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Abstract  

CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC 

TRAFFICKING 

Natalie Sirisaengtaksin, M.S. 

Supervisory Professor: Andrew J. Bean, Ph.D. 

 

 Endocytosis is a process by which cells internalize membrane proteins to remove them 

from the plasma membrane, allowing cells to regulate the cell surface expression of 

transmembrane proteins. In this manner, cellular responses to extracellular cues may be tuned by 

limiting the number of proteins available at the cell surface. One particular class of proteins, 

receptor tyrosine kinases (RTK), is internalized upon binding to extracellular ligands during their 

residence at the cell surface. The epidermal growth factor receptor (EGFR) is an RTK whose 

trafficking through the endocytic pathway through the cell is well-documented. Stimulation of 

EGFR with its cognate ligand, EGF, prompts EGFR entry into the endocytic pathway and 

simultaneously activates downstream signal transduction pathways that regulate physiological 

responses, such as survival, proliferation, and differentiation. Activated EGFRs continue to signal 

as they traverse the endocytic pathway until the ligand-receptor complex is included into vesicles 

that bud into the lumen of the multivesicular body (MVB). Inclusion into internal MVB vesicles 

designates EGFR for lysosomal proteolysis and extinguishes their signaling activity.  

 Ubiquitination is a post-translational modification that underlies some aspects of 

membrane protein trafficking. Ubiquitin modification allows EGFR recognition by endosomal 

protein complexes that mediate protein inclusion into MVB vesicles from those that remain on 

the MVB membrane for incorporation into other cellular structures (e.g. plasma membrane, 
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Golgi). The endosomal sorting machinery consists of a core group of cytosolic proteins that are 

recruited to the endosomal membrane, called the endosomal sorting complexes required for 

transport (ESCRT) machinery. A subset of ESCRT proteins bind directly to ubiquitin, allowing 

the sorting machinery to engage and manipulate the movement of protein cargo into inwardly 

budded MVB vesicles. Lack of a ubiquitin tag precludes EGFR from inclusion into vesicles that 

bud into the lumen of the MVB. The precise nature of coordination between the cellular 

machineries that govern ubiquitination and endosomal sorting are not well understood. 

 I have identified a protein interaction between UBE4B, an E3/E4 ubiquitin ligase, and the 

ESCRT-0 components, Hrs and STAM. ESCRT-0 is the first complex of the endosomal sorting 

machinery to bind to endosomes, and recognition by ESCRT-0 is required for EGFR sorting and 

degradation. Immunoprecipitation and ubiquitination assays revealed that UBE4B binds and can 

ubiquitinate the EGFR. Depletion of UBE4B resulted in impaired EGFR inclusion into inwardly-

budded MVB vesicles. EGFR inclusion was rescued more efficiently with the addition of 

recombinant UBE4B versus the addition of a ubiquitination-defective mutant, UBE4B(P1140A). 

These data suggest that the ubiquitination of EGFR by UBE4B is required for efficient EGFR 

sorting. Altering UBE4B expression in neuroblastoma cells revealed a negative correlation 

between UBE4B expression and proliferation, as well as altered proliferative responses to EGR 

inhibitors. These findings suggest a mechanism by which UBE4B may regulate cell proliferation, 

and reveals UBE4B as a potential target in neuroblastoma therapeutic development. 
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Chapter 1. Introduction 

1.1 Endocytosis: An Overview 

 The plasma membrane is a protective barrier that sequesters the interior of a cell from its 

external environment. This fluid structure blocks passage of material into the cells, but for the 

most part is selectively permeable to certain molecules and ions. Endocytosis is a multistep 

process by which cells internalize molecules that cannot freely pass through the plasma 

membrane. Not only does this pathway allow cellular uptake of nutrients, it facilitates constant 

reshaping of the membrane-bound protein population residing at the cell surface. Thus, 

endocytosis allows cells to quickly adapt to changes in their microenviroment. Defects in 

endocytosis has implications in cell migration, differentiation, antigen presentation, and pathogen 

entry.  

 The first step of the endocytic process is the internalization of macromolecules from the 

plasma membrane. Internalization of protein “cargo” (a term used here to indicate proteins that 

traverse the endocytic pathway) may occur by a number of distinct mechanisms. One specific 

type of internalization is dependent on clathrin, a cytosolic protein that self-assembles into ball-

shaped cages that encase vesicles as they bud from membranes, including those that bud into the 

cell from the plasma membrane (Roth and Porter, 1964; Pearse, 1976). Clathrin-dependent 

endocytosis was first described in the 1960s, with the advent of glutaraldehyde cell fixation 

(Sabatini et al., 1963; Roth and Porter, 1964). Images of clathrin acquired using electron 

microscopy revealed the shape and assembly of clathrin cages (Pearse, 1976). 

 Internalization of protein cargo may be constitutive or ligand-induced (Benmerah and 

Lamaze, 2007). Cargo that enter the cell constitutively are continuously internalized into clathrin-

coated vesicles at the plasma membrane, as seen in the case of low density lipoprotein receptor 

and the transferrin receptor (Anderson et al., 1982; Watts, 1985). Conversely, receptor cargo that 
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enter via the ligand induced pathway are internalized into clathrin-coated vesicles upon binding 

of cell surface receptors to extracellular ligands, which includes most growth factor receptors like 

Figure 1. Membrane proteins are downregulated by the endocytic pathway. 

Endocytosis is the major mechanism by which cells downregulate membrane protein 

expression at the plasma membrane. Proteins that reside on the cell surface of the plasma 

membrane are internalized into small vesicles that shuttle protein cargo from the surface 

to early endosomes. Proteins are incorporated into endosomal membranes upon vesicle 

fusion with endosomal membranes. Protein cargo remain on the limiting endosomal 

membrane until they are either included in membrane vesicles that bud outward from late 

endosomes (green arrows) or are sorted into luminal vesicles that bud into nascent 

multivesicular body (MVB). Protein sorting into MVB vesicles must occur in order for 

proteins to be degraded in the lysosome. 
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epidermal growth factor receptor (EGFR) (Sigismund et al., 2012; Beguinot et al., 1984; 

Benmerah and Lamaze, 2007). Both pathways converge as clathrin-coated vesicles fuse with 

endosomal membranes. Upon fusion, protein cargoes are integrated into endosomal membranes, 

where they remain until they are assigned one of three distinct metabolic fates. First, cargo may 

travel on membrane vesicles that bud outward from endosomes (Figure 1, green arrows). These 

vesicles travel from endosomes and fuse with various cellular structures, including the plasma 

membrane and the Golgi (Nothwehr et al., 2000; Felder et al., 1990). Second, cargo may be sorted 

into endosomal membrane invaginations that bud inward and are released into the lumen of 

endosomes (Figure 1, red arrow). These vesicles are delivered to the lysosome, resulting in protein 

degradation (Sigismund et al., 2012; Dunn, 1986). Third, cargo may remain on the limiting 

membrane of endosomes and become incorporated into lysosomal membranes upon fusion of late 

endosomes with lysosomes. The physical sorting of proteins into these discrete groups relies on 

the selective interaction of the molecular sorting machinery with protein cargo on endosomal 

membranes (Teo et al., 2004; Katzmann et al., 2003, 2001b; Bache et al., 2003; Babst et al., 

2002b; a). This critical step occurs at a subset of late endosomes, called the multivesicular body 

(MVB) (Katzmann et al., 2001b; Babst et al., 2002b; Bache et al., 2003).   

 

1.2 The ESCRT complexes sort protein cargo at the MVB 

 MVB formation occurs as invaginations of the late endosomal membrane bud inward and 

are released into the lumen of the organelle, resulting in a characteristic multivesicular 

morphological appearance (Teo et al., 2004; Katzmann et al., 2001b; Babst et al., 2002a; Bache 

et al., 2003). As a result, cargo proteins embedded within endosomal membranes are actively 

incorporated into luminal vesicle buds, separating them from other endocytic cargo destined for 

either transit to plasma membrane or lysosomal membrane (Gruenberg and Stenmark, 2004; Grant 
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and Donaldson, 2009; Slagsvold et al., 2006). Inclusion of protein into these endosomal vesicles 

require engagement with the molecular sorting machinery, called the endosomal sorting 

complexes required for transport (ESCRTs). 

 The ESCRTs comprise a multi-subunit machinery that sorts protein cargo into nascent 

MVBs, a highly evolutionarily conserved process (Schmidt and Teis, 2012). There are four unique 

ESCRT complexes: ESCRT-0, -I, -II, -III (Figure 2) (Schmidt and Teis, 2012; Katzmann et al., 

2003; Babst et al., 2002b; a; Bache et al., 2003). The ESCRT complexes are comprised of 

Figure 2. ESCRT complexes mediate the sorting of membrane proteins. 

Cytosolic proteins are recruited to endosomal membranes to form complexes that 

act in sequential order. First, ESCRT-0 binds to endosomes and recognizes and 

concentrates ubiquitinated protein cargo. ESCRT-I also recognizes ubiquitinated 

cargo and complete ESCRT-I assembly initiates the formation of ESCRT-II. 

ESCRT-III is the least stable of the ESCRTs, and binds to endosomes long enough 

to mediate membrane scission of inwardly budded vesicles. 
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cytosolic proteins that are recruited to endosomal membranes and assemble to perform specific 

tasks in the protein sorting process. ESCRTs were first identified in yeast as a subset of genes 

called the vacuolar protein sorting (vps) mutants whose expression were required for cargo 

delivery to the yeast vacuole (Raymond et al., 1992). Systematic knockout of these vps genes led 

to defects in cargo sorting and abnormal vacuolar morphology (Raymond et al., 1992). 

 ESCRT-0 initiates protein sorting at endosomal membranes. It is the first complex to bind 

to endosomes and engage with cargo proteins (Bilodeau et al., 2002; Schmidt and Teis, 2012; 

Katzmann et al., 2003). The complex is comprised of a 1:1 heterodimer between HGF-regulated 

tyrosine kinase substrate (Hrs) and signal transducing adaptor molecule (STAM). The Hrs/STAM 

complex is recruited to endosomes via the FYVE (Fab1/YOTB/Vac1/EEA1) domain of Hrs, 

which interacts with phosphatidylinositol-3-phosphate (PI3P), a phospholipid that is highly 

enriched in endosomal membranes (Schmidt and Teis, 2012; Raiborg et al., 2001). Hrs is also 

recruited to endosomes by SNAP-25, an interaction that requires the second coiled-coils domain 

of Hrs (Sun et al., 2003; Pullan et al., 2006; Bean et al., 1997; Raiborg et al., 2001). The C-

terminal glutamine- and proline-rich region also contributes to the endosomal localization of Hrs 

(Hayakawa and Kitamura, 2000). Both members of the ESCRT-0 complex contains multiple VHS 

domains (Vps27, Hrs and STAM domains) and ubiquitin interaction motifs (UIMs), which allows 

the complex to bind to ubiquitinated cargo (please see section 1.2 for a review on ubiquitination) 

(Schmidt and Teis, 2012; Bilodeau et al., 2002). Hrs binds to ubiquitin through a two-sided UIM 

domain and a single VHS domain (Hirano et al., 2006). The STAM protein binds ubiquitin 

through a single UIM domain and a single VHS domain (Bilodeau et al., 2002). In total, ESCRT-

0 may bind up to five ubiquitin moieties. Ubiquitin modification of cargo is required for their 

recognition by ESCRTs (Henne et al., 2011; Bilodeau et al., 2002; Katzmann et al., 2001b). The 

multiple binding sites within the complex emphasizes the importance of ESCRT-0 in cargo 

recognition (Bilodeau et al., 2002; Henne et al., 2011). Knockdown of either Hrs or STAM using 
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RNAi resulted in impaired lysosomal degradation of receptor cargo, suggesting that ESCRT-0 

function is essential for cargo inclusion into MVB vesicles (Komada, 2005). It is unclear whether 

ESCRT-0 contains multiple ubiquitin binding sites in order to allow binding to multiple 

ubiquitinated cargoes simultaneously, or to allow tighter binding to a single cargo through a single 

ubiquitin molecule, or to multiple ubiquitin moieties attached to the same cargo protein (Ren et 

al., 2009). 

 ESCRT-I was the first ESCRT complex that was fully characterized, and was first 

identified in yeast (Henne et al., 2011). The 350 kDa complex is composed of four protein subunits 

(Tsg101, Vps28, Vps37, and Mvb12) that come together in a 1:1:1:1 ratio (Raiborg and Stenmark, 

2009; Teo et al., 2004). Unlike ESCRT-0, which binds strongly to endosomes through the Hrs-

PI3P interaction, the only direct ESCRT-I association with endosomal membranes is a weak 

electrostatic interaction through the N-terminus of Tsg101. Instead, endosomal recruitment of 

ESCRT-I is dependent upon ESCRT-0 through the direct binding of Hrs to Tsg101 (Henne et al., 

2011). Like ESCRT-0, ESCRT-1 also interacts with ubiquitinated cargo through the ubiquitin E2 

variant (UEV) domain of Tsg101 (Pornillos et al., 2003).  

 ESCRT-I formation initiates the assembly of ESCRT-II (Schmidt and Teis, 2012). 

ESCRT-II is comprised of EAP20, EAP30, and EAP45 that bind in a 2:1:1 ratio (Hierro et al., 

2004; Teo et al., 2004; Im and Hurley, 2008). EAP45 encodes a GRAM-like ubiquitin binding in 

EAP45 (GLUE) domain that contains a binding site for Vps28, anchoring the ESCRT-II complex 

to ESCRT-I (Chu et al., 2006). The GLUE domain also allows engagement of EAP45 with PI3P 

and ubiquitinated cargo simultaneously. 

 ESCRT-III complex is the last of the ESCRTs to be recruited to endosomes. The 

components of the ESCRT-III complex are not well-defined, but is thought to be comprised of 

four core subunit proteins: CHMP2, CHMP3, CHMP4, and CHMP6 (Wollert and Hurley, 2010; 

Schmidt and Teis, 2012; Raiborg and Stenmark, 2009). Both CHMP2 and CHMP4 have multiple 
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isoforms (CHMP2A and B; CHMP4A, B, and C) (Raiborg and Stenmark, 2009). Unlike the other 

ESCRTs, which form stable complexes, ESCRT-III assembly on endosomes is transient. ESCRT-

III assembly begins with CHMP6, which is recruited to endosomes through direct N-terminal 

binding to endosomal membranes as well as binding to the ESCRT-II component EAP20. Because 

each ESCRT-II complex contains two EAP20 subunits, the assembly of two ESCRT-III 

complexes may occur simultaneously for each ESCRT-II complex (Raiborg and Stenmark, 2009). 

In contrast to ESCRT-0, -I, and –II, ESCRT-III does not bind to ubiquitinated cargo.  

 The ESCRT complexes act sequentially to concentrate ubiquitinated cargo and drive the 

formation of membrane buds, into which cargo may be captured and sequestered into MVBs 

following vesicle fission (Wollert and Hurley, 2010). First, ESCRT-0 clusters ubiquitinated cargo 

into microdomains of the endosomal membrane (Wollert and Hurley, 2010). Then, ESCRT-I and 

–II induce membrane budding into the lumen of the MVB, confining the ESCRT-0-clustered 

protein cargo within membrane buds (Wollert and Hurley, 2010). Finally, ESCRT-III mediates 

membrane scission, resulting in the release of the vesicle buds into the lumen of the MVB (Hurley, 

2010). Upon completion of membrane scission, ESCRT-III is disassembled by the AAA-ATPase, 

Vps4. It is known that ESCRT-III and Vps4 remain on the cytoplasmic face of the endosomal 

membrane to drive membrane budding away from the cytoplasm; however, the exact molecular 

mechanisms of this budding event are not completely understood (Babst et al., 2002a; Alonso Y 

Adell et al., 2016). 

