is assigned the same view 

direction as the path point from which the slice was generated. This is repeated for each 

path point, producing the desired set of seed points that samples the entire volume. 
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Figure 7: Example of surface slicing and seed point clustering in the path-based 
volumetric search registration algorithm. (a) A virtual endoscopic image in the left 
posterior nasal cavity. The medial wall and floor of the nasal cavity are visible on the 
left and bottom of the image, and the camera is looking towards to posterior wall of the 
pharynx. (b) The slice outline created in step 3a. The both sides of the nasal cavity and 
the maxillary sinuses are included. The virtual endoscope’s position is shown as a red 
dot. (c) The outline has been flood-filled from the virtual endoscope’s position and 
unconnected regions have been discarded. (d) The centroids of the k-means clusters are 
shown as blue dots. The number of clusters 𝜂 was calculated using Equation 19 with 𝛿 = 
5 mm. The actual distances between adjacent centroids were 4.3-5.0 mm. This image 
was cropped slightly to fit the template.  

This figure has been reproduced and modified from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 
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Figure 8: Illustration of the hexagon lattice used to calculate the number of seed points 
in Equation 19. The desired seed point distance is equal to the path interpolation 

interval 𝛿. This gives a side length of 𝛿 √3⁄  and area of √3𝛿2 2⁄ .  

 

 

 

4.4 Methods for projective measurements  

 

4.4.1 General concepts 

 

 The two registration methods, frame-to-frame tracking and path-based volumetric 

search, provide the registered endoscope coordinates 𝐶𝑟𝑒𝑔 that are used to place the 

virtual endoscope at the correct position and orientation for a given video frame. These 

coordinates are sufficient if the goal is to localize the endoscope for guidance during a 

procedure, or to transfer information such as a radiation dose distribution from CT to 

endoscopic video. However, establishing spatial correspondence from endoscopic video 

to CT requires some additional steps. With virtual endoscopy, depth information is still 
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available because the surface mesh provides a 3D model of the anatomy, and measuring 

CT-space coordinates from video-frame pixel addresses can be thought of conceptually 

as projecting a ray from the virtual camera’s position through the pixel in the image 

plane and returning the coordinates of the point where it intersects the surface mesh. 

These 2D-to-3D measurements will be referred to as projective measurements. 

 Projective measurements can be taken simply using the VTK classes 

vtkPointPicker and vtkCellPicker. Both have methods to take a pixel address, 

project a ray through it into the scene, and return information about what it hits. 

vtkPointPicker can only return the nearest vertex in the mesh. vtkCellPicker 

calculates the exact intersection point, and it can also return the vector normal to the 

surface at the intersection point, which may be useful for identifying high-uncertainty 

regions (see Section 4.4.3). However, it takes ~30 ms to do this operation. This does not 

sound long, but even for a region as small as a circle with a 50-pixel radius it would take 

nearly 4 minutes to project every pixel. Though it is likely that a sparse set of pixels 

within this region would be sufficient for most applications, it is more convenient to 

have a faster method to compute the 3D coordinates for every pixel in the virtual image 

and downsample the data as needed. A method to accomplish this, and two derivatives 

that are useful for characterizing projective measurements, are presented in Sections 

4.4.2-4.4.4. 
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4.4.2 Fast projective measurements via the world transform 

 

 The VTK rendering pipeline makes use of the Z-buffer, which is an array that stores 

information about the depth of objects in the scene relative to the camera. The Z-buffer 

may be implemented in hardware or software, and it is used to determine which objects 

are visible in a rendered scene. If the depth of the 3D point corresponding to a pixel 

address is known, the full projective measurement for that pixel can be calculated by 

multiplying the pixel address by the inverse of the camera matrix in Equation 8 and 

scaling the result by the known depth. 

An image of the Z-buffer can be created using the class vtkWindowToImageFilter 

with the Z-buffer set as the input. The values in the depth buffer image are in the range 

[0, 1]. They are normalized to the range between the near and far clipping planes, 

which is an attribute of the vtkCamera that determines the range of depth values 

included in the rendered images. There are two important considerations for using the 

Z-buffer image to calculate 3D coordinates. The first is that the Z-buffer is not linear. 

The conversion from Z-buffer value 𝑍𝑏 to depth 𝑍 is given by 

 

 𝑍 =
2𝑍𝑓𝑎𝑟𝑍𝑛𝑒𝑎𝑟

𝑍𝑓𝑎𝑟 + 𝑍𝑛𝑒𝑎𝑟 − (𝑍𝑓𝑎𝑟 − 𝑍𝑛𝑒𝑎𝑟)(2𝑍𝑏 − 1)
 (20) 

 

Where 𝑍𝑓𝑎𝑟 and 𝑍𝑛𝑒𝑎𝑟  are the values of the clipping range. Note that the output 𝑍 is the 

Z-component of the camera-centered coordinates described in Section 3.4.1 and 

Equation 2. The second consideration for using the Z-buffer image to calculate 3D 
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coordinates is that the Z-buffer has a finite precision, and due to the non-linearity of 

Equation 20, the accuracy of calculated 3D coordinates will suffer if the clipping range is 

too large. This is especially true if 𝑍𝑛𝑒𝑎𝑟 is close to zero. 

 Taking these into account, the following procedure was used to calculate the CT-

space coordinates corresponding to each pixel in a virtual image. 

 

1. Place the virtual endoscope at the desired coordinates. 

2. Build the depth image by extracting the Z-buffer image in 1-cm strips to preserve 

resolution. 

a. Set the clipping range to [0.1, 1] extract the Z-buffer image, and convert 

to camera-centered depth using Equation 20. 

b. Set the clipping range to [1, 2]  and repeat. Pixels already assigned to the 

depth image in the previous iteration are given priority to avoid including 

regions of the outside of the surface that are made visible as 𝑍𝑛𝑒𝑎𝑟 is 

moved away from the camera. 

c. Repeat this process with the clipping range set to [2, 3], [3, 4], and so on 

until a desired maximum depth is reached. 

3. Create a list of all pixel addresses (𝑢, 𝑣, 1) in the virtual image and convert to 

image plane coordinates by multiplying them by the inverse of the virtual 

endoscope’s calibration matrix (see Equations 4 and 5 and Table 5). 

4. Convert the image-plane coordinates to camera-centered coordinates by scaling 

them by their corresponding values in the depth image. 
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5. Convert the camera-centered coordinates to CT-space coordinates by 

multiplying them by the inverse of the virtual endoscope’s camera matrix (see 

Equations 7 and 8). 

 

The calculation CT-space coordinates for each pixel in the virtual image, and the 

resulting m x n x 3 coordinate array, will be referred to as the world transform of the 

virtual image. The calculations in steps 2d-2f are vectorized, so the world transform is 

quite fast. The speed depends on the size of the surface mesh, and the maximum depth 

used in step 2c, but the computation time is generally less than 5 seconds. The same 

computation would take over 2.5 hours using the vtkCellPicker method. The world 

transform is accurate as well, differing from vtkCellPicker by only by 0.13 ± 0.82 

mm. The large standard deviation is due to the presence of a small number of outliers 

where the two methods disagree. This can happen at occluding edges and in distant 

regions of the image, but in those areas, a shift of a few pixels results in a large change 

in the projected point anyway. Excluding just the largest 1% of errors from the 

comparison brings the difference down to 0.08 ± 0.09 mm. 

 

4.4.3 Computation of measurement angle from the world transform 

 

Assuming that there is an inherent uncertainty in the solid angle through which a 

pixel is projected, it is reasonable to expect that the apparent measurement uncertainty 

will be affected by scene geometry, including the distance between the endoscope’s 

camera and the measured position and the angle at which the camera views the surface. 
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This is illustrated in Figure 9. The camera-to-surface distance is easy to calculate from 

the world transform using the virtual endoscope’s coordinates, but calculating the angle 

at which the camera views the surface is more complication. 

Throughout this dissertation, the term measurement angle will be used to refer to 

the angle between a vector connecting a point on the surface mesh to the virtual 

endoscope and the vector normal to the surface mesh at that point. The measurement 

angle is calculated by fitting a 3D plane to each point in the world transform using its 

surrounding 8-neighbors. The equation for a plane with the normal vector (𝑎, 𝑏, 𝑐) 

containing the point (𝑋0, 𝑌0,  𝑍0) can be written as 

 

 𝑎(𝑋 − 𝑋0) + 𝑏(𝑌 − 𝑌0) + 𝑐(𝑍 − 𝑍0) = 0 (21) 

 

By designating a point in the world transform as (𝑋0, 𝑌0,  𝑍0), its surrounding 8-

neighbors (𝑋𝑛𝑖, 𝑌𝑛𝑖,  𝑍𝑛𝑖) can be used to form an over-determined system of equations: 

 

 [ 
𝑋𝑛1 − 𝑋0 𝑌𝑛1 − 𝑌0 𝑍𝑛1 − 𝑍0

⋮ ⋮ ⋮
𝑋𝑛8 − 𝑋0 𝑌𝑛8 − 𝑌0 𝑍𝑛8 − 𝑍0

 ] [ 
𝑎
𝑏
𝑐

 ] = [
0
0
0

] (22) 

 

 

The non-trivial solution for (𝑎, 𝑏, 𝑐) is found by taking the singular value 

decomposition of the matrix72. The last right-singular vector of the decomposition is the 

desired surface normal. Finally, the measurement angle is calculated from the dot 
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product of the surface normal and the vector connecting the surface point to the virtual 

endoscope. 

 

 

 

 

Figure 9: Illustration of the expected impact of scene geometry on projective 
uncertainty. The dashed lines represent the inherent uncertainty in the solid angle 
through which a pixel is projected. The apparent measurement uncertainty is increased 
with the camera-to-surface distance or the measurement angle increase. 

This figure has been reproduced and modified from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

4.4.4 Computation of the edge mask from the world transform 

 

 In a given virtual endoscopic image, there are likely to be occluding edges and 

regions with measurement angles close to 90 degrees. In these areas, very large 

projective measurement errors are likely, because a shift of only a few pixels will result 

in a large change in the projected coordinates. It may be desirable to avoid making 
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projective measurements in these areas, and the world transform provides a 

convenient method of identifying them. For each point in the world transform, the 

distances to each of its 8-neighbors are calculated. If at least one of these distances is 

larger than a threshold, the point is marked as an edge point. This process creates a 

binary array showing edge regions in the virtual image to exclude from projective 

measurements. This array it will be referred to as the edge mask, and an example is 

shown in Figure 10. 

 

 

 

 

Figure 10: Example of the edge mask created from the world transform. (a) A virtual 
endoscopic image with the epiglottis in the foreground and the glottis in the 
background. (b) The edge mask for this image. It was created with a 2-mm threshold, 
and morphological erosion was applied to provide a buffer around the edge points.  
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5 

Image registration in phantoms 

Parts of this chapter are based on the following publication64: 

W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The 

feasibility of endoscopy-CT image registration in the head and neck without prospective 

endoscope tracking.” PLoS One 12(5), 1-23 (2017). 

No permission is required for reuse of this material, which was published under the 

Creative Commons Attribution license (CC-BY). 

 

5.1 Introduction 

 

 The previous chapter described the methods developed to register endoscopic 

video to CT, and this chapter presents the testing of those methods in rigid phantoms. 

The creation of these phantoms, the acquisition of endoscopic video and virtual 

endoscopic images within them, and the details of the registration tests are discussed in 

Section 5.2. The results of the registration tests are presented in Section 5.3, and a 

discussion is given is Section 5.4. 
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5.2 Methods 

 

5.2.1 Phantom design 

 

 Two clay phantoms were created to assess the registration methods described in 

Sections 4.2 and 4.3. Clay was used so that the phantoms would have irregular shapes 

and low-contrast surface textures. Both phantoms include fiducials that allowed for 

projective measurements to be compared to a ground truth. The first phantom (Figure 

11) contains twelve 2-mm-diameter radiopaque markers embedded in the luminal 

surface, arranged in three rings along the phantom’s length. These markers were used 

to make point measurements of registration accuracy. The second phantom (Figure 12) 

contains a 10 x 10 x 5 mm3 piece of Superflab bolus material (Mick Radio-Nuclear 

Instruments, Mount Vernon, NY). The bolus protrudes into the lumen of the phantom. It 

was used to test registration accuracy by mapping an object contour from endoscopic 

video to CT.  

 There are a couple of notable differences in the design of the two phantoms. The 

first is that the internal dimensions of the marker phantom are larger than those of the 

bolus phantom. The internal diameter of the bolus phantom is ~5 cm, whereas that of 

bolus phantom is ~2 cm. The second is that the luminal surface of the marker phantom 

is more irregular. The internal dimensions of the bolus phantom are a better 

representation of what can be seen in patients via virtual endoscopy, and its smoother 

surfaces, which lack characteristic edges, provide a more challenging test for 

endoscopy-CT registration. 
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Figure 11: The marker phantom. (a) A photograph of the marker phantom showing its 
overall dimensions. The opening at the top for the endoscope is not visible. (b) An 
endoscopic video frame from inside the phantom, positioned near the top looking 
down. Four of the 2-mm radiopaque markers are visible. (c) The corresponding virtual 
endoscopic image.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 
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Figure 12: The bolus phantom. (a) A photograph of the bolus phantom showing its overall 
dimensions and the approximate location of the bolus material. (b) An endoscopic video 
frame from inside the phantom, positioned directly in front of the bolus, which is visible 
on the lower right. (c) The corresponding virtual endoscopic image.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

5.2.2 CT acquisition and virtual endoscopy 

 

CT scans of the phantoms were acquired using a Lightspeed RT (GE Healthcare) 

with a 30-cm field of view and 1-mm slices. The luminal surfaces were segmented using 

the Pinnacle3 treatment planning software (Philips Healthcare). The segmentation was 

performed semi-automatically by selecting a density threshold of 0.9 g/cm3 and making 

a single mouse click inside the lumen on each axial slice. This threshold was chosen 



61 
 

because the density of the clay is ~1.8 g/cm3, 0.9 g/cm3 should draw the boundary at 

voxels that contain half air and half clay. The .roi files containing the segmented 

contours were used to create virtual endoscopy surface meshes as described in Section 

3.3.1. The virtual endoscopy lighting parameters (Section 3.3.2 and Table 1) were 

chosen by visual inspection to match the overall appearance of recorded videos. The 

constant, linear, and quadratic attenuation values were set to 1, 1.4, and 2, respectively. 

The cosine exponent was set to 5. In the marker phantom, the intensity was set to 30. In 

the bolus phantom, the smaller dimensions made this setting too bright, so the intensity 

was reduced to 15. All virtual endoscopic images were smoothed with a 3 x 3 Gaussian 

kernel with 𝜎 = 1 pixel. 

 

5.2.3 Endoscopic video datasets 

 

Two endoscopic video sequences were recorded in each phantom with the 

endoscope moving in through the length of the phantom and back out. The lengths of 

the video sequences were 27 and 17 seconds in the marker phantom and 53 and 75 

seconds in the bolus phantom, with the bolus visible for the last 42 and 64 seconds, 

respectively. The bolus phantom videos were longer due to the increased difficulty of 

navigating the endoscope through the smaller space. 

A set of registration frames was selected for each phantom by sampling the videos 

at regular intervals and identifying the least blurry frame out of the sample as well as 

the five previous and subsequent frames. The sampling intervals were 1 and 2 seconds 

for the marker and bolus phantoms, respectively. The least blurry frame was identified 
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as the one with the largest variance after filtering with a 3 x 3 Laplacian. The 

endoscopic videos contained many frames that were unsuitable for registration, either 

due to the markers or bolus not being visible or due to under- or overexposure as the 

image sensor adjusted its gain. To avoid these scenarios, each set of frames was 

reviewed and unsuitable frames were rejected. This resulted in a total of 36 and 37 

registration frames for the marker and bolus phantoms, respectively. The 

preprocessing for all registration frames included deinterlacing by replacing every 

other row with bilinear interpolation, distortion removal as described in Section 3.4, 

conversion to grayscale, and smoothing with a 3 x 3 Gaussian kernel with 𝜎 = 1 pixel. 

The ground-truth CT-space marker positions were obtained manually. For each 

marker, the CT slice on which it appeared brightest was selected, and the coordinates of 

the voxel closest to the center of the lumen were recorded. The ground-truth bolus 

contour was created semi-manually. First, the luminal contours on all slices containing 

the bolus were copied. Then, the underside of the bolus was contoured manually, and 

all extraneous parts of the copied contour were removed. This process ensured that the 

luminal voxels of the ground truth contours, which were the only ones visible for 

measurement via virtual endoscopy, were identical to those from which the virtual 

endoscopy surface mesh was created. 

 

5.2.4 Frame-to-frame tracking 

 

 Frame-to-frame tracking was performed as described in Section 4.2.1. Initial frames 

to start the tracking were selected near the entrances of the phantoms prior to the first 
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registration frame for each sequence, and the initial virtual endoscope coordinates 

were determined using the resectioning process described in Section 4.2.2. At each 

subsequent frame, the virtual endoscope’s coordinates (𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) were 

optimized to match the next frame in the video sequence using the simplex method 

described in Section 4.1. The scale of the search space was set using 

 

 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (2 𝑚𝑚, 2 𝑚𝑚, 2 𝑚𝑚, 5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔) (23) 

 

5.2.5 Path-based volumetric search 

 

 The path-based volumetric search was performed as described in Section 4.3.1. In 

the marker phantom, the possible virtual endoscope path was created by manually 

selecting seven points on a coronal slice of the CT. This is illustrated in Figure 13. The 

bolus phantom does not have bilateral symmetry, so instead of manual selection, the 

path was created by calculating the centroid of the segmented surface for every fifth CT 

slice. To evaluate the impact of seed point spacing on registration accuracy, the search 

was performed using four sets of seed points that were created using path interpolation 

intervals of 𝛿 = 2.5, 5.0, 7.5, and 10.0 mm (see Section 4.3 for details). The 

corresponding numbers of seed points for each slice were calculated using Equation 19. 
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Figure 13: Virtual endoscope path creation in the marker phantom. A coronal CT slice 
shows the manually-selected points that comprise the virtual endoscope path used for 
the path-based volumetric search registration algorithm.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

At each seed point, the virtual endoscope’s view direction (𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) was 

optimized to match the registration frame using the simplex method described in 

Section 4.1. The scale of the search space was set using 

 

 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (20 𝑑𝑒𝑔, 20 𝑑𝑒𝑔, 20 𝑑𝑒𝑔) (24) 
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This is larger than the 5-degree scale used for frame-to-frame tracking. A smaller value 

is appropriate in that scenario because the endoscope does not move much between 

adjacent frames, so the starting point for the optimization can be assumed to be very 

close to the optimum. 

