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ON THE ORIGIN OF SENSORY ERRORS 

Jonathan Richard Flynn, B.S, B.A 

Advisory Professor: Harel Shouval, Ph.D. 

 

Estimation of perceptual variables is imprecise and prone to errors. Although the 

properties of these perceptual errors are well characterized, the physiological basis for 

these errors is unknown. One previously proposed explanation for these errors is the trial-

by-trial variability of the responses of sensory neurons that encode the percept. Initially, 

it would seem that a complicated electrophysiological experiment would need to be 

performed to test this hypothesis. However, using a strong theoretical framework, I 

demonstrate that it is possible to determine statistical characteristics of the physiological 

mechanism responsible for perceptual errors solely from a behavioral experiment. The 

basis for this theoretical framework is that different stochastic distributions (e.g., Poisson, 

Gaussian, etc.) will behave differently under temporal constraints. The results of this 

model connect easily with existing psychophysical techniques; additionally, I extend the 

theory here and show that it can generate realistic tuning curves that can predict 

perceptual acuity as a function of stimulus magnitude and duration. Following the 

analytical work, I performed the necessary experiments to test the model.  I demonstrate 

that the physiological basis of perceptual error has a constant level of noise (i.e., 

independent of stimulus intensity and duration).  By comparing these results to previous 

physiological measurements, I show that perceptual errors cannot be due to the variability 

during the encoding stage. Further, I show a very close fit between the theoretically 

generated tuning curve and the behavioral results, which gives more insight into the error 
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generation mechanism. Finally, I find that the time window over which perceptual 

evidence is integrated lasts no more that ~230ms. I discuss these results and others, and 

speculate on sources of error that may be consistent with my behavioral measurements. 
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1.1 – Introduction 

When we perceive the world, there is naturally some level of error. A musician tuning their 

instrument may occasionally be off on their pitch. When trying to catch a ball, a baseball 

player might misjudge where it is. After sitting in a dark movie theater, we often 

miscalculate the length of a film. In short, our perception does not completely match the 

truth of the external world. However, the types of errors that are made are often 

systematic; specific patterns have been found across different sensory mechanisms, 

suggesting a common source for our misperceptions (Coren et al., 2003; Kandel et al., 

2012). Here, we use a combination of theoretical and experimental work to figure out the 

source of sensory errors.  

 

1.1.1 – Psychophysics and its physiological basis 

The study of sensory errors has a long pedigree. One of the earliest scientific forays into 

studying the mind was the field of psychophysics, which is a continuing attempt to 

mathematically link physical stimuli with mental phenomenon. The first experiments in the 

field were simple: subjects were asked to compare two weights and determine whether 

they were the same or different (Fechner, 1860; Weber, 1834). An intuitive but important 

conclusion was reached: the change in weight required for a subject to just notice a 

difference scaled linearly with the magnitude of the original weight. To put it more 

concretely, if a 10-gram weight required 1-gram change for a subject to notice a 

difference, a 100-gram weight would require a 10-gram change for the same subject to 

notice a difference.  This linear relationship is called the Weber-Fechner Law, and is one 

of the most fundamental observations in psychophysics. 
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Over the past 150 years, the field of psychophysics has codified methods of talking about 

perceptual errors. The most common measurement is the Just-Noticeable-Difference, or 

JND, and is found by establishing a psychometric curve (Klein, 2001). The psychometric 

curve is a sigmoid function that describes a subject’s error rate in either discriminating or 

detecting a stimulus (See Figure 1.1). In the test to establish this function, two stimuli are 

presented: a reference and a test. Depending on the nature of the experiment, these 

stimuli might be presented serially or concurrently. Regardless, the subject is asked 

whether the test stimulus has a higher magnitude than the reference stimulus. The 

probability of answering ‘yes’ is ascertained by repeating for many trials, and the 

magnitude of the test stimulus is varied to build the entirety of the psychometric function. 

The JND is established by finding a stimulus magnitude that corresponds to an arbitrary 

percentage correct (often 75%, although here we will use 84% for reasons described 

later), and subtracting the reference magnitude. Assuming no bias in subject response 

(i.e., the subject chooses randomly when uncertain), this is an easily communicated proxy 

for the slope of the psychometric function. Multitudes of variations on this paradigm exist 

(Klein, 2001), and are discussed further in Section 3.2.2, along with their ramifications on 

the work presented here.  
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Figure 1.1 

 

Figure 1.1: Two stereotypical psychometric curves 
Above we see two cartoon psychometric curves. The red line corresponds to the 
magnitude of the reference stimuli, while the dashed lines represent the Just-
Noticeable-Difference (JND). The X-axis represents the magnitude of the test stimuli. 
The probability of that test stimuli being perceived as higher is demonstrated on the Y-
Axis. Note that the different graphs have different stimuli (A – 5 grams; B – 50 grams), 
but the psychometric function linearly scales to fit the increase. The current graph 
denotes weight, but the psychometric function is used in every sensory modality.  

 

Using this methodology, or similar ones, the statistical properties of perceptual estimation 

errors are rigorously studied (Coren et al., 2003; Ehrenstein and Ehrenstein, 1999; Kandel 

et al., 2012). Experiments have shown that the above-mentioned Weber-Fechner Law, or 

a fair approximation of it, applies to nearly every sensory modality. For example: 

brightness and loudness (Fechner, 1860), color (Indow and Stevens, 1966), loudness 

(where it is a near miss) (McGill and Goldberg, 1968), touch/vibration sensitivity 

(Gescheider et al., 1990), timing (Gibbon, 1977) and even abstract concepts like 

numerosity (Nieder and Miller, 2003). Because this pattern is so pervasive, it suggests 
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that there may be a common physiological mechanism that is generating the same type 

of error.  

 

One belief in the field, often tacit but sometimes stated outright (Tolhurst et al., 1981), is 

that neural variability gives rise to observed psychophysical phenomenon. This has 

intuitive appeal – it is well established that neurons, in vivo, have stochastic properties 

(Stein et al., 2005). Repeated trials of identical stimuli show variability in the number of 

spikes elicited, most often with variances proportional to the mean (Heggelund and Albus, 

1978; Tolhurst et al., 1983). It is likely that much of this variability is innate to the neurons, 

due to balances of inhibition and excitations  (Hertz et al., 2003; van Vreeswijk and 

Sompolinsky, 1996). The statistical properties of trial-by-trial spike variability have been 

well studied (Churchland and Abbott, 2012; Dean, 1981a; Mainen and Sejnowski, 1995), 

and it seems natural that variability in the processing of information will lead to variability 

in sensory judgement. Previous theoretical research has assumed trial-by-trial spike rate 

variability as a source for behavioral variability in psychophysical tasks (Goris et al., 2009; 

May and Solomon, 2015a, 2015b; Mazurek et al., 2003; Shouval et al., 2013). Further, 

electrophysiological experiments have related trial by trial variability of sensory neurons 

to behavior (Britten et al., 1993, 1996; Cohen and Newsome, 2009; Shadlen et al., 1996). 

However, it is important to note that other interpretations of behavioral variability exist. 