 The ability of ESCRTs to recognize and bind to ubiquitinated cargo is essential to the 

protein sorting process, and ultimately, to lysosomal protein degradation (Bilodeau et al., 2002; 

Eden et al., 2012; Erpapazoglou et al., 2012; Katzmann et al., 2003; Longva et al., 2002). This 

suggests that ubiquitin modification is used as a signal that designates a protein for sorting into 

the MVB (Haglund and Dikic, 2012). Like endosomal protein sorting, ubiquitination is a highly 
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regulated process that is mediated by a specialized set of proteins, known as the ubiquitination 

machinery.  

   

1.3 Ubiquitination: An Overview 

 Ubiquitination (also called ubiquitylation) is a reversible post-translational modification 

wherein lysine residues of target proteins are modified by small ubiquitin moieties. Ubiquitin is a 

small, 76 amino acid protein. Seven of these amino acids are lysines that can be modified by 

another ubiquitin molecule (Swatek and Komander, 2016). Proteins may be modified by ubiquitin 

in distinct manners: 1) monoubiquitination, in which a single ubiquitin moiety is attached to a 

lysine residue of the target protein; 2) multiple monoubiquitination, in which a single ubiquitin 

moiety is attached to multiple lysine residues of a target protein; and 3) polyubiquitination, in 

which multiple ubiquitin modifications result in a ubiquitin chain that is attached to a lysine 

residue of the target protein (Mohapatra et al., 2013; Li and Ye, 2008). Polyubiquitin chain 

assembly is made even more complex as linkages are formed between ubiquitin molecules via 

seven distinct lysine residues: K6, K11, K27, K29, K33, K48, and K63 (Li and Ye, 2008; Swatek 

and Komander, 2016; Nathan et al., 2013). Chains may be homogenous, and contain only one 

type of linkage, or chains make contain multiple linkage types (Kim et al., 2007). The two most 

common types of linkages are K48 and K63 (Nathan et al., 2013; Kim et al., 2007; Li and Ye, 

2008). 

 

1.4 Ubiquitination is a multi-enzyme cascade 

The ubiquitination process requires the consecutive, sequential action of three types of enzymes: 

E1s, the ubiquitin-activating enzymes; E2s, the ubiquitin-conjugating enzymes; and E3s, the 
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ubiquitin ligases (Figure 3) (Komander and Rape, 2012; Swatek and Komander, 2016; Hershko 

and Ciechanover, 1998). 

 Initiation of the multienzyme ubiquitination cascade begins with the catalytic activation 

of ubiquitin by E1 enzymes. The human genome encodes only two ubiquitin-activating enzymes: 

UBA1 and UBA6 (Schulman and Wade Harper, 2009; Ye and Rape, 2009). The catalytic 

mechanism by which ubiquitin is activated is best characterized for UBA1. First, the E1 enzyme 

simultaneously binds to an ATP-Mg2+ complex and ubiquitin molecule. Then the E1 adds AMP 

to the C-terminal end of ubiquitin, resulting in the formation of a ubiquitin adenylate intermediate 

(Schulman and Wade Harper, 2009; Hershko and Ciechanover, 1998). The catalytic cysteine 

Figure 3. Ubiquitination requires the sequential action of three enzymes. 

The conjugation of ubiquitin onto a target substrate is called ubiquitination. Ubiquitination is a 

common post-translational modification process that requires the coordinated action of E1 

activating enzymes, E2 conjugating enzymes, and E3 ubiquitin ligases.  
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residue of the E1 binds the ubiquitin adenylate to form a high-energy thioester linked ubiquitin-

E1 complex (Hershko and Ciechanover, 1998; Schulman and Wade Harper, 2009). Binding of 

ubiquitin triggers a dramatic conformation change within the E1, exposing a negatively-charged 

groove within a ubiquitin fold domain. This region serves as an E2-binding site that is required 

for E1-E2 complex formation (Ye and Rape, 2009). 

 The ubiquitination process continues as the E1-ubiquitin complex engages an E2 

ubiquitin-conjugating enzyme. The E2 family of enzymes are comprised of 38 distinct proteins 

that interact with UBA1 and UBA6 (Ye and Rape, 2009). E2 binding specificity for the E1 

molecules depend upon lysine residues found in the a-helix 1 region of E2 proteins, which are 

not present in E2 enzymes that conjugate other ubiquitin-like modifiers (e.g. SUMO). 

Importantly, E2s also contain a ubiquitin-conjugating domain, which consists of a catalytic 

cysteine residue to which activated ubiquitin is transferred (Ye and Rape, 2009). In rare cases, an 

E2 may directly ubiquitinate a target substrate; however, the main function of an E2 is to carry 

activated protein to an E3 ubiquitin ligase (Cyr et al., 2002). 

 Finally, E3 ubiquitin ligases, either directly or indirectly, mediate the attachment of 

ubiquitin onto a target substrate protein. As can be inferred from the sheer number of E3s (~600 

to 1,000 distinct E3s), a single E2 may interact with several E3s (Ye and Rape, 2009). The 

imbalance in the number of E3 enzymes compared to E2 enzymes may be attributed to the 

conservative interaction of E3s with select target substrates (Shenoy, 2007). The manner by which 

1) E2s interact with E3s and 2) E3s transfer ubiquitin to its target substrates are dependent upon 

the identity of the E3, and will be detailed in the next section. 
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1.5 E3 ubiquitin ligases 

 Ubiquitin protein ligases, or E3 ligases, are crucial as they confer specificity and 

selectivity to the ubiquitination process (Hershko and Ciechanover, 1998). An E3 may act as a 

Figure 4. Ubiquitin ligases transfer ubiquitin onto target substrates in different 

manners. 

E3 ubiquitin ligases are grouped into different classes based on their catalytic domain. 

Different catalytic domains transfer ubiquitin and interact with E2 conjugating enzymes 

in distinct ways. HECT domain ligases take ubiquitin from E2 enzymes and conjugate 

ubiquitin onto target substrates directly. RING domain and U-box domain ligases bind 

to E2s and target substrates simultaneously, to bring E2s into close proximity to target 

substrates so that ubiquitin may be transferred from E2s to target substrates. U-box 

domain ligases can also catalyze E4 activity by binding to ubiquitin and coordinating 

ubiquitination with E1, E2, and E3 enzymes. 
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single protein with a catalytic domain, or an E3 may be a multiprotein complex composed of 

many proteins that act together to perform ubiquitination (d’Azzo et al., 2005). Whether acting as 

a single or multiprotein complex, ubiquitin ligases must possess three basic domains: 1) a 

substrate binding domain, 2) an E2 recognition domain, and 3) a catalytic ubiquitin ligase domain 

(Patterson, 2002). 

 E3 ligases are grouped into different classes, that are largely defined by their E2 

recognition domain and their catalytic domain. The three major classes of ubiquitin ligases are 

the HECT domain family, the RING domain family, and the U-box domain family (Figure 4).  

 The human genome encodes roughly 28 HECT-domain E3s (Buetow and Huang, 2016). 

Ubiquitin ligases within this class contain a conserved C-terminal HECT catalytic domain and an 

N-terminal substrate binding domain (Buetow and Huang, 2016). HECT-domain family members 

are the only ubiquitin ligases that can mediate the direct transfer of ubiquitin to its target substrate 

(Buetow and Huang, 2016; Ardley and Robinson, 2005). In a manner similar to E1s and E2s, 

HECT E3s rely on a central cysteine residue within the HECT domain to receive activated 

ubiquitin from E2s and to form an E3-thioester intermediate. Subsequently, the E3 selects its 

target substrate and transfers ubiquitin directly (Buetow and Huang, 2016).  

 RING E3s are the largest family of ubiquitin ligases, with bioinformatics analyses 

predicting hundreds of putative RING E3s encoded by the human genome (Buetow and Huang, 

2016; Ardley and Robinson, 2005). Members of this family contain a catalytic RING domain, 

which is required for recruitment of E2-ubiquitin complexes. These RING domains are enriched 

in cysteine and histidine, which enables this region to chelate two zinc atoms that aid in the correct 

folding of the RING domain (Ardley and Robinson, 2005). Unlike their HECT-domain 

counterparts, RING E3s are unable to catalyze protein ubiquitination directly. Instead, RING E3s 

promote the interaction between E2 enzymes and target proteins by binding the two proteins 
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simultaneously, bringing them in close proximity so that ubiquitin is transferred directly from the 

E2 to the substrate protein (Ardley and Robinson, 2005).  

 U-box E3s were the last major class of ubiquitin ligases to be identified. U-box ligases 

encode a 75-amino acid U-box motif that is structurally similar to the catalytic domain found in 

RING E3s, but lack the ability to chelate metal ions (Ardley and Robinson, 2005; Patterson, 2002). 

Given their strong similarities, it is not surprising that U-box ligases ubiquitinate their target 

substrates in a manner similar to that of RING E3s. U-box proteins bind their target substrates 

and E2 conjugating enzymes simultaneously, so that the E2 may transfer ubiquitin to target 

proteins (Ardley and Robinson, 2005). Unlike the vast number of proteins with putative RING 

ligase domains, there are only 19 predicted U-box domain-containing proteins encoded by the 

human genome (Patterson, 2002).  

 The prototypical U-box protein is the yeast ubiquitin ligase, Ufd2 (ubiquitin fusion 

degradation protein 2). Its discovery led to the introduction of a new class of ubiquitination 

enzymes, the E4 ubiquitin chain assembly factors (Koegl et al., 1999; Ardley and Robinson, 2005; 

Hatakeyama et al., 2001; Matsumoto et al., 2004; Hoppe, 2005). In conjunction with E1s, E2s, 

and E3s, E4s promote the efficient assembly of elongated ubiquitin chains. In the absence of an 

E4, construction of a ubiquitin chain is initiated, but terminates after a few ubiquitin molecules 

are attached (Koegl et al., 1999). E4 ligases bind to the initially attached ubiquitin moieties and 

coordinate the rapid elongation of the ubiquitin chains, which is required for the proteasomal 

degradation of certain proteins (Koegl et al., 1999; Cyr et al., 2002). Many U-box proteins can 

function as both an E3 or E4 ligase; whether they act as an E3 or E4 is dependent upon the target 

protein and E2/E3 partners that are present during ubiquitination (Cyr et al., 2002). One particular 

U-box protein, the mammalian homolog of Ufd2, UBE4B, has been shown to exhibit both E3 and 

E4 activity.  
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1.6 UBE4B is an E3 ubiquitin ligase and E4 ubiquitin chain assembly factor 

 Ubiquitination factor E4B (UBE4B), is a mammalian homolog of the yeast ubiquitin 

ligase, Ufd2 (Hatakeyama et al., 2001; Matsumoto et al., 2004). Like many other ubiquitin ligases, 

UBE4B can self-ubiquitinate (Hatakeyama et al., 2001).  

 Relatively little is known about interactions of UBE4B with other proteins. The E2 

conjugating enzymes, UbcH5c and Ubc4 both bind and coordinate ubiquitination with UBE4B, 

while little enzymatic activity is detected with other E2s (Benirschke et al., 2010; Hatakeyama et 

al., 2001).  

 UBE4B has been shown to bind and polyubiquitinate ataxin-3 through its E3 ligase 

activity (Matsumoto et al., 2004). Ataxin-3 is a polyglutamate-containing protein that forms 

abnormal aggregates, and underlies neurodegeneration in Machado-Joseph disease (Matsumoto 

et al., 2004). UBE4B-mediated ubiquitination of ataxin-3 has been shown to promote ataxin-3 

proteasomal degradation (Matsumoto et al., 2004). Thus, ubiquitination by UBE4B prevents the 

pathological aggregation of ataxin-3 (Matsumoto et al., 2004). 

 In the same study that examined UBE4B-mediated degradation of ataxin-3, an interaction 

between UBE4B and valosin-containing protein (VCP) was also identified. VCP is the 

mammalian homolog of yeast Cdc48. In yeast, Ufd2 (the yeast homolog of UBE4B) binding to 

Cdc48 has been implicated in promoting cell survival upon induction of stress (Matsumoto et al., 

2004). In mammalian cells, the UBE4B-VCP interaction is hypothesized to mediate ataxin-3 

delivery to the proteasome (Matsumoto et al., 2004). 

 UBE4B also binds and ubiquitinates FEZ1 (Fasciculation and elongation protein zeta 1) 

(Okumura et al., 2004). Unlike ataxin-3, the ubiquitination of FEZ1 by UBE4B does not affect its 

stability or lead to its degradation. Instead, the interaction promotes differentiation/neurite 

outgrowth in tumor cells (Okumura et al., 2004).  
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 Most recently, UBE4B was found to act as an E3 ligase with E4 chain-modifying activity 

(Wu et al., 2011). UBE4B binds to MDM2 and p53 to promote the ubiquitination and degradation 

of p53 in medulloblastoma tumor cells (Wu et al., 2011). Because p53 is an established tumor 

suppressor in medullablastoma, negative regulation of p53 expression by UBE4B may be 

tumorigenic (Wu et al., 2011; Zeinab et al., 2012). 

 Although there is evidence that UBE4B may play an oncogenic role in medulloblastoma, 

genetic evidence suggests that UBE4B expression may be protective in some cancers. The UBE4B 

gene resides on the short arm of chromosome 1 (1p36), a region that is frequently deleted in 

neuroblastoma (Krona et al., 2003; Caron et al., 1996). Survival analyses of neuroblastoma patient 

populations found a significant correlation between 1p36 deletion and poor patient outcome 

(Attiyeh et al., 2005). As such, UBE4B has emerged as a candidate tumor suppressor gene in 

neuroblastoma (Krona et al., 2003; Caron et al., 1996). These 1p36 deletions are also common in 

hepatocellular carcinoma and glioblastoma, although studies examining the role of UBE4B in 

these diseases are not as extensive (Zhang et al., 2010a; Ichimura et al., 2008). 

 

1.7 UBE4B may interact with the ESCRT-0 component, Hrs 

 No mechanistic studies have been performed to examine whether UBE4B may play a role 

in neuroblastoma. However, in a yeast two-hybrid screen using Hrs as bait, Dr. Andrew Bean 

identified multiple clones encoding UBE4B (Sirisaengtaksin et al., 2014). The ESCRT-0 

component, Hrs, acts as a scaffolding protein to recruit proteins that play a role in endosomal 

sorting (see section 1.2). In addition to initiating the recruitment of the ESCRT sorting machinery 

components, Hrs recruits non-ESCRT components to endosomal membranes. Some of these 

proteins contribute to the MVB sorting of membrane proteins, suggesting that UBE4B may also 

bind to Hrs to contribute to endocytic sorting. Hrs binds to Eps15 in a calcium-dependent manner, 
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forming a stable complex at endosomes (Bean, 2000; Roxrud et al., 2008). The Hrs-Eps15 

complex has been shown to mediate the endosomal sorting of epidermal growth factor receptor 

(EGFR) (Roxrud et al., 2008). Additionally, Hrs has been shown to bind to sorting nexin 1 (SNX1) 

(Chin et al., 2001). SNX1 has been shown to bind to the intracellular domain of EGFR, and SNX1 

overexpression promotes the degradation of EGFR (Chin et al., 2001). 

 A major role of the endocytic pathway is to downregulate the expression and activity of 

proteins that reside at the cell surface, including EGFR, whose lysosomal degradation is 

dependent upon ubiquitination at endosomes (Alwan et al., 2003; Eden et al., 2012; Goh and 

Sorkin, 2013; Grandal et al., 2007). A potential role for UBE4B is supported by evidence that 1) 

the genomic region encoding UBE4B is commonly deleted in neuroblastoma; 2) UBE4B may 

bind to Hrs, a member of the endosomal sorting machinery; 3) the endosomal sorting of EGFR 

requires receptor ubiquitination; and 4) EGFR is overexpressed in neuroblastoma, suggesting a 

possible defect in the endocytic trafficking and degradation of EGFR. 