 The result of the coarse search was the seed point with optimized view direction 

that provided the virtual endoscopic image that was most similar to the registration 

frame. For the fine search, the 3 x 3 x 3 grid was created with its center on this 

optimized seed point and the spacing between points equal to half the path 

interpolation interval, 𝛿 2⁄ . At each grid point, the virtual endoscope’s coordinates 

(𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧) were optimized to match the registration frame using the 

simplex method. The scale of the search space was set using 

 

 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (
𝛿

4
,

𝛿

4
,

𝛿

4
, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔) (25) 

 

The result of the fine search was the optimized grid point that provided the virtual 

endoscopic image that was most similar to the registration frame. 
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5.2.6 Measurements of registration accuracy 

 

 The outputs of frame-to-frame tracking and the path-based volumetric search are 

sets of registered endoscope coordinates 𝐶𝑟𝑒𝑔 corresponding to each registration frame 

𝐹𝑟𝑒𝑔 in the datasets. These coordinates were used to render virtual endoscopic images 

and take projective measurements as described in Section 4.4. In the marker phantom, 

a single pixel address was manually selected for each marker visible in each registration 

frame. Registration accuracy was quantified by calculating the 3D distance errors 

between the projective measurements for these pixel addresses and the ground-truth 

CT-space marker positions. This is illustrated in Figure 14. One to six markers were 

visible in each frame, for a total of 128 measurements. To investigate the impact of 

scene geometry, the measurement angles at the ground-truth marker positions and the 

measurement distances between the registered endoscope coordinates and the ground-

truth marker positions were calculated (see Figure 9). Measurement angles were 

averaged over a circular ROI. The pixel radius of this ROI was varied such that it would 

correspond to a 2-mm radius at the measurement distance in the center of the image. 
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Figure 14: Projective measurement of CT-space marker positions. (a) A video frame 
with four markers visible. Their manually-selected pixel locations are overlaid in red. 
(b) The corresponding virtual endoscopic image rendered at the registered coordinates. 
The manually-selected pixel locations are overlaid in red, and the image projections of 
the ground-truth CT-space coordinates are overlaid in blue. The average error for these 
four measurements was 2.9 mm.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

 In the bolus phantom, a video-frame contour was created by manually selecting a 

set of vertices outlining the bolus and filling the polygon to create a binary mask. The 

mask was used to sample the projective measurements in the world transform (see 

Section 4.4.2). This is illustrated in Figure 15. Registration accuracy was quantified by 

calculating the symmetric mean absolute surface distance (SMAD) between the 

projected mask and the luminal voxels of the ground-truth CT-space bolus contour: 
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 𝑆𝑀𝐴𝐷 =
1

(𝑛𝑀 + 𝑛𝐶𝑇)
(∑ 𝑑𝑖

𝑀→𝐶𝑇

𝑛𝑀

𝑖=1

+ ∑ 𝑑𝑗
𝐶𝑇→𝑀

𝑛𝐶𝑇

𝑗=1

) (26) 

 

In this equation, 𝑛𝑀 is the number of pixels in the mask and 𝑛𝐶𝑇 is the number of 

luminal voxels in the CT contour. The term 𝑑𝑖
𝑀→𝐶𝑇 is the minimum distance from the ith 

projected mask pixel to any luminal voxel, and 𝑑𝑗
𝐶𝑇→𝑀 is the minimum distance from the 

jth luminal voxel to any projected mask pixel. There were 612 luminal voxels in the CT 

contour, but the video-frame mask can contain tens of thousands of pixels. To prevent 

this disparity from skewing the calculation of SMAD, the mask and the world transform 

were downsampled using nearest-neighbor interpolation such that the number of 

projective measurements was approximately equal to 612. To investigate the impact of 

scene geometry, the measurement distances between the registered endoscope 

coordinates and the centroid of the ground-truth bolus contour were calculated. 

Measurement angles were not calculated because the larger size of the bolus compared 

to the markers, and the fact that it protrudes into the lumen, mean that there is no way 

to calculate a meaningful characteristic value. 
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Figure 15: Projective measurement of CT-space bolus contour. (a) A video frame 
showing the bolus material with the manually-drawn contour mask overlaid in red. (b) 
The corresponding virtual endoscopic image rendered at the registered coordinates. 
The manually-drawn contour mask is overlaid in red, and the image projection of the 
CT-space bolus contour is overlaid in blue. The SMAD for this frame was 2.3 mm.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

5.3 Results 

 

5.3.1 Marker phantom 

 

5.3.1.1 Evaluation of seed point spacing for path-based volumetric search 

 

 The results of the path-based volumetric search using the four sets of seed points 

are summarized in Table 7. For three registration frames in sequence 2, the registered 

coordinates for all seed point sets were a very poor match to the registration frame, 
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such that none of the correct marker locations were visible anywhere in the virtual 

image. These frames, from which 7 out of the 128 marker position measurements were 

taken, were considered failures and excluded from quantitative analysis.  

For the rest of the measurements, the median errors ranged from 3.0 to 3.5 mm, 

and no significant difference was found between the four sets (p > 0.05 using the 

Kruskal-Wallis H-test). Median errors were used for this comparison because the 

measurements were characterized by the presence of a small number of very large 

outliers. This is demonstrated by comparison of the 80th percentile errors, which 

ranged from 6.1 to 6.4 mm, to the maximum errors, which ranged from 54.3 to 56.5 

mm. The registration accuracy with each set of seed points was very similar for every 

frame. This is illustrated by a plot of the average measurement errors for each frame in 

the two video sequences, shown in Figure 16. The path-based volumetric search 

performed using the seed point set created with 𝛿 = 7.5 mm resulted in the smallest 

median point measurement error, so it was selected for comparison with the frame-to-

frame tracking results in Section 5.3.1.2. 
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Table 7: Comparison of seed point spacing in the marker phantom for the path-based 
volumetric search. The first column gives the specified path interpolation interval used 
to create the set of seed points (see Table 6 and Equation 19). The second column gives 
the actual average distance between adjacent points in the set. The third column gives 
the median point measurement error after running the search using each set of seed 
points. The fourth and fifth columns give the 80th percentile and maximum 
measurement errors. All values are in mm. 

Specification Actual spacing Median error 80th percentile Maximum 
     

𝛿 = 2.5 2.2 ± 0.1 3.5 6.2 54.9 
𝛿 = 5.0 4.5 ± 0.2 3.4 6.2 56.3 
𝛿 = 7.5 6.8 ± 0.4 3.0 6.1 54.3 
𝛿 = 10.0 9.0 ± 0.6 3.3 6.4 56.5 
     

 

 

 

 

Figure 16: Comparison of seed point spacing in the marker phantom for the path based-
volumetric search. These plots show the average point measurement error for each 
frame in video sequence 1 (left) and video sequence 2 (right) after running the search 
using the four sets of seed points. There is no observable trend between the sets, and 
there was no statistically significant difference between them either. Outliers larger 
than the 90th percentile were excluded from the averages. The gap in the plot for 
sequence 2 corresponds to the three failed frames. 
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5.3.1.2 Comparison of the two registration methods 

 

 The results of registration using the frame-to-frame tracking method and the path-

based volumetric search method with 7.5-mm seed points are summarized in Table 8, 

and a plot of the average measurement errors for each frame in the two video 

sequences is shown in Figure 17. The two methods had very similar results, with 

median point measurement errors of 2.9 and 3.0 mm for frame-to-frame tracking and 

the path-based volumetric search, respectively. There was no significant difference 

between the two methods (p > 0.05 using the Wilcoxon signed-rank test). Both methods 

had a small number of very large outliers, and nearly all of these occurred for the same 

marker measurements in both cases. The most notable difference between the two is 

that frame-to-frame tracking successfully registered the three frames on which path-

based volumetric search failed.  

 

 

 

Table 8: Comparison of the two registration methods in the marker phantom. The most 
notable difference is that frame-to-fracking tracking successfully registered the three 
frames on which the path-based volumetric search failed. 

Metric 
Frame-to-frame 
tracking 

Path-based  
volumetric search 

   

# of failed frames 0 3 
Median error 2.9 3.0 
80th percentile 5.6 6.1 
Maximum 53.9 54.3 
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Figure 17: Comparison of the two registration methods in the marker phantom. These 
plots show the average point measurement error for each frame in video sequence 1 
(left) and video sequence 2 (right) for frame-to-frame tracking and path-based 
volumetric search. The gap in the plot of path-based volumetric search in sequence 2 
corresponds to the three failed frames, and the most notable difference between the 
two methods is that frame-to-frame tracking successfully registered these frames. 
There was no statistically significant difference between the two methods. Outliers 
larger than the 90th percentile were excluded from the averages.  

 

 

 

5.3.2 Bolus phantom 

 

5.3.2.1 Evaluation of seed point spacing for path-based volumetric search 

 

 The results of the path-based volumetric search using the four sets of seed points 

are summarized in Table 9. There were no failed frames in this phantom, meaning that 

the bolus was visible in all registered virtual endoscopic images. The median symmetric 
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mean absolute distance (SMAD) between the measured and ground-truth bolus 

contours ranged from 3.5 to 5.7 mm. As in the marker phantom, no significant 

difference was found between the four sets (p > 0.05 using the Kruskal-Wallis H-test). 

Unlike the marker phantom, the registration accuracy for each frame was quite variable 

between the four sets of seed points, with an average range between the largest and 

smallest SMADs of 3.6 ± 2.0 mm. This is illustrated by a plot of the SMAD for each frame 

in the two video sequences, shown in Figure 18. The path-based volumetric searches 

performed using the seed point sets created with 𝛿 = 5.0 and 𝛿 = 10.0 mm resulted in 

the smallest median SMADs, so 𝛿 = 5.0 was selected for comparison with the frame-to-

frame tracking results in Section 5.3.2.2. 

 

 

 

Table 9: Comparison of seed point spacing in the bolus phantom for the path-based 
volumetric search. The first column gives the specified path interpolation interval used 
to create the set of seed points (see Table 6 and Equation 19). The second column gives 
the actual average distance between adjacent points in the set. The third column gives 
the SMAD between measured and ground-truth bolus contours error after running the 
search using each set of seed points. The fourth and fifth columns give the 80th 
percentile and maximum SMADs. All values are in mm. 

Specification Actual spacing Median SMAD 80th percentile Maximum 
     

𝛿 = 2.5 2.3 ± 0.1 5.7 6.5 8.0 
𝛿 = 5.0 4.5 ± 0.3 3.5 6.6 7.9 
𝛿 = 7.5 6.7 ± 0.5 5.0 6.5 10.8 
𝛿 = 10.0 8.7 ± 0.5 3.5 5.3 8.4 
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Figure 18: Comparison of seed point spacing in the bolus phantom for the path based-
volumetric search. These plots show the SMAD between the measured and ground-
truth bolus contour for each frame in video sequence 1 (left) and video sequence 2 
(right) after running the search using the four sets of seed points. There is no 
observable trend between the sets, and there was no statistically significant difference 
between them either. The results vary more widely between seed point sets than in the 
marker phantom. 

 

 

 

5.3.2.2 Comparison of the two registration methods 

 

 The performance of the two registration methods in the bolus phantom differed 

from that in the marker phantom. As mentioned in Section 5.3.2.1, there were no failed 

frames with path-based volumetric search. However, frame-to-frame tracking was 

unable to reach any of the registration frames. This is due to the fact that that there is 

very little characteristic structure in the phantom other than the piece of bolus. The 
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initial frames used to start the process were near the entrance to the phantom where 

the bolus is not visible, and the virtual endoscope became lost in both video sequences 

before it could reach the other end of the phantom. To get a better characterization of 

the potential performance of frame-to-frame tracking in this phantom, a second initial 

frame was chosen for each video sequence in which the bolus was already visible, and 

tracking was run again from there. 

 The registration results using the second frame-to-frame tracking run and the path-

based volumetric search with 5.0-mm seed points are summarized in Table 10, and a 

plot of the average measurement errors for each frame in the two video sequences is 

shown in Figure 19. Frame-to-frame tracking failed for two frames in sequence 2, 

meaning that the bolus was not visible in the registered virtual endoscopic image. There 

were numerous frames for which the registered virtual image contained the bolus, but 

the image was a very poor match for the frame, resulting in very large registration 

errors. Path-based volumetric search successfully registered all frames, with a median 

SMAD of 3.5 mm. The median SMAD for frame-to-frame tracking was twice as large at 

7.0 mm, and the difference between the two methods was statistically significant (p < 

0.001 using the Wilcoxon signed-rank test). 
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Table 10: Comparison of the two registration methods in the bolus phantom. Path-
based volumetric searched had better accuracy in this phantom. Frame-to-frame 
tracking failed for two frames, and had numerous frames for which the registered 
virtual endoscopic image was a very poor match, resulting in very large SMADs. All 
SMAD values are in mm. 

Metric 
Frame-to-frame 
tracking 

Path-based  
volumetric search 

   

# of failed frames 2 0 
Median SMAD 7.0 3.5 
80th percentile 13.6 6.6 
Maximum 17.9 7.9 
   

 

 

 

 

Figure 19: Comparison of the two registration methods in the bolus phantom. These 
plots show the SMAD between the measured and ground-truth bolus contour for each 
frame in video sequence 1 (left) and video sequence 2 (right) for frame-to-frame 
tracking and path-based volumetric search. Path-based volumetric search performed 
significantly better than frame-to-frame tracking in this phantom. The gap in the plot of 
frame-to-frame tracking in sequence 2 corresponds to the two failed frames, and the 
very large errors second half of the sequence are due to frames for which the registered 
virtual image contained the bolus, but was a very poor match to the frame. 
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5.3.3 The impact of scene geometry 

 

 Scatter plots showing point measurement errors in the marker phantom as a 

function of measurement angle and measurement distance are shown in Figure 20. The 

correlation between measurement angle and point error was very weak (Spearman’s 

rho = 0.25, p < 0.05), and there was no correlation between measurement distance and 

point error (Spearman’s rho = 0.05, p > 0.05). A scatter plot showing bolus contour 

SMADs as a function of the virtual endoscope’s distance from the bolus centroid is 

shown in Figure 21. There was a moderate correlation between centroid distance and 

SMAD (Spearman’s rho = 0.46, p < 0.05). 
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Figure 20: Dependence of point measurement errors on surface angle and distance. 
These plots show the point measurement errors in the marker phantom presented in 
Section 5.3.1.2 vs. their measurement angles (left) and distances (right). These 
parameters are discussed in Section 4.4.3. The correlation between measurement angle 
and point error was very weak, and there was no correlation between measurement 
distance and point error.  

  



80 
 

 

 

Figure 21: Dependence of bolus contour measurement on surface distance. This plot 
shows the bolus contour SMADS presented in Section 5.3.2.2 vs. the distance between 
the virtual endoscope and the bolus centroid. There was a moderate correlation 
between distance and SMAD.  

 

 

 

5.4 Discussion 

 

5.4.1 Summary 

 

 Two clay phantoms were created to evaluate the performance of the two 

endoscopy-CT registration methods. The first phantom contains small radiopaque 

markers embedded in the luminal surface that were used to map point measurements 

from endoscopic video to CT. The second phantom contains a piece of bolus material 
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protruding into the lumen that was used to map object contours from endoscopic video 

to CT. Two endoscopic video sequences were recorded in each phantom, and sets of 

registration frames were selected by sampling these videos at regular intervals (n = 36 

and 37 for the marker and bolus phantoms, respectively). 

In both phantoms, four sets of seed points for the path-based volumetric search 

were created using variable path interpolation intervals. However, no significant 

differences were found in registration accuracy between the four sets. In the marker 

phantom, frame-to-frame tracking successfully registered all frames, but path-based 

volumetric search failed to find acceptable virtual endoscope coordinates for three 

frames. On the rest of the frames, there was no significant difference between the 

performances of the two methods. In the bolus phantom, frame-to-frame tracking failed 

to reach any registration frames using the starting point near the entrance to the 

phantom, as the virtual endoscope became lost before reaching the bolus. Tracking was 

restarted after placing the virtual endoscope in view of the bolus. Frame-to-frame 

tracking still failed for two frames, and had very large contour mapping errors in many 

others due to the virtual image being a very poor match to the registration frame. Path-

based volumetric search successfully registered all frames in the bolus phantom, and its 

registration accuracy was significantly better than that of frame-to-frame tracking. 

 The impact of scene geometry was investigated for both marker and bolus 

measurements. There was a weak correlation between surface angle and point error in 

the marker phantom, and a moderate correlation between centroid distance and 

contour error in the bolus phantom. 
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5.4.2 Seed point spacing for path-based volumetric search 

 

 Seed points for the path-based volumetric search are created by specifying a path 

interpolation interval 𝛿, and then for each slice the number of seed points is calculated 

based on this interval such that the 3D spacing will be approximately equal to the 

interval. No difference in registration accuracy was found in phantoms using 

interpolation intervals of 2.5, 5.0, 7.5, and 10.0 mm. This is not surprising in the marker 

phantom. Its internal dimensions are relatively large, which made it easy to control the 

endoscope’s motion as the video sequences were recorded. This meant that the 

registration frames were generally not very close to the walls, so for any seed point 

spacing, at least one of them was close enough that the view direction optimization in 

the coarse search found a reasonable match, and the fine search was able achieve an 

accurate registration. It is more surprising that seed point spacing had no significant 

effect in the bolus phantom, which has much smaller dimensions. The results in the 

bolus phantom were more variable than those in the marker phantom, so it is possible 

that the greater difficulty of registering video frames in that phantom washes out any 

effect of seed point spacing. This difficulty is discussed in Section 5.4.3. 

 

5.4.3 Challenges in the bolus phantom 

 

 In the marker phantom, the registered virtual images were generally a very good 

match to the registration frames, both visually and quantitatively. This was not always 

the case in the bolus phantom, even for frames where the bolus contour SMAD was only 
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a few mm. One reason for this is the smaller dimensions and difficulty navigating the 

endoscope in the bolus phantom, which caused the registration frames to be closer to 

the walls. The bright areas on the walls when the endoscope’s lights are very close, and 

the effect of the endoscope’s image sensor adjusting its gain to account for this, are not 

always reproduced accurately in the virtual images. Another reason that the registered 

virtual images did not match the registration frames as well in the bolus phantom is the 

appearance of the bolus itself. Superflab is a translucent material, and its reflectance in 

the virtual images did not match that in the endoscopic videos at all. This prevented 

accurate registration in some cases. Finally, the segmentation density used to create the 

surface meshes may have played a role in reducing the registration accuracy. 0.9 g/cm3 

is a good threshold for the clay walls with a density of ~1.8 g/cm3, but the Superflab 

bolus is less dense at ~1 g/cm3. This threshold may have removed voxels from the 

bolus that should have been included in the mesh, and the bolus does appear to 

protrude further into the lumen in the video frames than it does in the virtual images. 

This difference in shape, combined with the visual effects already described, likely 

played a role in the highly-variable registration results in the bolus phantom. 

 

5.4.4 The impact of scene geometry 

 

 Scene geometry had a smaller impact than expected on registration accuracy. 

Measurement angle had only a weak correlation in the marker phantom, and 

measurement distance had a moderate correlation in the bolus phantom. The lack of an 

effect for measurement angle is likely due to the structure of the surface meshes being 
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very irregular, both due to the actual structure of the phantoms and the discrete nature 

of the CT segmentation used to create the meshes. This suggests that the measurement 

angle describes only a very small local neighborhood. The measurement angles were 

averaged over several mm2 using an adaptive ROI based on the measurement distance 

in an effort to account for this, but no strong effect was found. It is difficult to surmise 

why so little effect was seen with measurement distance either. Many of the largest 

errors occurred where the ground-truth is close to an occluding edge, and the 

projective measurement landed on the other side of that edge. In this scenario, it is 

plausible that the local structure of the phantom is more important than the 

measurement distance. Whatever the source of these weak effects, the phantom 

registration results suggest that the simple surface geometry illustrated in Figure 9 is 

not sufficient to model uncertainties in projective measurements. 
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6 

Image registration in patients 

Parts of this chapter are based on the following publication64: 

W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The 

feasibility of endoscopy-CT image registration in the head and neck without prospective 

endoscope tracking.” PLoS One 12(5), 1-23 (2017). 

No permission is required for reuse of this material, which was published under the 

Creative Commons Attribution license (CC-BY). 