For example, it has been suggested that uncertainty about the meta-information of the 

signal (e.g., its size, position in the visual field, time of presentation start and the duration, 

etc.) may account for much of the behavioral variability we see (Pelli, 1985). I will discuss 

these theories, and the ramifications of the current work on them, further in Chapter 4.  
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1.1.2 – Connecting physiology to behavior  

The goal of the current work is to test whether trial-by-trial variability in spike rate can 

account for the behavioral errors quantified in psychophysical experiments. On the 

surface, a large scale electrophysiological experiment would seem to be required to 

resolve this question. However, with theory I can show a necessary relationship between 

neuronal spiking statistics and behavior. The present project is broken up into two sub-

aims: 

 

1) To develop a mathematical formalism from first principles that connects neuronal 

variability with measurable rates of behavioral errors. (Chapter 2) 

2) To develop a behavioral experiment on the principles of the above formalism, and 

determine whether trial-by-trial variability in neuronal spiking can account for the 

perceptual errors. (Chapter 3) 

 

To set up the theoretical foundations for the current experiment, we first need to 

understand that the statistics of the encoding neuron set the lower limit of behavioral noise 

(Paradiso, 1988; Seung and Sompolinsky, 1993). Using Fisher information, we can 

quantify the amount of information a stochastic spike train has encoded about a given 

stimulus. Based on the characteristics of the firing rate variability, when this information 

is decoded (i.e., it is interpreted for use in a behavioral decision), there will necessarily be 

some loss of the original information. This loss can also be quantified, and from that, there 

is a minimum level of error that is tautologically accounted for by neuronal stochasticity. 
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In other words, using basic information theory, we can say that the trial-by-trial variability 

will necessarily add a certain amount and type of error to perception. If perceptual errors 

differ from this prediction, it suggests that neuronal variability is not the source (or at least 

the sole source) of perceptual errors. This analytical work for this theory is further 

developed in Section 2.2.  

 

It is important to note that all the theoretical work in this dissertation is built on 3 simple 

assumptions:  

 

1) Perceptual judgements are based on the number of spikes in a given time 

window.  

2) The tuning curve is monotonic (i.e., when the stimulus magnitude increases, 

the average firing rate increases) 

3) The variability of the spike count in a given time window can be approximated 

by a power law. 

 

To give an intuition on what these mean, we can return to the example of weight given 

above. If we were to measure a neural response to a weight stimuli, we could imagine a 

tuning curve ((ߠ)ݎ) like the one presented in Figure 1.2 (black-dashed line). In general, 

when the subject is given a 30-gram weight, the firing rate will higher than if the subject 

were given a 15-gram weight. Areas of the brain that are responsible for deciding on 

which weight is heavier would determine this by ‘counting’ the number of spikes in a 

certain time window and calculating the spike rate. In general, this calculation will 
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determine that the spike rate for the 30-gram weight is higher than for the 15-gram weight 

(and therefore that the 30-gram weight is heavier than the 15-gram weight). However, 

due to spike count stochasticity, the opposite should occasionally occur.  

Figure 21.2 

Figure 1.2: Examples of noise paradigms 
The above figure demonstrates the impact of noise characteristics on the firing rate. 
For the same tuning curve (black dashed line), we will see different results. The blue 
denotes the 1 ߪ distribution for a Poisson spiking neuron, while the orange denotes the 
 distribution for a neuron with a constant noise. Notes the differences between the ߪ 1
two, particularly at the two extremes of stimulus intensity.   

 

To understand the ramifications of these assumptions, we must first discuss the nature 

of neuronal noise. Neurons with constant noise would have the same variance, regardless 
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of the stimulus intensity/firing rate. Neurons with Poisson noise would have a variance 

proportional to the stimulus intensity/firing rate. Figure 1.2 graphically presents a cartoon 

example of this. In general, neurons tend to have Poisson variability (Dean, 1981a), 

although exceptions exist (Zhong et al., 2005). The innovation presented in this paper is 

that different types of variability exist (e.g., Poisson, Constant – blue and orange 

respectively in Figure 1.2), and these will have measurable impacts on behavior. By 

approximating this variability with a power law (Assumption 3), we can analytically derive 

a probabilistic spike count distribution for a given time window (Assumption 1). These 

spike count distributions can be either for a single neuron or for a group of neurons – it is 

immaterial to the model at hand. Once the spike count distributions are generated, we 

can compare what happens when two different magnitudes of stimuli are presented – 

where these curves overlap, a perceptual mistake will be made (further description in 

Chapter 2). This overlap corresponds to the JND in the traditional psychometric function, 

and it is this correspondence that allows me to build an experiment to test the current 

model (Chapter 3). 

 

What is notable about this model is that it makes a singular prediction. Intuitively, as we 

decrease the amount of time to perceive a stimulus, the perceptual error rate will go up. 

What I will show in Chapter 2 is that truncating the time window of perception is more 

deleterious to discrimination ability in the constant noise scenario than in the Poisson 

noise scenario. Further, the current model makes very specific predictions on the ratio of 

the JNDs at two different time points, allowing us to determine definitively which noise 

distribution is responsible for causing perceptual errors. The analytical calculation that 
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underpin these claims have been verified with computational simulations. The result of 

this theoretical work is that it is now possible to make claims about the statistical nature 

of the physiology generating perceptual errors solely from a behavioral experiment. This, 

in turn, allows for the elimination of certain well described physiological systems as the 

source of perceptual error. 

 

1.1.3 – Testing the model 

Since the model described above makes predictions about the ratios of JNDs at different 

times, I designed an experiment to specifically test those predictions. A further 

requirement was that I needed to know the spiking statistics of the sensory modality being 

tested. Contrast detection neurons are well characterized as possessing a monotonic 

tuning curve (Dean, 1981b) and having a Poisson-like variability (Dean, 1981a), so I 

chose to have contrast grating be my sensory stimulus. 

 

Overall, I recruited 9 visually normal (or corrected to normal) subjects, with ages ranging 

from 20-45. Two were rejected for poor performance during the task. Subjects were 

placed in a darkened room and instructed to use a chin rest to make sure that they would 

not change perspectives during the experiment. Once the experiment was initiated, 

subjects were presented with stationary gratings with a randomized phase and a spatial 

frequency of 1 cycle/degree of vision. Subjects were asked to discriminate between two 

gratings (a reference and a test) and to report which one they perceived as having a 

higher contrast. Visual masks were used to 1) reduce the effects of afterimages, and 2) 

maintain subjects in the same contrast adaptions (Heinrich and Bach, 2001). For 
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conditions in this experiment, I manipulated the presentation time of both gratings 

(ranging from 50 to 600 ms) as well as the intensity of the reference stimuli. 

 

To find the JND for each condition combination using traditional psychometric techniques, 

I would have had to collect upwards of 30,000 trials per subject. This is equivalent to over 

50 days of experiment time per subject (at 1 hour per day), which was infeasible. 

However, I was able to modify and apply an adaptive algorithm (Kontsevich and Tyler, 

1999) to the experimental methodology, reducing the number of samples needed to 

approximately 7,000 per subject. In practice, the algorithm gave more difficult test stimuli 

(i.e., closer in magnitude to the reference stimuli) when subjects were performing well. 

When subjects performed poorly, they were given easier test stimuli. Details on the 

mathematics behind this, as well as other experiment features, can be found in Section 

3.2.  

 

The first thing that I found was that there is a limited integration window for contrast 

stimuli. After ~230 ms, subjects gain no additional discrimination ability for longer stimulus 

presentation times. This is somewhat consistent with existing literature on the subject, 

which report approximately 100 ms integration windows, with a large variability depending 

on the spatial frequency (Legge, 1978). However, the data here represents a far more 

precise measure, given the number of samples and the optimization effects of the 

Bayesian algorithm. In Section 3.4.2, I discuss the ramifications of this result, and suggest 

how it can be related to other physiological phenomena, such as neuronal spiking 

dynamics  (Heller et al., 1995) and intersaccade intervals (Carpenter, 1988).  
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More importantly, I also show that trial-by-trial variability in neuronal spiking cannot 

account for perceptual errors. While contrast processing neurons in the V1 have a 

Poisson spiking pattern (Dean, 1981a), the current behavioral data suggests that 

whatever generates the behavioral variability must have a constant noise. This 

demonstrates that, rather than errors occurring during encoding, errors must propagate 

from the decoding process. In Section 3.4.1, I discuss how to reconcile a constant level 

of behavioral noise with the existing literature. This is followed by a discussion in Section 

4 on the possible components of the decoding process that could generate a constant 

noise, and speculation on how to differentiate between those components experimentally. 
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Chapter 2: Formalizing the connection 
between trial-by-trial variability and 

perceptual errors  
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2.1 – Introduction 

In order to interact with the world, all animals must estimate the magnitude of external 

stimuli; it is well established that this process is prone to errors (Coren et al., 2003; Dayan 

and Abbott, 2005; Kandel et al., 2012).  These errors form the foundation of the science 

of psychophysics, and have been studied as far back as the 19th century (Weber, 1834). 