 

1.8 Ubiquitination specifies proteins for degradation 

 Ubiquitination plays an essential role in the degradation of intracellular proteins, both by 

the proteasome and the lysosome (Erpapazoglou et al., 2012). The addition and removal of 

ubiquitin from protein substrates specifies the fate of a protein for degradation in either the 

proteasome or lysosome (Komander and Rape, 2012). 26S proteasomes are multi-subunit 

complexes that are found in either the cytosol or the nucleus (Coux et al., 1996). The 26S 

proteasome is comprised of two core subcomplexes: the cylindrical-shaped core particle (or 20S 

proteasome) and the regulatory particle (or 19S particle), which attaches to either end of the core 

particle (Dikic, 2017; Coux et al., 1996). Portions of the regulatory particle serve to recognize 

ubiquitinated substrate protein and prepare them for degradation in the core particle (Lander et 
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al., 2012). Both the core particle and the regulatory particle possess protease activity, and denature 

and degrade ubiquitinated proteins (Coux et al., 1996; Lander et al., 2012; Dikic, 2017) 

Lysosomes are acidic, membrane-bound organelles that contain a number of  hydrolases that drive 

the proteolytic cleavage of proteins delivered to the lysosomal lumen (Hershko and Ciechanover, 

1998).  

 There are two simplified conventions of the relationship between ubiquitin and protein 

degradation: 1) proteins are subject to proteasomal degradation or lysosomal degradation based 

on their cellular localization, and that 2) K48-linked ubiquitin chains specify proteasomal 

degradation and K63-linked specify lysosomal degradation. For example, because proteasomes 

are located in the cytosol and nucleus, ubiquitination of cytosolic and nuclear proteins should 

designate these proteins for proteasomal degradation (Dikic, 2017). Further, because lysosomes 

receive proteins that are sorted into the lumen of MVBs and other membrane-bound proteins, 

ubiquitination of luminal and membrane-bound proteins should designate lysosomal degradation 

(Dikic, 2017). CHIP, the U-box E3 ubiquitin ligase, is known to modify membrane-bound 

proteins with K63-linked polyubiquitin chains, which promote lysosomal degradation (Apaja et 

al., 2010). However, CHIP-mediated ubiquitination of soluble, cytosolic protein results in K48-

linked ubiquitin chains, leading to proteasomal ubiquitination (Nathan et al., 2013). Interestingly, 

K63-linked ubiquitin chains may designate substrate proteins for lysosomal degradation because 

the endosomal sorting complex, ESCRT-0, binds to K63 ubiquitin chains with a higher affinity 

than the proteasome subunits (Nathan et al., 2013). In binding reactions, purified proteasomes 

were found to be capable of binding to both K48- and K63-linked chains; the addition of Hrs and 

STAM-containing fractions to binding assays prevented proteasomal binding of K63-linked 

ubiquitin chains (Nathan et al., 2013). Hrs and STAM did not bind to K48-linked ubiquitin chains 

(Nathan et al., 2013). 
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 In most cases this convention is true; however, there are exceptions. For example, c-Met, 

a membrane-bound protein that undergoes ligand-induced endocytosis (Jeffers et al., 1997). The 

degradation of c-Met is blocked by a proteasome inhibitor called lactacystin, suggesting that the 

proteasome may contribute to c-Met proteolysis (Jeffers et al., 1997). In another example, the 

degradation of neuronal nicotinic acetylcholine receptor (nAChR) subunits was shown to be 

proteasome-dependent (Rezvani et al., 2007). Lysates isolated from cells treated with the 

proteasome inhibitor, PS-341, were enriched in ubiquitinated nAChR subunits compared to 

lysates isolated from untreated cells (Rezvani et al., 2007). However, lysates isolated from cells 

that were treated with a lysosome inhibitor, E-64, showed similar levels nAChR subunit levels 

compared to control lysates, suggesting that the proteasome is required for the degradation of 

ubiquitinated nAChRs (Rezvani et al., 2007).  

 Interestingly, a proteasome-associated protein, Ecm29, has been shown to link the 26S 

proteasome to specific compartments within eukaryotic cells, including endosomes, suggesting 

that the proteasomal and lysosomal degradation pathways may converge (Gorbea et al., 2010). 

Endosomal localization of proteasomes may provide a mechanism by which transmembrane 

proteins may be degraded, however, the purpose and mechanism of this pathway are not 

understood.  

 

1.9 Deubiquitination is mediated by deubiquitinating enzymes 

 Ubiquitin conjugated to target substrates can be removed by ubiquitin-specific proteases 

called deubiquitinating enzymes (DUBs). DUBs act by cleaving the isopeptide bond formed 

between substrate targets and the C-terminal end of ubiquitin (Komander and Rape, 2012). The 

human genome encodes ~ 55 DUBs, which largely mediate ubiquitin removal in a non-specific 

manner (Komander and Rape, 2012). There are five major families of DUBs. The cysteine 
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protease DUBs are separated into four subclasses: ubiquitin-specific proteases (USPs), ubiquitin 

C-terminal hydrolases (UCHs), Otubain domain proteases (OTUs), and Machado-Joseph disease 

proteases (MJDs) (Hanpude et al., 2015). An additional DUB class, contains proteins with a 

JAMM (JAB1/MPN/Mov34) catalytic domain, and belongs to the metalloprotease family 

(Hanpude et al., 2015).  

 The importance of the deubiquitination activity of DUBs has been established in the 

endocytic pathway (Raiborg and Stenmark, 2009; Alwan and van Leeuwen, 2007; McCullough 

et al., 2004; Hanpude et al., 2015). Deubiquitination is an opposing process to ubiquitination, and 

as such can reverse the degradative fate of a ubiquitinated membrane protein at endosomes 

(McCullough et al., 2004). A receptor that is not ubiquitinated at MVBs cannot be recognized by 

ESCRTs, and remain on the limiting membrane for budding from the endosomal membrane or 

incorporation into lysosomal membranes (McCullough et al., 2004) Although ubiquitination of 

protein cargo is required for their recognition by ESCRTs, the removal of ubiquitin by DUBs is 

also required for endosomal protein sorting (Raiborg and Stenmark, 2009).  In fact, two DUBs 

have been demonstrated to bind the ESCRT-0 component, STAM: USP8 and AMSH 

(McCullough et al., 2004; Berlin et al., 2010). The sequential, temporal requirement of 

ubiquitination and deubiquitination makes it difficult to establish whether a DUB positively or 

negatively regulates the degradation of an endosomally-associated membrane protein. The lack 

of clarity on this issue is exemplified by the conflicting evidence that USP8 overexpression may 

promote or inhibit EGFR degradation  (Berlin et al., 2010; Alwan and van Leeuwen, 2007; Row 

et al., 2006). In USP8 knockdown experiments, Row and colleagues found that decreased 

expression of USP8 was associated with the accumulation of ubiquitinated cargo at MVBs (Row 

et al., 2006). These findings were corroborated in experiments by Alwan, et al., in which the 

overexpression of USP8 was positively correlated with receptor cargo degradation (Alwan and 

van Leeuwen, 2007). Conversely, Berlin and colleagues found that the USP8 depletion was 
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correlated with increased receptor cargo degradation (Berlin et al., 2010) These findings were 

repeated by Mizuno, et al., in which depletion of endogenous USP8 resulted in increased receptor 

ubiquitination and degradation (Mizuno et al., 2005).  

 

1.10 Epidermal Growth Factor Receptor: An Overview 

 The epidermal growth factor receptor (EGFR, also called HER1 or ErbB1) is the 

prototypical member of the ErbB/HER family of receptor tyrosine kinases (RTKs), which  

includes ErbB2 (HER2), ErbB3 (HER3), and ErbB4 (HER4) (Herbst, 2004). This family of 

transmembrane proteins binds to extracellular growth factors that activate signal transduction 

pathways. In this manner, EGFR influences cell differentiation, migration, survival, adhesion, and 

proliferation (Normanno et al., 2006; Goh et al., 2010; Ferguson, 2008; Huang et al., 2009). 

Impaired EGFR degradation and prolonged EGFR signaling is associated with multiple disease 

states, particularly in cancers (Masui et al., 1984; Di Fiore et al., 1987; Shtiegman et al., 2007; 

Bache et al., 2004) This suggests that defects in EGFR downregulation may favor tumorigenesis 

(Ferguson, 2008; Grandal et al., 2007; Bache et al., 2004; Masui et al., 1984; Prewett et al., 1996).  

 EGFR and its ErbB family members share the same basic domain organization, with an 

extensive extracellular receptor region, a single-pass, hydrophobic transmembrane domain, and 

an intracellular catalytic tyrosine kinase domain, and several tyrosine residues that can be 

phosphorylated (Herbst, 2004; Yewale et al., 2013). Through its extracellular domain, EGFR can 

be activated by binding to seven different types of ligand growth factors: epidermal growth factor 

(EGF), transforming growth factor alpha (TGF-a), amphiregulin, b-cellulin, epigen, epiregulain, 

and heparin-binding EGF-like growth factor (Cappuzzo, 2014; Herbst, 2004; Salomon et al., 

1995; Guo et al., 2003) Each ligand induces the phosphorylation of a distinct set of tyrosine 

residues, and therefore differentially affects the fate of EGFR (Ferguson, 2008; Roepstorff et al., 
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2009). EGF and TGF-a are the two major agonists of EGFR, and bind to EGFR exclusively (Guo 

et al., 2003). 

 EGF and TGF-a bind the receptor with the highest affinity among the EGFR ligands 

(Roepstorff et al., 2009). Treatment with either 10 nm EGF ligand or  TGF-a ligand caused similar 

amounts of EGFR to be removed from the cell surface (Roepstorff et al., 2009) Nearly 100% of 

EGFR recycled to the surface following TGF-a stimulation, only 50% of EGFR was recycled 

following EGF stimulation (Roepstorff et al., 2009). Stimulation by both ligands allowed receptor 

transport to early endosomes; however, 60 minutes after EGF stimulation, there is increased 

colocalization of EGFR with late endosomes, compared to cell surface localization of EGFR 

following TGF-a stimulation (Roepstorff et al., 2009). Ligand dissociation from EGFR underlies 

the difference in EGF- and TGF-a-induced EGFR trafficking. TGF-a dissociates from EGFR at 

much higher pH levels than EGF, leading to TGF-a dissociation shortly after plasma membrane 

internalization. (Roepstorff et al., 2009; Ebner and Derynck, 1991). EGF remains bound to EGFR 

until dissociation at lysosomes (Ebner and Derynck, 1991). These data suggest that EGFR 

stimulation by EGF is a better model for examining receptor sorting at the late endosomal 

membranes. 

 

1.11 EGF binding enables EGFR dimerization and receptor activation  

 EGF-EGFR binding sets off a chain of molecular events: receptor dimerization, kinase 

activation, and phosphorylation of tyrosine residues (Krall et al., 2011; Chung et al., 2010). 

Receptor dimerization among EGFR and its ErbB family members is vastly different from 

dimerization events observed between other RTKs (Ferguson, 2008). For example, binding of Kit 

receptors (of the platelet-derived growth factor receptor family) to its cognate ligand stem cell 

factor (SCF) induces indirect receptor dimerization. SCF ligands form dimeric complexes that 
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link Kit receptors, facilitating transphosphorylation between the receptor pairs (Lev et al., 1992). 

In contrast, EGF binding prompts a critical conformational change in EGFR, exposing a 

dimerization arm and triggering structural rearrangement of the extracellular domain of EGFR 

(Dawson et al., 2005). Ligand-bound receptors are stabilized in this “extended” conformation of 

EGFR, allowing the exposed dimerization arm to mediate direct interactions with nearby 

receptors (Ferguson, 2008; Klein et al., 2004; Jura et al., 2009; Dawson et al., 2005). Although 

the exposure of the dimerization arm is required for receptor dimerization, it is not sufficient to 

drive dimerization alone (Dawson et al., 2005). Mutations within the intracellular domain of 

EGFR inhibits receptor activation (Dawson et al., 2005). Further, regions outside the dimerization 

arm specify homodimerization (oligomerization between EGFRs) or heterodimerization 

(oligomerization between EGFR and another ErbB) (Dawson et al., 2005; Ferguson, 2008). 

 Receptor dimerization is required for the activation of the EGFR catalytic domain (Jura et 

al., 2009; Mattoon et al., 2004). EGFR activation is regulated by the interaction between the 

tyrosine kinase domains of the dimerized receptors, wherein the kinase domain of one receptor 

activates the kinase domain of the second receptor (Jura et al., 2009). Receptor activation leads to 

EGFR autophosphorylation on cytosolic tyrosine residues (Wilson et al., 2009).  

 

1.12 EGFR activation stimulates EGFR autophosphorylation 

In all, EGFR contains 10 tyrosine residues that are phosphorylated to act as binding sites for a 

number of cytosolic proteins (Schulze et al., 2005; Wilson et al., 2009). These phosphorylation 

events play a key role in the initiation and propagation of downstream signal transduction 

pathways, as well as EGFR downregulation.  

 EGFR autophosphorylation at specific tyrosine residues enables selective binding to 

proteins that possess either Src homology 2 (Sh2) or phosphotyrosine binding (PTB) domains 
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(Ferguson, 2008; Krall et al., 2011; Normanno et al., 2006). Extensive work has resulted in the 

determination of the tyrosine residues of EGFR that are capable of binding signaling proteins, as 

well as the specific proteins that bind to each of the phosphotyrosine sites (Schulze et al., 2005; 

Steen et al., 2002). Phosphorylation that enables Cbl and Grb2 binding are the most relevant to 

EGFR sorting at the endosome. 

 Cbl is a RING E3 that is required for the sorting and degradation of receptor tyrosine 

kinases (RTKs) like epidermal growth factor receptor (EGFR) (Ardley and Robinson, 2005; 

Mohapatra et al., 2013; Visser Smit et al., 2009). Cbl recognizes EGFR through the direct binding 

of phosphotyrosine 1045 and catalyzes EGFR ubiquitination at the plasma membrane (Grandal et 

al., 2007). Ubiquitination is not required for the internalization of EGFR at the plasma membrane, 

but is required for inclusion into MVB vesicles (Smith et al., 2013; Huang et al., 2007). Cbl 

expression, but not its ubiquitination activity, was required for the endosomal sorting of EGFR 

(Smith et al., 2013). Instead, ubiquitination that is mediated by the RING E3 ligases RNF126 and 

Rabring7 promotes EGFR degradation (Smith et al., 2013). Cbl may also bind to EGFR indirectly 

through its association with Grb2, at phophotyrosines 1068 and 1173, although Cbl interaction 

with EGFR in this indirect manner is less effective at targeting EGFR for lysosomal degradation 

(Batzer et al., 1994; Grandal et al., 2007). 

 

1.13 EGFR has been targeted to inhibit tumor growth 

 EGFR mediates cellular processes such as cell migration, differentiation, and 

proliferation. However, aberrant signaling by EGFR underlies many cancers (Ferguson, 2008). 

Many pharmacological approaches have been developed to limit the pathological signaling 

activity of EGFR, including monoclonal antibodies and tyrosine kinase inhibitors. 
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 Monoclonal antibodies bind to the extracellular domain of EGFR and compete with EGFR 

agonists like EGF and TGF-a. By blocking ligand-receptor complex formation, monoclonal 

antibodies prevent activation of tyrosine kinase inhibitors and mediate receptor entry into the 

endocytic pathway (Herbst, 2004; Zage et al., 2013; Prewett et al., 1996; Shin et al., 2001; Masui 

et al., 1984). Compared to some small-molecule inhibitors, they achieve higher receptor 

specificity; therefore, EGFRs may be inhibited at lower concentrations (Herbst, 2004). One type 

of monoclonal antibody therapeutic, cetuximab, has undergone extensive clinical trials. It was the 

first EGFR-targeted antibody that received FDA-approval for used in metastatic colorectal cancer 

(Lenz, 2007).  