 

6.1 Introduction 

 

 In Chapter 4, the methods developed to register endoscopic video to CT were 

described. This chapter presents the testing of those methods in patients. The patient 

cohorts, the acquisition of endoscopic video and virtual endoscopic images, and the 

details of the registration tests are discussed in Section 6.2. The results of these tests 

are presented in Section 6.3, and a discussion is given in Section 6.4. 
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6.2 Methods 

 

6.2.1 Patient cohorts 

 

Two patient cohorts were used to investigate the feasibility of endoscopy-CT image 

registration. The first included three patients with head and neck cancer undergoing 

radiotherapy at The University of Texas MD Anderson Cancer Center in Houston, Texas. 

After approval from the Institutional Review Board, they were enrolled on a protocol 

allowing their routinely-obtained endoscopic examinations to be archived for this 

study. Informed consent was obtained in writing prior to enrolling each patient. These 

patients will be referred to as MDA1, MDA2, and MDA3. For MDA1, two endoscopic 

examinations were recorded during and at the end of the course of radiotherapy, 28 

and 49 days after the planning CT was acquired. For MDA2 and MDA3, a single 

endoscopic examination was recorded one day after the planning CT was acquired. 

The second patient cohort included two patients with head and neck cancer that 

received radiotherapy at Princess Margaret Hospital in Toronto, Ontario. These patients 

were part of the cohort used to evaluate endoscopy-CT registration via electromagnetic 

endoscope tracking by Weersink et al41, 42, so they were not enrolled prospectively for 

the work presented in this dissertation. These patients will be referred to as PMH1 and 

PMH2. The timing of their endoscopic examinations and the endoscope model used are 

unknown. 

There are a few notable differences between the two sets of videos. One is that the 

MDA videos were acquired with the patient seated, and the PMH videos were acquired 
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with the patients in the same position as in the planning CTs (supine, with the head and 

neck positioned with a molded thermoplastic mask). Another is that the PMH videos 

were recorded with distortion already removed. This meant that calibration 

parameters were not need to use these videos, but it also had the effect of “locking in” 

the interlacing artifacts. Both videos were recorded at nearly the same resolution, but 

the PMH videos have a large border, reducing the effective size of the image. The PMH 

videos were recorded at a reduced frame rate (6.2 frames per second vs. 30 frames per 

second) to account for the computational overhead of the electromagnetic tracking 

system. The electromagnetic sensors were fixed to the outside of the endoscope, so its 

working length, including the camera lens, was covered by a plastic sheath during the 

examinations. This introduced blurring artifacts. The visual differences between the 

videos are illustrated in Figure 22. 
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Figure 22: Differences between patient endoscopic video characteristics. On the left is a 
video frame from the MDA cohort, and on the right is a video frame from the PMH 
cohort. Distortion and interlacing have been removed from the MDA frame. The PMH 
videos were recorded with distortion already removed. Interlacing artifacts are present 
throughout the PMH videos, but they are not apparent in this frame, for which the 
camera was relatively stationary. The PMH videos were acquired with the endoscope 
covered by a plastic sheath, which introduced blurring artifacts. These can be seen as 
two faint circles on the right side of the frame.  

 

 

 

6.2.2 CT acquisition and virtual endoscopy 

 

The planning CTs for the MDA cohort were acquired using a Brilliance 65 (Philips 

Healthcare, Andover, MA) with a 50-cm field of view and 1-mm slice thickness. They 

were interpolated to a 30-cm field of view prior to segmenting the luminal surface in 

order to increase the number of triangles in the surface meshes, which can improve 

structural resolution. The planning CTs for the PMH cohort were acquired using an 

Aquilion ONE (Toshiba America Medical Systems, Tustin, CA) with a 50-cm field of view 
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and 2-mm slice thickness. The interpolation software was not available during the site 

visit over which these data were acquired, so the fields of view were not changed. 

The luminal surfaces of the airways were segmented using Pinnacle3 treatment 

planning software (Philips Healthcare, Andover, MA). The segmentation was performed 

semi-automatically by selecting a density threshold of 0.6 g/cm3 and making a small 

number of mouse clicks inside the lumen on each axial slice. If the contours were to be 

drawn at the boundary of voxels containing half air and half tissue, the density 

threshold would be ~0.5 g/cm3. 0.6 g/cm3 was chosen based on the observation that 

thresholds between 0.5 and 1 can provide better virtual endoscopic detail for smaller 

structures like the epiglottis. The segmentation started in the nasal cavity 

approximately at the bottom of the eyes and extended inferiorly to the carina of the 

trachea. The .roi files containing the segmented contours were used to create virtual 

endoscopy surface meshes as described in Section 3.3.1. The lighting model used to 

render the virtual images is discussed in Section 6.2.4, and all virtual images were 

smoothed with a  3 x 3 Gaussian kernel with σ = 1 pixel. 

 

6.2.3 Endoscopic video datasets 

 

 At this point in the study, MDA2 was excluded from further analysis. This choice 

was made because the patient had a large base-of-tongue tumor that obstructed much 

of the airway in the pharynx. This obstruction caused the surface mesh to lose most of 

the characteristic anatomical structure that allows the similarity measure to match 

virtual endoscopic images to video frames. The large size of the tumor also caused most 
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of the video to be close-up views of the surface, for which virtual endoscopy can 

reproduce neither the texture nor the specular reflections from fine structural details 

that are not present in the surface mesh. An example frame and virtual image are 

presented in Figure 23.  

 

 

 

 

Figure 23: Examples of an endoscopic video frame and a virtual endoscopic image in 
patient MDA2. The frame on the left shows the large tumor that obstructed much of the 
airways. The left edge of the epiglottis is just visible near the top center of the frame. 
Most of the video consisted of close-up views of the surface. The virtual image on the 
right was rendered at a similar position. Most of the characteristic anatomical structure 
was not present due to the large tumor, and the airways superior to this position were 
cut off entirely by the CT segmentation. MDA2 was excluded from quantitative analysis 
due to these unfavorable characteristics. 

 

 

 

 The video sequences were 66 and 48 seconds long for MDA1, 64 seconds for MDA3, 

49 seconds for PMH1, and 85 seconds for PMH2. Registration frames were selected for 
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the MDA patients by sampling the videos every 2 seconds and identifying the least 

blurry frame out of the sample and the five previous and subsequent frames. The least 

blurry frame was identified as the one with the largest variance after filtering with a 3 x 

3 Laplacian. The selected frames were reviewed to reject those with characteristics 

unsuitable for registration, such as heavy motion blur, over- or under-exposure, and 

close-up views of the surface. The automatic sampling method was not used for the 

PMH patients, because the presence of interlacing artifacts caused the Laplacian filter to 

select unsuitable frames. Instead, registration frames were selected manually with an 

effort to sample a variety of distinct views throughout the anatomy. This was 

challenging for PMH2. The video appeared quite dark with heavy blurring in many 

frames due to the sheath on the endoscope, and much of it contained duplicate views of 

the anatomy.  

After sampling all of the videos, the set of registration frames consisted of 15 and 

12 frames from MDA1, 21 frames from MDA3, 14 frames from PMH1, and 5 frames from 

PMH2. The preprocessing for all registration frames included conversion to grayscale 

and smoothing with a 3 x 3 Gaussian kernel with 𝜎 = 1 pixel. For frames from MDA1, it 

also included deinterlacing by replacing every other row with bilinear interpolation and 

distortion removal as described in Section 3.4. 

There were no fiducial markers in the patients that could be used to test 

registration accuracy, so the ground truth for each registration frame was a set of 

virtual endoscope coordinates. These were obtained in a two-step process. The first 

step was camera resectioning by alignment of 2D-3D point correspondences, as 

described in Section 4.2.2. These coordinates were refined by overlaying the virtual 
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image on the registration frame and using keyboard input to make fine adjustments to 

the virtual endoscope’s coordinates to get the best visual alignment between 

anatomical structures in the two images. 

 At this point in the study, MDA3 was excluded from further analysis. This choice 

was made because every attempt to perform the camera resectioning resulted in the 

virtual endoscope being placed outside of the mesh, so ground-truth virtual endoscope 

coordinates could not be obtained. A likely source of this problem is differences 

between the anatomical configurations seen the endoscopic video and virtual images. 

The clearest evidence of this is an anterior offset of the glottis relative to the epiglottis 

in the virtual images, as shown in Figure 24. This example also shows that MDA3’s 

surface mesh contained relatively little anatomical detail, and the epiglottis was not 

segmented cleanly from the walls of the pharynx. These factors may have also played a 

role in the failed resectioning. After exluding this patient, the final dataset used to test 

endoscopy-CT registration in patient consisted of four endoscopic examinations 

recorded in three patients, for a total of 46 registration frames with corresponding 

ground-truth virtual endoscope coordinates. 
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Figure 24: Examples of an endoscopic video frame and virtual endoscopic image in 
patient MDA3. A video frame viewing the epiglottis and glottis is shown on the left, and 
a virtual endoscopic image rendered at a similar position on the right. This patient’s 
surface mesh contained relatively little anatomical detail, and the epiglottis was not 
segmented cleanly from the walls of the pharynx. The opening visible near the center of 
the virtual image is directly posterior to the epiglottis. Unlike the video frame, the 
glottis is not visible through this opening because it was displaced anteriorly in the 
virtual images (towards the bottom of the image). This difference in anatomical 
configuration probably contributed to the failed camera resectioning that prevented 
ground-truth virtual endoscope coordinates from being obtained. 

 

 

 

6.2.4 Optimization of virtual endoscopy lighting parameters 

 

 In phantom tests, the virtual endoscopic lighting parameters were chosen by 

inspection. Unlike human tissue, the phantom surfaces were rigid, did not contain 

variable textures, and did not have saliva and other fluids affecting the reflectance. In 

that scenario, it is unlikely that the registration accuracy would be highly sensitive to 

changes in the lighting parameters. But given the increased complexity of registration 

with patient images, it is better to choose the lighting parameters objectively. This was 
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accomplished by searching parameter space to find the values that maximize the 

similarity between video frame and virtual image intensity histograms over the set of 

patient images described in Section 6.2.3. 

Calculating a single histogram for the entire image would not provide the most 

meaningful results, because it removes any spatial information about the lighting 

effects. Instead, multiple histograms were calculated for each image using several 

circular ROIs. Placing these ROIs in the same locations for all frames would not provide 

meaningful results either, because there are generally structural differences between 

the registration frames and the ground-truth virtual images. If one of these differences 

is within an ROI, the histogram would be comparing the lighting for different structures 

in the two images. Structural differences were avoided by creating masks for each 

frame, which is described in Section 6.2.4.1. The placement of ROIs within these masks 

is explained in Section 6.2.4.2, and the metrics used to compare the histograms are 

given in Section 6.2.4.3. The optimization techniques used to determine the lighting 

parameters are discussed in Section 6.2.4.4. Because the determination of lighting 

parameters was a preliminary step in testing the registration methods in patients, the 

results of the optimization will be presented in this section as well. 

 

6.2.4.1 Creation of structure masks 

 

 The airways of the head and neck are not rigid, so there are generally some 

differences between the structures seen in the endoscopic videos and those seen via 

virtual endoscopy. These differences are slight in some frames and very large in others, 
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and can change in a given location due to muscle motion. This means that the 

registration frames and the registered virtual images have some areas where structures 

do not match up. To avoid these areas when calculating ROI histograms, the registered 

virtual images were overlaid on the registration frames and binary masks were 

manually drawn using paint.net (dotPDN, LLC), a simple photo editing software. These 

masks remove 0-60% of the image area, with an average of 26 ± 18%. An example is 

given in Figure 25. 
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Figure 25: Example of a structural mask used for lighting optimization. The top row 
shows a registration frame and the corresponding ground-truth virtual image. There is 
a large edge on the right side of the virtual image that is not present in the frame. The 
bottom row shows the same images with the manually-draws structure mask applied, 
which removed the edge. This mask removes 28% of the image area. 

 

 

 

6.2.4.2 Selection of ROI locations 

 

 After creating the structure masks, circular ROIs with 50-pixel radii were created in 

which to calculate histograms from the registration frames and virtual images. The 

number of ROIs was varied based on the percentage of the image that remained after 
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masking out structural differences, and ranged from 3 to 6. The ROI locations were 

selected manually by displaying the mask and using mouse input to choose their 

centers, with the goal to distribute them approximately evenly throughout the region 

included by the mask. Only the mask was displayed for this step, rather than the frame 

or virtual image, to avoid inadvertently biasing the ROI selection in favor of any 

particular anatomical features. An example is given in Figure 26. 

 

 

 

 

Figure 26: Example of the ROIs used to calculate image histograms. This frame and 
virtual image are the same ones presented in Figure 25. The ROI radii are 50 pixels, and 
their centers were selected manually on the binary structure mask.  
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6.2.4.3 Histogram comparison metrics 

 

 The optimization of virtual endoscopy lighting parameters is not a well-

characterized problem, so a variety of metrics were used to compare the ROI 

histograms in the registration frames and ground-truth virtual images. They are given 

in the following equations, in which 𝐻𝑓 and 𝐻𝑣 are the histograms in the registration 

frame and ground-truth virtual images, 𝐻̅𝑓 and 𝐻̅𝑣 are their averages, and 𝑁 is the 

number of histogram bins. 

 

1. Euclidean distance 

 

 √∑(𝐻𝑓𝑖 − 𝐻𝑣𝑖)
2

𝑖

 (27) 

 

2. Correlation 

 

 

∑ (𝐻𝑓𝑖 − 𝐻̅𝑓)(𝐻𝑣𝑖 − 𝐻̅𝑣)𝑖

√∑ (𝐻𝑓𝑖 − 𝐻̅𝑓)
2

𝑖 ∑ (𝐻𝑣𝑖 − 𝐻̅𝑣)2
𝑖

 
(28) 

 

3. Intersection 

 

 ∑ min(𝐻𝑓𝑖 , 𝐻𝑣𝑖)

𝑖

 (29) 
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4. Chi-squared distance 

 

 ∑
(𝐻𝑓𝑖 − 𝐻𝑣𝑖)

2

𝐻𝑓𝑖
𝑖

 (30) 

 

5. Alternate chi-squared distance 

 

 2 ∙ ∑
(𝐻𝑓𝑖 − 𝐻𝑣𝑖)

2

𝐻𝑓𝑖 + 𝐻𝑣𝑖
𝑖

 (31) 

 

6. Hellinger distance 

 

 √
1 −

1

√𝐻̅𝑓𝐻̅𝑣𝑁2

∑ √𝐻𝑓𝑖𝐻𝑣𝑖

𝑖

 
(32) 

 

7. Kullback-Leibler divergence 

 

 ∑ 𝐻𝑓𝑖

𝑖

log (
𝐻𝑓𝑖

𝐻𝑣𝑖
) (33) 
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6.2.4.4 Optimization methods and results 

 

An objective function was defined by calculating the sum of a given histogram 

comparison metric over each ROI in each registration frame/ground-truth virtual image 

pair. All histograms were computed with 64 bins. The correlation and the intersection 

are maximized when the histograms are most similar, so their values were negated 

when they were used in the objective function. The goal of the optimization was to find 

the set of lighting parameters that minimized this objective function. Recall that the 

attenuation factor in the virtual endoscopy lighting model (Section 3.3.2) is given by 

 

 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
cos𝑒(𝜙)

𝑎𝑐 + 𝑎𝑙𝑑 + 𝑎𝑞𝑑2
 (34) 

 

The parameters considered in this optimization were the linear and quadratic 

attenuation coefficients 𝑎𝑙 and 𝑎𝑞, the cosine exponent 𝑒, and the intensity 𝑖, which sets 

the brightness. The angle 𝜙 is a property of the surface. The constant attenuation 

coefficient 𝑎𝑐 was held equal to 1 because an increase in all the attenuation coefficients 

can be compensated for by an increase in intensity, so one of these parameters can be 

treated as a constant for the optimization. 

The optimization was performed in two steps. The first step was a coarse brute-

force calculation over the ranges in parameter space given in Table 11. These ranges 

were chosen based on experience to cover the meaningful range of lighting 

characteristics. The brute-force calculation was performed using each histogram 
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comparison metric in the objective function, and the best set of parameters for each 

metric is given in Table 12. All metrics had consistent results except for chi-squared 

distance, so it was excluded from further analysis. 

The brute-force calculations showed that the best lighting parameters were near 𝑎𝑙 

= 1.5-2, 𝑎𝑞 = 0, 𝑒 = 0.5-1.5, and 𝑖 = 3-4. The second step of the lighting optimization was 

to refine the results of these calculations by running a series of Nelder-Mead simplex 

optimizations starting from each point in a grid based on these approximate parameter 

values. The grid coordinates are given in Table 13. The series of optimizations was run 

using each histogram comparison metric in the objective function except for chi-

squared distance, and the best result for each metric is given in Table 14. 

 

 

 

Table 11: Lighting parameter ranges for the brute-force optimization. The ranges of 
values are given in the notation 𝑠𝑡𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒 ∶ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∶ 𝑠𝑡𝑜𝑝 𝑣𝑎𝑙𝑢𝑒.  

Name Symbol Range of values 
   

Linear attenuation 𝑎𝑙  0 : 0.1 : 2 
Quadratic attenuation 𝑎𝑞  0 : 0.1 : 2 
Cosine exponent 𝑒  0 : 0.5 : 10 
Intensity 𝑖  1 : 1 : 30 
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Table 12: Results of the brute-force optimization of the lighting parameters. Each row 
gives the best set of parameter values when the specified histogram comparison metric 
was used in the objective function. 

Comparison metric 𝒂𝒍  𝒂𝒒  𝒆  𝒊  
     

Euclidean distance 1.8 0 0 3 
Correlation 2 0 1.5 4 
Intersection 1.5 0 1 3 
Chi-squared distance 1.8 2 10 1 
Alternate chi-squared distance 1.5 0 1 3 
Hellinger distance 2 0 1.5 4 
Kullback-Leibler divergence 1.6 0 0.5 3 
     

 

 

 

Table 13: Lighting parameter values used to start the simplex optimizations. The 
optimizations were started from each point in the 5 x 2 x 4 x 4 grid defined by the 
values given here. The simplex scale vector ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥 (Section 4.1) was set at half the 

spacing between these values.  

Name Symbol Grid coordinates 
   

Linear attenuation 𝑎𝑙  1.25, 1.5, 1.75, 2, 2.25 
Quadratic attenuation 𝑎𝑞  0, 0.25 
Cosine exponent 𝑒  0, 0.75, 1.5, 2.25 
Intensity 𝑖  2, 3, 4, 5 
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Table 14: Results of the simplex optimizations of the lighting parameters. Each row 
gives the best simplex result when the specified histogram comparison metric was used 
in the objective function.  

Comparison metric 𝒂𝒍  𝒂𝒒  𝒆  𝒊  
     

Euclidean distance 1.83 0 0.01 3.01 
Correlation 2.56 0 1.59 4.81 
Intersection 1.71 0 0.99 3.29 
Alternate chi-squared distance 1.75 0 0.99 3.34 
Hellinger distance 1.74 0 1.10 3.39 
Kullback-Leibler divergence 1.33 0 0.60 2.71 
     

 

 

 

 Each histogram comparison metric found a different set of lighting parameters to 

be best, but the results of the simplex optimizations were fairly consistent across all 

metrics, particularly for quadratic attenuation. The intersection, alternate chi-squared 

distance, and Hellinger distance found very consistent values for all parameters, so the 

final set of lighting parameters was chosen based on their results. This set of 

parameters is given in Table 15, and it was used to render all patient virtual endoscopic 

images used in the remainder of this dissertation. 
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Table 15: Final results of the lighting parameter optimization. These values were used 

to render all patient virtual endoscopic images. They were chosen based on the results 

of the histogram comparison metrics intersection, alternate chi-squared distance, and 

Hellinger distance given in Table 14.  