However, while the statistical properties of these estimation errors have been rigorously 

studied in multiple sensory systems (Coren et al., 2003; Kandel et al., 2012), their 

physiological source is unknown.  

 

One possible physiological source of perceptual errors is the variability of sensory 

encoding neurons. When the same sensory percept is presented repeatedly, the number 

of action potentials generated by a sensory neuron varies from trial-to trial (Stein et al., 

2005). Characterizing the statistical properties of spike rate variability has been an active 

field of study (Churchland et al., 2010; Dean, 1981a; Mainen and Sejnowski, 1995). 

Theoretical examinations have previously assumed that such variability in sensory neuron 

responses contribute to behavioral variability (May and Solomon, 2015a, 2015b; Mazurek 

et al., 2003; Shouval et al., 2013). Moreover, several experiments that have related the 

trial-by-trial variability of sensory neurons to behavior (Britten et al., 1993, 1996; Cohen 

and Newsome, 2009; Shadlen et al., 1996) seem to bolster the hypothesis that the trial-

by-trial variability of sensory neurons is the origin of behavioral variability, though 

alternative interpretations are possible. 
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Previous experiments that have tested the relationship between neural firing rate 

variability and behavior have required extensive electrophysiological setups (Britten et 

al., 1993, 1996; Shadlen et al., 1996). Here, I demonstrate analytically that it is possible 

to gain significant insight into the physiology generating perceptual errors solely from 

psychophysical experiments. Using the inverse of the Fisher information (a typical 

measurement of the amount of information in a spike train), there is necessarily a lower 

limit of perceptual errors that are caused by spike rate variability (Paradiso, 1988; Seung 

and Sompolinsky, 1993). To give an intuitive example, a theoretical neuron that could be 

relied upon to generate a spike rate of 50 ± 1 Hz with a 20 Lumen stimulus can be 

mathematically shown to be able to encode more information than one that would spike 

at 50 ± 10 Hz for the same stimuli. As the variability of the encoding function increases, 

the information that can be transmitted to the next stage of sensory processing 

decreases. However, in real neural systems, variability is often dependent on firing rate 

(Dean, 1981a). Thus, the lower limit of perception is defined by the statistical properties 

of the sensory encoding neurons, such as whether the firing rate variability is constant or 

Poisson. The central insight of this dissertation is that, by changing the integration time 

of a spike train, we can show quantifiably different effects on perceptual accuracy for 

different neuronal variability condition. Thus, we can develop an experiment that can infer 

key statistical properties of the neural noise that generates perceptual errors simply by 

altering the viewing time of a stimuli. The current chapter focuses on the analytical 

framework of this theory. Chapter 3 describes the experimental implementation of this 

theory, and interprets that implementation’s results. 
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2.2 – Mathematical methods and results 

2.2.1 - Model assumptions and overview 

Intuitively, if we decrease the amount of time that a person has to perceive a stimulus, 

there will be some level of corresponding decrease in the person’s perceptual precision. 

Here, I outline a theoretical framework from which one can determine key statistical 

properties of the noise that drives perceptual errors by measuring this change in sensory 

discrimination ability.  This theoretical framework is based on the three following 

assumptions: 

 

1. Perceptual judgment is obtained based on the number of spikes in a time window 

of length ߬ (Figure 1A). 

2. The spike-count tuning curve, ܴ(ߠ, ߬), is monotonic, where ߠ is the perceptual 

variable; note that this tuning curve could describe either single neurons, or a 

combined variable due to a population of neurons. 

3. The variability in the spike count (ߪ) can be approximated by  

= ߪ ߚ  ∙ ,ߠ)ܴ  ,are empirically determined constants (Dean ߩ and ߚ where ,ߩ(߬

1981). For example, a value of ߩ =  0.5 would represent a Poisson-like relationship 

between firing rate and noise, whereas a value of ߩ =  0 would represent a 

constant noise level, independent of the firing rate.  

 

We also incorporate the additional assumption that for any given stimuli, there is a time 

(߬௦௔௧) such that for observation times ߬ > ߬௦௔௧, performance at sensory discrimination will 

not improve.  This assumption is motivated by my experimental data, which exhibit 
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performance saturation as a robust phenomenon. However, were my data sets not to 

include time points beyond ߬௦௔௧, the current theory would still be able to determine ߩ. 
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Figure 3-2.1 

 

Figure 2.1: Theoretical foundation 
A: Neural responses vary depending on the intensity of a stimulus. For the same ߬, a low 
magnitude stimulus (blue) will, on average, generate fewer spikes than a high magnitude 
stimulus (red). If the presentation time of the stimulus is truncated (߬ <  ߬௦௔௧ ;; dashed 
regions), fewer spikes will be counted on average. B: Spike count distributions for different 
 .and ߬ conditions are represented here (arbitrarily) using gamma distribution functions ߩ
The size of the magenta region (i.e., the overlap coefficient) is directly related to 
discrimination ability. C: From the overlap coefficients, we can calculate psychometric 
curves, and thus ܦܰܬఛ, for different conditions. Note how changes in ߬ affect the ߩ 
conditions differently.  D: Behavioral values of ܦܰܬఛ cannot be derived axiomatically. 
However, using Equation 2, we can predict the ratio between ܦܰܬఛ and ܦܰܬ௦௔௧. Note when 
߬ ≥  ߬௦௔௧ ܴܬܮ ,  = 0. 
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From these assumptions, we can derive a relationship between the variability in stimulus 

estimation and the spiking statistics. I start by relating the behavioral estimation error to 

the statistics of the encoding signal, using the equation: 

ఏߪ (2.1)
ଶ =

ோߪ
ଶ

(ܴᇱ)ଶ  

where ߪఏ is the standard deviation of the stimulus estimation, ߪோ is the standard deviation 

of the encoding variable ܴ(ߠ, ߬), and ܴ’ is the derivative of ܴ  with respect to ߠ. Note that 

,ߠ)ܴ ߬) is a tuning curve in terms of spike count, and depends both on the encoded 

parameters ߠ, and on the duration of the stimulus presentation ߬. ܴ can be either a single 

neuron-tuning curve or a population coding based tuning curve. Equation 2.1 is, for many 

forms of encoding statistics, a close approximation of the inverse Fisher information 

(Paradiso, 1988; Seung and Sompolinsky, 1993).  Therefore, it estimates the perceptual 

error given an optimal decoding strategy from the spike count. A more detailed derivation 

is presented in Section 2.2.2 in this chapter. 

 

The ability to distinguish two stimuli depends on the spike count distributions arising from 

these stimuli, characterized by ܴ and ߪ. The overlap between the distributions (Figure 

1B, magenta regions) determines the probability that the subject will mistakenly believe 

that the lower magnitude stimulus is the higher one. This overlap is related to the 

traditional Just-Noticeable-Difference (ܦܰܬ) psychometric function (Figure 1C – see 

(Klein, 2001) for further background). As ߬ is reduced, the spike count is reduced, the 

distributions are altered (Figure 1B), and the overlap region (and thus JND) increases. 

The increase in the overlap depends both on the change in the mean spike count and on 
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the variance of the spike count. Therefore, for different statistical models of noise, the 

change in overlap will be quantifiably different. In this particular example, we observe that 

decreasing ߬ has a more deleterious effect on discrimination ability in the ߩ = 0 case than 

in the ߩ = 0.5 case (Figure 1C). The relationship between ߬ and the ܦܰܬ can be 

mathematically formalized (see Section 2.2.2) with the following equation: 

ܴܬܮ (2.2) = ݃݋݈  ൬
ఛܦܰܬ

௦௔௧ܦܰܬ
൰ = (ρ − 1) ∙ log(߬) − (ρ − 1) ∙ log(߬௦௔௧) ;          ߬ < ߬௦௔௧  

where ܴܬܮ is the Log-JND-Ratio (defined here), ߬ܦܰܬ is the ܦܰܬ for a time window of 

length ߬, and ܦܰܬ௦ܽݐ is the ܦܰܬ for ߬ ≥ ߬௦௔௧. For ߬ > ߬௦௔௧, the ܴܬܮ = 0. By plotting ܴܬܮ 

against ݈݃݋(߬), we arrive at a line whose slope and intercept can be used to calculate ߩ 

and ߬௦௔௧ (see the Section 2.2.2 for derivation details).  This function is plotted in Figure 

1D for two specific cases: ߩ = 0 (constant noise) and ߩ = 0.5 (Poisson-like noise). I 

should note that Equation 2.2 was derived on the assumption of a constant firing rate. 