 Another class of EGFR therapy targets the tyrosine kinase activity of EGFR. Unlike 

cetuximab, this class of inhibitors do not interfere with cognate EGF ligand binding. Instead, this 

class of drugs prevent autophosphorylation events by competing for EGFR binding with ATP. 

Inhibition of EGFR tyrosine kinase activation by erlotinib has been showed to reduce cell 

proliferation and induce apoptosis (Herbst, 2004). 

 

1.14 Rationale and summary 

 The major mechanism by which cells regulate EGFR expression and activity is 

endocytosis. EGFRs that traverse the endocytic pathway may be 1) sorted into vesicles that bud 

into the MVB for lysosomal degradation, 2) included into vesicles that bud out from the MVB for 

delivery to other organelles in the cell, or 3) remain on the endosomal membrane for incorporation 

into lysosomal membranes. Ubiquitination of EGFRs is a critical modification that enables 

receptor recognition by the endosomal ESCRT machinery, and therefore, ensures their MVB 

sorting, and therefore lysosomal degradation. Hrs, a critical component of ESCRT-0, recruits 

other ESCRTs and non-ESCRT proteins that play significant roles receptor trafficking. Hrs is 
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predicted to bind to a ubiquitin ligase, UBE4B, which suggests that UBE4B may play a role in 

receptor trafficking. 

 The UBE4B gene is located in the chromosomal region 1p36, which is commonly deleted 

in neuroblastoma and suggests that UBE4B may be a candidate tumor suppressor gene. 

Additionally, EGFR is shown to be overexpressed in neuroblastoma. The first aim of this work is 

to determine whether UBE4B plays a role in the endocytic trafficking of EGFR. The second aim 

of this work is to determine whether altered expression of UBE4B may affect the growth of 

neuroblastoma cells and their response to EGFR inhibitors. 
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Chapter 2. Methodology 

2.1 Cell culture 

 The HeLa human cervical cancer cell line was obtained from the American Type Culture 

Collection (ATCC). Cells were maintained in Dulbecco’s modification of Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) and passaged using a 0.25% 

Trypsin/0.1% EDTA solution at 37°C with 5% CO2/95% O2. 

 The SK-N-AS human neuroblastoma cell line was obtained from the ATCC. The UBE4B- 

and UBE4B(P1140A)-expressing cell lines were generated by Drs. Wei Sun and Qing Yan in Dr. 

Andrew Bean’s lab prior to my arrival. All cells were maintained in RPMI 1640 medium 

supplemented with 10% FBS and 1% L-glutamine at 37°C with 5% CO2/95% O2 and passaged 

using 0.5 mM EDTA.  

 The MCF-10A human mammary epithelial cell line and the Cbl/Cbl-b double-depleted 

MCF-10A cell line were kindly gifted by Dr. Hamid Band from the Eppley Institute for Research 

in Cancer and Allied Diseases at the University of Nebraska Medical Center. Cells were 

maintained in mammary epithelial cell growth medium (MEGM) supplemented with the 

components of an MEGM Bulletkit (Lonza) and 100 ng/ml cholera toxin at 37°C with 5% 

CO2/95% O2. Cells were subcultured using a solution of 0.05% trypsin and 0.53 mM EDTA.  

 

2.2 Antibodies 

 Antibodies were purchased from the following sources: EGFR, for immunoblotting 

(Pierce/Invitrogen, PA1-1110); EGFR, for immunoprecipitation (Santa Cruz Biotechnologies, sc-

120); EEA1 (Invitrogen, PIPA517228); LAMP1 (Developmental Studies Hybridoma Bank, 

H4A3); UBE4B (Cocalico). 
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2.3 Buffers, materials, and reagents 

 

Binding buffer- This buffer is a component of the recombinant protein binding assay. Binding 

buffer consists of 20 mM HEPES (pH 7.4), 150mM KCl, and 0.05% TWEENÒ 20. 

 

Brickey buffer- This buffer is used to resuspend cells infected with baculovirus for recombinant 

protein extraction, as described in (Brickey et al., 1990). Brickey buffer consists of 10 mM Tris-

HCl, pH 7.5 containing 5% betaine, 1 mM EGTA, 1 mM EDTA and 0.5 mM DTT. 

 

Homogenization buffer- This buffer is a component of the sorting assay. Homogenization buffer 

consists of 20 mM HEPES (pH 7.4), 0.25 M sucrose, 2mM EGTA, 2mM EDTA, and 0.1 mM 

DTT. 

 

Mammalian Protein Extraction Reagent (M-PER)- This is a lysis buffer that is manufactured by 

Thermo Scientific (product #78501). 

 

Protease inhibitor cocktail- A protease inhibitor cocktail was prepared using 112 µM PMSF, 3 

µM aprotinin, 112 µM leupeptin, and 17 µM pepstatin. 

 

2.4 Separation of proteins by gel electrophoresis and specific detection of proteins by 

immunoblotting 

 To detect specific proteins, samples were separated by SDS-PAGE (voltage was not 

permitted to exceed 120 V). Protein from gels were transferred to nitrocellulose membranes 
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(100V, 1.5 hours, 4°C). Blots were incubated with a blocking buffer consisting of 5% nonfat dry 

milk in 1x PBS for one hour at room temperature. Blots were then probed with antibodies directed 

towards the protein of interest by incubation with antibodies overnight at 4°C. Membranes were 

washed three times with 1x PBS, then incubated with secondary antibody diluted in blocking 

buffer (either anti-mouse, Invitrogen, #31430 or anti-rabbit, Invitrogen, #31460) at room 

temperature for one hour. Membranes were washed three times with 1x PBS. Proteins were 

visualized using ECL on autoradiography film and quantified using ImageJ (version 1.46r). 

 

2.5 Production of recombinant proteins 

 Recombinant proteins were expressed in insect cells as described previously (Tsujimoto 

et al., 1999). Briefly, full-length Hrs, UBE4B, and UBE4B(P1140A) were subcloned into an Hta 

baculovirus vector and Hrs, UBE4B, or UBE4B(P1140A) virus was produced according to the 

manufacturer’s protocol (Gibco). Proteins were produced by infecting a 500 mL of SF21 cells 

(multiplicity of infection = 0.1). Seventy-two hours after initial infection, cells were split into ten 

volumes and harvested by centrifugation. Pellets were stored at -80°C. Viral infections of SF21 

cells were performed by the Baculovirus/mAb Shared Resource of the Proteomics Shared 

Resource at Baylor College of Medicine. 

 Cell pellets were thawed and resuspended in 800µL of Brickey buffer containing a 

protease inhibitor cocktail (section 2.3). Cell suspensions were rotated end-over-end for 1 hour at 

4°C, followed by centrifugation at 15,000 x g for 30 minutes at 4°C. Resultant lysates were 

incubated with Ni-NTA agarose for affinity-isolation of His-tagged recombinant Hrs, STAM, 

UBE4B, or UBE4B(P1140A). For the recombinant protein binding assay (section 2.5), Hrs was 

not eluted from Ni-NTA agarose. For the ubiquitination assay (section 2.7), UBE4B was not 
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eluted from Ni-NTA agarose. For assays that required soluble recombinant protein, proteins were 

eluted using 100 mM imidazole.   

 

2.6 Recombinant protein binding assay 

 To determine whether Hrs and UBE4B bound to each other directly, recombinant proteins 

were expressed and harvested from insect cells. First, 23.08 nM of His6-Hrs bound to Ni-NTA 

agarose was incubated with increasing concentrations of purified soluble UBE4B (0 to 369.24 

nM) in binding buffer and a protease inhibitor cocktail. Suspensions of recombinant protein and 

agarose were rotated end-over-end for 1 hour at 4°C. Suspensions were subject to centrifugation 

on a tabletop centrifuge for 3 seconds to pellet agarose beads and supernatants containing unbound 

protein were removed. Agarose beads were washed three times with 1x PBS, boiled in sample 

buffer, and separated by SDS-PAGE. Coomassie Blue staining was used to detect bound UBE4B 

and Hrs. Bands were quantified using ImageJ software (version 1.46r). 

 To determine whether UBE4B and STAM are capable of binding to Hrs simultaneously, 

23.06 nM of His6-Hrs bound to Ni-NTA agarose and 200 nM of soluble, free-floating STAM was 

incubated with increasing amounts of UBE4B (0 to 369.24 nM). Incubation and quantitation were 

performed as detailed above. 

 

2.7 Immunoprecipitation of EGFR 

 To determine whether UBE4B and EGFR may interact in situ, EGFR was 

immunoprecipitated from cell lysates. HeLa cells were cultured in 10 cm dishes to 80% 

confluence. Cells were washed with 1x PBS and scraped into a 1.5 mL volume of 1x PBS. Cells 

were centrifuged at 1,500 x g for 10 minutes at 4°C. Supernatants were discarded and cell pellets 

were resuspended in a 50 µL M-PER buffer/protease inhibitor cocktail solution and rotated end-
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over-end for one hour at 4°C. Samples were subject to centrifugation at 15,000 x g for 15 minutes 

at 4°C. Supernatants were collected and protein content was determined using a bicinchoninic 

acid assay (BCA assay).  

 Cell lysate (100 µg of protein) was incubated with antibodies specific to EGFR (overnight 

at 4°C). 20 µL of a 50% Protein A agarose slurry was added to samples and incubated for 4 hours 

while rotating end-over-end at 4°C. Beads were washed three times with 1x PBS and boiled in 

sample buffer. EGFR and UBE4B were detected by immunoblotting (section 2.4). 

  To determine whether UBE4B and EGFR can interact in the absence of Cbl, I 

immunoprecipitated EGFR from parental MCF-10A cells and Cbl/Cbl-b double-depleted MCF-

10A cells as described above, and EGFR and UBE4B were detected by immunoblotting (section 

2.4).  

 

2.8 Ubiquitination assay 

 To determine whether UBE4B is capable of ubiquitinating EGFR, in vitro ubiquitination 

was reconstituted using recombinant enzymes and HeLa cell lysate as a source of EGFR. HeLa 

cells were cultured to 80% confluence in 10 cm dishes. The contents of one dish was scraped into 

PBS, pelleted, and resuspended in 30 µL of M-PER lysis buffer. Lysates were then incubated with 

1 µg of anti-EGFR. This particular antibody recognizes an epitope in the N-terminal domain 

(extracellular) of EGFR. Samples were incubated while rotating end-over-end overnight at 4°C.  

 The next day, lysates were mixed with components required for ubiquitination as 

previously described (Hatakeyama et al., 2001). Reactions were assembled in a total volume of 

20 µL containing 0.1 µg of E1, 1 µg of UbcH5c, 1 µg of ubiquitin, 2 mM ATP, 1 mM MgCl2, 0.3 

M DTT, 1 mM creatine phosphate, 0.5 units of phosphocreatine kinase, 20mM Tris-HCl (pH 7.5), 

120 mM NaCl, and 5 µL of HeLa lysate. Some ubiquitination reactions contained recombinant 
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His6-UBE4B or His6-UBE4B(P1140A) (1ug) bound to Ni-NTA agarose. Samples were incubated 

in a water bath (2 hrs at 30°C). After incubation, cells were centrifuged and supernatants 

[containing reaction components without UBE4B or UBE4B(P1140A)] were collected. For 

samples that required deubiquitination, supernatants were added to a deubiquitination assay 

(detailed in section 2.9).  

 Then, supernatants were incubated with Protein A agarose, to complete the 

immunoprecipitation of EGFR (end-over-end for 4 hours, 4°C). Beads were washed to remove 

unbound protein, and proteins were eluted by boiling beads in sample buffer. Proteins were 

subject to immunoblotting (section 2.4). 

 

2.9 Deubiquitination assay 

 Deubiquitination was performed as described by (Rezvani et al., 2007) immediately 

following ubiquitination assays, removal of UBE4B or UBE4B(P1140A), and 

immunoprecipitation of EGFR. After washing, protein A beads were resuspended in 25 mM 

HEPES (pH 7.4) containing 10 mM DTT and incubated with 5 µg of isopeptidase-T (Calbiochem) 

and 5 µg of UCH-L3 (Biomol) rotating end-over-end for 60 minutes at room temperature. Protein 

A agarose beads were washed and bound protein was eluted as described above. Immunoblotting 

was performed was performed as described above, with membranes probed using ubiquitin-

specific antibodies (section 2.4).  

 To determine whether USP8 can deubiquitinate EGFR following UBE4B-mediated 

ubiquitination, 5 µg of USP8 was added to reactions in place of isopeptidase-T and UCH-L3. 

Then, deubiquitination was performed as described above. 
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2.10 Reconstitution of inward budding at MVB membranes 

Generation of cytosol- HeLa ells were washed twice with 1x PBS, scraped from the plate, and 

collected by centrifugation (2000 x g for 15 minutes at 4°C). Following centrifugation, 

supernatant was removed and cells were resuspended in HB (100 µL per plate). Cell suspensions 

were lysed by sonication (Branson Sonifier 250, output 3.0, duty cycle 55%) for 10 seconds, three 

times. Samples were cooled for at least 30 seconds between each sonication period. Lysates were 

centrifuged at 2000 x g for 10 min at 4°C. Supernatants were collected (post-nuclear supernatant) 

and centrifuged at 100,000 x g for 1 hour at 4°C. The resulting supernatant contained the cytosolic 

fractions. Cytosols were collected and protein assays were performed to determine protein 

concentrations. Cytosols were aliquoted into volumes containing 25 µg of total protein and stored 

at -80°C. 

 

Reconstitution of inward budding- The cell-free reconstitution of multivesicular body formation 

was performed as detailed in (Sun et al., 2010; Gireud et al., 2015) with modifications. 

Experiments required 1 plate for every 3 reactions (10 cm plate, 70 to 80% confluent). Plates were 

washed with 1 x PBS, then serum starved by adding DMEM lacking serum and incubating (2 

hours at 37°C, 5% CO2). Following serum starvation, cells were stimulated with DMEM 

supplemented with EGF (100 ng/mL) for 10 minutes (37°C, 5% CO2). Cells were then placed on 

ice, media was removed, and cells were washed three times with cold 1x PBS. Cells were scraped 

into 1.5 mL 1x PBS and cell suspensions were centrifuged (1,500 x g for 10 minutes at 4°C). 

Supernatants were removed and pellets were resuspended in 100 µL homogenization buffer. 

Resuspended cells were drawn though a 30-gauge 1-inch needle into a 1 mL syringe 20 times 

while incubated on ice to burst outer cell membranes without disrupting organelle membranes. 

Homogenized samples were centrifuged at 800 x g for 5 minutes at 4°C. Without disturbing the 
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pellets, supernatants were transferred to a new tube and centrifuged at 1,500 x g for 15 minutes. 

Again without disturbing pellets, supernatants were transferred into a new tube and centrifuged 

at 9,000 x g for 30 minutes. Supernatants were removed and resulting pellets (which contains a 

crude endosomal fraction of mixed early and late endosomes) were resuspended in 80 µL 

homogenization buffer/protease inhibitor cocktail solution.  

 

A standard 50 µL reaction consisted of the following:  

1) 15 µL of resuspended membranes 

2) volume of cytosol containing 25 µg of protein 

3) 6 µL ATP regeneration system (final concentrations within 50 µL reactions listed below)  

a. 2 mM MgATP 

b. 50 µg/mL creatine kinase 

c. 8 mM phosphocreatine 

d. 1 mM DTT 

4) volume of homogenization buffer to complete reaction volumes to 50 µL 

 

For reactions requiring addition of recombinant UBE4B or UBE4B(P1140A), 180 nM of purified 

protein were added. Reactions were incubated for 3 hours at 37°C. Following incubation, 

reactions were placed on ice and reactions were incubated with trypsin (10 µL, 0.27 µg/µL) for 

30 minutes. Reactions were centrifuged at 15,000 x g for 30 minutes at 4°C. Pellets were 

resuspended in sample buffer and boiled. Proteins were subject to immunoblotting as described 

above (section 2.4). 
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2.11 EGFR degradation  

 To examine cellular EGFR content following cell starvation and ligand treatment, cells 

were cultured to 80% confluence in 10 cm dishes. Each trial required three dishes per condition. 