Name Symbol Final value 
   

Linear attenuation 𝑎𝑙  1.75 
Quadratic attenuation 𝑎𝑞  0 
Cosine exponent 𝑒  1.05 
Intensity 𝑖  3.35 
   

 

 

 

6.2.5 Frame-to-frame tracking 

 

Frame-to-frame tracking was performed as described in Section 4.2.1. Initial frames 

to start the tracking were selected in the nasal cavity near the start of the video 

sequences. The initial virtual endoscope coordinates were determined manually. The 

long, narrow passages make resectioning difficult (see Section 4.2.2 for details), 

because the least-squares optimization to align the 2D-3D point correspondences is 

usually poorly-conditioned and moves the virtual endoscope outside the mesh. 

Fortunately, the space for the endoscope in the inferior nasal cavity is much smaller 

than that in the phantoms, so it is not challenging to place the virtual endoscope near 

the correct location. At each subsequent frame, the virtual endoscope’s coordinates 

(𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧) were optimized to match the next frame in the video 

sequence using the simplex method described in Section 4.1. As in the phantoms, the 

scale of the search space was set using 
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 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (2 𝑚𝑚, 2 𝑚𝑚, 2 𝑚𝑚, 5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔) (35) 

 

6.2.6 Path-based volumetric search 

 

 The path-based volumetric search was performed as described in Section 4.3.1. The 

possible endoscope path was created by manually selecting a small set of points on a 

single sagittal slice of the planning CT. An example is given in Figure 27. Seed points 

were created using a path interpolation interval of 𝛿 = 5 mm (see Section 4.3 for 

details). The corresponding numbers of seed points for each slice were calculated using 

Equation 19. In both phantoms, the registration accuracy did not depend on the 

interpolation interval, so this choice for 𝛿 was somewhat arbitrary. However, given the 

increased complexity of registration with patient images, and the fact that the only 

downside to decreasing the interval is increased computation time, choosing a smaller 

interval was prudent.  
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Figure 27: Virtual endoscope path creation in a patient. A sagittal CT slice shows the 
manually-selected possible virtual endoscope path used for the path-based volumetric 
search registration method. The nose is cropped out due to the field-of-view reduction 
described in Section 6.2.2.  

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, B. M. Beadle, R. Wendt III, A. Rao, X. A. Wang, and L. E. Court. “The feasibility of 
endoscopy-CT image registration in the head and neck without prospective endoscope tracking.” PLoS 
One 12(5), 1-23 (2017). 

 

 

 

At each seed point, the virtual endoscope’s view direction (𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) was 

optimized to match the registration frame using the simplex method described in 

Section 4.1. As in the phantoms, the scale of the search space was set using 

 

 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (20 𝑑𝑒𝑔, 20 𝑑𝑒𝑔, 20 𝑑𝑒𝑔) (36) 
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This is larger than the 5-degree scale used for frame-to-frame tracking. A smaller value 

is appropriate in that scenario because the endoscope does not move much between 

adjacent frames, so the starting point for the optimization can be assumed to be very 

close to the optimum. 

 The result of the coarse search was the seed point with the optimized view 

direction that provided the virtual endoscopic image most similar to the registration 

frame. For the fine search, the 3 x 3 x 3 grid was created centered on this optimized 

seed point with 2.5-mm spacing. At each grid point, the virtual endoscope’s coordinates 

(𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧) were optimized to match the registration frame using the 

simplex method. The scale of the search space was set using 

 

 
∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥

= (1.25 𝑚𝑚, 1.25 𝑚𝑚, 1.25 𝑚𝑚, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔) 
(37) 

 

The result of the fine search was the optimized grid point that provided the virtual 

endoscopic image that was most similar to the registration frame. 

 

6.2.7 Measurements of registration accuracy 

 

The outputs of frame-to-frame tracking and the path-based volumetric search are 

sets of registered endoscope coordinates 𝐶𝑟𝑒𝑔 corresponding to each registration frame 

𝐹𝑟𝑒𝑔 in the datasets. Unlike the phantoms, there were no fiducial markers in the patients 

that could be used to compare projective measurements to a ground truth, so another 
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method was needed to quantify registration accuracy. A straightforward option would 

be to take the registered and ground-truth endoscope coordinate vectors 

(𝑥, 𝑦, 𝑧, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧) and calculate some distance metric. However, this is not 

particularly meaningful. The true test of endoscopy-CT registration is its ability to map 

points from 2D to 3D, and in that scenario a change in the virtual endoscope’s position 

can be compensated for by an opposite change in its orientation. For example, if the 

virtual endoscope is moved to the right, its view direction can be turned back to the left, 

and the projective measurements may be largely unchanged. To account for this, the 

world transforms were taken for the ground truth and registered virtual endoscopic 

images, and the registration accuracy was quantified by the median projective distance 

error between these sets of CT-space points.  

Scene geometry did not have a strong impact on registration accuracy in the 

phantoms. To investigate its role in patient images, the world transforms for the 

ground-truth virtual images were used to compute measurement angles and distances 

for each point. In addition to these quantities, edge masks were created for both the 

ground-truth and registered virtual images using a distance threshold of 2 mm and 

morphological erosion with a 3 x 3 structuring element for five iterations. These masks 

were used to investigate the potential identification of regions of high uncertainty to 

avoid when making projective measurements. See Section 4.4 for more details on the 

world transform, measurement angles, and edge masks. 
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6.3 Results 

 

6.3.1 Comparison of the two registration methods 

 

 Frame-to-frame tracking was unable to reach any of the registration frames in any 

of the video sequences due to the virtual endoscope becoming lost in the nasal cavity. 

To get a better characterization of the potential performance of frame-to-frame tracking 

in patients, the virtual endoscope was placed at the ground-truth coordinates for the 

first registration frame and tracking was restarted from there. The registration results 

using the second frame-to-frame tracking run and the path-based volumetric search are 

summarized in Table 16, and plots of the registration accuracy for each frame in the 

four video sequences are shown in Figure 28-31. Note that in all of these figures, the 

first frame is omitted for frame-to-frame tracking due to the restart. 

Frame-to-frame tracking failed for two frames in MDA1 video sequence 1, seven 

frames in MDA1 video sequence 2, and two frames in PMH2. Failed frames were 

identified as those for which the registered virtual image contained none of the 

anatomy recognizable in the registration frame, generally meaning that the virtual 

endoscope was directly in front of a wall. Using this criterion, path-based volumetric 

search successfully registered all frames in all video sequences. However, frames were 

labelled as successful on a very inclusive basis, and for many successful frames, the 

registered virtual image was still a poor match to the registration frame. This led to 

larger errors overall than those seen in the phantoms. Excluding failed frames, the 

average registration accuracy with frame-to-frame tracking was 21.7 ± 10.4 mm. Path-
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based volumetric search performed significantly better, with an average registration 

accuracy of 12.5 ± 9.9 mm (p < 0.001 using the Wilcoxon signed-rank test). Its 

performance varied between video sequences. The best results were obtained for 

patient MDA1, video sequence 1, for which path-based volumetric search had a 

registration accuracy within 5 mm for 10 out of 15 frames. 

 

 

 

Table 16: Comparison of the two registration methods in patients. Path-based 
volumetric search had significantly better registration accuracy (p < 0.001 using the 
Wilcoxon signed-rank test). Frame-to-frame tracking failed for 11 frames, and both 
methods had numerous frames for which the registered virtual image was not a great 
match to the registration frame, leading to larger errors overall than in the phantoms. 
All accuracy values are in mm.  

Metric 
Frame-to-frame 
tracking 

Path-based  
volumetric search 

   

# of failed frames 11 0 
Median accuracy 23.4 9.9 
80th percentile 30.5 20.6 
Maximum 38.0 41.0 
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Figure 28: Comparison of the two registration methods for patient MDA1, video 
sequence 1. This plot shows the median distance error between the world transforms of 
the ground-truth and registered virtual images for each registration frame. Frame-to-
frame tracking failed for two frames, indicated by gaps in the plot. Path-based 
volumetric search performed very well on this sequence, with a registration accuracy 
within 5 mm for 10 out of 15 frames.  
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Figure 29: Comparison of the two registration methods for patient MDA1, video 
sequence 2. This plot shows the median distance error between the world transforms of 
the ground-truth and registered virtual images for each registration frame. Frame-to-
frame tracking failed for seven frames after the virtual endoscope became stuck in front 
of a wall. Path-based volumetric search had worse performance here than in video 
sequence 1.  
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Figure 30: Comparison of the two registration methods in patient PMH1. This plot 
shows the median distance error between the world transforms of the ground-truth 
and registered virtual images for each registration frame. Frame-to-frame tracking did 
not fail for any frames, but its registration accuracy was worse towards the end of the 
sequence than that of path-based volumetric search. This shows that with frame-to-
frame tracking, error can accumulate when the virtual endoscope fails to keep up, even 
when the results are not easily identified as failures.  
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Figure 31: Comparison of the two registration methods for patient PMH2. This plot 
shows the median distance error between the world transforms of the ground-truth 
and registered virtual images for each registration frame. Frame-to-frame tracking 
failed for two frames. This video sequence contained many unfavorable characteristics, 
making it challenging to select registration frames.  

 

 

 

6.3.2 The impact of scene geometry 

 

 For each frame, Spearman’s rho was calculated between the distance errors for the 

virtual image registered with path-based volumetric search and the measurement 

angles or distances for the ground-truth virtual image. These correlations were variable 

between frames and weak overall, with an average of 0.17 ± 0.23 for measurement 

angle and 0.28 ± 0.31 for measurement distance (all p < 0.001). The weak correlation 

for measurement angle echoes the results in the marker phantom. Despite the weak 
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correlation for measurement distance, this value does play a role in projective 

measurement error. This is illustrated in Figure 32, which shows the median distance 

errors for all registration frames with progressive distance cutoffs applied. For 

example, with a cutoff of 60 mm, all points in the world transform with measurement 

distances beyond 60 mm were excluded. The errors were reduced by each cutoff, and 

the difference between every adjacent cutoff was significant (p < 0.05 using the 

Wilcoxon signed-rank test). This shows that excluding points with large measurement 

distance can reduce projective measurement errors. 
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Figure 32: Reduction in registration error when distant points are excluded. These box 
plots show the median distance error with path-based volumetric search for all patient 
registration frames with progressive measurement distance cutoffs applied. For 
example, in the 60-mm plot, all points with a measurement distance larger than 60 mm 
have been excluded. The boxes show the median and quartiles, and the whiskers show 
the minimum and maximum. Though the cutoffs do not appear to have much effect on 
the first three quartiles, the reduction in error is significant between all adjacent cutoffs 
(p < 0.05 using the Wilcoxon signed-rank test). 

 

 

 

6.4 Discussion 

 

6.4.1 Summary 

 

 Two patient cohorts were used to evaluate the performance of the two endoscopy-

CT registration methods. The first cohort included three head-and-neck radiotherapy 

patients prospectively enrolled for this study, for one of whom two endoscopic 



117 
 

examinations were recorded. The second cohort included two patients from previous 

studies of registration via electromagnetic endoscope tracking by Weersink et al41, 42. 

One patient in the first cohort was deemed unsuitable for registration due to a large 

base-of-tongue tumor that obstructed much of the airway, preventing clear views of the 

anatomy in the endoscopic video and limiting the structural detail in the virtual 

endoscopic images. Another patient from the first cohort was excluded from 

quantitative analysis because ground-truth virtual endoscope coordinates could not be 

obtained, possibly due to a difference between the anatomical configuration seen in the 

endoscopic video and that seen in the virtual endoscopic images. 

A set of 46 registration frames was selected from the remaining patients, and 

ground-truth virtual endoscope coordinates were obtained manually for each. Each 

frame was registered to CT using the frame-to-frame tracking and path-based 

volumetric search methods. In all videos, frame-to-frame tracking failed to reach any 

registration frames from the starting point in the nasal cavity. Tracking was restarted 

after placing the virtual endoscope at the ground-truth coordinates for the first 

registration frame. After restarting, frame-to-frame tracking still failed for many frames, 

generally when the virtual endoscope became stuck directly in front of a wall. Path-

based volumetric search successfully registered all frames, but registration errors were 

larger than those seen in phantoms. 

The impact of scene geometry on registration accuracy was investigated for the 

path-based volumetric search results. There were weak correlations between 

registration accuracy and both measurement angle and measurement distance, but 

these correlations were highly variable from frame to frame. However, excluding 
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distant points from projective measurements did reduce overall errors, indicating that 

measurement distance may be an important consideration for applications of 

endoscopy-CT registration. 

 

6.4.2 Exclusion of patients from the first cohort 

 

 Two patients were excluded from the first cohort. One was excluded due to a large 

tumor that prevented adequate visualization on both the endoscopic video and the 

virtual endoscopic images. The rest of the patients in both cohorts had early-stage 

disease, so there was no obstruction of the airways. This suggests that there is a subset 

of patients for whom endoscopy-CT registration may not be possible, at least not with 

the image-based methods used in this study. 

The second patient was excluded due to an inability to obtain ground-truth virtual 

endoscope coordinates, possibly due to a difference between the anatomical 

configuration seen in the endoscopic video and that seen in the virtual endoscopic 

images. This difference may be the result of positioning difference between the seated 

endoscopic examination and the supine CT. This patient’s virtual endoscopic images 

also had less detail overall and poor segmentation of the epiglottis, so the exact source 

of the difficulties is unclear. These characteristics suggest that patient positioning and 

CT acquisition may be important considerations for the robustness of endoscopy-CT 

registration. 
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6.4.3 Anatomical differences between real and virtual endoscopy 

 

 One feature of endoscopy-CT registration that becomes apparent with experience is 

that the configuration of the anatomy in the endoscopic video does not exactly match 

that in the virtual endoscopic images. A major source of this difference is muscle motion 

in the pharynx and larynx. This motion can be dramatic, such as when the patient 

swallows. Transient motion does not pose a problem for endoscopy-CT registration, 

because frames in those sequences would not be useful for registration in a clinical 

setting due to very poor visualization of the anatomy. However, the motion can also be 

subtle, such as gradual changes in the opening of the glottis and the positions of the 

walls. This type of motion is difficult to avoid by frame selection, and it can cause 

systematic differences between the anatomical configuration in the endoscopic videos 

and that in the virtual endoscopic images. 

 The most notable difference seen in this study was a displacement of the posterior 

wall of the pharynx. The pharynx appeared wider in virtual endoscopic images, and it 

was particularly problematic for registration because the posterior wall was much 

closer to the epiglottis in the videos. This is illustrated in Figure 33. The wall positioning 

caused a large bright area at the top of several registration frames that could not be 

reproduced in the virtual images near the ground truth coordinates, leading to large 

registration errors. 
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Figure 33: Example of anatomical differences between endoscopic video and virtual 
endoscopy. (a) A registration frame from patient MDA1. The posterior wall of the 
pharynx is quite close to the epiglottis, creating a large bright spot at the top of the 
frame. (b) The ground-truth virtual image for this frame. The pharynx appears much 
wider, and the bright region cannot be reproduced at the ground-truth endoscope 
coordinates. (c) The registered virtual image obtained with path-based volumetric 
search. The bright region at the top of the virtual image caused a false match to the 
registration frame. The median distance error for this frame was 28.5 mm. 
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6.4.4 The impact of manual inputs 

 

The path-based volumetric search method requires manual input to create the 

possible endoscope path through the volume. This was done by selecting a small set of 

points from the nasal cavity past the glottis on a sagittal CT slice. This will introduce 

some variability between users, but it is important to note that path-based volumetric 

search does not depend on the possible path exactly matching the actual path taken in 

the recorded video. No effort was made to replicate the actual path when creating the 

paths used in this study. 

The path is used to assign virtual endoscope view directions when slicing the 

surface and when initializing the simplex optimizations.  It is possible that a highly-

convoluted path drawn by a user could cause inadequate sampling of the volume if the 

slices are at odd angles, or could initialize the virtual endoscope with a view direction 

that causes the simplex to find a false optimum. However, the possible endoscope path 

is meant to be a simplified approximation like the one illustrated in Figure 27. If the 

path is drawn in this manner, it is unlikely that inter-user variability will impact the 

registration. 

Manual input was also used to identify point correspondences to obtain ground-

truth virtual endoscope coordinates via camera resectioning for patient images. An 

effort was made to select these points covering a range of distances from the camera, 

which improves the conditioning of the resectioning and should reduce the impact of 

inter-user variability. However, the impact of inter-user variability was not quantified 

for this or the path creation. The purpose of this study was to explore the feasibility of 
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endoscopy-CT image registration, but if path-based volumetric search is to be used 

clinically, these manual inputs must be standardized, or automated if possible. 

 

6.4.5 Computation times 

 

One drawback of the path-based volumetric search method is its computational 

complexity. The creation of the virtual endoscope path and the creation of the set of 

seed points by slicing the surface and k-means clustering (steps 2 and 3 in Section 

4.3.1) need to be done only once for a given phantom or patient, but the coarse search 

over all the seed points and the subsequent fine search (steps 4-6 in section 4.3.1) must 

be done for each frame. This process required about 20 minutes per frame in the 

current implementation, which is written in the Python programming language. This is 

certainly a practical limitation, but there are many aspects of this algorithm that can be 

optimized to reduce the computation time. The most salient target is parallel computing 

for the coarse search, as the optimization at each seed point is independent of that at all 

other seed points. 

 

6.4.6 Local optima in the Nelder-Mead simplex 

 

Both frame-to-frame tracking and path-based volumetric search use the Nelder-

Mead simplex algorithm to optimize virtual endoscope coordinates to find the best 

match for the registration frame. This method was chosen because it does not require 

any gradient computation, which is not possible in this scenario. However, it is a local 
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optimization technique that can find only the nearest optimum. This is not a problem 

with frame-to-frame tracking, because in a 30-frames-per-second video, the next frame 

is always going to be close enough to the previous solution that local optimization is 

sufficient. But when trying to register a frame with no nearby initial guess for the 

virtual endoscope coordinates, a global search is required. 

Path-based volumetric search accomplishes this by treating the position and 

orientation components of virtual endoscope coordinate space separately. The slicing 

and clustering of seed points samples the position space of the entire volume. The 

manually-drawn possible endoscope path eliminates the need for a global search of 

orientation space, because it is used to initialize the virtual endoscope’s view direction 

sufficiently close to the optimum. So even though a local optimization algorithm is used 

in both techniques, path-based volumetric search effectively performs a global 

optimization by using many start points that sample the entire volume. Its performance 

depends on the seed point sampling being dense enough that the optimum is not 

missed. However, it may be worthwhile to investigate performing the initial coarse 

search using a global optimization algorithm such as simulated annealing. 

 

6.4.7 The role of patient positioning 

 

Virtual endoscopy surface meshes were created from planning CTs, which are 

acquired in the supine position with the patient’s head, neck, and shoulders positioned 

with a molded thermoplastic mask. The patient’s head is typically tilted back to keep it 

out of the treatment beam. For the patients in the PMH cohort, the endoscopic 
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examinations were performed in the same position, with the thermoplastic mask. This 

was not the case for the MDA cohort, and would not be the case for any endoscopic 

examination performed in routine clinical practice. These examinations are performed 

with the patient seated in a chair, and the patient is not positioned in any particular 

way. 