However, I show in Section 2.2.3 that the conclusions drawn from Equation 2.2 apply in 

the case of firing rates that vary over time.   

 

2.2.2 - Derivation of Equation 2.1 and 2.2 

For ease of understanding, my initial derivation will require an additional assumption from 

the ones listed in the main paper, namely that the firing rate is constant and does not 

depend on time. However, I will demonstrate in Section 2.2.3 how we can generalize the 

derivation beyond this assumption.  
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For many cases (e.g., Gaussian, Poisson), Equation 2.1 is exactly the inverse of the 

Fisher information; in other cases, it is a close approximation (Paradiso, 1988; Seung and 

Sompolinsky, 1993). Due to the Cramer-Rao lower bound, this sets the lower limit of the 

accuracy of decoding; for many distributions the optimal decoder is efficient and can attain 

the lower bound (Wijsman, 1973). Therefore, any significant behavioral errors more than 

this lower bound are decoding errors. 

 

Here, we slightly generalize this equation to include two distinct sources of noise. One 

source of noise is due to variability in the spike count of the encoding neurons; the other 

is in the reference spike count, which is part of the decoding process. 

 

The spike count on each trial can be used to estimate the magnitude of the stimulus on 

the trial. On each trial, we assume the existence of a variable ܶ, which is used by the 

decoding mechanism to obtain an estimate of the variable ߠ. In the absence of noise, if 

(ߠ)ܴ = ܶ, then the magnitude of variable θ could be easily determined using ߠ = ܴିଵ(ܶ) 

(note that, for convenience, we suppress the variable ߬). However, both the spike-count 

on each trial and the reference variable can be contaminated by noise. Thus, the process 

can be described by: 

(ߠ)ܴ (2.3) + ܴ߂ = ܶ +   ܶ߂

where ܴ߂ is the variability in the spike count and ܶ߂ is the variability of the reference 

variable. Using the same procedure to obtain an estimate of θ yields: 
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෠ߠ (2.4) =  ܴିଵ(ܶ + − ܶ߂    (ܴ߂ 

where  ߠ෠ is the stimulus magnitude estimate for a single trial. Using a first order Taylor 

series expansion, we come to the equation: 

ߠ߂ (2.5) = ෠ߠ  − ߠ =
ܶ߂ − ܴ߂

ܴ′
 

 

where ߠ߂ is the difference between the subject’s estimate of stimulus magnitude and the 

true value of the stimulus magnitude. By squaring both sides, and taking the average of 

the variances, we get: 

 

(2.6) 

ఏߪ
ଶ =  ൭

ඥߪோ
ଶ + ்ߪ

ଶ 
ܴ′

൱

ଶ

 
 

 where ߪఏ is the standard deviation of the magnitude estimation, ߪோ is the standard 

deviation of the spike count, and ்ߪ is the standard deviation of the decision-making 

process. This generalization arises because the variance of two independent variables is 

summed. Note that, under the assumption that ்ߪ ≪  .ோ, this equation is like Equation 2.1ߪ

With the assumption of a constant firing rate (ݎ), we can convert the above equation to a 

function of ߬:  

(߬)ఏߪ (2.7) =  
ඥߪோ

ଶ + ்ߪ
ଶ 

߬ ∙ ′ݎ
 

 

where ܴ(ߠ) = ߬ ∙  ,and can be thought of as the spike count for a given time window ,(ߠ)ݎ 

߬. Without a complicated electrophysiology experiment, we cannot know the true function 

 However, this function can be eliminated if we make a ratio between the standard .(ߠ)ݎ

deviations at two values of ߬.  Specifically, we use ߬௦௔௧ and ߬ଵ, which is any ߬ < ߬௦௔௧.  
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(2.8) 
ఏ(߬ଵ)ߪ

ఏ(߬௦௔௧)ߪ
= ൬

߬௦௔௧

߬ଵ
൰

ඥߪோ
ଶ(߬ଵ) ்ߪ +

ଶ(߬ଵ)

ඥߪோ
ଶ(߬௦௔௧) ்ߪ +

ଶ(߬௦௔௧)
 

 

While we know that there is noise in the firing rate of neurons (the encoding of the 

stimulus), and that it is substantial, there is also possibly noise in the decoding process. 

The decoding process includes things like storage of information into memory (Hubbard, 

1994) and the decision-making (Deco and Rolls, 2006; Deco et al., 2007), which can both 

introduce noise. It is possible to analyze three cases – the decoding noise is substantially 

less than the firing rate noise, the decoding noise is comparable to the firing rate noise, 

or the decoding noise is substantially larger than the firing rate noise. The latter two cases 

are more complicated and touched upon in the Section 3.3 and 3.4. The first case (்ߪ ≪

 ோ), however, is tractable for experimentation. We show below that it makes a strongߪ

behavioral prediction that can be tested, and it is this prediction that is central to this 

dissertation. 

 

First, we will assume ߪோ follows a general power law (Shouval et al., 2013): 

,ߠ)ோߪ (2.9) ߬) = ߬)ߚ  ∗   ఘ((ߠ)ݎ

Combining Equations 2.8 and 2.9, and assuming (்ߪ ≪  ோ), we can simplify to theߪ

following:  

(2.10) 
ఏ(߬ଵ)ߪ

ఏ(߬௦௔௧)ߪ
=

߬௦௔௧

߬ଵ
 

൯(ߠ)ݎ൫߬ଵߚ
ఘ

൯(ߠ)ݎ൫߬௦௔௧ߚ
ఘ  

 ,With this in mind .ܦܰܬ ,ఏ can be considered equivalent to the behavioral measurementߪ 

and canceling out ߚ and ݎ: 
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(2.11) 
ఏ(߬ଵ)ߪ

ఏ(߬௦௔௧)ߪ
=  

ఛܦܰܬ

௦௔௧ܦܰܬ
=  

߬௦௔௧

߬ଵ

߬ଵ
ఘ

߬௦௔௧
ఘ   

Simplifying: 

(2.12) 
ఛܦܰܬ

௦௔௧ܦܰܬ
=  ൬

߬ଵ

߬௦௔௧
൰

ఘିଵ
  

 

(2.13) log ൬
ఛܦܰܬ

௦௔௧ܦܰܬ
൰ = LJR = ߩ) − 1) log(߬ଵ) − ߩ) − 1) log(߬௦௔௧) ߬ ݎ݋݂    ≤ ߬௦௔௧ 

Note that this is the same as Equation 2.2. If we plot the Log-JND-Ratio (ܴܬܮ) on the y-

axis, and log(߬) on the x-axis, we will come up with the graph seen in Figure 3.1D. The 

slope and y-intercept can be calculated with a linear regression, and related to the values 

߬௦௔௧ and ߩ with the following equations derived from Equation 2.13:  

(2.14) 

    ݉ = ߩ − 1  ܾ = (1 − (ߩ log(߬௦௔௧) 

ߩ = ݉ + 1  ߬௦௔௧ = exp (
௕

ଵିఘ
) 

 

where ݉ is the calculated slope of the line, and ܾ is the calculated y-intercept. Thus, using 

a simple regression analysis on behavioral data, we can show important statistical 

characteristics of the sensory integration mechanism. 