Cells were washed three times with 1x PBS and incubated in serum-free media (DMEM, RPMI 

1640, or MEM, where appropriate) at 37°C and 5% CO2 for two hours. Existing media was 

replaced with fresh serum-free media supplemented with EGF (100 ng/mL). Plates were 

incubated at 4°C on ice for 1 hour to allow EGF-EGFR binding. 

 Following incubation, cells were rinsed three times with cold 1x PBS. One plate per 

condition was kept on ice. In the remaining plates, warm serum-free media was added and plates 

were incubated at 37°C and 5% CO2 for either 30 or 60 minutes. Following incubations, cells 

were washed with 1x PBS and scraped into a 1.5 mL volume of 1x PBS. Cells were centrifuged 

at 1,500 x g for 10 minutes at 4°C and supernatant was discarded. Cell pellets were resuspended 

in a 50 µL M-PER buffer/protease inhibitor cocktail solution. Samples were incubated at 4°C and 

rotated end-over-end for one hour. After one hour, samples were centrifuged at 15,000 x g for 15 

minutes at 4°C. Protein concentrations of supernatants were determined using a BCA assay. Fifty 

µg of protein from each sample was subject to immunoblotting (section 2.4). 

 

2.12 Immunofluorescence microscopy 

 To determine subcellular localization of USP8 while EGFR is moving through the 

endocytic pathway, immunofluorescent labeling of USP8 and LAMP1 was performed. HeLa cells 

were plated onto sterile glass coverslips. Cells were cultured to 70% confluence. Prior to 

immunolabeling, cells were serum-starved for 2 hours to bring EGFR to the plasma membrane 

(Sirisaengtaksin et al., 2014). Cells were then incubated with media supplemented with 100 ng 

EGF/mL for 30 minutes on ice 0°C. Plates remained either at 0°C or were transferred to 37°C for 
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15 minutes to allow EGF-EGFR internalization. Cells were then fixed by incubation with 4% 

paraformaldehyde diluted in 1x PBS for 20 minutes. Antibodies directed towards UBE4B (1:250) 

and Hrs (1:500) were diluted in blocking buffer [2% normal goat serum, 0.25% saponin, 0.1 M 

phosphate buffer (pH 7.4)]. Coverslips were incubated in the antibody/blocking buffer solution 

overnight at 37°C. Cells were then washed three times with 1x PBS, then incubated with 

secondary antibodies at 37°C for 30 min. Coverslips were washed and mounted with para-

phenylenediamine in 50% glycerol/0.1 M phosphate buffer (pH 7.4). Images were acquired using 

an LSM 510 confocal laser scanning microscope (Carl Zeiss). 

 

2.13  Proliferation assay 

 SK-N-AS cell lines were plated into wells of 96-well plates (4,000 cells diluted in 100 µL 

of culture media). Due to the nature of measurement, each time point required a separate plate 

cells. At each time point (0, 24, 48, and 72 hours), 10 µL of WST-1 reagent (Roche) was added 

to each well and incubated for 4 hours at 37°C and 5% CO2. WST-1 is a stable tetrazolium salt 

that is cleaved in response to glycolytic production of NAD(P)H by actively proliferating cells. 

WST-1 is cleaved to formazan dye. The amount of formazan produced directly corresponds to the 

number of metabolically active cells in the culture well. The amount of formazan may be 

measured using absorbance values obtained at 450 nm, according to the manufacturer’s protocol. 

 To examine whether cetuximab, a monoclonal EGFR antibody therapeutic, affects the 

proliferation of SK-N-AS cells, proliferation following cetuximab treatment was measured over 

time. After the first measurement with WST-1 (0 hours), media in plates for other time points (24, 

48, and 72 hour plates) was discarded and 100 µL of culture media containing cetuximab (0 nM, 

400 nM, 1 µM, or 4 µM) was added to each well. Cetuximab was generously provided by the 

pharmacy at MD Anderson Cancer Center. Cells were subject to a WST-1 proliferation assay, and 
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proliferation was calculated at each time point as the percentage compared to absorbance measure 

at the 0 hour time point. 

 To determine whether UBE4B expression alters neuroblastoma tumor cell sensitivity to 

cetuximab (4 µM), stable SK-N-AS cell lines expressing GFP, UBE4B, or UBE4B(P1140A) were 

treated with cetuximab as described above. Proliferation measurements were performed 0, 24, and 

72 hours following initial drug incubation. Proliferation was calculated as described in cetuximab 

and erlotinib experiments. 

 To examine whether erlotinib, a tyrosine kinase inhibitor, affects the proliferation of SK-

N-AS cells, erlotinib (4 µM, 12 µM, and 40 µM) was incubated with cells in place of cetuximab. 

Proliferation was calculated as in cetuximab experiments. 
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Chapter 3. UBE4B affects the endocytic trafficking of EGFR 

 The multivesicular body (MVB) is a highly specialized membrane-bound compartment 

found within eukaryotic cells. It is the site of the final sorting event that determines the fate of 

transmembrane proteins within the endocytic pathway. Protein cargo on the surface of the limiting 

endosomal membrane may exit the endocytic pathway by traveling on vesicles that bud outward 

from the endosomal membrane towards the cytosol of the cell (Sirisaengtaksin et al., 2014). 

Alternatively, cargo may bud inward away from the cytosol of the cell and into the lumen of the 

MVB (Haglund and Dikic, 2012). A third alternative for protein cargo on the endosomal 

membrane is that it may remain on the membrane and become part of the lysosomal membrane 

upon MVB-lysosomal fusion.  The sorting event that determines the fate of membrane proteins 

on the MVB membrane uses cargo ubiquitination as a signal that designates a protein for budding 

inward into the MVB (Haglund and Dikic, 2012). 

 Ubiquitination is a process that results in the attachment of single ubiquitin moieties to 

target substrate proteins by E3 ubiquitin ligases. The human genome encodes over 600 ubiquitin 

ligases, each of which is able to ubiquitinate a select, relatively small, group of protein substrates 

(Ardley and Robinson, 2005). The spatial and temporal regulation of ubiquitination depends on 

multiple factors, including the subcellular localization of the ubiquitin ligase (Ardley and 

Robinson, 2005). Interestingly, only a subset of ubiquitin ligases have been reported to associate 

with endosomes (Marchese et al., 2003; Nakamura, 2005; Fukuda, 2006; Hassink et al., 2012; 

Bocock et al., 2010). These endosome-associated ubiquitin ligases (e.g. AIP4, MARCH-II, 

MARCH-III, Triad1, and RNF13) have been reported to play a role in protein trafficking and 

lysosomal degradation (Marchese et al., 2003; Nakamura, 2005; Fukuda, 2006; Hassink et al., 

2012; Bocock et al., 2010). This suggests that ubiquitin ligases may be recruited to endosomes to 

ensure the ubiquitination of cargo to allow their recognition by the endosomal sorting machinery. 
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 Ubiquitination underlies the mechanism by which ESCRTs affect membrane protein fate 

at the MVB. Cargo proteins must be conjugated to ubiquitin in order to allow recognition by the 

sorting machinery that resides on endosomal membranes. Select substituents of these multiprotein 

complexes contain ubiquitin-interacting motifs that allow binding of ESCRT complexes to 

ubiquitinated endosomal cargo. ESCRTs are then able to facilitate sorting of cargo into 

membranes that bud off into the lumen of the multivesicular body.  

 A yeast two-hybrid screen identified an E3 ligase, UBE4B, as a binding partner of Hrs, a 

constituent of the ESCRT-0 complex (Sirisaengtaksin et al., 2014). Using full-length Hrs as the 

bait, multiple clones encoding the ubiquitin ligase, UBE4B, were isolated (Sirisaengtaksin et al., 

2014). Hrs acts as a scaffolding protein that recruits components of the sorting machinery to 

endosomes, endosomal trafficking while bound to endosomal membranes, this suggests that 

cytosolic UBE4B may be recruited endosomal membranes. Because other endosomally-localized 

ubiquitin ligases have been shown to promote the degradation of other transmembrane proteins 

(Marchese et al., 2003; Nakamura, 2005; Fukuda, 2006; Hassink et al., 2012; Bocock et al., 2010), 

I hypothesized that UBE4B may act at the endosome to promote the ubiquitination and 

degradation of a membrane protein. 

 The UBE4B gene is encoded on the short arm of chromosome 1 (1p36). Deletion of the 

1p36 region is common in many types of malignancies, especially in neuroblastoma, in which 

these deletions are found in 30% of tumors (Caron et al., 1996; Attiyeh et al., 2005; Maris et al., 

2001). This genomic region has been hypothesized to harbor a tumor suppressor in 

neuroblastoma, as loss of 1p36 is predictive of poor outcomes in patients diagnosed with 

neuroblastoma (Caron et al., 1996). Further, UBE4B expression is a prognostic indicator of 

survival in neuroblastoma patients such that high UBE4B expression is associated with increased 

survival probability, while low UBE4B expression is associated with decreased survival (Zage et 

al., 2013). Loss of 1p36 is not the only alteration that may underlie neuroblastoma tumor 
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formation, EGFR is also overexpressed in neuroblastoma (Zheng et al., 2016). The endocytic 

trafficking of EGFR is critical to its downregulation. I have focused on the endocytic trafficking 

of EGFR, not only because it plays a role in neuroblastoma tumorigenesis, but also because it is 

a membrane protein whose transit through the cell has been well-studied (Longva et al., 2002; 

Sorkin et al., 1991; Schlessinger, 2000; Haglund and Dikic, 2012). As with other membrane 

proteins that traverse the endocytic pathway, EGFR must be ubiquitinated in order to be 

recognized by sorting complexes at endosomes (Huotari and Helenius, 2011). So, I hypothesized 

that UBE4B acts at endosomes to ubiquitinate EGFR, and ultimately, promote its sorting into 

multivesicular bodies and lysosomal degradation. 



   40 

3.1 UBE4B binds to Hrs  

 In order to confirm the UBE4B-Hrs interaction predicted by the yeast two-hybrid assay 

(Sirisaengtaksin et al., 2014), I performed a binding assay using purified, recombinant protein. 

His-tagged Hrs was immobilized by binding onto Ni-NTA agarose. Increasing amounts of soluble 

Figure 5. UBE4B binds to Hrs. 

Increasing amounts of recombinant UBE4B were 

incubated with a constant amount of recombinant Hrs that 

was immobilized on Ni-NTA agarose. Following 

incubation, supernatants were removed and beads were 

washed to remove unbound protein. Addition of increasing 

amount of UBE4B resulted in increased binding of UBE4B 

to Hrs (lanes 1 to 6). Addition of an amount of UBE4B in 

excess of 0.6 µg resulted in no additional UBE4B binding 

(lanes 6 to 8).  
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UBE4B (0 to 2.4 µg) was added to a fixed amount of insoluble, immobilized Hrs (0.15 µg). 

Addition of increasing amounts of UBE4B resulted in increased binding of UBE4B to Hrs (Figure 

5, lanes 1 to 6) that saturated at amounts of UBE4B in excess of 0.6 µg (Figure 5, lanes 6 to 8). 

The binding of UBE4B and Hrs suggest that formation of the UBE4B-Hrs complex is direct, and 

does not require the presence of accessory proteins to mediate the binding event. 

 

3.2 UBE4B binds to ESCRT-0 

 Hrs binds to endosomal membranes and serves as a scaffold to recruit a variety of proteins 

(Bache et al., 2003; Pullan et al., 2006; Raiborg et al., 2001). Hrs recruits STAM, and together 

the two molecules form the ESCRT-0 complex (Komada, 2005; Pullan et al., 2006; Bache et al., 

2003). Recognition of endosomal cargo, as well as subsequent recruitment of ESCRT-I is 

dependent upon the formation of ESCRT-0, so it is vital that Hrs remains bound to STAM to 

fulfill its role as a member of the endosomal machinery (Henne et al., 2011).   

 I next examined whether UBE4B binding to Hrs affects ESCRT-0 formation. Hrs (0.15 

µg) immobilized on Ni-NTA agarose was incubated with a fixed, saturating amount of soluble 

STAM (0.7 µg) and increasing amounts of UBE4B (0 to 2.4 µg). Addition of increasing amounts 

of UBE4B resulted in increased binding of UBE4B to Hrs (Figure 6, lanes 1 to 6). Importantly, 

saturating amounts of UBE4B did not disrupt binding of STAM to Hrs (Figure 6, lanes 6 to 8). 

These data suggest that Hrs is capable of binding to both UBE4B and STAM simultaneously, and 

that UBE4B does not alter the formation of the vital ESCRT-0 complex. 
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3.3 UBE4B binds to and ubiquitinates EGFR 

 UBE4B binds to endosomes, an interaction that is dependent upon binding of UBE4B to 

Hrs (Sirisaengtaksin et al., 2014). Other endosome-associated ubiquitin ligases have been shown 

to promote the ubiquitination, and subsequent degradation, of their target transmembrane protein 

substrates (Marchese et al., 2003; Nakamura, 2005; Fukuda, 2006; Hassink et al., 2012; Bocock 

Figure 6. UBE4B binds to ESCRT-0. 

Increasing amounts of soluble UBE4B was incubated 

with a fixed amount of soluble STAM and a fixed 

amount of insoluble Hrs bound to Ni-NTA agarose. 

Beads were washed to remove excess, unbound 

protein. Then, bound protein was eluted and resolved 

by SDS-PAGE. Concentrations of UBE4B exceeding 

0.6 µg resulted in no additional binding to Hrs/STAM.  
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et al., 2010). To determine whether UBE4B interacts with EGFR, cell lysates were incubated with 

either rabbit IgG or an antibody directed towards EGFR. UBE4B co-precipitated with EGFR in 

samples incubated with a-EGFR (Figure 7, right lane), but not rabbit IgG (Figure 7, center lane).  

 To determine whether UBE4B can mediate EGFR ubiquitination, we reconstituted 

ubiquitination reactions by incubating cell lysate (as a source of EGFR substrate), recombinant 

UBE4B, E1, UbcH5c (E2), and an ATP regeneration system, which required for ubiquitination in 

vitro. EGFR was immunoprecipitated from reactions. Ubiquitin was co-immunoprecipitated from 

reactions that included UBE4B (Figure 8, first lane). Ubiquitin was not detected in samples that 

either did not include UBE4B (Figure 8, second lane), included deubiquitinating enzymes (Figure 

8, third lane), or included a recombinant UBE4B protein containing a point mutation, 

UBE4B(P1140A), that is catalytically inactive and therefore incapable of ubiquitin ligase activity 

(Figure 8, fourth lane). These data suggest that UBE4B and EGFR interact in cells, and that 

Figure 7. UBE4B binds to EGFR. 

HeLa cell lysate (left lane) contains UBE4B 

and EGFR. Immunoprecipitation using EGFR 

antibodies, but not rabbit IgG (center lane), 

coprecipitated UBE4B (right lane).  
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UBE4B is capable of mediating the ubiquitination of EGFR. In contrast, a point mutant of 

UBE4B, UBE4B(P1140A), is unable to ubiquitinate the EGFR. 

 

3.4 Cbl may mediate the EGFR-UBE4B interaction 

 Activated EGFRs signal as they traverse the endocytic pathway until the ligand-receptor 

complex is sorted into internal MVB vesicles and is degraded by proteolysis following MVB-

lysosome fusion. Lack of a ubiquitin tag precludes the EGFR from being sorted into MVB internal 

vesicles, and therefore from lysosomal targeting and subsequent degradation (Goh and Sorkin, 

Figure 8. UBE4B can ubiquitinate EGFR. 