One weakness of the methods presented in this study is that it is likely that the 

different positions introduce anatomical differences between the endoscopic video and 

the virtual images. These differences could prevent successful registration when the 

virtual image cannot match the appearance of the video frame at the correct 

coordinates, and could introduce errors when mapping video frames to CT even when 

registration is successful. It is likely that positioning differences played a role in the 

exclusion of patient MDA3 from the study, and it is possible they influenced the 

anatomical differences discussed in Section 6.4.3. Though the PMH cohort did not have 

positioning differences, the sample size in this study is too small to draw any 

conclusions about the impact of positioning on registration accuracy. 

Without a patient set including supine and upright CTs, it will be difficult to fully 

understand the impact of patient positioning. A possible solution to this problem is to 

allow the surface mesh to deform to match the appearance of the anatomy in the 

endoscopic video, but validation will remain a challenge. Another option that would 

reduce positioning differences is to perform the endoscopic examination with the 

patient in the supine position using the thermoplastic mask. This would not cause 

undue burden on the patient, but it is a change to standard clinical practice. The 

thermoplastic masks are affixed to mounts on the couch of a CT scanner or linear 
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accelerator, and scheduling time to use this equipment could pose a logistical challenge 

in busy clinics. Furthermore, development of image registration for seated-position 

endoscopy is appealing because it could be used in scenarios where supine endoscopy 

is not available, such as retrospective analysis of archived video or endoscopic 

examinations performed at outside institutions. 
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7 

The influence of patient positioning and 
non-rigid anatomy 

This chapter is based on the following publication73: 

W. S. Ingram, J. Yang, R. Wendt III, B. M. Beadle, A. Rao, X. A. Wang, and L. E. Court. “The 

influence of non-rigid anatomy and patient positioning on endoscopy-CT image 

registration in the head and neck.” Medical Physics (in press). 

The permission to reuse this material is established under the copyright transfer 

agreement with John Wiley & Sons, Inc. 

 

7.1 Introduction 

 

 Though virtual endoscopy has been used for registration of endoscopic video to CT 

scans in a variety of anatomical regions and clinical settings, very little attention has 

been paid to the sources of uncertainty in projective measurements to map video 

frames to CT space. Perhaps the most important source of uncertainty is differences 

between the airway surface structure that is seen on CT and that which is seen in the 

endoscopic video. These differences have several causes. The most apparent is muscle 

motion during the endoscopic examination when the patient swallows or speaks, which 
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can change the size of the lumen and the relative positions of anatomical structures. 

This effect can largely be eliminated by judicious selection of the video frames to be 

registered to CT. 

Another cause of airway surface differences is patient positioning. Endoscopic 

examinations for head and neck cancer patients are performed with the patient seated 

upright in a chair, while the CT scans used for radiotherapy treatment planning are 

acquired in the supine position with the patient’s head tilted back and secured in a 

molded thermoplastic mask. This changes the relative positions of different regions of 

the respiratory tract in the two data sets. Finally, the upper respiratory tract is not rigid, 

and there may be day-to-day changes in the positions of tissues that influence 

registration to the planning CT, which is acquired at a single time point. Anatomic 

variability in the head and neck has been studied previously74, 75, but not for the 

surfaces of the respiratory tract, and how this variability affects endoscopy-CT 

registration remains unknown.  

This chapter presents an analysis of the impacts of patient positioning and daily 

anatomical variations on the uncertainty of virtual endoscopic projective 

measurements in the head and neck. Unlike the previous chapters, no endoscopic 

videos were acquired for this analysis. The general approach was to take sets of 

projective measurements in the planning CT and compare them to projective 

measurements taken in a different CT when the virtual endoscope was placed at the 

same position. Measurements were taken throughout the airways of the head and neck 

in order to characterize the uncertainty in different anatomical regions. As with the 

phantom and patient analyses in Chapters 5 and 6, the dependence of projective 
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measurements on surface geometry was investigated as well. The unique patient cohort 

that enabled this analysis, and the virtual endoscopic methods used to make projective 

measurements, are described in Section 7.2. The results of the analysis are presented in 

Section 7.3, and a discussion of their interpretation and the strengths and weaknesses 

of this study is presented in Section 7.4. 

 

7.2 Methods 

 

7.2.1 Patient cohort 

 

Nineteen head and neck cancer patients who received radiotherapy at MD 

Anderson Cancer Center were retrospectively selected for this study, which was 

approved by the Institutional Review Board. A simulation CT had been acquired for 

each patient for treatment planning. These scans were acquired using a 48 or 50 cm 

field of view and 0.25 or 0.3 cm slice thickness. The treatments had been delivered in 

31-35 daily fractions, and on each day another CT scan had been acquired prior to 

irradiation using a CT-on-rails in the treatment room. These scans were acquired using 

the same parameters as the planning CTs. In the daily CTs, the head, neck, and 

shoulders were secured in molded thermoplastic masks, so the patient positioning was 

as close as possible to that in the simulation CT. These scans were used to evaluate the 

influence of daily variations in non-rigid anatomy on projective measurements. 

In addition to the daily scans, pre-treatment diagnostic CT scans were acquired for 

thirteen of the patients. Six patients were omitted due to the large 5-mm slice thickness 
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of their diagnostic scans, which would have a negative effect on the resolution of virtual 

endoscopic images. These scans were acquired using a 25 or 26 cm field of view and 0.1 

or 0.25 cm slice thickness. In the diagnostic scans, the thermoplastic masks were not 

used, and the patients’ head, neck, and shoulders were not positioned in any particular 

way. These scans were used to investigate the impact of patient positioning. This 

scenario does not exactly model the differences between supine and seated positions, 

but it can provide some insight into the importance of reproducible positioning for 

projective measurements. 

 

7.2.2 Virtual endoscopy 

 

 Virtual endoscopic images were rendered using the optimized lighting model 

discussed in Section 6.2.4. Due to the large number of CT scans used for this analysis, a 

fully-automated method was used to segment the CTs and create the virtual endoscopy 

surface meshes. First, each slice was converted to a binary image using a density 

threshold of 0.8 g/cm3. This is higher than the 0.6 g/cm3 threshold used in the patient 

analysis of Chapter 6. This choice was made based on the observation that lower 

thresholds closed off narrow passages in the nasal cavity and reduced anatomical detail 

for fine structures such as the epiglottis. No endoscopic videos were used in this 

analysis, so the choice of threshold was somewhat arbitrary. 

After converting the slice to a binary image, morphological analysis was used to 

find the outlines of each object in the image. The coordinates of these outlines were 

used to create the surface mesh with the method described in Section 3.3.1. This 



130 
 

segmentation method included additional structures in the surface mesh from outside 

the airways. The additional structures did not affect the virtual endoscopic images, as 

the segmentation of the airway surface itself is the same as what would be obtained 

with the semi-automatic method used in Sections 5.2.2 and 6.2.2. The optimized lighting 

model presented in Section 6.2.4 was used to render virtual endoscopic images, all of 

which were smoothed with a 3 x 3 Gaussian kernel with σ = 1 pixel. 

 

7.2.3 Virtual endoscope paths 

 

The anatomy of the head and neck varies considerably in terms of the distances, 

structures, and muscle motion seen via endoscopy. In order to characterize the different 

anatomical regions, a virtual endoscope path from the nasal cavity to the glottis was 

created in the planning CT surface mesh for each patient. The camera positions were 

spaced 5 mm apart along the path, and the number of positions per patient ranged from 

13 to 28. The large range is due to the omission of regions that were inaccessible to the 

virtual endoscope in certain patients. This occurred when the patients had large tumors 

that blocked part of the pharynx, and when the narrow passages of the anterior nasal 

cavity were closed off by the smoothing applied to the CT-space threshold contours 

when creating the surface meshes. 

Due to differences in patient anatomy and positioning of the head and neck in the 

CT, each patient’s virtual endoscope path is unique and it is difficult to make inter-

patient comparisons of projective measurements at a given point on the path. To allow 

for some degree of inter-patient comparison, the points in the paths were classified into 
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three anatomical regions: the nasal cavity, the nasopharynx and oropharynx, and the 

hypopharynx and larynx. The coordinate ranges used for these classifications were 

chosen manually for each patient, and an example is shown in Figure 34. An example of 

the virtual endoscopic images in one patient’s path is shown in Figure 35. 

 

 

 

 

Figure 34: An example of the anatomical regions used to in the virtual endoscope path. 

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, R. Wendt III, B. M. Beadle, A. Rao, X. A. Wang, and L. E. Court. “The influence of non-
rigid anatomy and patient positioning on endoscopy-CT image registration in the head and neck.” Medical 
Physics (2017). 
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Figure 35: An example of the images in the virtual endoscope path. The colors of the 
numbered squares indicate the anatomical regions: nasal cavity (yellow), naso- and 
oropharynx (blue), and hypopharynx and larynx (green). For conciseness, every other 
image has been omitted, so adjacent virtual endoscope positions are 10 mm apart. In 1-
4, the posterior wall of the pharynx and the floor of the nasal cavity are visible. In 5 and 
6, the virtual endoscope is in the superior pharynx, and in 7-9 the epiglottis is visible. In 
10-12, the virtual endoscope is approaching the glottis. 

This figure has been reproduced and modified from the following publication: 
W. S. Ingram, J. Yang, R. Wendt III, B. M. Beadle, A. Rao, X. A. Wang, and L. E. Court. “The influence of non-
rigid anatomy and patient positioning on endoscopy-CT image registration in the head and neck.” Medical 
Physics (2017). 
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7.2.4 Measurements of projective errors 

 

The influences of non-rigid anatomy and patient positioning differences on the 

uncertainty of endoscopy-CT image registration were quantified by the range of 3D 

distance errors between reference projective measurements taken on the planning CTs 

and test projective measurements taken on the daily and diagnostic CTs. These 

measurements were taken using the world transform described in Section 4.4.2. The 

daily CTs were used to evaluate the impact of non-rigid anatomy, and the diagnostic CTs 

were used to evaluate the impact of patient positioning. The following steps, which are 

summarized in Figure 36, describe the calculation of the two sets of distance errors.  

“Reference” will be used to refer to the planning CT, and “test” will be used to refer to 

the daily or diagnostic CT: 

 

1. Take the world transform at each position on the virtual endoscope path in the 

reference mesh. These sets of 3D points comprise the reference measurements. 

2. Calculate the corresponding virtual endoscope path in the test mesh. 

a. Deformably register the reference CT to the test CT using validated in-

house software76. 

b. Assign each path position the average deformation vector of all surface 

voxels within 1 cm. This is done because the registration may be less 

reliable within the air cavity, so the nearby surface voxels may provide a 

more realistic deformation for the virtual endoscope. 
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3. Optimize the view direction at each position in the corresponding virtual 

endoscope path in the test mesh. This is done to reduce errors that are caused by 

the deformation of the path rather than by the effects of non-rigid anatomy or 

patient positioning. 

a. Calculate the similarity between the virtual endoscopic image at a given 

path position in the reference mesh and the virtual endoscopic image at 

the corresponding path position calculated in step 2. The similarity 

metric 𝑀𝐼𝑔𝑟𝑎𝑑, defined in Section 4.1, was used here as well. 

b. Search for the view direction in the test mesh that maximizes this 

similarity using the Nelder-Mead simplex method. 

4. Take the world transform in the test mesh at each position on the virtual 

endoscope path calculated in steps 2 and 3. These sets of 3D points comprise the 

test measurements. 

5. Using the deformation field obtained in step 2a, transform the reference 

measurements taken in step 1 into the coordinate space of the test 

measurements. 

6. Calculate the distance errors between the transformed reference measurements 

obtained in step 5 and the test measurements taken in step 4. 
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Figure 36: A schematic illustrating the measurement of projective errors. a) The virtual 
endoscope is placed at each position on its path through the reference mesh, which is 
represented by the blue line. b) At each position on the path, projective measurements 
are made, generating a set of CT-space reference points. c) The virtual endoscope is 
placed at the corresponding position in the test mesh, which is represented by the 
orange line. This position is calculated using deformable registration between the 
planning CT and the daily or diagnostic CT. d) The virtual endoscope’s view direction is 
optimized to match the appearance of the reference virtual image. Then, projective 
measurements are made, generating a set of CT-space test points. Finally, distance 
errors are calculated between the reference and test points. 

This figure has been reproduced from the following publication: 
W. S. Ingram, J. Yang, R. Wendt III, B. M. Beadle, A. Rao, X. A. Wang, and L. E. Court. “The influence of non-
rigid anatomy and patient positioning on endoscopy-CT image registration in the head and neck.” Medical 
Physics (2017). 
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7.2.5 The impact of scene geometry 

 

 A simple geometric analysis shows that projective measurements should be 

influenced by the distance between the camera and the surface, and the angle at which 

it views the surface. This is illustrated in Figure 9. The results presented in Sections 

5.3.3 and 6.3.2 did not find any strong correlations between these quantities and 

projective error, although excluding points with large measurement distances did 

reduce projective errors in patients. To further characterize geometric effects, the 

world transforms for the reference virtual images were used to compute measurement 

angles and distances for each point. The correlation between these values and 

projective measurement errors were calculated for each path position in the daily CTs. 

In addition to these quantities, edge masks were created for both the reference and test 

virtual images using a distance threshold of 2 mm and morphological erosion with a 3 x 

3 structuring element for five iterations. The masks were used to investigate the 

exclusion of regions of high uncertainty when making projective measurements. See 

Section 4.4 for more details on the world transform, measurement angles, and edge 

masks. 

 

7.2.6 The impact of the interval between CT acquisitions 

 

In an ideal application of projective mapping for endoscopy-CT registration, the 

endoscopic examination and the CT would be acquired as close in time as possible to 

minimize anatomical differences between the two modalities. This is especially true for 
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patients with large tumors that shrink during the course of radiotherapy. One 

application of endoscopy-CT registration would be to assess the dose to various 

anatomical structures seen via endoscopy at follow-up examinations after the course of 

radiotherapy. In this context, it is important to know if anatomical changes over the 

course of radiotherapy can affect registration to the planning CT. To investigate this, the 

projective errors for the treatment-room CT on day 1 were compared to those for day 

30. 

 

7.3 Results 

 

7.3.1 The influence of non-rigid anatomy 

 

 For each patient, the median projective distance error between the reference and 

test world transforms was calculated for each path position in each of the CTs from 

days 1-5. These measurements were grouped according to their anatomical region, and 

the results are presented in Table 17 and Figure 37. The nasal cavity had the smallest 

median projective errors overall, with the average ranging from 1.6 ± 1.1 mm to 1.9 ± 

2.2 mm over the five CTs. The naso- and oro-pharynx had the largest errors, with 

averages ranging from 2.8 ± 2.1 mm to 3.2 ± 2.9 mm. The hypopharynx and larynx were 

in between, with averages ranging from 1.9 ± 1.0 mm to 2.3 ± 2.0 mm. 

There were no significant differences between the five CTs (p > 0.05 in each region 

using the Kruskal-Wallis H-test). The differences between regions were all significant (p 

< 0.0001 for each pair of regions using the Mann-Whitney U-test). The trend between 
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regions was observed in most patients, but there was a high degree of variability 

between them. This is illustrated in Figure 38, which shows the projective errors at 

each path position for three patients. 

 

 

 

Table 17: Averages of median projective errors in the three anatomical regions for each 
daily CT.  

CT Nasal cavity 
Naso- and 
oropharynx 

Hypopharynx 
and larynx 

    

Day 1 1.6 ± 1.1 2.9 ± 2.3 1.9 ± 1.0 
Day 2 1.6 ± 1.2 2.9 ± 2.6 2.1 ± 1.1 
Day 3 1.9 ± 2.2 2.8 ± 2.1 2.1 ± 1.5 
Day 4 1.9 ± 1.6 3.2 ± 2.9 2.3 ± 2.0 
Day 5 1.9 ± 1.3 3.1 ± 2.3 2.1 ± 1.2 
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Figure 37: Median projective errors in the three anatomical regions for each daily CT. 
The boxes show the median and the quartiles, and the whiskers show the 5th and 95th 
percentiles. The smallest errors were found in the nasal cavity, and the largest were 
found in the naso- and oropharynx. The differences between regions were all 
statistically significant. 
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Figure 38: Projective errors at each virtual endoscope path position for three patients. 
These plots illustrate the inter-patient variability in trends between the different 
anatomical regions, which are indicated by the color shading. In Patient 03, the trend 
between regions is clear, with very small errors in the nasal cavity that become larger in 
the naso- and oropharynx, and then diminish in the hypopharynx and larynx. In Patient 
15, the errors remain small throughout the path, but there is no clear trend. Patient 18 
shows some of the largest overall errors, particularly in the naso- and oropharynx.  

 

 

 

7.3.2 The influence of patient positioning 

 

 For each patient, the median projective distance error between the reference and 

test world transforms was calculated for each path position in the diagnostic CT. These 

measurements were grouped according to their anatomical region, and the results are 

presented in Figure 39. The nasal cavity had the smallest median projective errors 

overall, with an average of 3.5 ± 2.6 mm. The naso- and oropharynx had the largest 
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errors, with an average of 4.3 ± 2.9 mm. The hypopharynx and larynx were in between 

with an average of 4.2 ± 3.8 mm, but the results in this region were highly variable with 

very large outliers. 

 The projective errors in the diagnostic CTs were larger than those in the daily CTs 

in each anatomical region, and each of these differences was statistically significant (p < 

0.0001 using the Mann-Whitney U-test). When comparing the diagnostic CT errors 

between regions, only the difference between the nasal cavity and the naso- and 

oropharynx was significant (p < 0.01 using the Mann-Whitney U-test). 

 

 

 

 

Figure 39: Median projective errors in the three anatomical regions for the diagnostic 
CTs. The boxes show the median and the quartiles, and the whiskers show the 5th and 
95th percentiles. The smallest errors were found in the nasal cavity, and the largest 
were found in the naso- and oropharynx. The errors in the hypopharynx and larynx 
were highly variable with large outliers. Only the difference between the nasal cavity 
and the naso- and oropharynx was statistically significant. 
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7.3.3 The influence of scene geometry 

 

 The dependence of projective error on measurement angle and measurement 

distance was similar to that found in the analyses of Chapters 5 and 6. Spearman’s rho 

was calculated for both of these quantities at each path position in the Day 1-5 CTs. The 

results were highly variable from position to position, and a summary is presented in 

Table 18. On average, a very weak correlation was found between angle and error, and 

a moderate correlation was found between distance and error. A better depiction of the 

influence of measurement distance is presented in Figure 40, which shows the median 

projective errors in the Day 1-5 CTs for all patients and all path positions with 

progressive distance cutoffs applied. The errors were reduced by each cutoff, and the 

difference between every adjacent cutoff is significant (p < 0.0001 using the Wilcoxon 

signed-rank test). 

Edge masks were also successful in reducing projective errors, and the results are 

given in Table 19. In general, the edge masks removed approximately 10% of points 

from the world transforms, but reduced the median error for 99.5% of the virtual 

images tested. The magnitude of this reduction was only 0.2 mm on average. This is 

likely due to the fact that the edge mask excludes large outliers where the reference and 

test measurements fall on either side of an occluding edge. The median error for a 

virtual image would not be very sensitive to exclusion of these outliers. 
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Table 18: Correlation values between projective error and measurement angle and 
measurement distance. Spearman’s rho was calculated at each path position in the Day 
1-5 CTs for all patients, and the averages are presented here. All p < 0.0001 except for a 
few where the correlation value was very close to 0.  