  

In dealing with the case that ்ߪ ≫  ோ, we can make an initial assumption that the decodingߪ

process has a constant level of noise, which is independent of stimulus duration or 

magnitude. If true, then the formulas in Equation 2.13 and 2.14 still hold, with ߩ ≈ 0. 
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2.2.3 - The implications of variable firing rates 

To make the math simpler in the above section, I assumed that firing rate ((ߠ)ݎ) was a 

static function (i.e., the firing rate does not change over time). However, this is not a 

biologically realistic assumption; firing rates often have temporal dynamics.  In this 

section, I demonstrate why this does not matter for my model. 

 

Let us assume that the spike count function (ܴ(ߠ)) is separable, and can be written as a 

multiplication of two functions; ݃(߬) that accounts for the spike count for a given window 

߬, and ݂(ߠ) that modulates the spike count for different stimulus intensities.  Thus: 

,ߠ)ܴ (2.15) ߬) =   (ߠ)݂(߬)݃ 

We can insert the above equation into Equation 3.1, resulting in  

(߬)ߪ (2.16) =  
ோߪ

(ߠ)′݂(߬)݃
 

Following the same process we did in the previous section where we created a ratio 

between ߪఏ(߬ଵ) and ߪఏ(߬௦௔௧), we arrive at: 

(2.17) 
ఏ(߬ଵ)ߪ

ఏ(߬௦௔௧)ߪ
=  

ோ(߬ଵ)ߪ

݃(߬ଵ)݂ᇱ(ߠ)
ோ(߬௦௔௧)ߪ

݃(߬௦௔௧)݂ᇱ(ߠ)
൘  

Rearranging and combining with Equation 2.9: 

(2.18) 
ఏ(߬ଵ)ߪ

ఏ(߬௦௔௧)ߪ
   =  

ఛܦܰܬ

௦௔௧ܦܰܬ
=   

݃(߬௦௔௧)

݃(߬ଵ)
∗  

ߚ ∗ ݃(߬ଵ)ఘ݂(ߠ)ఘ

ߚ ∗ ݃(߬௦௔௧)ఘ݂(ߠ)ఘ  
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(2.19) 
ఛܦܰܬ

௦௔௧ܦܰܬ
=  ൬ 

݃(߬௦௔௧)
݃(߬ଵ)

 ൰
ଵିఘ

 

For presentation times over approximately 75 ms, we can assume that the firing rate is 

falling (See Fig 8 in Albrecht et al., 2002). This means that ݃(߬) is less than linear, and 

can be approximated with the following equation:  

(2.20) ݃(߬) =  ߬ఎ       ݂0  ݎ݋ < ߟ < 1 

Plugging this in to Equation 2.19: 

(2.21) 
ఛܦܰܬ

௦௔௧ܦܰܬ
 =  ൬

߬ଵ

߬௦௔௧
൰ ఎ(ఘିଵ) 

Taking the logarithm of both sides allows us to compare to Equation 2.13: 

(2.22) log (
ఛܦܰܬ

௦௔௧ܦܰܬ
)  = ܴܬܮ = ߩ)ߟ − 1) log(߬ଵ) − ߩ)ߟ − 1) log(߬௦௔௧) ߬ ݎ݋݂      ≤ ߬௦௔௧ 

Just like with Equation 2.13, if we plot ܴܬܮ against ݈݃݋(߬ଵ), the slope (݉) of this line will 

be equivalent to the coefficient of ݈݃݋(߬ଵ). 

(2.23) ݉ = ߟ  ∙ ߩ) − 1) 

It is well established that firing rates of sensory neurons tend to fall over time; a 

biologically plausible estimation of η would be less than one. Assuming a Poisson noise 

characteristic (ߩ ≅ .5), the slope of the ܴܬܮ graph (Figure 1D) would be −.5 < ݉ < 0. This 

will be tested against in Chapter 3. 
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2.2.4 - The impact of errors in estimating temporal intervals 

Rather than a spike count variable (ܵ), it is possible that a decision is made based on a 

deduced spike rate variable (ݎ). In this section, I analyze the impact of temporal estimation 

errors on stimulus magnitude estimation. 

 

By definition, ݎ =  ܵ/߬, where ߬  is the presentation time of the stimulus. Assume that there 

are two sources of noise: noise in the spike count (ܵ߂), and noise in the estimation of the 

temporal interval (߬߂). Therefore, on each trial ܵ = < ܵ > > = ߬ and ܵ߂ +  ߬ >  ,߬߂ + 

where < > represents the expectation value. For simplicity, these calculations assume 

that ߬߂ ≪ ߬ and ܵ߂ ≪  ܵ. This coheres with behavioral experiments in scalar timing, 

which suggests that ߬߂ is approximately 10% of ߬ (Buhusi and Meck, 2005) and in the 

current experiment where ܵ߂ is approximately 10-20% of ܵ, althought this varies 

particularly at low stimulus durations.  We will also consider here the case where ܵ߂ ≪

 :First, we obtain .߬ ߂ 

ݎ (2.24) =
ܵ
߬

=  
< ܵ > ܵ߂+ 
< ߬ > ߬߂+

 ≈
ܵ + ܵ߂
< ߬ >

∙ ൬1 −
߬߂

< ߬ >
൰ ≈

< ܵ >
< ߬ >

+
ܵ߂

< ߬ >
+ ߬߂

< ܵ >
< ߬ >ଶ 

We will now take the square and then average ݎ to obtain the variance of the ݎ variable: 

(2.25) 

ଶݎ ≈ ൬
< ܵ >
< ߬ >

൰
ଶ

+ ܵ߂
< ܵ >
< ߬ >ଶ − ܶ߂

< ܵ >ଶ

< ߬ >ଷ − ܵ߂ ∙ ܶ߂
< ܵ >
< ߬ >ଷ +

ଶܵ߂

< ߬ >ଶ  

 

ଶ߬߂ + < ܵ >ଶ

߬ସ  
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We now take the average. Note that any term linear with respect to ߬߂ or ߂S must vanish. 

Additionally, if the distribution of ߬ is independent of the distribution of ܵ, terms with ߬߂ ∙

 :as coeffecients must also disappear ܵ߂

(2.26) < ଶݎ > ≈ ൬
< ܵ >
< ߬ >

൰
ଶ

+
< ଶܵ߂ >
< ߬ >ଶ +< ߬߂ >

< ܵ >ଶ

< ߬ >ସ   

If we assume that ܵ߂ is small, and define ߪ௥
ଶ = ்ߪ

ழௌவ

ழఛவమ, we get the standard deviation of 

the estimated rate: 

௥ߪ (2.27) = ்ߪ 
< ܵ >
< ߬ >ଶ  

By invoking the scalar timing law (Weber-Fechner’s law for temporal estimation) (Buhusi 

and Meck, 2005; Church, 2003; Gibbon et al., 1984), which has the form ்ߪ = ߙ < ߬ >, 

we obtain: 

௥ߪ (2.28) = ߙ
< ܵ >
< ߬ >

  

Let us assume a simple case of constant firing rate over the period ߬, and that the spike 

count depends on the parameter through a tuning curve ݂(ߠ) such that < ,ߠ)ܵ ߬) > =

(ߠ)݂  ∙ ߬. Using this, we get: 

௥ߪ (2.29) = ߙ ∙   (ߠ)݂

This implies that the noise of the rate variable is independent of the temporal window ߬. 

We will now use a modification of Equation 2.17 (which was used in estimating the error 

of the decoded variable ߠ) where we use the deduced rate rather than the spike count: 
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(2.30) 
,ߠ)ఏߪ ߬ଵ)
,ߠ)ఏߪ ߬ଶ)

=
,ߠ)௥ߪ ߬ଵ)/݂′(ߠ)
,ߠ)௥ߪ ߬ଶ)/݂′(ߠ)

= 1  

By taking the log of this expression, we clearly find that the ܴܬܮ should have a slope of 0. 