HeLa cell lysate was incubated with recombinant UBE4B and other 

components required for EGFR ubiquitination. Reactions that 

included UBE4B contained ubiquitinated EGFR (first lane). Reactions 

that either did not include UBE4B (second lane), included 

deubiquitinating enzymes (third lane), or included a point mutant of 

UBE4B incapable of ubiquitination (fourth lane) did not contain 

ubiquitinated EGFR. 
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2013; Smith et al., 2013; Eden et al., 2012). Thus, ubiquitination may play a key role in the 

degradation of EGFR. 

 

 Ubiquitination of EGFR by the ubiquitin ligase Cbl can occur at an early stage in the 

endocytic pathway, perhaps when the EGFR is present on the plasma membrane (Mohapatra et 

al., 2013; Smith et al., 2013). Interestingly, while Cbl expression is required for EGFR 

degradation, ubiquitination by Cbl alone is not sufficient to promote inward budding of the EGFR 

at the MVB membrane (Smith et al., 2013; Baldys and Raymond, 2009). Rabring7 and RNF126 

Figure 9. Cbl may mediate UBE4B-EGFR binding. 

MCF-10A cell lysates were incubated with either rabbit IgG or an antibody 

specific for UBE4B. Both types of lysate contained UBE4B (first and second 

lanes). Antibodies were precipitated from samples with protein A agarose, beads 

were boiled in sample buffer to elute bound protein. Samples were subject to 

Western blotting and probed for the presence of UBE4B. Samples prepared from 

lysate incubated with rabbit IgG did not contain UBE4B (third lane). Samples 

prepared from wild-type MCF-10A cell lysate (containing Cbl) and incubated 

with EGFR antibody co-precipitated UBE4B (fourth lane). Samples prepared 

from Cbl-depleted MCF-10A cell lysate and incubated with EGFR antibody did 

not contain UBE4B (fifth lane). 
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are two ubiquitin ligases that are known to associate with EGFR downstream of Cbl, and their 

depletion results in impaired EGFR  inclusion into MVB vesicles, such that EGFR is retained on 

late endosomal membranes (Smith et al., 2013). Association of EGFR with both Rabring7 and 

RNF126 required Cbl expression, suggesting that Cbl mediates the interaction between these 

ubiquitin ligases and EGFR (Smith et al., 2013). 

 I hypothesized that Cbl may mediate a similar relationship between UBE4B and EGFR.  

c-Cbl and Cbl-b are homologs that have a redundant function in cells (Visser Smit et al., 2009). 

Therefore, both c-Cbl and Cbl-b were depleted from MCF-10A cells (Mohapatra et al., 2013). 

Wild-type and Cbl-depleted cells were starved and stimulated with EGF to trigger EGFR entry to 

the endocytic pathway and UBE4B colocalization with endosomal compartments (Sirisaengtaksin 

et al., 2014). Cells were lysed, and immunoprecipitations were performed. Lysates containing 100 

µg of total protein were incubated with either non-specific IgG antibodies or an EGFR antibody. 

Then, EGFR was immunoprecipitated using protein A agarose beads. Lysates prepared from both 

wild-type cells and Cbl-depleted cells contained UBE4B (Figure 9, first and second lanes). 

UBE4B did not bind to beads that were incubated with rabbit IgG (Figure 9, third lane). UBE4B 

was co-precipitated with EGFR from lysates isolated from cells that expressed endogenous Cbl 

(Figure 9, fourth lane), but not from lysates prepared from Cbl-depleted cells (Figure 9, fifth lane). 

These data suggest that Cbl expression is required for UBE4B-EGFR binding. 

 

3.5 UBE4B is required for EGFR sorting  

 Following EGF binding, EGFR is internalized from the plasma membrane and traverses a 

well-defined pathway from the early endosome to the late endosome. On endosomal membranes, 

EGFRs may: 1) remain on the limiting membrane of the multivesicular body, from which 

receptors may be directed to other parts of the cell (e.g. the plasma membrane), or 2) bud inward 
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into endosomes, and action that ultimately targets EGFRs to lysosomes for degradation (Huotari 

and Helenius, 2011; Smith et al., 2013; Chin et al., 2001; Felder et al., 1990; Roepstorff et al., 

2009) or 3) remain on the limiting membrane of the endosome for incorporation into the lysosomal 

membrane. Formation of intraluminal vesicles occur from endosomal membranes as ESCRTs and 

other proteins drive the formation of membranes buds that are released into the lumen (Bache et 

al., 2003; Katzmann et al., 2001a; Babst et al., 2002b; a). The choice between recycling and 

degrading is determined by the ubiquitination state of proteins (Longva et al., 2002; Alwan et al., 

2003; Eden et al., 2012). ESCRTs recognize and capture ubiquitinated endosomal cargo, while 

leaving nonubiquitinated receptors for recycling back to the plasma membrane (Sorkin et al., 

1991; Eden et al., 2012; Goh and Sorkin, 2013).  

 To determine whether UBE4B is required for the endosomal movement of the EGFR, we 

used a cell-free assay that allows reconstitution of multivesicular body (MVB) formation and 

measurement of the movement of membrane spanning receptors from the limiting membrane of 

endosomal membranes into luminal vesicles of MVBs (Sun et al., 2010; Sirisaengtaksin et al., 

2014; Gireud et al., 2015). During these reactions, MVB formation is reconstituted by incubating 

endosomal membranes with cytosol and an ATP regeneration system. The movement of EGFR 

from the limiting membrane of endosomes into inwardly budding vesicles can be examined by 

assessing the protection of an intracellular epitope. Thus, samples are treated with trypsin 

protease, that digests the exposed intracellular domain of EGFR that remains outside of the 

endosomal membrane. Digestion of EGFR by trypsin renders the protein undetectable by Western 

blotting, when using antibodies specific for an intracellular epitope of EGFR. EGFR that has been 

recognized by the sorting machinery is sorted into vesicles that bud into the endosomal lumen. 

Internalized EGFR is protected from protease cleavage as trypsin cannot pass through endosomal 

membranes and is recognized by EGFR antibodies that recognize an intracellular epitope on the 

EGFR.  
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 To reconstitute endosomal sorting and membrane budding, endosomal membranes were 

incubated with an ATP regenerating system and cytosol. Cytosol was isolated from transfected 

HeLa cells (Fig 6A). Cytosol isolated from untreated cells (Fig 6, first lane) and cells transfected 

with non-specific siRNA (Figure 10, fourth lane) were able to support the sorting of EGFR. 

Addition of recombinant UBE4B (Figure 10, second and fifth lanes) or recombinant 

UBE4B(P1140A) (Figure 10, third and sixth lanes) had no effect on EGFR sorting. Compared to 

controls, cytosol isolated from UBE4B-depleted cells was unable to support the endosomal 

sorting of EGFR (Figure 10, seventh lane).  Addition of recombinant UBE4B rescued EGFR 

sorting (Figure 10, eighth lane). Addition of recombinant UBE4B(P1140A) also partially rescued 

EGFR sorting, but the amount of EGFR sorted was less than the rescue with wild-type UBE4B 

(Figure 10, ninth lane). This apparent rescue with the addition of UBE4B(P1140A) is unexpected, 

as the point mutation of the proline lies within the catalytic U-box domain, and should abolish the 

E3 ligase activity of UBE4B (Hatakeyama et al., 2001). However, the complete inhibition of 

EGFR sorting into endosomes was also unexpected, as UBE4B depletion has been shown to only 

partially inhibit EGFR sorting (Sirisaengtaksin et al., 2014). These data suggest that UBE4B-

mediated ubiquitination of EGFR facilitates the sorting of EGFR into endosomes.  
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Figure 10. Depletion of endogenous UBE4B inhibits EGFR sorting; impaired EGFR sorting 

can be rescued with the addition of exogenous UBE4B. 

A) HeLa cells were transfected using either a scrambled siRNA or with siRNA specific for UBE4B. 

Transfection with scrambled RNA did not result in altered UBE4B expression (middle lane) versus 

control (left lane). Transfection with siRNAs specific for UBE4B resulted in UBE4B depletion 

(right lane) compared to control. B) Cell-free sorting assays were performed to determine the 

requirement of UBE4B in EGFR sorting. Reactions including cytosols prepared from cells 

containing endogenous UBE4B (lane 1 and lane 4) contained similar amounts of EGFR sorted, 

and EGFR sorting in these reactions was not affected with the addition of exogenous UBE4B (lane 

3 and lane 5) or UBE4B(P1140A) (lane 3 and lane 6). Compared to these control reactions, 

reactions that included cytosol prepared from UBE4B-depleted cells showed a dramatic decrease 

in EGFR sorting (lane 7). EGFR sorting in these reactions were rescued with the addition of 

exogenous UBE4B (lane 8), more than with the addition of UBE4B(P1140A) (lane 9). 
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3.5 Increased UBE4B expression increases EGFR degradation following ligand 

stimulation 

 Because I observed that UBE4B is required for EGFR sorting into endosomes, a step that 

is required for EGFR delivery to lysosomes for degradation, I next examined whether UBE4B 

may regulate EGFR degradation.  

Figure 11. Overexpression of UBE4B affects EGFR degradation. 

SK-N-AS cell lines were starved and stimulated with EGF. Cells were collected 

after 0, 30, and 60 minutes, and cellular EGFR content was analyzed. Cells 

that overexpressed UBE4B degraded significantly more EGFR than control 

cells (GFP). Cells that overexpressed the ubiquitination-deficient mutant, 

UBE4B(P1140A), degraded significantly less EGFR than control cells. Data 

represent the mean ± standard error. * denotes p < 0.05, n = 3. 
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 The SK-N-AS human neuroblastoma cell line was chosen for these experiments because 

deletions of the 1p36 chromosomal region are common in neuroblastoma, suggesting that this 

region may harbor a tumor suppressor gene (Caron et al., 1996). The location of the UBE4B gene 

within 1p36, coupled with the low expression of UBE4B in high-stage neuroblastoma cases 

suggest that UBE4B is a promising candidate for a neuroblastoma tumor suppressor (Caron et al., 

1996).   

 I determined whether increasing UBE4B expression affects EGFR degradation in 

neuroblastoma cells. SK-N-AS cells were infected with lentiviruses to create three stable cell 

lines: overexpressing UBE4B, overexpressing UBE4B(P1140A), and a control overexpressing 

green fluorescent protein (GFP) (Zage et al., 2013). The overexpression of the proteins were 

driven by the ubiquitin promoter resulting in a overexpression of UBE4B to approximately five 

times endogenous levels (Sirisaengtaksin et al., 2014).  

 To examine EGFR degradation, cell lines were starved for two hours and stimulated with 

EGF (50ng/ml for 0, 30, and 60 min), to synchronize entry of EGFR into the endocytic pathway. 

Cells were collected and EGFR content was analyzed by Western blotting. After 60 minutes of 

incubation with EGF, cells that overexpressed UBE4B had less than 20% of total EGFR 

remaining, compared to control cells expressing GFP, that had about 40% EGFR remaining 

(Figure 11). The amount of EGFR degraded at 60 minutes in cells that overexpress UBE4B was 

significantly different (p < 0.05). Additionally, expression of UBE4B(P1140A), resulted in 

significantly impaired degradation compared to control cells expressing GFP (Figure 11), with 

about 55% of total EGFR remaining in cells. The difference in EGFR degradation between control 

cells and cells that express UBE4B(P1140A) was also significant (p < 0.05). These data suggest 

a correlation between UBE4B expression and EGFR degradation. Moreover, the enzyme activity 

of UBE4B appeared to be required for efficient degradation. 
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3.6 The deubiquitinating enzyme, USP8, can remove ubiquitin from EGFR 

 EGFR must be ubiquitinated at endosomal membranes to be recognized by the UIM 

domains of ESCRT proteins to enable concentration of proteins into domains of the endosomal 

membrane and internalization into luminal vesicles of multivesicular bodies. However, prior to 

vesicle scission and release to complete the inward budding event, ubiquitinated cargo proteins, 

presumably including EGFRs, are hypothesized to be deubiquitinated (Katzmann et al., 2001a; 

Alwan et al., 2003).  

 USP8 is a deubiquitinating enzyme that is recruited to endosomes and is predicted to play 

a role in EGFR degradation (Alwan et al., 2003; Row et al., 2006; Mizuno et al., 2005; Alwan 

and van Leeuwen, 2007). However, the exact nature of USP8 regulation of  EGFR degradation is 

controversial, as multiple studies have reported either inhibition or promotion of EGFR 

degradation following USP8 overexpression (Alwan et al., 2003; Berlin et al., 2010; Alwan and 

van Leeuwen, 2007; Row et al., 2006). Interestingly, USP8 binds to STAM, the ESCRT-0 

component that is recruited to endosomes by Hrs (Alwan and van Leeuwen, 2007; Berlin et al., 

2010; Mizuno et al., 2005). Based on this interaction I hypothesized that a protein complex 

containing UBE4B, Hrs, STAM, and USP8 may form to allow concerted 

ubiquitination/deubiquitination events to be confined to a microdomain of the endosomal 

membrane and provide efficient tagging and untagging of membrane protein cargo.  Thus, EGFRs 

could be ubiquitinated by UBE4B, recognized by the ESCRT-0 complex to initiate protein sorting 

into endosomes, then deubiquitinated by USP8 before inclusion into intraluminal vesicles.  

 To determine whether USP8 is capable of deubiquitinating EGFR that was previously 

ubiquitinated by UBE4B, EGFR ubiquitination and deubiquitination assays were performed in 

succession. HeLa cell lysate (as a source of EGFR target substrate) was incubated with 

recombinant UBE4B, as well as E1, UbcH5c (E2), and an ATP regeneration system, components 
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that required for ubiquitination in vitro. EGFR was then immunoprecipitated from the initial 

reactions and ubiquitination assay components were removed by centrifugation. Reactions were 

then incubated with either recombinant non-specific deubiquitinating enzymes (UCH-L3 and 

isopeptidase-T) or USP8. Ubiquitinated EGFR could only be detected in reactions that included 

UBE4B during incubation (Figure 12, lane 1). Decreased levels of ubiquitinated EGFR were 

detected in reactions in which UBE4B, UBE4B(P1140A), or non-specific deubiquitinating 

enzymes were added (Figure 12, lanes 2, 3, and 4). Incubation with USP8 alone resulted in no 

detectable ubiquitinated EGFR (Figure 12, lane 5). These data suggest that USP8 is capable of 

deubiquitinating EGFR following UBE4B-mediated ubiquitination.  
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Figure 12. USP8 can deubiquitinate EGFR following 

UBE4B-mediated ubiquitination. 

HeLa cell lysate was incubated with recombinant 

UBE4B and other components required for EGFR 

ubiquitination. Reactions that included UBE4B 

contained ubiquitinated EGFR (first lane). Reactions 

that either did not include UBE4B (second lane) or 

included a point mutant of UBE4B incapable of 

ubiquitination (third lane) did not contain ubiquitinated 

EGFR. Samples that included UBE4B in ubiquitination 

reactions were subsequently subject to deubiquitination. 

The control deubiquitination reaction that included the 

non-specific deubiquitinating enzymes, UCH-L3 and 

isopeptidase T, showed decreased co-precipitated 

ubiquitination. Additionally, the deubiquitination 

reaction that included the STAM-associated 

deubiquitinating enzyme, USP8, contained no detectable 

ubiquitin. 
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 To determine whether USP8 can be recruited to endosomal membranes with a time course 

similar to that of UBE4B, HeLa cells were serum-starved, and stimulated with EGF for 15 minutes 

at either 0°C or 37°C. Cells were then fixed and immunolabeling was performed with antibody 

directed against USP8 and LAMP1. Localization of USP8 and LAMP1 in cells incubated with 

EGF at 0°C was distinct (Figure 13, top).  However, cells that were incubated with EGF (15 min 

Figure 13. USP8 colocalizes with the late endosome-associated protein, LAMP1, following 

cellular exposure to EGF. 