CT 
Measurement 
angle correlation 

Measurement  
distance correlation 

   

Day 1 0.16 ± 0.25 0.41 ± 0.32 
Day 2 0.17 ± 0.26 0.40 ± 0.32 
Day 3 0.17 ± 0.25 0.42 ± 0.32 
Day 4 0.13 ± 0.25 0.43 ± 0.32 
Day 5 0.18 ± 0.24 0.41 ± 0.31 
   

 

 

 

 

Figure 40: Reduction is projective errors when distant points are excluded. These box 
plots show the median projective errors in the Day 1-5 CTs for all patients and path 
positions with progressive measurement distance cutoffs applied. For example, in the 
60-mm plot, all points with a measurement distance larger than 60 mm have been 
excluded. The boxes show the median and quartiles, and the whiskers for the 5th and 
95th percentiles. The reduction in error is significant between all adjacent cutoffs (p < 
0.0001 using the Wilcoxon signed-rank test). 
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Table 19: Projective errors with and without edge masks applied. All values were 
calculated at each path position in the Day 1-5 CTs for all patients, and the averages are 
presented here. Column 2 gives the percentage of pixels removed by the edge mask. 
Column 3 gives the original median projective errors, and Column 4 gives the errors 
after the masks were applied. The median error was reduced for every frame by 
applying the edge mask, and the magnitude of the reduction is given in the fifth column. 
All error values are in mm. The reduction in error was statistically significant for all CTs 
(p < 0.0001 using the Wilcoxon signed-rank test). 

CT 
Masked 
percentage 

Unmasked 
error 

Masked 
error 

Error 
reduction 

     

Day 1 10.4 ± 4.3 2.3 ± 1.8 2.1 ± 1.7 0.2 ± 0.2 
Day 2 10.4 ± 4.3 2.3 ± 2.0 2.2 ± 1.8 0.2 ± 0.3 
Day 3 10.4 ± 4.6 2.4 ± 2.0 2.2 ± 1.7 0.2 ± 0.5 
Day 4 10.4 ± 4.1 2.6 ± 2.4 2.5 ± 2.3 0.2 ± 0.3 
Day 5 10.2 ± 4.3 2.5 ± 1.9 2.3 ± 1.7 0.2 ± 0.3 
     

 

 

 

7.3.4 The impact of the interval between CT acquisitions 

 
 The median projective errors for all patients in the Day 1 CT were compared to 

those in the Day 30 CT in each anatomical region. The errors in the Day 30 CT were 

larger than those in the Day 1 CT. The average increase was 0.5 ± 2.0 mm in the nasal 

cavity, 1.5 ± 3.4 mm in the naso- and oropharynx, and 2.3 ± 3.6 mm in the hypopharynx 

and larynx. The increase in projective errors was statistically significant in the naso- 

and oropharynx and in the hypopharynx and larynx (p < 0.0001 using the Wilcoxon 

signed-rank test). 
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7.4 Discussion 

 

7.4.1 Summary 

 

 A patient cohort was used to investigate the influences of non-rigid anatomy and 

patient positioning on the uncertainty of virtual endoscopic projective measurements. 

The patients in this cohort had daily CT imaging in the same position as the planning CT 

during the course of radiotherapy. With these scans, projective measurements were 

compared to those in the planning CT to investigate the influence of non-rigid anatomy. 

Diagnostic scans were acquired as well, in which the patients were not positioned in 

any particular way. With these scans, projective measurements were compared to those 

in the planning CT to investigate the influence of patient positioning. 

 Projective measurements were taken along a virtual endoscope path from the nasal 

cavity to the glottis. To facilitate inter-patient comparison, the path points for each 

patient were classified into three anatomical regions: the nasal cavity, the naso- and 

oropharynx, and the hypopharynx and larynx. Reference measurements were taken in 

the planning CT surface mesh. Test measurements were taken in the daily or diagnostic 

CT surface meshes after placing the virtual endoscope at the corresponding path 

position with deformable CT-CT registration. At each path position, the median distance 

error between the reference and test measurements was calculated to quantify 

projective uncertainty. 

 In the daily CTs, the median projective errors were smallest in the nasal cavity, and 

largest in the naso- and oropharynx. This trend between regions was observed in most 
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patients, but the results were highly variable. In the diagnostic CTs, median projective 

errors were larger in all regions than those in the daily CTs, and the trends between 

regions were not as pronounced. An investigation of the dependence of projective 

errors on surface geometry found weak correlations between measurement angle and 

error, and moderate correlations between measurement distance and error. However, 

projective error was shown to decrease when points with large measurement distances 

were excluded. The edge masks were also demonstrated to reduce projective error, 

showing that proximity to occluding edges may be an important consideration when 

making projective measurements with virtual endoscopy. 

 

7.4.2 Projective measurements without real endoscopic images 

 

No real endoscopic images were used in this study; all comparisons were made 

between virtual endoscopic images rendered from different CTs. This choice was made 

in part because endoscopic examinations are not routinely recorded and saved as part 

of the patient’s medical record at MD Anderson Cancer Center, so real endoscopic 

images were not available for the patient set used in this study. One advantage of this 

approach is that two images of the same modality are used when image similarity is 

calculated to optimize the virtual endoscope’s view direction (step 3 in Section 7.2.4). If 

endoscopic examinations were available, another approach would be to use a 

registration method such as path-based volumetric search to find the registered 

endoscope coordinates in the reference and test CTs. However, this would include the 

additional uncertainty introduced by calculating image similarity between two different 
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modalities. Given that endoscopic videos were not available for the patients in this 

dataset, there was no way to quantify this additional uncertainty. By using only virtual 

endoscopic images, the methods in this study did not quantify the full uncertainty that 

would be expected in a clinical application of endoscopy-CT registration, but they have 

the advantage of isolating the influence of anatomical differences between CT scans. 

 

7.4.3 The role of deformable CT registration 

 

In this study, the daily and diagnostic CTs were deformably registered to the 

planning CT in order to place the virtual endoscope at the path positions in the daily 

and diagnostic CT surface meshes (step 2 in Section 7.2.4). This step is necessary 

because placing the virtual endoscope at the same location in the two meshes means 

that any differences between the projective measurements were the result of 

anatomical differences between the CTs, rather than differences in virtual endoscope 

placement. It is important to note that the airway segmentation used to create the 

surface meshes themselves was performed on each CT prior to applying the deformable 

registration (see Section 7.2.2). This means that any anatomical differences between the 

CTs were retained in the corresponding virtual endoscopic images. 

One challenge is that the airway surfaces are not rigid, so given a position in one CT, 

the same position in another CT is not exactly defined in the context of projective 

measurements via virtual endoscopy. Rigid registration would maintain the same 

position with respect to the overall anatomy of the head and neck, but if the airway 

surfaces deform, the virtual endoscope could be placed several mm closer to or further 
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from the surface, which can cause a very noticeable change in a virtual endoscopic 

image. For this reason, deformable registration was chosen and the virtual endoscope 

was assigned the average deformation vector of all surface points within 1 cm, which 

should maintain the same position relative to the surface of the airway. This method of 

placing the virtual endoscope, and the subsequent optimization of its view direction to 

match the planning CT virtual endoscopic image (step 3 in Section 7.2.4), reduce errors 

in the projective measurements caused by any source other than the anatomical 

variations that this study sought to investigate. 

 

7.4.4 Trends in projective errors 

 

 The effects of surface geometry were similar in this study to those observed in the 

analyses of Chapters 5 and 6. The influence of measurement distance illustrated in 

Figure 9 was demonstrated by the data, but the influence of measurement angle was 

not. There is no clear reason for this, but it is possible that it is due to the surface 

meshes not being completely smooth, both due to the anatomical structure and the 

density threshold segmentation. This means that the measurement angle may only 

describe a very small local neighborhood of the surface, so the simple geometrical 

assumptions made in Figure 9 do not hold. Another possibility is that the influence of 

measurement distance is much stronger for points far from the camera, preventing 

observation of a correlation between projective error and measurement angle. 

 This study also found that a longer interval of time between the planning CT and 

the daily CT increases the projective error. There were no significant differences 
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between the measurements from the Day 1-5 CTs, but the Day 30 CT had larger 

projective errors than those from the Day 1 CT. This suggests that minimizing the 

length of time between the endoscopic examination and the CT scan will be important 

for clinical application of projective mapping for endoscopy-CT registration. It also 

suggests that uncertainties would be larger for registration of follow-up endoscopic 

examinations performed after the course of radiotherapy. However, the data in this 

study do not support any particular recommendation for an acceptable interval of time. 

One of the main goals of this study was to investigate the difference between the 

influences of daily anatomical variations and patient setup on projective uncertainty. 

The results show that patient setup has a larger impact, but not by much. One caveat to 

this difference is that the daily CT data set was larger, with five daily CTs for each of 

nineteen patients, whereas there was only one diagnostic CT for each of thirteen 

patients. Another caveat is that the patients’ positions in the diagnostic scans are not 

the same as those in endoscopic examinations, so this data set is an imperfect 

representation of the influence of patient positioning. No attempt was made to model 

the effect of a seated position in the virtual endoscopic images. It would be challenging 

to do this in a meaningful way without seated-position CT scans, from which surface 

meshes could be created and compared to those from supine CT scans. However, 

because the diagnostic scans used in this study were acquired without the 

thermoplastic masks, they do provide some insight into the importance of positioning 

the patient’s head and neck in exactly the same way for acquisition of the CT and the 

endoscopic video. 
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7.4.5 The clinical context of projective errors 

 

The data presented in this study are not particularly meaningful without the 

context of clinically acceptable levels of uncertainty for image registration. There is no 

definitive acceptable level of uncertainty, but a multi-institution study of 21 deformable 

registration algorithms found average point errors between the phases of 4DCTs up to 

3.0 mm in the lungs and 6.7 mm in the abdomen77. Another study of four deformable 

registration algorithms in the head and neck found overall surface distance errors of 4.6 

mm in the best case78. A large majority of the median projective errors presented in this 

study are comparable to or less than these published values. 

Another important consideration is the impact of these projective errors on the 

potential use of endoscopy-CT registration for tumor delineation during the treatment 

planning process. This is a difficult topic to evaluate because endoscopic images have 

never been used to do this clinically, and projective mapping via virtual endoscopy is 

fundamentally different than the volumetric registration that is commonly used in 

radiotherapy. Inter-observer variability in manual target delineation is not negligible in 

the head and neck, with one study finding a standard deviation of GTV delineation for 

nasopharyngeal cancer greater than 4 mm79. This is comparable to the median 

projective errors found in this study. However, this does not address the large outliers 

that were present in the data in this study and the analyses of Chapters 5 and 6. It is 

likely that many of these will be easy to identify and reject in the context of target 

definition by inspecting for large discontinuities between nearby projected points. The 

reduction in error when edge masks were applied shows that surface geometry may be 
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useful for avoiding some of these outliers as well. Further insight could be gained by 

studying the projective mapping of object contours that have CT-space ground truths. 

 

7.4.6 Caveats to the projective errors presented in this study 

 

There are several aspects of the methods used in this study that may have 

increased the reported errors beyond what could be expected in a fully-developed 

clinical application of projective mapping for endoscopy-CT registration. The first is 

that the deformed virtual camera path positions were held fixed and only their view 

directions were optimized. This may have the effect of placing the camera closer to 

walls or obstacles than it is in the reference image, which would lead to larger errors. In 

a clinical application, the position of the virtual camera would be optimized along with 

the view direction. 

The second aspect is that the meshes and their corresponding virtual images are 

held rigid for the projection of pixel locations. This causes misalignments between the 

two images, resulting in large projective errors where the points fall on either side of an 

occluding edge. One strategy to reduce these errors is to allow the meshes to deform 

during the optimization process, or to warp the test virtual image onto the reference 

virtual image before projecting the pixel locations. However, no method has been 

investigated to accomplish this. 

It is important to note that projective mapping is only a technique to transfer 

spatial information between an endoscopic video frame and a CT scan, and this study 

did not consider the uncertainty of the registration method used to find the CT-space 



152 
 

endoscope coordinates needed to render the virtual image. However, the results of this 

study are not dependent on the registration method. Even with the additional sources 

of error described in the previous paragraph, the uncertainty of projective mapping in 

the head and neck introduced by anatomical variations and patient positioning was 

found to be comparable to acceptable levels of uncertainty in other forms of medical 

image registration. This demonstrates that projective mapping is a promising technique 

for endoscopy-CT image registration in the head and neck. 
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8 

Image processing parameters 

8.1 Introduction 

 

 In the preceding chapters, the performance of two different endoscopy-CT 

registration algorithms has been evaluation, and the influences of scene geometry and 

anatomical variations on the registration uncertainty have been investigated. In these 

analyses, little attention has been given to the image processing parameters that can 

modify the endoscopic video frames and the virtual endoscopic images. These 

parameters may have significant impacts on registration accuracy, and if endoscopy-CT 

is to be developed into a robust clinical tool, it will be important to characterize them. 

 This chapter presents two separate but related analyses. The first is an evaluation 

of a variety of image processing parameters that may influence endoscopy-CT 

registration, including similarity measures, Gaussian and edge-preserving smoothing, 

downsampling, and masking to avoid the structural disparities described in Section 

6.4.3. The second analysis is investigation of the importance of having an exact camera 

calibration model for the endoscope, with the goal of determining if endoscopy-CT 

registration would be feasible in settings where the calibration model is unknown. This 

situation could arise for retrospective analyses of archived video, and for prospective 
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patient evaluation if the endoscopic examination was performed at an outside 

institution. The calibration analysis is included in this chapter because calibration 

parameters are image processing parameters, as they determine the removal of 

distortion from endoscopic video frames and the view angle used to render virtual 

endoscopic images. 

 The main goal of these analyses was to determine how the image processing 

parameters affect the accuracy of registered endoscope coordinates. Rather than using 

the path-based volumetric search registration method (see Section 4.3), a slightly 

different approach was used to better characterize how the parameters affect the ability 

of a simplex-based optimization routine to finely distinguish virtual endoscope 

coordinates near the ground truth. With the calibration analysis, a secondary goal was 

to investigate the effect that the parameters have on projective measurement error, 

independent of the accuracy of registered endoscope coordinates. These methods are 

explained in detail in Section 8.2. The results of the analyses are presented in Section 

8.3, followed by a discussion in Section 8.4. 

 

8.2 Methods 

 

8.2.1 Patient dataset 

 

 The patient dataset described in Section 6.2.3 was used for these analyses as well. It 

consisted of 46 registration frames from four endoscopic examinations of three 

patients. As in the analyses of Chapters 5, 6, and 7, the preprocessing for all registration 
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frames included conversion to grayscale and smoothing with a 3 x 3 Gaussian kernel 

with 𝜎 = 1 pixel. For frames from patient MDA1, it also included deinterlacing by 

replacing every other row with bilinear interpolation and distortion removal as 

described in Section 3.4. Frames from patients PMH1 and PMH2 were recorded with 

distortion already removed. Ground-truth virtual endoscope coordinates were obtained 

for each frame by camera resectioning (see Section 4.2.2) followed by manual 

refinement to visually align anatomical structures. The optimized lighting model 

presented in Section 6.2.4 was used to render virtual endoscopic images, all of which 

were smoothed with a 3 x 3 Gaussian kernel with σ = 1 pixel. 

 

8.2.2 Volumetric grid search near the ground truth 

 

 Registered endoscope coordinates were computed for each registration frame 

using a method similar to the path-based volumetric search (see Section 4.3), but 

designed to sample the neighborhood of the ground-truth coordinates more densely. 

The general approach was to place the virtual endoscope at each point in a grid, 

optimize its view direction to match the registration frame, keep the best overall result, 

and refine it to get the best possible registered endoscope coordinates. The steps of this 

volumetric grid search are detailed below: 

 

1. Select a registration frame 𝐹𝑟𝑒𝑔. 

2. Create a 9 x 9 x 9 grid of points centered on the ground-truth position with ±10-

mm extent and 2.5-mm spacing. Discard any points outside the surface mesh. 
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3. Initialize the virtual endoscope’s view direction at each grid point. 

a. Place the virtual endoscope at the ground-truth coordinates. 

b. Take the projective measurement of the pixel at the center of the image to 

get the grid focal point (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓). 

c. Place the virtual endoscope at the grid point with the view direction of 

the ground-truth coordinates. 

d. Adjust the virtual endoscope’s view direction so the grid focal point is in 

the center of the image. 

4. Starting from each grid point, search for the virtual endoscope coordinates that 

maximize the similarity between 𝐹𝑟𝑒𝑔 and the virtual image. In this step, the 

virtual endoscope’s position (𝑥, 𝑦, 𝑧) is fixed at each grid point, and the view 

direction (𝜃𝑥, 𝜃𝑦, 𝜃𝑧) is optimized. 

5. Keep the best overall result from the grid search and refine it by searching again 

for the virtual endoscope coordinates that maximize the similarity between 𝐹𝑟𝑒𝑔 

and the virtual image. In this step, all six endoscope coordinates are optimized. 

 

In steps 4 and 5, the virtual endoscope’s coordinates were optimized to maximize 

the similarity between the registration frame and virtual endoscopic images. The 

similarity measures used for this process are discussed in Section 8.2.3. The 

optimizations were performed using the Nelder-Mead simplex algorithm. In step 4, the 

scale of the search space was set using 
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 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔, 5 𝑑𝑒𝑔) (38) 

 

A small search space was used for this step because the view initialization in step 3 

should put the virtual endoscope’s view direction near the optimum. For the refinement 

in step 5, an even smaller scale was set for the search space using  

 

 
∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥

= (1.25 𝑚𝑚, 1.25 𝑚𝑚, 1.25 𝑚𝑚, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔, 2.5 𝑑𝑒𝑔) 
(39) 

 

See Section 4.1 for more details on the Nelder-Mead algorithm and the scale vector 

∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥. 

The output of step 5 is the desired registered endoscope coordinates. The accuracy 

of the registered coordinates was quantified by taking the world transforms of the 

ground-truth and registered virtual images and computing the median distance error 

between the two sets of CT-space points. See Section 6.2.7 for the rationale behind 

using the median projective error to quantify registration accuracy, and see Section 4.4 

for details on the world transform. The volumetric grid search was used to evaluate the 

image processing parameters described in the following sections. First, the search was 

run for a variety of image similarity measures to identify the one that resulted in the 

best registration accuracy. Then, the search was run using that similarity measure with 

additional preprocessing parameters to identify those that could further improve 

registration accuracy. 
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8.2.3 Similarity measures 

 

 The two most fundamental image processing components of endoscopy-CT 

registration are the virtual endoscopy lighting model and the similarity measure used 

to compare video frames and virtual images. The lighting model was optimized by 

histogram comparison between the two modalities (see Section 6.2.4), so the next step 

is to determine the best similarity measure. This was accomplished by running the 

volumetric grid search with a variety of similarity measures and choosing the one that 

resulted in the smallest overall projective distance errors relative to the ground-truth 

endoscope coordinates. 

In the phantom and patient analyses of Chapters 5, 6, and 7, the similarity measure 

𝑀𝐼𝑔𝑟𝑎𝑑 was chosen based on the characteristics of mutual information and the presence 

of structural edges in both video frames and virtual images. Nine more similarity 

measures were chosen for this analysis. Eight were selected based on their 

performance registering images with changes in illumination and images of different 

modalities80, and one was designed specifically for virtual endoscopy32. Many of these 

are similarity measures rather than dissimilarity measures, so their values were 

negated for use as the objective function for simplex optimization. The similarity 

measures are defined below. In the following equations, 𝑓𝑖  and 𝑣𝑖  are pixel intensity 

values in the video frame and virtual image, 𝑓 ̅and 𝑣̅ are the mean intensities, 𝜎𝑓 and 𝜎𝑣 

are the standard deviations of intensities, and 𝑛 is the number of pixels in one of the 

images. 
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1. Pearson correlation coefficient 

 

 
=

∑ (𝑓𝑖 − 𝑓)̅(𝑣𝑖 − 𝑣̅)𝑖

√∑ (𝑓𝑖 − 𝑓)̅
2

𝑖 √∑ (𝑣𝑖 − 𝑣̅)2
𝑖

 
(40) 

 

2. Correlation ratio 

 

 = √1 −
1

𝑛
∑ 𝑛𝑖𝜎𝑖

2

255

𝑖=0

 (41) 

 

Here 𝑛𝑖  is the number of pixels in the video frame with intensity 𝑖, and 𝜎𝑖
2 is the 

variance of intensities in the virtual image corresponding to the intensity 𝑖 in the 

video frame. 