 

Now generalize this to a case where 〈ܵ(ߠ, ߬)〉 = (ߠ)݂ ∙ ݃(߬), where ݃(߬) is not the density, 

but rather the cumulative number of spikes between 0 and time ߬. Like the constant firing 

rate case, we can retrieve ݂(ߠ) by dividing the spike count with ݃(߬). Note that in the 

constant firing rate case ݃(߬)  =  ߬, so this formulation is equivalent to the constant firing 

case. Let’s define this new variable ݍ =  ܵ(߬,  which is an attempt to retrieve ,(߬)݃/( ߠ

 is very small and can be ܵ߂ Here, we will only examine the simple case where .( ߠ)݂

ignored. 

(2.31) 

,ߠ)ݍ ߬) =  
< ,ߠ)ܵ ߬) >
݃(߬ + (߬߂

≈
< ,ߠ)ܵ ߬) >

݃(߬) + ߬߂ ∙ ݃ᇱ(߬)
 

 

   ≈
,ߠ)ܵ ߬)

݃(߬)
൭1 − ߬߂ ቆ

݃ᇱ(߬)

݃(߬)
ቇ

ଶ

൱ 

 

Approximating the second moment: 

(2.32) 

< ,ߠ)ଶݍ ߬) > = ቆ
,ߠ)ܵ ߬)

݃(߬)
ቇ

ଶ

〈ቆ 1 − ܶ߂
݃ᇱ(߬)

݃(߬߬)
ቇ

ଶ

〉 

 

                                    =  ቆ
,ߠ)ܵ ߬)

݃(߬)
ቇ

ଶ

൭1+< ଶ߬߂ > ቆ
݃ᇱ(߬)

݃(߬)
ቇ

ଶ

൱ 
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The last stage is obtained because < ܶ߂ > = 0. Therefore, the variance is: 

௤ߪ (2.33)
ଶ =< ଶ߬߂ > ቆ

,ߠ)ܵ ߬)

݃(߬)
ቇ

ଶ

ቆ
݃ᇱ(߬)

݃(߬)
ቇ

ଶ

  

Per the scalar timing law < ଶ߬߂ > = ଶߙ  ∙ ߬ଶ, and using  

,ߠ)ܵ ߬) = (ߠ)݂  ∙ ݃(߬) we get that: 

(߬)ఏߪ (2.34) =  
௤ߪ

(ߠ)′݂
=

ߙ ∙ (ߠ)݂
(ߠ)′݂

∗
߬ ∙ ݃′(߬)

݃(ܶ)
  

Consequently: 

(2.35) 
ఏ(߬ଵ)ߪ
ఏ(߬ଶ)ߪ

=
߬ଵ݃ᇱ(߬ଵ)݃(߬ଶ)

ଶܶ݃ᇱ(߬ଶ)݃(߬ଵ)
  

For a power-law ݃(߬) =  ߬ఎ we get that this ratio is one, just like the constant firing rate 

case (ߟ = 1). 

 

The analysis above has been verified with a Monte Carlo simulation constructed within 

MATLAB. The simulation also demonstrated that, even though my assumption ߬߂ ≪ ߬ is 

biologically realistic (Buhusi and Meck, 2005), the conclusions of the above work hold for 

a wide range of ߬߂ values, up to and including ߬߂ = ߬. This is demonstrated below in 

Figure 2.2. 
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Figure 4-2.2 

 

Figure 2.2: Demonstration of the effect of timing estimation errors 
Above, I demonstrate a Monte Carlo simulation that shows what would happen if 
errors in time estimation were the primary cause of errors in sensory estimation. 
This simulation is run for multiple reference stimulus intensities (arbitrary units) to 
demonstrate that the effect holds for multiple sensory magnitudes. The derived 
LJR line has a slope of approximately 0; this denotes that, if timing issues were the 
cause of perceptual errors, we would see essentially no differences in error rate 
as we decreased the stimulus duration.  
 

2.2.5 – Fitting stimulus magnitude and duration 

While I have focused primarily on the effect that stimulus duration has on discrimination 

ability, the current theory also can be used to predict the scaling of the JND as we change 

the reference stimuli. Below, I analytically solve the functional relationship between JND, 

stimulus duration, and stimulus intensity. 
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2.2.5.1 – Analytical work 

Previously, I have assumed that the behavioral data follows the Weber-Fechner law (see 

Chapter 1 or for an overview). While this is often the case, there are exceptions (Legge, 

1981; McGill and Goldberg, 1968; Stevens, 1961). For this part of the analysis, I will derive 

a more generalized version of the equation for behavioral variability. To do this, I first must 

describe the noise scaling as the following (Shouval et al., 2013): 

,ߠ)ఏߪ (2.36) ߬) = (߬)ߙ ∙   ଵିథߠ

where ߶ is acting a correction term for sensory modalities that do not align perfectly with 

the linear scaling of the Weber-Fechner law. If we look at the case of ߙ(߬)  ≥  we ,ݐܽݏ_߬

can build a tuning curve that will result in the behavioral variability that we desire (Shouval 

et al., 2013): 

(ߠ)௦௔௧ݎ (2.37) = ܭ ∙ ቆ
థߠ

߶
−  

థܥ

߶
ቇ

௡

  

where K =± ߚ/߬ௌ௔௧  ∙ ቀ
ଵିఘ

ఈೞೌ೟
ቁ

௡
, ݊ =

ଵ

ଵିఘ
 (ߠ)௦௔௧ݎ  ,௦௔௧ is the Weber fraction at or above ߬௦௔௧ߙ ,

is the mean firing rate given a stimulus θ presented for ߬௦௔௧, ߩ is the previously designated 

noise descriptor, ߬௦௔௧ is the previously described saturation time, and ߚ and ܥ are 

constants that have no relevance to the analysis below.  

 

However, the above is a constrained case, only relevant for stimuli whose durations are 

at or above ߬௦௔௧. To generalize to ߬ < ߬௦௔௧, we assume that for any window duration we 
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use the firing rate as described in Equation 2.37. A shorter duration, however, will affect 

the spike count, and scale it down by a factor of ߬/߬௦௔௧.   To generalize, we need to adjust 

the tuning curve to fit stimulus durations below ߬௦௔௧.  This is equivalent to scaling of the 

tuning curve function such that: 

(ߠ)ݎ (2.38) =
߬

߬௦௔௧
∙   (ߠ)௦௔௧ݎ

where (ߠ)ݎ is the generalized tuning curve for times below ߬௦௔௧. Using Equation 2.37, we 

can expand Equation 2.38 to: 

(2.39) 
ߚ

߬ௌ௔௧
 ∙ ൬

1 − ߩ
(߬)ߙ

൰
௡

∙ ቆ
߶ߠ

߶
−  

߶ܥ

߶
ቇ

݊

=
߬

ݐܽݏ߬
∙

ߚ
߬ௌ௔௧

 ∙ ൬
1 − ߩ
௦௔௧ߙ

൰
௡

∙ ቆ
߶ߠ

߶
−  

߶ܥ

߶
ቇ

݊

  

Canceling out like terms, we are left with: 

(2.40) 
ߚ

߬ௌ௔௧
 ∙ ൬

1 − ߩ
(߬)ߙ

൰
௡

=
߬

ݐܽݏ߬
∙

ߚ
߬ௌ௔௧

 ∙ ൬
1 − ߩ
௦௔௧ߙ

൰
௡

  

Simplifying further: 

(߬)ߙ (2.41) = ௦௔௧ߙ ∙ ቀ
߬௦௔௧

߬
ቁ

ଵିఘ
  

Combining Equation 2.37 and 2.41 

,ߠ)ఏߪ (2.42) ߬) = ௦௔௧ߙ ∙ ቀ
߬௦௔௧

߬
ቁ

ଵିఘ
∙   ଵିథߠ

Rephrasing: 

,ߠ)ܦܰܬ (2.43) ߬) = ௦௔௧ߙ) ∙ ߬௦௔௧
ଵିఘ) ∙ ߬ି(ଵିఘ) ∙   (థିଵ)ିߠ
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Note that when ߶ ≅ 0 and ߬ ≥ ߬௦௔௧, the ߬ terms cancel out and Equation 2.43 becomes 

Weber-Fechner’s law.  