HeLa cells were plated on coverslips, starved, and incubated with EGF (100ng/ml). Cells were 

fixed and immunolabeled with antibodies directed against LAMP1 (red, Alexa Fluor 568) and 

USP8 (green, Alexa Fluor 488). Distinct punctate localization of LAMP1 and USP8 was 

observed in cells incubated at 0°C (single arrow), while colocalization of LAMP1 and USP8 was 

observed in cells that were incubated at 37°C (double arrow) Scale bars = 10 µm. 
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at 37°C) had increased incidence of overlapping localization of USP8 and LAMP1, suggesting 

that EGFR movement through the endocytic pathway is correlated in time with endosomal 

recruitment of USP8. UBE4B is recruited to endosomes in a similar manner under the same 

conditions (Sirisaengtaksin et al., 2014).  

 

3.5 Increased UBE4B expression decreases neuroblastoma tumor cell sensitivity to 

EGFR inhibitors 

  Proliferation of neuroblastoma cellular (SK-N-AS) is significantly inhibited in cells that 

overexpress UBE4B, compared to control cells and cells that expressed UBE4B(P1140A) (Zage 

et al., 2013). These proliferative responses were observed regardless of whether the cells were 

incubated in media that was supplemented with FBS or with EGF (Zage et al., 2013). The 

correlation of UBE4B expression with the ability of cells to degrade EGFR suggested that cellular 

expression of UBE4B and resultant changes in EGFR degradation may affect the response of 

neuroblastoma tumor cells to treatment with EGFR inhibitors. To explore this possibility, the SK-

N-AS lentivirus-infected cell lines were treated with cetuximab, a monoclonal antibody that 

blocks EGFR function by binding to the extracellular domain of the EGFR and competing with 

EGFR ligands (e.g., EGF) for EGFR binding (Mehra et al., 2008; Lenz, 2007). In addition to 

blocking ligand binding, cetuximab also triggers receptor internalization and entry into the 

endocytic pathway (Lenz, 2007). 
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 The proliferation of SK-N-AS cells treated with various concentrations (4 µM, 12 µM, 40 

µM) of a tyrosine kinase inhibitor, erlotinib, was not different than the proliferation of untreated 

cells (Figure 14). 

 SK-N-AS cells were treated with three concentrations of cetuximab (400 nM, 1 µM, and 

4 µM) and proliferation was measured over time (0, 24, 48, and 72 hours) using a WST-1-based 

spectrophotometric assay. The proliferation of cells treated with the highest cetuximab 

concentration (4 µM) was significantly inhibited compared for untreated cells (Figure 15). The 

Figure 14. Erlotinib treatment does not inhibit neuroblastoma tumor 

cell proliferation. 

Parental SK-N-AS cells were treated with increasing concentrations of 

erlotinib: 4 µM, 12 µM, and 40 µM. Cell proliferation was measured at 0, 

24, 48, and 72 hours using the WST-1 spectrophotometric assay. Erlotinib 

treatment did not inhibit the proliferation of SK-N-AS cells at any 

concentration tested. 
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proliferation of cells treated with lower concentrations (400 nM and 1 µM) of cetuximab was not 

significantly different than untreated cells (Figure 15). 

  

 

   

 

Figure 15. Treatment with 4 µM cetuximab inhibits 

neuroblastoma tumor cell growth. 

Parental SK-N-AS cells were treated with increasing 

concentrations of cetuximab. Cell proliferation was 

measured at 0, 24, 48, and 72 hours after initial drug 

treatment. Proliferation was assessed using the WST-1 

spectrophotometric assay. Cetuximab treatment using less 

than 4 µM concentrations did not inhibit proliferation of 

SK-N-AS cells. 
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 To determine whether UBE4B expression affects SK-N-AS sensitivity to cetuximab, 

parental SK-N-AS cells and the SK-N-AS stable cell lines expressing UBE4B, UBE4B(P1140A), 

or GFP were treated with 4 µM cetuximab. Cell proliferation was then evaluated at 0, 24, and 72 

hours. Proliferation of parental SK-N-AS cells, as well as cells expressing GFP and 

UBE4B(P1140A), was inhibited (Figure 16). In contrast, expression of UBE4B resulted in an 

increase in cell proliferation (Figure 16). These data suggest that increases in UBE4B expression 

result in decreased sensitivity to cetuximab. 

Figure 16. UBE4B expression decreases 

neuroblastoma cell sensitivity to cetuximab treatment. 

Parental SK-N-AS cells and cell lines derived from the 

SK-N-AS cell line expressing either GFP, UBE4B, or 

UBE4B(P1140A) were grown in the presence of 4 µM 

cetuximab with cell viability assessed at 0, 24, and 72 

hours as detailed above.  
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Chapter 4. Discussion 

Introduction 

The removal of membrane proteins that reside at the cell surface occurs by endocytosis, a 

vital mechanism that regulates the protein residence time on the surface. One particular class of 

proteins, receptor tyrosine kinases, is internalized upon binding to extracellular ligands. Ligand 

binding initiates signal transduction pathways that propagate throughout the cell. Following 

receptor internalization from the plasma membrane, receptors travel in transport vesicles that 

allow movement of membrane and proteins that travel as cargo through a well-defined pathway 

called endocytosis (Goh and Sorkin, 2013; Goh et al., 2010; Doherty and McMahon, 2009). This 

physical removal of protein from the surface allows constant remodeling of the transmembrane 

surface protein population. In this manner, endocytosis allows fine-tuning of signaling in response 

to extracellular cues by limiting the availability of signaling molecules at the surface and the time 

the receptor spends signaling as it moves through the endocytic pathway (Goh et al., 2010). These 

signaling events mediate basic cell processes like differentiation, migration, plasticity, and 

proliferation (Goh et al., 2010; Schlessinger, 2000). 

 Following internalization, protein cargo travels on transport vesicles that fuse with the 

early endosomal organelle (Beguinot et al., 1984; Huang et al., 2007). They remain on endosomal 

membranes until they are either 1) sorted into vesicles that bud inward into a late endosome/MVB 

for eventual delivery to lysosomes, 2) included in small vesicles that bud outward into the cytosol 

for eventual incorporation into other cellular structures (e.g. the plasma membrane or Golgi), or 

3) remain on membranes of the MVB and become incorporated into the membranes of lysosomes 

upon MVB-lysosomal fusion (Nothwehr et al., 2000; Felder et al., 1990; Sigismund et al., 2012; 

Dunn, 1986). The sorting event requires the recruitment of the multisubunit ESCRT complexes 

that act sequentially to concentrate cargo into membrane buds that are released into the lumen of 
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the MVB (Teo et al., 2004; Katzmann et al., 2001a, 2003; Bache et al., 2003; Babst et al., 2002a).  

ESCRTs engage protein cargo that have been covalently conjugated to ubiquitin, a small molecule 

that designates endosomally-associated membrane proteins for lysosomal degradation (Katzmann 

et al., 2001a; Bilodeau et al., 2002). Nonubiquitinated cargo cannot be engaged by ESCRTs, 

which precludes them from a degradative fate. Therefore, the action of the cellular machineries 

that regulate ubiquitination and endosomal sorting of membrane protein cargo are required for 

cargo degradation; however, the mechanisms by which the machineries coordinate their functions 

are unknown. UBE4B is an E3 ubiquitin ligase that can catalyze the covalent attachment of 

ubiquitin onto its target substrates. Prior to my work, UBE4B was predicted to bind to the ESCRT-

0 component, Hrs, an interaction that suggests a role for UBE4B in the endocytic pathway 

(Sirisaengtaksin et al., 2014). The goal of this work was to examine whether UBE4B couples the 

action of the ubiquitination and ESCRT machinery to promote the sorting and degradation of the 

membrane protein EGFR. 

 

UBE4B binds to ESCRT-0 

 Hrs is the first ESCRT sorting machinery component to bind to endosomal membranes 

(Raiborg et al., 2001; Bache et al., 2003). It acts as a scaffolding protein that recruits ESCRT and 

non-ESCRT proteins that promote endocytic cargo sorting (Chin et al., 2001; Bean, 2000; 

Komada, 2005; Pullan et al., 2006; Roxrud et al., 2008; Yan et al., 2005). In preliminary 

experiments, a yeast two-hybrid assay predicted an interaction between Hrs and UBE4B 

(Sirisaengtaksin et al., 2014). This interaction was further confirmed when we observed that Hrs 

bound to UBE4B following incubation of recombinant UBE4B with cell lysate as a source of Hrs 

(Sirisaengtaksin et al., 2014). While these data suggest that Hrs and UBE4B may bind in vitro, it 

was unknown whether the interaction required the presence or action of an accessory protein to 
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mediated Hrs-UBE4B binding. I performed a binding assay between recombinant Hrs and 

recombinant UBE4B and found that the interaction between the two proteins can occur in the 

absence of other protein, and that binding is saturable (Figure 5).  

 Hrs recruits proteins (e.g. Eps15, SNX1) to endosomes, but its association with the 

ESCRT-0 component, STAM, is required to promote endocytic sorting of membrane protein 

cargo (Henne et al., 2011; Komada, 2005; Pullan et al., 2006; Bean, 2000; Chin et al., 2001). 

Therefore, it was important to establish whether UBE4B binding to Hrs disrupted the formation 

of ESCRT-0. I found that in vitro incubation of UBE4B, Hrs, and STAM resulted in the saturable 

binding of UBE4B to ESCRT-0 (Figure 6). Importantly, incubation with excess UBE4B did not 

affect ESCRT-0 complex formation or stability (Sirisaengtaksin et al., 2014). The binding of 

UBE4B to the complete ESCRT-0 complex suggests that UBE4B may localize to endosomes and 

play some role in receptor trafficking. Endosomal binding was confirmed by another member of 

the Bean Lab, who incubated purified endosomes with increasing concentrations of recombinant 

UBE4B (Sirisaengtaksin et al., 2014). He observed saturable binding of recombinant UBE4B to 

endosomal membranes. He also observed that this association was dependent on UBE4B binding 

to Hrs, suggesting that Hrs acts as an endosomal receptor for UBE4B binding. Taken together, 

these data show that UBE4B is recruited by Hrs to endosomes and binds to ESCRT-0, a complex 

that recognizes and concentrates ubiquitinated cargo. This suggests a potential role for UBE4B, 

in which ubiquitination of endosomal cargo by UBE4B may enable cargo recognition by the 

endosomal sorting machinery. 

 

UBE4B binding to and ubiquitination of EGFR may be regulated by Cbl 

 While Hrs is required for cargo recognition at MVBs, its recruitment of other proteins to 

endosomes, such as SNX1 and Eps15, has also been shown to promote cargo protein sorting, 
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especially EGFR (Chin et al., 2001; Roxrud et al., 2008; Bean, 2000). Immunofluorescence 

experiments performed in collaboration with other members of the Bean Lab suggest the 

involvement of UBE4B in EGFR endocytosis. She observed the localization of Hrs and UBE4B 

following EGF-mediated EGFR endocytosis. She starved cells to synchronize EGFR 

internalization, incubated cells with ligand, and labeled cellular protein with antibodies. I 

quantified the colocalization of UBE4B with Hrs and EEA1, a protein marker for the early 

endosomal compartment. Under conditions that prevented EGFR internalization, I found that 

UBE4B was diffusely localized in the cytosol and did not appear to colocalize with Hrs or EEA1 

(Sirisaengtaksin et al., 2014). Under conditions that permitted EGFR internalization, I found that 

UBE4B colocalization with Hrs and EEA1 was significantly increased (Sirisaengtaksin et al., 

2014). These data strongly suggest that UBE4B is recruited to endosomes to interact with EGFR 

as it moves through the endocytic pathway. 

 To confirm the UBE4B-EGFR interaction, I immunoprecipitated EGFR and observed that 

UBE4B was coprecipitated from cell lysate, suggesting a physiological interaction between 

UBE4B and EGFR (Figure 7). I also identified EGFR as a substrate for UBE4B-mediated 

ubiquitination (Figure 8). Ubiquitination of EGFR is required for its recognition by the endosomal 

sorting machinery, and eventual inclusion into vesicles that are targeted for lysosomal degradation 

(Goh et al., 2010; Eden et al., 2012; Goh and Sorkin, 2013). Therefore, the ubiquitination state of 

EGFR at endosomal membranes plays a role in determining whether EGFR is degraded or 

whether it remains in the cells for continued participation in signaling.  

 Many ubiquitin ligases are reported to associate with endosomes (including Cbl, AIP4, 

MARCH-II, MARCH-III, Triad1, and RNF13) and are predicted to play some role in protein 

trafficking (Visser Smit et al., 2009; Marchese et al., 2003; Nakamura, 2005; Fukuda, 2006; 

Hassink et al., 2012; Bocock et al., 2010). The role of Cbl-mediated ubiquitination in EGFR 

degradation has been well-established (Visser Smit et al., 2009; Mohapatra et al., 2013; Ardley 
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and Robinson, 2005; Grandal et al., 2007; Smith et al., 2013). Cbl is recruited to plasma 

membranes upon EGFR activation, and binds directly to EGFR to catalyze ubiquitination early in 

the endocytic pathway (Grandal et al., 2007). EGFR ubiquitination at the plasma membrane is not 

required for EGFR entry into the cell (Huang et al., 2007). However, EGFR may not gain entry 

into MVBs by virtue of Cbl-mediated ubiquitination alone (Smith et al., 2013). Instead, 

ubiquitination by RING E3 ligases RNF126 and Rabring7 may promote efficient EGFR 

degradation, although the presence of Cbl was still required (Smith et al., 2013). While it is likely 

that RNF126 and Rabring7 play some role in EGFR degradation, their role in EGFR sorting 

remains unclear. The mechanism by which these RING E3 ligases regulate EGFR degradation is 

unclear because their ubiquitination activity was not demonstrated to directly enable EGFR 

sorting. However, the dependence of RNF126 and Rabring7 on Cbl to mediate the degradation of 

EGFR provides insight into similar interactions that may occur, especially between Cbl and 

UBE4B. 

 I observed that the co-immunoprecipitation of UBE4B and EGFR from cell lysates were 

dependent upon Cbl expression (Figure 9), suggesting that Cbl may directly or indirectly mediate 

the interaction between UBE4B and EGFR. While no E4 activity by RNF126 and Rabring7 have 

been detected, it is well known that U-box domain proteins like UBE4B are capable of E4 

ubiquitin chain assembly enzymes (Hatakeyama et al., 2001; Patterson, 2002; Kaneko et al., 

2003). E4 activity requires the coordinated action of E1, E2, and E3 enzymes to enable the 

efficient, rapid elongation of ubiquitin chains that are attached (Ardley and Robinson, 2005; 

Koegl et al., 1999). It is possible that EGFR ubiquitination by Cbl primes EGFR for UBE4B 
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binding and ubiquitin chain elongation. Alternatively, Cbl may be required for the physical 

mediation of the EGFR-UBE4B interaction.  

 

MVB sorting and lysosomal degradation of EGFR requires ubiquitination by UBE4B 

For lysosomal degradation EGFR, the receptor must be sorted into membrane buds that 

are released into the lumen of MVBs. Protein sorting is regulated by ESCRTs, which recognize 

ubiquitinated cargo. I observed that UBE4B was able to ubiquitinate EGFR, so I examined 

whether UBE4B ubiquitination would enable EGFR sorting (entry into luminal MVB vesicles). 

In a cell-free sorting assay, we are able to measure the movement of EGFRs from the limiting 

membrane of endosomes into luminal vesicles. Depletion of proteins that are required for cargo 

sorting, such as the ESCRT component Hrs, results in impaired sorting of EGFR (Sun et al., 2010; 

Figure 17. Cbl may mediate the UBE4B-EGFR interaction. 

Cbl ubiquitination may prime EGFR for suitable binding to UBE4B. 