 

3. Spearman’s rho 

 

 = 1 −
6 ∑ [𝑅(𝑓𝑖) − 𝑅(𝑣𝑖)]2

𝑖

𝑛(𝑛2)
 (42) 

 

Here 𝑅(𝑓𝑖) and 𝑅(𝑣𝑖) are the ranks of 𝑓𝑖  and 𝑣𝑖  in the video frame and virtual 

image, respectively. When using this metric, the images were converted to 

floating point values and smoothed with a 3 x 3 Gaussian kernel with σ = 1 pixel 

to prevent ties in the ranks. 
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4. Material similarity 

 

This is a complex metric based on identification of peaks in the joint probability 

distribution of the video frame and virtual image. Its definition can be found 

elsewhere80, and will not be included here for conciseness. 

 

5. Normalized square L2 norm 

 

 = ∑ (
𝑓𝑖 − 𝑓̅

𝜎𝑓
−

𝑣𝑖 − 𝑣̅

𝜎𝑣
)

2

𝑖

 (43) 

 

6. Incremental sign distance 

 

To compute this metric, a vector is created for each image containing the signs of 

the differences between adjacent pixel intensities. Incremental sign distance is 

the Hamming distance between these two vectors. 

 

7. Mutual information 

 

 = 𝐸(𝐹) + 𝐸(𝑉) − 𝐸(𝐹 | 𝑉) (44) 
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Here 𝐸(𝐹), 𝐸(𝑉), and 𝐸(𝐹 | 𝑉) are the entropy of the video frame, the entropy of 

the virtual image, and the joint entropy of the two images, respectively. Entropy 

is calculated as 

 

 𝐸(𝐹) = − ∑ 𝑝𝐹(𝑓𝑖) log 𝑝𝐹(𝑓𝑖)

𝑖

 (45) 

 

where 𝑝𝐹 is the probability distribution of the video frame, calculated by 

normalizing the image histogram. The virtual image entropy and the joint 

entropy are defined similarly. 

 

8. Gradient-weighted mutual information 

 

 = 𝑀𝐼(𝐹, 𝑉) ∙ 𝐺𝑊(𝐹, 𝑉) (46) 

 

Here 𝑀𝐼(𝐹, 𝑉) is the mutual information of the video frame and virtual image, 

and 𝐺𝑊(𝐹, 𝑉) is a gradient-weighting factor calculated by  

 

 𝐺𝑊(𝐹, 𝑉) = ∑
cos(𝜙𝑖) + 1

2
∙ min(|∇𝐹(𝑓𝑖)|, |∇𝑉(𝑣𝑖)|)

𝑖

 (47) 

 

In this equation, |∇𝐹(𝑓𝑖)| and |∇𝑉(𝑣𝑖)| are the magnitudes of the intensity 

gradients in the video frame and virtual image, and 𝜙𝑖  is the angle between the 
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gradients. This factor favors alignment where both images have strong edges in 

the same location and the same direction. 

 

9. Mutual information of gradient magnitudes 

 

This similarity measure is calculated in the same way as mutual information, but 

gradient magnitudes of the video frame and virtual image are used rather than 

pixel intensities. 

 

10. Discriminative structural similarity measure 

 

This similarity measure was designed specifically for endoscopic video and 

virtual endoscopic images. Its calculation is complex, and involves breaking the 

image into many small sub-regions, rejecting those with characteristics 

unfavorable for matching the two images, and keeping those likely to contain 

meaningful structural information. Its definition can be found elsewhere32, and 

will not be included here for conciseness. 

 

8.2.4 Gaussian smoothing for virtual images 

 

 Virtual endoscopic images contain no noise, and the edges are very sharply defined. 

This is not the case for endoscopic video frames. It could be advantageous to apply 

Gaussian smoothing to the virtual images, which would smear the edges and make their 
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appearance more similar to that in video frames. To test this hypothesis, the volumetric 

grid search was run with three different Gaussian kernels applied to the virtual image: 5 

x 5 with σ = 1 pixel, 9 x 9 with σ =2.6 pixels, and 13 x 13 with sigma = 5.2 pixels. The 

standard deviations were chosen such that the corner elements of the kernel were 

~0.0025 for each size. Examples of a virtual image smoothed with the three kernels are 

shown in Figure 41. 

 

 

 

 

Figure 41: Examples of the Gaussian smoothing kernels applied to virtual endoscopic 
images. (a) No smoothing. (b) 5 x 5 kernel, σ = 1 pixel. (c) 9 x 9 kernel, σ = 2.6 pixels. (d) 
13 x 13 kernel,  σ = 2.6 pixels. 
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8.2.5 Edge-preserving smoothing for video frames 

 

 The major features present in both video frames and virtual images are structural 

edges and the overall changes lighting with distance from the camera. The virtual image 

surfaces are smooth, but the video frames contain variable textures in the epithelial 

tissue. It could be advantageous to smooth out these surface textures while preserving 

structural edges. To test this hypothesis, the volumetric search was run using the 

bilateral filter81 to smooth the registration frames. This filter was applied to color 

images prior to grayscale conversion. It has two parameters 𝜎𝑐𝑜𝑙𝑜𝑟 and 𝜎𝑠𝑝𝑎𝑐𝑒 that 

determine its extent in color and coordinate space, respectively. Three combinations 

were chosen: 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 15, 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 30, and 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 45. Examples 

of a video frame smoothed with these filters are shown in Figure 42. 
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Figure 42: Examples of the bilateral filters applied to endoscopic video frames. (a) No 
filter. (b) 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 15. (c) 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 30. 𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 45.  

 

 

 

8.2.6 Downsampling 

 

 Downsampling images to a lower resolution is a common approach in image 

registration algorithms. It is generally used in a pyramid implementation, where the 

images are filtered and downsampled one or more times, and the registration results at 

lower resolutions are used to initialize the registration at higher resolutions. The 
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concept of a pyramid implementation does not extend as naturally to endoscopy-CT 

registration because the video frame and virtual image do not move on top of each 

other. However, it could be advantageous to downsample the video frames and virtual 

images for similarity calculations. To test this hypothesis, the volumetric grid search 

was run with the images downsampled to 0.5 and 0.25 times their original sizes. 

Downsampling was performed by smoothing the images with a 5 x 5 Gaussian kernel 

and discarding every other row and column. Examples of the downsampled images are 

shown in Figure 43. To test the potential use of a pyramid implementation, the 

registered coordinates from lower resolutions were refined with a simplex optimization 

over a small search space set by 

 

 ∆𝑠𝑖𝑚𝑝𝑙𝑒𝑥= (0.5 𝑚𝑚, 0.5 𝑚𝑚, 0.5 𝑚𝑚, 1 𝑑𝑒𝑔, 1 𝑑𝑒𝑔, 1 𝑑𝑒𝑔) (48) 

 

 

 

 

Figure 43: Examples of 2x and 4x downsampled virtual endoscopic images. 
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8.2.7 Masking 

 

 There are generally differences between the anatomical structures seen in the 

endoscopic video frames and those seen in the virtual images. When these differences 

are large, they can prevent the similarity measure from finding a good match near the 

correct endoscope coordinates. This is discussed in more detail in Section 6.4.3, and an 

example of the structural differences is given in Figure 33. It could be advantageous to 

mask out the areas in the registration frames that contain any structural differences. To 

test this hypothesis, the volumetric grid search was run using the structure masks 

created for the virtual endoscopy lighting optimization, which are discussed in Section 

6.2.4.1. An example of these masks is given in Figure 25. 

 

8.2.8 Analyses of calibration parameters 

 

 Calibration parameters were not available for the PMH cohort patient (see Section 

6.2.1). In the analyses described in Sections 8.2.8.1 and 8.2.8.2, only the two endoscopic 

examinations of patient MDA1 were used, with a total of 27 registration frames. 

 

8.2.8.1 View angle 

 

 Camera calibration provides the focal length of the endoscope’s camera, which is 

used to set the view angle of the virtual camera with Equation 9. The calibrated view 

angle for the endoscope used in these analyses was 49.55 degrees. To investigate the 
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sensitivity of registration accuracy to the view angle, the volumetric grid search was 

run with the virtual camera’s view angle set to 40, 45, 55, and 60 degrees. Examples of 

virtual images rendered with these view angles are shown in Figure 44. 

The goal of the grid searches was to determine if an approximate view angle could 

be used in place of a calibrated view angle for endoscopy-CT registration. However, this 

does not consider the effect that the view angle has on projective measurements, even if 

accurately-registered endoscope coordinates can be obtained. To investigate this effect, 

the virtual endoscope was placed at the ground-truth coordinates, and the world 

transform was taken with the camera’s view angle set to 40, 45, 55, and 60 degrees. The 

changes to the virtual image when the view angle is modified are radially symmetric, 

and their magnitude is larger farther from the center of the image. It may be the case 

that projective errors remain acceptably small within some central region of the image. 

To test this hypothesis, the world transforms were sampled using a series of five 

circular ROIs with evenly-spaced radii out to the image edge. These are shown in Figure 

45. 
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Figure 44: Examples of virtual endoscopic images rendered with variable view angles 
for the virtual camera. (a) 40 degrees. (b) 45 degrees. (c) 49.55 degrees, the view angle 
obtained from the camera calibration described in Section 3.4. (d) 55 degrees. (e) 60 
degrees. 
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Figure 45: The circular ROIs used to sample projective errors for the analysis of 
calibration parameters. Their radii are 329, 263, 197, 132, and 66 pixels. They cover 
90%, 66%, 38%, 17%, and 4% of the total image area, respectively. 

 

 

 



171 
 

8.2.8.2 Distortion parameters 

 

 Camera calibration provides a set of five distortion parameters, which are used to 

remove distortion from endoscopic video frames. A detailed description of the 

distortion model is given in Section 3.4.1. Three of the parameters describe radial 

distortion and two describe tangential distortion, and the calibrated values are 

(-0.3858, 0.212, -0.00115, 0.00083, -0.075). It was observed that for the endoscope 

used in these analyses, the distortion could be adequately modeled using only the first 

radial distortion parameter. To investigate the sensitivity of registration accuracy to the 

model used to remove distortion from the registration frames, the volumetric grid 

search was run with the first radial distortion parameter set to -0.27, -0.18, -0.09, and 0. 

This range of values covers full distortion removal with -0.27 to no distortion removal 

with 0. The other four parameters were set to 0. Examples of video frames processed 

with these reduced models are shown in Figure 46.  

 The goal of the grid searches was to determine if an approximate distortion model 

could be used in place of a calibrated model for endoscopy-CT registration. However, 

this does not consider the effect that the distortion model has on projective 

measurements, even if accurate registered endoscope coordinates can be obtained. To 

investigate this effect, the virtual endoscope was placed at the ground-truth 

coordinates, and the world transform was resampled with bilinear interpolation after 

distorting the virtual image pixel grid with the first radial coefficient set to -0.27, -0.18, -

0.09, and 0. The other four parameters were set to 0. As with the view angle, the 

changes to the virtual image when the first radial distortion parameter is modified are 
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radially symmetric, and their magnitude is larger further from the center of the image. 

It may be the case that projective errors remain acceptably small within some central 

region of the image. To test this hypothesis, the world transforms were sampled using 

the five circular ROIs shown in Figure 45. 
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Figure 46: Examples of distortion removal with reduced distortion models. These 
endoscopic video frames are from a recording of the calibration rig described in Section 
3.4.2. The red dots were added digitally prior to distortion removal to provide a 
reference point. (a) Distortion was removed with the parameters set to (-0.27, 0, 0, 0, 
0). The result is very similar to distortion removal with the full model, which can be 
seen in Figure 5. (b) Distortion was removed with the parameters set to (-0.18, 0, 0, 0, 
0). (c) Distortion was removed with the parameters set to (-0.09, 0, 0, 0, 0). (d) No 
distortion removal. The parameters were set to (0, 0, 0, 0, 0), so the only change in the 
image was the principal point shift described in Section 3.4.3. This shift accounts for the 
uneven black borders around the image. 
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8.3 Results 

 

8.3.2 Similarity measures 

 

 The registration accuracy for each similarity measure was quantified by the median 

projective measurement error between the world transforms of the ground-truth 

virtual image and the registered virtual image obtained with the volumetric grid search. 

The results for each similarity measure are summarized in Table 20. Many of the 

similarity measures had a large number of failed frames, which were identified 

subjectively as frames for which the registered virtual image did not contain any 

recognizable structures. Most failed frames were false matches where the virtual 

endoscope was directly in front of a wall. 

Only incremental sign distance and gradient-weighted mutual information had no 

failed frames. Gradient-weighted mutual information had the best performance overall, 

even when failed frames were excluded from the analysis. Its median projective errors 

were significantly smaller than those of all other similarity measures (p < 0.001 using 

the Wilcoxon signed-rank test). However, registration errors were large overall, with an 

average of 9.1 ± 5.7 mm for gradient-weighted mutual information. Based on these 

results, gradient-weighted mutual information was used as the similarity measure for 

all subsequent analyses discussed in this chapter. 
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Table 20: Results of the volumetric grid searches for all similarity measures. The second 
column gives the number of failed frames, which were identified subjectively. The third 
column gives the average median projective measurement error between the ground-
truth and registered world transforms. The third column gives this value when failed 
frames are excluded from the average. Gradient-weighted mutual information had the 
best performance overall. 

Similarity 
measure* 

# of failed 
frames 
(% of total) 

Median error 
overall (mm) 

Median error 
excluding failed 
frames (mm) 

    

PC 14 (30.4) 12.9 ± 7.3 11.0 ± 7.0 
CR 36 (78.3) 22.8 ± 9.3 14.1 ± 8.2 
SR 14 (30.4) 13.3 ± 7.8 9.6 ± 6.0 
MS 46 (100.0) 31.1 ± 26.3  
L2N 14 (30.4) 13.0 ± 7.4 11.1 ± 7.2 
ISD 0 (0.0) 15.7 ± 6.4 15.7 ± 6.4 
MI 37 (80.4) 22.7 ± 9.1 12.9 ± 8.5 
GWMI 0 (0.0) 9.1 ± 5.7 9.1 ± 5.7 
MIGM 16 (34.8) 18.6 ± 8.5 14.6 ± 7.2 
DSSM 23 (50.0) 18.5 ± 7.9 14.8 ± 7.2 
    

*PC = Pearson correlation, CR = correlation ratio, SR = Spearman’s rho, MS = material 
similarity, L2N = normalized square L2 norm, ISD = incremental sign distance, MI = mutual 
information, GWMI = gradient-weighted mutual information, MIGM = mutual information 
of gradient magnitudes, DSSM = discriminative structural similarity measure. 
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8.3.2.1 Histogram bins 

 

 Mutual information is calculated using the joint histogram of the two images. The 

video frames and virtual images are 8-bit, so in all analyses presented so far in this 

dissertation, the joint histogram was computed with 256 bins. It could be advantageous 

to reduce the number of bins. To test this hypothesis, an additional set of volumetric 

grid searches was performed with the number of histogram bins set to 128, 64, and 32. 

The results are given in Table 21. 128 bins had the best performance, with an average 

median projective measurement error of 8.7 ± 5.6 mm, compared to 9.1 ± 5.7 mm with 

256 bins. This difference was statistically significant (p < 0.05 using the Wilcoxon 

signed-rank test), and the median error was improved for 32 out of 46 frames. 

 

 

 

Table 21: Results of the volumetric grid searches with different numbers of histogram 
bins. The second column gives the average median projective measurement error 
between the ground-truth and registered world transforms, and the third column gives 
the number of frames with a smaller median error than that with 256 bins. 128 bins 
had the best performance.  

Histogram bins 
Average median 
error (mm) 

# of frames improved 
(% of total) 

   

256 9.1 ± 5.7  
128 8.7 ± 5.6 32 (70) 
64 8.9 ± 6.2 30 (65) 
32 9.4 ± 6.1 25 (54) 
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8.3.3 Gaussian smoothing for virtual images 

 

 The results of the volumetric grid searches with different levels of Gaussian 

smoothing applied to the virtual endoscopic images are given in Table 22. All kernels 

resulted in smaller median projective errors relative to those for the 3 x 3 kernel, which 

was the base level of smoothing applied to all images throughout this dissertation. 

However, the improvement was statistically significant only for the 5 x 5 kernel (p < 

0.05 using the Wilcoxon signed-rank test). 

 

 

 

Table 22: Results of the volumetric grid searches with Gaussian smoothing of the virtual 
endoscopic images. The second column gives the average median projective 
measurement error between the ground-truth and registered world transforms, and 
the third column gives the number of frames with a smaller median error than that with 
the 3 x 3 kernel. All kernels resulted in reduced errors, but the difference was only 
statistically significant for the 5 x 5 kernel.  

Gaussian kernel 
Average median 
error (mm) 

# of frames improved 
(% of total) 

   

3 x 3, σ = 1.0 9.1 ± 5.7  
5 x 5, σ = 1.0 8.7 ± 5.5 29 (63) 
9 x 9, σ = 2.6 8.7 ± 5.6 28 (61) 
13 x 13, σ = 5.2 8.5 ± 5.5 29 (63) 
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8.3.4 Edge-preserving smoothing for video frames 

 

 The results of the volumetric grid searches with different bilateral filters applied to 

the endoscopic video frames are given in Table 23. There was no significant 

improvement in the median projective errors with any of the filters (p > 0.05 using the 

Wilcoxon signed-rank test). 

 

 

 

Table 23: Results of the volumetric grid searches with edge-preserving smoothing of 
the endoscopic video frames. The second column gives the average median projective 
measurement error between the ground-truth and registered world transforms, and 
the third column gives the number of frames with a smaller median error than that with 
no smoothing. There was no significant improvement with any level of edge-preserving 
smoothing. 

Filter 
Average median 
error (mm) 

# of frames improved 
(% of total) 

   

None 9.1 ± 5.7  
𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 15 9.2 ± 6.2 21 (45.7) 

𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 30 9.0 ± 5.9 28 (60.9) 

𝜎𝑐𝑜𝑙𝑜𝑟 = 𝜎𝑠𝑝𝑎𝑐𝑒 = 45 10.9 ± 7.0 20 (43.5) 
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8.3.5 Downsampling 

 

 The results of the volumetric grid searches with 2x and 4x downsampling are given 

in Table 24. Both levels of downsampling, and the subsequent refinement with a 

pyramid implementation, resulted in smaller median projective errors relative to those 

for the full-resolution images. However, the improvement was statistically significant 

only for 4x downsampling (p < 0.05 using the Wilcoxon signed-rank test). The 

refinement of the registered coordinates with a pyramid implementation made the 

results worse, and this difference was also statistically significant (p < 0.01 using the 

Wilcoxon signed-rank test). 

 

 

 

Table 24: Results of the volumetric grid searches with downsampled images. The 
second column gives the average median projective measurement error between the 
ground-truth and registered world transforms, and the third column gives the number 
of frames with a smaller median error than that with the full-resolution images. 4x 
downsampling had the best results, but the pyramid refinement made them worse.  