 

This equation makes a strong prediction.  When we alter stimulus magnitude and 

duration, we expect a subject’s JND to take on a double power law fit of the form: 

,߬)ܦܰܬ (2.44) (ߠ = ௙௜௧ߙ ∙ (߬ି௫ିߠ௬)  

where the ߙ௙௜௧ = ݐܽݏߙ) ∙ ݐܽݏ߬
ݔ ,(ߩ−1 = 1 − ݕ and ߩ = ߶ − 1. This means that, once we find ߙ௦௔௧, 

߬௦௔௧, ߩ, and ߶, we can make solid estimates on how JND increases as stimulus magnitude 

and duration decreases, and then compare it against the actual data. 

 

2.2.5.2 - Monte Carlo verification 

To verify the above analytical work, I built a basic Monte Carlo simulation. The simulation 

used twenty sigmoidal shaped pseudo-neurons that, through summation, approximated 

the tuning curve described in Equation 2.37. Each pseudo-neuron had its own sigmoid 

tuning curve with three parameters: a max firing rate, a slope, and a threshold. To start, 

each pseudo-neuron had randomized parameters; I used gradient descent methodology 

to alter their parameters such that the summation of the pseudo-neurons resulted in the 

appropriate tuning curve, which was dependent on the starting assumptions (i.e., ߙ଴, ߬௦௔௧, 

 .and ߶,). An example of this process is shown in Figure 2.3 ,ߩ
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Figure 5-2.3 

 

Figure 2.3: Applying gradient descent to build a tuning curve 
Above, I have a demonstration of the gradient descent procedure used to build the 
tuning curve in the Monte Carlo simulation. The solid black line represents Equation 
2.37, and is the function that the pseudo-neurons are attempting to replicate. The blue 
curve represents the summation of the initial states of the pseudo-neurons, whose 
parameters were chosen randomly. Over 2000 iterations of a gradient descent 
algorithm, the parameters of the pseudo-neurons were altered so that the sum of their 
functions would result in an estimation of Equation 2.37. The sigmoids with their final 
parameters are displayed in red. The dashed green line represents the final summation 
of the pseudo-neuron functions, resulting in an accurate estimation of the appropriate 
tuning curve. The above function represents the Poisson/Non-Weber condition (see 
Table 2.1 for condition descriptions). 

 

Once suitable pseudo-neurons have been created, I simulated them in a traditional 

psychophysical experiment (see Chapter 1 or (Klein, 2001) for a brief overview). A series 

of reference and test stimuli were created, and ‘presented’ to the group pseudo-neurons. 

This process entailed that numerical values for these stimuli were inputted into the 
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sigmoid functions described above; the output of these functions correspond to that 

pseudo-neurons spike rate. This was multiplied by a stimulus presentation time (varied 

as a condition). The result was an average spike count, which was then used as the seed 

parameter for a randomized Poisson function; the output acted as the stochastic spike 

count of the cell. In summary, like a real neuron, a stimulus was presented and a semi-

random number of spikes occurred in response.  

 

For each simulated trial, the spike count of all 20 pseudo-neurons was summed, and the 

final count for the reference and test stimuli were compared. If the spike count for the test 

stimulus was higher than the reference stimulus, then the simulation was judged to have 

perceived the test stimulus as higher; otherwise, it perceived the test stimulus as lower. 

This process was repeated for thousands of times, and the results used to build a 

psychometric curve and determine the ܦܰܬ (See Figure 1.1) Plotting this on a 3-

dimensional graph, I can fit the simulated data points to Equation 2.44. An example of 

this plot can be found in Figure 2.4.  
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Figure 6-2.4 

 

Figure 2.4: Simulation of psychophysical task using the derived tuning curve 
The results above are from the Weber/Poisson condition. A: Above, we see a 3-
dimensional representation of the output of the Monte Carlo simulation. The vertices of 
the projected surface represent the calculated JNDs for each stimulus duration and 
magnitude condition of the simulated psychophysical task. B: An alternative projection 
of the data. The red points represent the calculated JNDs, while the projected plane 
represent the best fit of the data, as calculated by the nlinfit function within MATLAB. 

 

This fit was performed for the Monte Carlo results models of conditions:  Poisson/Weber, 

Poisson/Non-Weber, Constant/Weber, and Constant/Non-Weber. All of these conditions 

had a ߬௦௔௧ = ௦௔௧ߙ and an ,ݏ݉ 230 = .075. Descriptions of the variables ߶ and ρ in the 

different conditions are in Table 2.1 for ease of reference. Additionally, in the constant 

noise conditions, the simulation was altered to remove the Poisson noise of the neurons 

and add a constant Gaussian noise (ߤ = 0, ߪ = 1) to each spike count. Simulated 

reference stimuli were ranged from 1.5 to 9 in .5 increments, for durations ranging from 

50 to 250 milliseconds in 25 millisecond increments. Each condition was repeated for 

1000 trials. 
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 ࣋ ࣘ ࢚ࢇ࢙࣎ ૙ࢻ 
Weber/Poisson .075 230 ms 0 .5 
Weber/Constant .075 230 ms 0 0 
Non-Weber/Poisson .075 230 ms .5 .5 
Non-Weber/Constant .075 230 ms .5 0 

 

 
Table 2.1: Condition descriptions 
A quick description of what the initial parameters of the different simulations that 
were run. 

 

The parameters derived by fitting the simulation results to the double power law described 

in Equation 2.44 (results shown in Table 2.2) confirm the analytical solution, with some 

margin of error due to the stochastic nature of the simulation. For reference, the analytical 

solution suggests that ߙ௙௜௧ = 0ߙ) ∙ ݐܽݏ߬
ݔ ,(ߩ−1 = 1 − ݕ and ߩ = ߶ − 1.  

 ࢟ ࢞ ࢚࢏ࢌࢻ 
Analytical Simulated Analytical Simulated Analytical Simulated 

 
Weber/Poisson 
 

 .036 .048 ± .0092 .5  .57 ± .048 -1 -.97 ± .079 

 
Weber/Constant 
 

.017 .030 ± .012 1 .98 ± .11 -1 -.93 ± .15 

 
Non-Weber/ 
Poisson 
 

.036 .050 ± .015 .5 .54 ± .088 -.5 -.48 ± .12 

 
Non-Weber/ 
Constant 
 

 .017 .023 ± .0051 1  1.0 ± .065 -.5 -.55 ± .072 

 

Table 2.2: Comparing Monte Carlo and analytical results 
Records of the results from the Monte Carlo simulation, as compared to the predicted values from 
the analytical methods (Section 2.2.5.1). The distributions referenced above represent the 95% 
confidence interval.  
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2.3 – Conclusions 

For an overview and an intuitive description of the model described in this chapter, read 
Section 2.2.1. 

 

In this chapter, I built an analytical model from three simple assumptions, described in 

Section 2.2.1.  This model makes several predictions, which will be discussed below.  

2.3.1 – Neuronal noise as a source of perceptual error 

Many people within the field of psychophysics believe that neuronal noise may be a 

source of perceptual error. This has an intuitive appeal – neurons have noisy firing rates, 

and it seems that this stochasticity may leave its mark on behavior. In this paper, I have 

taken this idea very seriously, and functionally described what this relationship should be 

in Equation 2.2, reproduced here for convenience 

ܴܬܮ (2.2) = ݃݋݈  ൬
ఛܦܰܬ

௦௔௧ܦܰܬ
൰ = (ρ − 1) ∙ log(߬) − (ρ − 1) ∙ log(߬௦௔௧) ;          ߬ < ߬௦௔௧  

where ܴܬܮ is the Log-JND-Ratio (defined here), ܰܬ ఛ is the JND for a time window of 

length ߬, and ܦܰܬ௦௔௧ is the ܦܰܬ for ߬ ≥ ߬௦௔௧. For ߬ > ߬௦௔௧, the ܴܬܮ = 0.  