Alternatively, Cbl may be required to mediate E4 chain elongation activity  

with UBE4B. 
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Gireud et al., 2015). Likewise, depletion of UBE4B impaired the sorting of EGFR (Figure 10, 

lane 7), suggesting that UBE4B is required for efficient sorting of EGFR. While addition of 

recombinant UBE4B partially rescued the sorting of EGFR (Figure 10, lane 8), addition of 

recombinant UBE4B(P1140A) did not rescue EGFR sorting (Figure 10, lane 9). These data 

suggest that the enzymatic activity of UBE4B is required for the efficient endosomal sorting of 

EGFR. 

 Altered expression of UBE4B in neuroblastoma cells affect EGFR degradation. 

Significant differences in EGFR degradation were observed 60 minutes after EGF stimulation 

(Figure 11). Neuroblastoma cells that overexpressed UBE4B degraded significantly more EGFR 

than control cells that expressed GFP (Figure 11, UBE4B and GFP). Neuroblastoma cells that 

expressed the point mutant UBE4B(P1140A) degraded significantly less EGFR than control cells 

(Figure 11, UBE4B(P1140A) and GFP. These data suggest that UBE4B expression is correlated 

with EGFR degradation such that cells with higher levels of UBE4B degrade more EGFR than 

cells with lower levels of UBE4B.  

 The endosomal trafficking of EGFR allows cells to regulate the activity and duration of 

signaling in cells; aberrant regulation of receptor activity is often associated with diseases such as 

cancer (Katzmann et al., 2002; Baldys and Raymond, 2009; Roepstorff et al., 2009; Shtiegman et 

al., 2007). The sorting and degradation data I show are complementary, and suggest a correlation 

between UBE4B expression/ubiquitination activity and EGFR sorting and degradation. 

Additionally, we observed a profound increase in steady-state levels of EGFR expression when 

UBE4B is depleted (Sirisaengtaksin et al., 2014), suggesting that decreased UBE4B expression 

may underlie disease. The UBE4B gene resides on chromosome 1p36, a genomic region that is 

commonly deleted in cancers such as neuroblastoma, glioblastoma, and hepatocellular carcinoma 

(Maris et al., 2001; Caron et al., 1996; Attiyeh et al., 2005; Krona et al., 2003; Ichimura et al., 

2008; Zhang et al., 2010b). Additionally, EGFR overexpression or deregulation of the EGFR 
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signaling pathway is shown to underlie the development of these cancers (Zheng et al., 2016; 

Keller et al., 2016; Thorne et al., 2016; Cloughesy et al., 2014; Huang et al., 2014; Lanaya et al., 

2014). I observed that the addition of recombinant UBE4B partially rescued EGFR sorting and 

overexpression of UBE4B increased EGFR degradation. These data suggest that UBE4B may be 

a novel target for drug development in diseases where loss of UBE4B may underlie tumor 

formation. A treatment that can inhibit the proteasomal degradation of UBE4B or one that may 

deliver recombinant UBE4B to malignant cells to act in the endocytic pathway would provide 

additional UBE4B to ubiquitinate EGFR in the endocytic pathway. For example, UBE4B is a 

ubiquitin ligase that is capable of self-ubiquitination. The ubiquitination of cytosolic proteins 

designates them for proteasomal degradation (Komander and Rape, 2012; Ardley and Robinson, 

2005). I have shown that recombinant UBE4B may be used to rescue the depletion of endogenous 

UBE4B in my EGFR sorting experiments (Figure 10). Therefore, targeted delivery of UBE4B 

(via a nanoparticle or liposomal vehicle) to cells with either 1) decreased UBE4B expression due 

to abnormal genetic alterations (e.g. 1p36 deletions) or 2) cells that overexpress EGFR, may 

provide a therapeutic mechanism by which EGFR degradation is increased upon UBE4B delivery. 

 

UBE4B and USP8 coordinate ubiquitination/deubiquitination through ESCRT-0 binding 

 Ubiquitination of EGFRs at endosomal membranes is critical for their recognition by the 

ESCRT machinery (Smith et al., 2013; Katzmann et al., 2001a). However, deubiquitination of 

EGFRs is also important for receptor inclusion into MVB vesicles (Alwan and van Leeuwen, 

2007; Berlin et al., 2010; Row et al., 2006; Mizuno et al., 2005). Katzmann, et al. proposed that 

deubiquitination of receptors occurs following ESCRT recognition in order to maintain the 

cellular pool of free ubiquitin (Katzmann et al., 2001a). Interestingly, the ESCRT-0 component, 

STAM, recruits a deubiquitinating enzyme, USP8, to endosomes (Alwan and van Leeuwen, 2007; 
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Berlin et al., 2010; Row et al., 2006; Mizuno et al., 2005). Conflicting evidence regarding the 

precise role of USP8 in EGFR degradation has been reported. While some have reported that 

USP8 activity was required for EGFR degradation (Alwan and van Leeuwen, 2007; Row et al., 

2006), others have found that USP8 activity inhibited EGFR degradation (Mizuno et al., 2005; 

Berlin et al., 2010). The difficulty in determining the exact role of USP8 in EGFR degradation 

highlights the importance of the temporal regulation of ubiquitination. I have shown that USP8 is 

recruited to endosomal membranes under a similar time course to UBE4B [Figure 13 and 

(Sirisaengtaksin et al., 2014)]. Additionally, I found that USP8 was able to deubiquitinated 

EGFRs that were previously ubiquitinated by UBE4B. These data suggest that USP8 and UBE4B 

may form a complex with ESCRT-0 to coordinate efficient ubiquitination and deubiquitination. 

However, numerous attempts to isolate a four-part complex of UBE4B-Hrs-STAM-USP8 were 

unsuccessful.  

 Based on these observations, I propose a model in which UBE4B and USP8 are recruited 

to endosomes to regulate the ubiquitination of cargo at endosomal membranes (Figure 18). Hrs 

binds to endosomal membranes, where it recruits STAM to form the ESCRT-0 complex, to which 

UBE4B binds (Figure 18A). The endosomal localization of UBE4B brings it in close proximity 

to EGFR, which must be ubiquitinated in order to be recognized by ESCRT-0. UBE4B 

ubiquitinates ESCRT-0 (Figure 18B), allowing cargo engagement by ESCRT-0 (Figure 18C). 

UBE4B-Hrs binding is disrupted by USP8, which binds to STAM and forces UBE4B dissociation 

from endosomes (Figure 18C and D). Endosomal sorting continues as ESCRT-I and -II encage 

ubiquitinated cargo and mediate inward membrane budding (Figure 18D and E). USP8 

deubiquitinates EGFR just before ESCRT-III mediates vesicle scission and ESCRT disassembly 

occurs (Figure 18E and F). 
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Figure 18. Proposed model of UBE4B and USP8 interaction with ESCRT-0 and role in 

EGFR sorting at the endosome. 

I propose a model in which UBE4B is recruited to endosomes to aid in EGFR sorting into internal 

MVB vesicles. A) UBE4B is recruited to endosomes by binding to the ESCRT-0 complex via Hrs. 

B) UBE4B binds and ubiquitinates EGFR, allowing recognition of the receptor by ESCRT-0 

ubiquitin-binding domains. C) USP8 displaces UBE4B from its endosomal localization by 

binding to STAM. D) ESCRT-I and ESCRT-II then bind to facilitate membrane budding inward 

towards the MVB lumen. E) USP8 then mediates the deubiquitination of EGFR while the ESCRT-

III facilitates the dissociation of the ESCRTs, then F) scission of endosomal membrane to release 

the newly formed vesicle into the endosomal lumen. 
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UBE4B expression may predict neuroblastoma response to EGFR inhibitors 

 Neuroblastoma is the most common extracranial solid tumor in children. The overall 

survival rates for children that are diagnosed with advanced stage cases are ~30% with the current 

treatment options that are available, highlighting the need for improved treatment options. A 

number of studies have looked to adapt therapies that have been approved to treat adult cancers 

for use in pediatric cancers (Rössler et al., 2009). Because EGFR is overexpressed in 

neuroblastoma, I chose to evaluate the efficacy of two EGFR inhibitors that are approved therapies 

in other cancers (Zheng et al., 2016). While the tyrosine kinase inhibitor, erlotinib, did not inhibit 

the proliferation of neuroblastoma cells (Figure 14), in contrast, treatment with a monoclonal 

antibody, cetuximab, did inhibit neuroblastoma cell proliferation at a 4 µM concentration (Figure 

15). 

 We previously showed that UBE4B expression affected neuroblastoma cell growth, such 

that increased UBE4B expression was correlated with decreased cell proliferation (Zage et al., 

2013). Additionally, we observed that steady-state expression of EGFR was negatively regulated 

by UBE4B (Sirisaengtaksin et al., 2014). So, it was not surprising that increased expression of 

UBE4B resulted in decreased sensitivity to 4 µM treatments of cetuximab (Figure 16). Compared 

to control cell lines that expressed endogenous amounts of UBE4B and cells that expressed 

UBE4B(P1140A), proliferation was not inhibited in cells that overexpressed UBE4B (Figure 16). 

These data link UBE4B and its role in the EGFR trafficking pathway in the sensitivity of 

neuroblastoma tumor cells to EGFR inhibitors. However, further investigation into the 

mechanisms by which altered UBE4B expression regulates cell sensitivity to cetuximab, and 

another monoclonal antibody that targets EGFR, panitumumab, may lead to expanded treatment 

options for high-risk neuroblastoma patients (Martinelli et al., 2009). 

 



   71 

Future directions  

1. To characterize the ubiquitination activity of UBE4B at endosomes. 

 Ubiquitin ligases mediate the attachment of ubiquitin onto target substrates. Attachment 

of additional ubiquitin moieties onto one of seven lysine residues may occur to form a 

polyubiquitin chain (Li and Ye, 2008; Ardley and Robinson, 2005; Hatakeyama et al., 2001). It 

is thought that the linkages that compose polyubiquitin chains encode structural and functional 

information that specify the fate of the tagged protein (Li and Ye, 2008; Erpapazoglou et al., 

2012). It would be beneficial to fully characterize the interaction between UBE4B and EGFR, as 

a model for other ubiquitin ligase/protein substrate pairings. First, it should be determined whether 

UBE4B mediates the monoubiquitination or polyubiquitination of EGFR. If UBE4B mediates 

polyubiquitination, the types of linkages mediated by UBE4B may provide insight into the 

importance of ubiquitin ligase/protein substrate relationship. It may also speak to why 

ubiquitination by Cbl is not sufficient for EGFR sorting (Smith et al., 2013). 

 Another interesting aspect of ubiquitination in endosomal sorting is that MVB vesicles 

can also be released as exocytic cargo when MVBs fuse with the plasma membrane. While this 

may not be common for EGFRs that enter the endocytic pathway, it has been shown that other 

protein cargo escapes deubiquitination and become incorporated into MVB vesicles destined for 

exocytosis (Buschow et al., 2005). It is possible that UBE4B and other EGFR-associated ubiquitin 

ligases mediate the ubiquitination of EGFR using certain linkages that are susceptible to 

deubiquitination, while other types of linkages are difficult to remove. Discerning the differences 

between these two types of ubiquitination events may clarify why receptors are degraded and 

others are released into the extracellular space.  
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2. To determine whether UBE4B-mediated ubiquitination of endosomal cargo occurs 

through E3 or E4 activity. 

 Like other U-box ubiquitin ligases, UBE4B can ubiquitinate target substrates 

independently of other E3 ligases (through its E3 activity) or in conjunction with another E3 ligase 

(through its E4 activity). The yeast homolog of UBE4B, Ufd2, was the first E4 ubiquitination 

enzyme that was discovered. Without an E4 ligase, polyubiquitin chains may be initiated, but 

terminate after a few ubiquitin molecules are attached to a substrate protein (Koegl et al., 1999). 

It is unclear whether monoubiquitination or polyubiquitination destines EGFR for lysosomal 

degradation, as both types of ubiquitination have been identified as sufficient for EGFR sorting 

(Haglund et al., 2003; Huang et al., 2013). Elucidating the mechanism by which UBE4B 

ubiquitinates EGFR may provide information about a protein-protein interaction that can be 

exploited in to develop novel therapies for diseases, such as neuroblastoma.  

3. To examine the nature of Cbl’s contribution to the sorting of endosomal cargo 

 If it is determined that UBE4B mediates EGFR ubiquitination through its E4 activity, Cbl 

is a promising candidate for an E3 ligase partner. Cbl expression is required for EGFR sorting 

and degradation, but ubiquitination by Cbl cannot mediate entry of EGFR into MVBs (Smith et 

al., 2013). Additionally, Cbl has been shown to localize to endosomes (Visser Smit et al., 2009; 

de Melker et al., 2001; Levkowitz et al., 1999). There are many different ways in which Cbl may 

mediate the EGFR-UBE4B interaction. 1) Cbl ubiquitination may enable UBE4B binding to 

EGFR. 2) Cbl may bind directly to EGFR, and may remain bound to EGFR in order to mediate 

UBE4B binding. 3) UBE4B may bind to EGFR and elongate existing ubiquitin polypeptides with 

the aid of the E3 activity of Cbl.  

 In a broader sense, the mediation of the UBE4B-EGFR relationship by Cbl may speak to 

an organization of control that one class of ubiquitin ligases (to which Cbl belongs) exerts upon 



   73 

another class of ubiquitin ligases (to which UBE4B belongs). Plasma membrane proteins may 

require interaction with two ubiquitin ligases (or one ubiquitin ligase and one E4 enzyme) to gain 

entry to endosomes.  

 

4. To determine whether delivery of recombinant UBE4B may overcome loss of 

endogenous UBE4B expression 

 Recombinant UBE4B was able to rescue the sorting of EGFR (Figure 10) in my 

experiments. Moreover, overexpression of UBE4B in neuroblastoma cells can accelerate the 

degradation of EGFR and affect cell proliferation [Figure 11 and (Zage et al., 2013)]. Delivery of 

recombinant UBE4B to tumor cells may compensate for genetic defects that underlie tumor 

formation, such as deletions in 1p36 (as seen in neuroblastoma, glioblastoma, and hepatocellular 

carcinomas), overexpression of EGFR, or mutations in EGFR that lead to defective receptor 

degradation (Caron et al., 1996; Ichimura et al., 2008; Zhang et al., 2010b; Keller et al., 2016; 

Grandal et al., 2007).  Therefore, targeted delivery of UBE4B (via a nanoparticle or liposomal 

vehicle) to cells with either 1) decreased UBE4B expression due to abnormal genetic alterations 

(e.g. 1p36 deletions) or 2) cells that overexpress EGFR, may provide a therapeutic mechanism by 

which EGFR degradation is increased upon UBE4B delivery. 

 

5. To examine whether UBE4B mediates ubiquitination of other endosomal cargo 

 UBE4B has been shown to interact with and ubiquitinate other target substrates (Wu et 

al., 2011; Zeinab et al., 2012; Matsumoto et al., 2004; Okumura et al., 2004). However, other than 

EGFR, protein targets of UBE4B ubiquitination are cytosolic. Out of more than 600 ubiquitin 

ligases, a smaller subset have been E3 ligases have been shown to localize at endosomes, 

including AIP4, MARCH-II, MARCH-III, Triad1, and RNF13 (Marchese et al., 2003; Nakamura, 

2005; Fukuda, 2006; Hassink et al., 2012; Bocock et al., 2010). Over 6,700 membrane proteins 
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are predicted to be encoded by the human genome (Almén et al., 2009). For each membrane 

protein to be ubiquitinated, each ligase would have to associate with at least ten different 

membrane proteins. It is probable that UBE4B can mediate the ubiquitination of membrane 

proteins other than EGFR. One strategy would be to examine whether UBE4B can ubiquitinate 

proteins that are similar to EGFR. Another strategy would be to identify cancers in which UBE4B 

expression may be lost (cancers with 1p36 deletions) and identify proteins that overexpressed in 

these cancers. 
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