Downsampling 
Average median 
error (mm) 

# of frames improved 
(% of total) 

   

None 9.1 ± 5.7  
2x 9.0 ± 6.2 26 (57) 
2x pyramid 9.0 ± 6.2 28 (61) 
4x 7.8 ± 5.1 30 (65) 
4x pyramid 8.1 ± 5.4 29 (63) 
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8.3.6 Masking 

 

 The average median projective measurement error with the structure masks 

applied to the images was 5.5 ± 3.9 mm. The median error found with the unmasked 

images was 9.1 ± 5.7 mm. This difference was statistically significant (p < 0.001 using 

the Wilcoxon signed-rank test), and it was the largest improvement found with any of 

the image processing parameters. The median projective error was improved for 33 

frames, which is 72% of the total number. 

 

8.3.7 Analyses of calibration parameters 

 

8.3.7.1 View angle 

 

 The results of the volumetric grid searches with different view angles used for the 

virtual camera are given in Table 25. The world transforms of the ground-truth and 

registered virtual images were taken with the calibrated view angles, so these values 

provide the same measure of registration accuracy as the previous tables in this 

chapter. The results with the reduced view angles of 40 and 45 degrees were worse 

than those with the calibrated view angle, and these differences were statistically 

significant (p < 0.05 using the Wilcoxon signed-rank test). However, the results with the 

increased view angles of 55 and 60 degrees were not significantly different from those 

with the calibrated view angle. 
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 The results of the projective error analysis using the five circular ROIs are shown in 

Figure 47. When the virtual camera view angle was set to 45 degrees or 55 degrees, the 

majority of projective errors remained within 2 mm for all ROIs. With view angles of 40 

and 60 degrees, the average median projective errors in each ROI were at least twice as 

large as their counterparts with view angles of 45 and 55 degrees. Interestingly, moving 

from the largest ROI to the intermediate ROIs tended to increase the spread of the 

projective errors, with smaller lower quartiles, larger upper quartiles, and often larger 

medians. For all view angles, the two smallest ROIs had smaller average median 

projective errors than the three largest ROIs.  

 

 

 

Table 25: Results of the volumetric grid searches with different view angles for the 
virtual camera. The second column gives the average median projective measurement 
error between the ground-truth and registered world transforms. The third row 
contains the reference value obtained with the calibrated view angle. View angles larger 
than the calibrated value did not result in increased error. 

View angle (deg) Average median error (mm) 
  

40 12.2 ± 7.0 
45 10.6 ± 7.0 
49.55 9.9 ± 6.8 
55 10.1 ± 7.1 
60 9.9 ± 7.7 
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Figure 47: Projective measurement errors induced by changes to the view angle of the 
virtual camera. These plots show the median projective measurement error for all 
registration frames when the virtual camera’s view angle is changed from the calibrated 
value of 49.55 degrees. For each view angle, the five plots correspond to the five 
circular ROIs shown in Figure 45, with the largest on the left and the smallest on the 
right. The boxes show the median and the quartiles, and the whiskers show the 
minimum and maximum. With view angles of 45 and 55 degrees, the majority of 
projective errors are less than 2 mm. Interestingly, sampling with the mid-sized ROIs 
tended to increase the median error and the spread of the errors. 

 

 

 

8.3.7.2 Distortion parameters 

 

 The results of the volumetric grid searches with the four reduced models used to 

remove distortion from the registration frames are given in Table 26. The world 

transforms of the ground-truth and registered virtual images were not affected by the 

distortion model, so these values provide the same measure of registration accuracy as 
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the previous tables in this chapter. The average median projective measurement errors 

were nearly the same for every model, and there were no significant differences 

between them (p > 0.05 using the Kruskal-Wallis H-test). 

 The results of the projective error analysis using the five circular ROIs are shown in 

Figure 48. Median projective measurement errors remained small for all distortion 

models and all ROIs. Even with no distortion removal and the largest ROI, the maximum 

error was less than 1 mm. The exclusion of peripheral points with the smaller circular 

ROIs consistently reduced errors for all distortion models. When the distortion 

parameters were set to (-0.27, 0, 0, 0, 0), which approximates the calibrated values as 

shown in Figure 46, all errors in all ROIs were less than 0.02 mm.   

 

 

 

Table 26: Results of the volumetric grid searches with different models used to remove 
distortion from the registration frames. The second column gives the average median 
projective measurement error between the ground-truth and registered world 
transforms. The first row contains the reference value obtained with the calibrated 
distortion model. Equivalent results were obtained with all models. 

Distortion parameters Average median error (mm) 
  

(-0.3858, 0.212, -0.00115, 0.00083, -0.075) 9.9 ± 6.8 
(-0.27, 0, 0, 0, 0) 9.9 ± 6.7 
(-0.18, 0, 0, 0, 0) 9.9 ± 6.6 
(-0.09, 0, 0, 0, 0) 10.1 ± 6.6 
(0, 0, 0, 0, 0) 9.8 ± 6.4 
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Figure 48: Projective measurement errors induced by changes to the distortion model. 
These plots show the median projective errors for all registration frames when the 
distortion model is changed from the calibrated values. For each model, the four plots 
correspond to the four largest circular ROIs shown in Figure 45. The smallest ROI was 
omitted because the maximum error for all frames and all models was less than 0.05 
mm. The errors for (-0.27, 0, 0, 0, 0) are not shown because they were less than 0.02 
mm for all frames and all ROIs. Even with no distortion removal and the largest ROI, the 
maximum projective error was less than 1 mm. 

 

 

 

8.4 Discussion 

 

8.4.1 Similarity measures and preprocessing 

 

 Many similarity measures had a large number of failed frames, where the 

registered virtual endoscope image was a meaningless view in front of the wall. In these 
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views, the virtual image contains no recognizable structure, and consists of smooth 

intensity gradients. It is unclear why this occurred so often for a variety of similarity 

measures. It is also surprising that the discriminative structural similarity measure, 

which was designed specifically for endoscopic video and virtual endoscopy, had weak 

performance. However, it was developed on bronchoscopic images, and there are 

several parameters that influence its calculation. For this analysis, these parameters 

were set to the values used in the publication32, so it is possible that better performance 

could be obtained with different values. Gradient-weighted mutual information was the 

best similarity measure, and calculating it with 128 histogram bins rather than 256 

further improved the registration accuracy. 

 Among the preprocessing parameters, Gaussian smoothing of virtual images, 

downsampling of both images, and masking both images to avoid structural disparities 

all improved the registration accuracy. With Gaussian smoothing, a 5 x 5 kernel with σ = 

2.6 provided the best results. With downsampling, reducing the resolution by a factor of 

4 from (659, 486) to (165, 122) provided the best results. Interestingly, refining these 

results at higher resolutions with a pyramid implementation resulted in worse 

registration accuracy. It is not clear why this occurred, but perhaps the sharp edges and 

other irregularities of virtual images are smoothed out by downsampling, allowing 

more stable matching to video frames. The concept of a pyramid implementation does 

not extend naturally to endoscopic video and virtual endoscopy, because the images do 

not move on top of each other during the optimization process. 

 By far, the largest reduction in projective measurement error was obtained by 

using the structure masks described in Section 6.2.4.1. This shows that one of the major 
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sources of error in endoscopy-CT registration is the structural disparities between 

endoscopic video and virtual endoscopy discussed in Section 6.4.3. This analysis shows 

that masking certain regions out of the similarity calculation can reduce the impact of 

these disparities. Future studies should investigate automatic generation of such masks, 

as the manually-drawn masks used for this analysis are time-consuming, and the results 

may suffer from inter-user variability. 

 

8.4.2 Calibration parameters 

 

 These analyses show that endoscopy-CT registration is more sensitive to accurate 

determination of the endoscope camera’s view angle than its distortion model. The 

registration accuracy was reduced when the virtual camera’s view angle was set to be 

smaller than the calibrated value, but not when it was set larger. Projective 

measurement errors were also found to be more sensitive to the view angle than the 

distortion parameters. When the view angle was set to the calibrated value ± 5 degrees, 

the majority of projective measurement errors remained within 2 mm, which may be an 

acceptable uncertainty. Interestingly, taking projective measurements within a central 

region of the image did not have the expected reduction in error for the various view 

angles. This is illustrated in Figure 47 by the increased spread of the quartiles when 

moving from the largest circular ROI to the mid-sized ROIs. The likely cause for this 

effect is that the peripheral regions of a virtual endoscopic image generally contain the 

areas of the surface that are closest to the camera. This measurement distance sets a 

soft upper limit on the magnitude of projective errors, so when these points were 
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excluded by a smaller ROI, the apparent spread of measurement errors in the box plot 

increased.  

 Registration accuracy was not affected by changes to the distortion model, even 

when distortion was not removed at all from the registration frames. The projective 

measurement errors introduced by changes to the distortion model were smaller than 

those introduced by changes to the view angle, and the maximum error with no 

distortion removal and the largest ROI was still less than 1 mm. Projective 

measurements within central regions of the images had even smaller errors, which is 

illustrated in Figure 48. This was expected, because the magnitude of the distortion 

increases with radial distance from the center of the image. 

 The motivation for the analyses of view angle and distortion model was to 

determine if it would be feasible to register endoscopic video to CT if the endoscope’s 

calibration parameters were not available. The results show that an exact distortion 

model is not necessary. A reduced model with a single radial distortion parameter is 

sufficient for accurate registration and introduces minimal error to the projective 

measurements. However, the view angle must be known with some accuracy. The 

results show that with a view angle as much as 5 degrees larger than the calibrated 

value, registration accuracy is not affected, and the errors introduced to the projective 

measurements are on the order of 2 mm. If an approximate view angle were to be used, 

the user might start from the manufacturer’s specification, which is 90 degrees for the 

ENF-VQ endoscope used in this analysis. If this is assumed to be the diagonal view 

angle, it corresponds to a vertical view angle of about 61 degrees. The calibrated view 
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angle for the endoscope was 49.55 degrees, so this approximation would likely 

introduce unacceptable registration errors. 
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9 

Discussion 

9.1 Specific aim 1 

 

Specific aim 1: Develop, test, and optimize a method to register endoscopic video of the 

head and neck to CT 

 

Hypothesis: Endoscopic video frames can be registered to CT with an accuracy of 5 mm 

in rigid phantoms and 10 mm in patients. 

 

The development of the path-based volumetric search, a novel registration 

algorithm for endoscopic video presented in Section 4.3, was essential to the 

completion of this aim. The structure of this dissertation presents that algorithm and 

the established frame-to-frame tracking algorithm as though they were selected from 

the outset and then tested on phantoms and patients. However, path-based volumetric 

search was devised and implemented early in the development of this body of research 

specifically to overcome the limitations of frame-to-frame tracking. One major 

drawback of frame-to-frame tracking is that an initial set of virtual endoscope 

coordinates must be established, which is not a trivial task. The other major drawback 
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is that the virtual endoscope can become lost. This was apparent in the bolus phantom, 

in which frame-to-frame tracking failed to reach any of the registration frames until the 

virtual endoscope was manually placed near the bolus and tracking was restarted. It 

was even more apparent in patients tests, in which frame-to-frame tracking failed for 

many frames even after being restarted, and had very large registration errors overall. 

It may be possible to automatically identify when the virtual endoscope is starting to 

drift off track and correct, but preliminary tests trying to identify failure points based 

on changes in the similarity measure did not provide meaningful results. 

The strengths of the path-based volumetric search are its ability to search the 

entire volume in a reasonably efficient manner, and that the virtual endoscope view 

directions initialized using the path will always be reasonably close to the correct view 

direction except in the most extreme cases. One weakness is the requirement of manual 

input to create the path, which would introduce some inter-user variability. Another 

weakness is long computation times of ~15 minutes to register a single frame, which is 

certainly too long for routine clinical application. However, this project was approached 

with the goal of exploring feasibility rather than developing efficient software, and 

there are many ways that this algorithm could be made more computationally efficient. 

Two of the most salient targets to reduce computation times are parallel computing 

when performing the coarse search, and restriction of the search space to a smaller 

volume near the endoscope’s position, rather than the entirety of the airways in the 

head and neck. 

 Phantom tests of image registration are presented in Chapter 5. In these tests, path-

based volumetric search achieved a median point measurement error of 3.0 mm and a 
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median symmetric mean absolute distance (SMAD) between measured and ground-

truth bolus contours of 3.5 mm. This confirms the hypothesis that endoscopic video 

frames can be registered to CT with an accuracy within 5 mm. Patient tests of image 

registration are presented in Chapter 6. There were no fiducial markers with ground 

truth coordinates in patient tests, so registration accuracy was quantified by the median 

projective measurement error relative to a ground-truth virtual endoscopic image. The 

median registration accuracy with path-based volumetric search was 9.9 mm. 

Registration accuracy was further improved by several of the image processing 

parameters incorporated in Chapter 8, particularly when the structure masks were 

used to compute similarity only in certain regions of the images. This confirms the 

hypothesis that endoscopic video frames can be registered to CT with an accuracy 

within 10 mm. However, there were many frames with larger errors, and registration 

tests were not possible on two of the patients. These limitations suggest that 

endoscopy-CT registration may not be robust enough for clinical application, even if the 

registration accuracy can be further improved to clinically-acceptable levels. 

 One feature common to all sets of measurements taken in phantoms and patients 

was the presence of very large outliers. This is an inherent characteristic of projective 

measurements with virtual endoscopy, and it generally occurs when a projected point is 

near an occluding edge in the scene with a large distance behind it. A small change in 

the virtual endoscope’s position or orientation can cause the point to miss the edge and 

intersect the surface behind it instead, leading to errors as large as 100 mm or more. 

Errors such as these would generally be apparent in the context of the object that is 

being mapped from endoscopy to CT space, but they do pose a challenge for developing 
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a robust endoscopy-CT mapping tool that could be incorporated into the radiotherapy 

workflow. Both the phantom and patient studies found that the geometry of the surface 

mesh can provide information about the expected measurement uncertainty in 

different areas of the virtual endoscopic image. A dependence of measurement error on 

the distance between the endoscope and the surface was found consistently, and the 

edge masks described in Section 4.4.4 were found to be useful in excluding large-error 

points from sets of projective measurements. 

 

9.2 Specific aim 2 

 

Specific aim 2: Investigate the sources of uncertainty in projective mapping via virtual 

endoscopy and determine their impact on endoscopy-CT registration. 

 

Hypothesis: Patient positioning will have the largest impact on registration errors. 

 

  Two of the major sources of uncertainty in endoscopy-CT image registration are 

the non-rigid anatomy of the airway surfaces in the head and neck, and the differences 

in patient positioning between seated endoscopic examinations and supine CT scans. 

These were investigated by taking repeated projective measurements in different CT 

scans with the virtual endoscope placed at the same position. The influence on non-

rigid anatomy was investigated using a set of radiotherapy patients who had daily 

treatment-room CT imaging in the same position as the simulation CT, and the influence 

of patient positioning was investigated using diagnostic CTs of the same patients. In 
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diagnostic CTs, the patients’ head, neck, and shoulders are not positioned in any 

particular way, so the differences in projective measurements provide some insight into 

the importance of reproducing the simulation-CT position for projective measurements 

with virtual endoscopy. This study has been described in more detail in Chapter 7. 

 In the daily CT scans, the projective measurement errors were on the order of 1.5-

3.0 mm, and their magnitudes were dependent on anatomical region. The errors were 

larger in the diagnostic scans, on the order of 3.5-4.5 mm. This confirms the hypothesis 

that patient positioning has a larger impact on registration uncertainty than daily 

anatomical variations. These analyses suggest that daily variations and patient 

positioning difference impose a lower limit of 3-5 mm on the uncertainty of endoscopy-

CT image registration, which is not insignificant in the context of applications to 

radiotherapy. Furthermore, the results of this study account only for the virtual 

endoscopic manifestations of these sources of uncertainty. It is likely that patient 

positioning differences also affect the anatomical configuration as it appears in 

endoscopic videos, so further studies will be necessary to fully understand their 

influence on registration uncertainty. 

 The third component of this specific aim was the analysis of the impact of 

variations in the camera calibration parameters on registration accuracy and projective 

measurement errors. This analysis has been presented in Sections 8.2.8 and 8.3.7. The 

calibration is not a source of uncertainty in the same sense as are anatomical variations. 

Instead, this analysis sought to determine whether or not endoscopy-CT registration 

was feasible in a scenario where the endoscope’s calibration parameters were not 

available. Unlike CT, for which a DICOM file contains all the information necessary for 



194 
 

registration to another CT, an endoscopic video file does not contain the information 

necessary to remove distortion or set the view angle of the virtual endoscope. 

 The distortion model was found to have no impact on registration accuracy, and 

changes to the model introduced projective measurement errors of less than 1 mm in 

the worst case. Additionally, a reduced distortion model was found to provide 

equivalent results to the calibrated model.  These results show that knowing the 

distortion component of the camera calibration may not be necessary for accurate 

endoscopy-CT registration. However, changes to the virtual endoscope’s view angle had 

a larger impact, both in terms of registration accuracy and projective measurement 

errors. These results show that without a way to set the virtual endoscope’s view angle 

with ~5 degrees of the calibrated value, accurate registration will not be possible. 

 

9.3 Principal hypothesis 

 

Principal hypothesis: Endoscopic video in the head and neck can be registered to CT 

without prospective physical endoscope tracking through the use of virtual endoscopy. 

 

 The results that are presented in Chapters 5 and 6 confirm the principal hypothesis 

that registration of endoscopic video in the head and neck to CT is possible. Though 

there were outliers with large registration errors, many endoscopic video frames were 

registered successfully, and the magnitudes of the anatomical uncertainties may prove 

to be manageable with further development of registration algorithms. However, the 

real problem with endoscopy-CT registration as presented in this dissertation is its 
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robustness. Out of three patients enrolled in the research protocol, registration was not 

possible for two. It may be that endoscopy-CT registration is only possible for a subset 

of head and neck radiotherapy patients, or it may be that greater consideration must be 

given to patient positioning for the endoscopic examination and to the segmentation 

methods that are used to create the virtual endoscopy surface mesh. Further studies 

with larger patient sets will be necessary to understand these problems. 

 

9.3 Future directions 

 

 One of the major limitations of the methods used in this dissertation is that they 

treat the virtual endoscopy surface mesh as a rigid structure, which is at odds with the 

non-rigidity of the airways of the head and neck. This is likely to be the sources of many 

of the large patient registration errors in which structural differences prevented the 

virtual endoscopic images from reproducing the appearance of the registration frame 

near the correct coordinates. An example of this is given in Figure 33. The importance of 

accounting for these structural differences is further demonstrated by the large 

increase in the registration accuracy when the structure masks are applied to remove 

these disparate regions from the similarity calculation (see Sections 8.2.7 and 8.3.6). 

Future work on this subject could incorporate a deformation model that allows the 

structure of the surface mesh to change. This could be done prior to registration based 

on the anatomical appearance of the endoscopic video, or as a part of the optimization 

process. An even simpler approach that could prove effective is to warp the registration 

frame onto the registered virtual image prior to making projective measurements. This 



196 
 

would help align the edges and prevent some of the large projective measurement 

errors that occur in those regions. 

 A related problem is segmenting the airways of the head and neck with sufficient 

detail to provide meaningful similarity calculations between endoscopic video frames 

and virtual endoscopic images. An example of this is given in Figure 24, in which the 

segmentation retained very little detail for the epiglottis. Rather than simply 

segmenting each patient’s CT with a density threshold, a better approach may be to 

create a finely-detailed generic model of the airway surfaces. This could be registered to 

individual patients’ CTs with an atlas-based approach, and could improve virtual 

endoscopic details for fine structures such as the epiglottis. 
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