 

Of particular importance in this analysis is the idea that different statistical distributions 

(Poisson, Gamma, Gaussian, etc.) will be effected differently by a reduction of a 

stimulus’s duration. In general, neurons are characterized by a Poisson firing rate (Dean, 

1981a; Kandel et al., 2012) (although there are exceptions (Zhong et al., 2005)). If this is 

the cause of behavioral variability (and if the assumptions stated in Section 2.2.1 hold), 

then Equation 2.2 necessitates certain behavioral relationships. The most important 
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relationship is that, if we were to perform a psychophysical experiment and plot the data 

for incrementally decreasing display times (Figure 1D), then we would expect the line 

created by Equation 2.2 to have a slope of -.5. Alternatively, if perceptual errors are not 

caused by neuronal noise, but rather some constant noise decoding process, we would 

expect a slope of approximate -1. 

 

2.3.2 – Errors in timing as a source of perceptual error 

Errors in perception extend to time perception. There is a robust literature on the 

properties of errors in timing perception under the term scalar timing (Buhusi and Meck, 

2005; Church, 2003; Gibbon et al., 1984). I addressed the possibility that scalar timing 

was the main contributor to perceptual errors. To quickly recap, if the decoding process 

for a spike train uses some measure of spike rate, then the length of the stimulus 

presentation would have to be known for that calculation. It is possible that, when the 

stimulus’s duration is estimated, errors are introduced in the perceptual judgment. Using 

some basic assumptions (primarily that the timing errors are proportional to the length of 

time being measured), I found the following (see Section 2.2.4 for derivation): if temporal 

estimation errors were the primary cause of perceptual errors, then the predicted slope 

of the ܴܬܮ graph (Figure 2.1D) should approach 0. This was also confirmed by Monte 

Carlo simulations, even for large errors in the temporal window estimation. 

 

2.3.3 – Predicting JND as a function of stimulus magnitude and duration 

The analytical work in 2.2.5.1 extends my predictions beyond the temporal domain. While 

Equation 2.2 deals with what happens as we change the presentation time, I extend this 
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to show what will happen as we adjust both stimulus magnitude and duration. In order to 

do this, I had to introduce another variable (߶) that generalized the model to work with 

stimulus modalities that did not perfectly fit Weber-Fechner’s law. Following this, I derived 

a double power law function (Equation 2.44) that makes predictions on the JND as a 

function of stimulus magnitude and duration (Table 2.2). These predictions, and the other 

mentioned above, will be compared against the experiment done in Chapter 3. 
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CHAPTER 3: CONTRAST 
DISCRIMINATION UNDER 
TEMPORAL CONSTRAINT 
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3.1 – Introduction 

The results of the previous chapter show that it is possible to infer key statistical properties 

of the neural noise that generates perceptual errors simply by altering the viewing time of 

the stimulus. While it is possible to make a psychophysical experiment on any sensory 

modality, I have chosen contrast stimuli as the sensory modality to study. First, to satisfy 

the second assumption of my model, the tuning curve for contrast sensitive neurons is 

monotonic (i.e., as the contrast intensity increases, so does the firing rate of contrast 

sensitive neurons) (Dean, 1981b). Second, the spike count variability is well established 

in contrast sensitive neurons (Dean, 1981a), satisfying assumption three in my theory. 

Additionally, contrast psychophysics is a well-developed field and its protocols are well 

established (Snowden et al., 2012).  

 

The core of the experiment presented here is how perceptual errors increase as we 

decrease the time the stimulus is displayed. The psychophysical literature has seen 

seemingly similar experiments (Bloch, 1885; Gorea, 2015; Gorea and Tyler, 1986; Legge, 

1978; Schofield and Georgeson, 2000; Watson, 1979), but there are key distinctions 

between those experiments and mine. The famous psychophysicist Bloch conducted one 

of the first experiments that controlled stimulus duration (Bloch, 1885; Gorea, 2015). His 

results showed that, for durations shorter than 50ms, subjects conflate duration and 

brightness such that a short duration, high brightness stimulus is perceptually 

indistinguishable from a longer duration, lower brightness stimulus. The physiological 

explanation for Bloch’s law arises from the properties of retinal neurons, and is valid only 

for limited durations. In contrast, here I use stimuli with durations longer than 50ms, which 
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subjects can estimate both magnitude and duration for separately. Additionally, Bloch 

used brightness rather than contrast as the sensory modality of his experiment. 

 

Other previous experiments have examined the effect of contrast stimulus duration over 

intervals longer than 50 ms (Gorea and Tyler, 1986; Legge, 1978; Schofield and 

Georgeson, 2000; Watson, 1979). However, these experiments were not based on the 

theoretical foundation developed here, and used experimental techniques that would not 

adequately test aspects of the current model. The cited studies were primarily interested 

in the threshold detection of subjects (i.e., whether a weak contrast stimuli can be 

detected at all). In the current study, instead of studying detection thresholds, I studied 

discrimination thresholds; subjects were asked to discriminate which of two gratings had 

a higher contrast, rather than whether contrast was present or absent. This change allows 

us to study how trial-by-trial spike variance can affect discrimination ability as the 

reference stimulus was changed (see Section 2.2.5 for more details). Nevertheless, when 

interpreted with my theoretical framework, their results are largely consistent with my 

observations and are discussed in Section 3.4 of this chapter.  

 

3.2 - Methods 

All work was carried out in accordance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki), and informed consent was obtained from all volunteer subjects. 

3.2.1 - Experimental Design 

A group of nine visually normal subjects (Age range: 20-45, 5 female), two of which were 

disqualified for poor performance, were placed in a darkened room and instructed to place 
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their chin on a chinrest .91 meter from the screen. To deal with height differences among 

subjects, the headrest was vertically adjustable, and subjects were permitted to adjust it 

as needed during the experiment. Stationary gratings were presented with a randomized 

phase and a spatial frequency of 1 cycle/degree of vision. Each trial consisted of a 

sequence of six images: a randomized visual mask, a reference contrast grating, another 

mask, a test contrast grating, a final mask, and a prompt (See Figure 3.1A). During the 

prompt part of a trial, subjects were instructed to answer the question “Did the second 

grating have higher contrast than the first?”. Upon answering, subjects received feedback 

on whether their response was correct, followed immediately by the next trial. To prevent 

users from reliably using information from visual afterimages, checkerboard masks were 

presented for .5 seconds both prior to and following the stimuli, independent of the timing 

condition.  The high contrast checkerboards had the additional benefit of keeping the 

subject in approximately the same contrast adaption state throughout every trial (Heinrich 

and Bach, 2001).  
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Figure 7-3.1 

 
Figure 3.1: Experimental Methods  
A: A reference grating and a test grating were presented for τ ms, each separated by a 
randomized checkerboard mask. The subjects were instructed to determine if the second 
stimuli had a higher contrast than the first. Display times of the gratings (τ) and contrast 
levels were manipulated as variables.  B: (An animation is available at 
‘www.goo.gl/hQlXO0’) To more effectively collect data, an adaptive algorithm was used 
that adjusted the slope and threshold (i.e. where the line crossed the 50 per cent mark) of 
the psychometric function on a trial-by-trial basis. For each trial within a condition, the 
algorithm updates the joint posterior distribution (image –top; video - left) of the estimated 
slope and threshold of the psychometric function (image – bottom; video - right). Here I 
have displayed a Monte Carlo simulation of the experiment (See Section 3.2.2.4 for more 
details), where the dashed red line is the ‘true’ simulated psychometric curve, and the blue 
solid line is the estimated curve. The posterior distribution parameters converge on the 
correct curve over the course of 45 simulated trials. 

 

Each condition was defined by the presentation time and the reference contrast. 

Reference and contrast stimuli were presented for either 600, 300, 150, 125, 100, 75, or 

50 ms. The reference contrast was presented as a random phase sinusoidal grating with 

a median brightness of 26.80 lumens, and a peak-to-peak magnitude of 3.50, 8.74, 13.98, 

19.22, and 24.47 lumens. For each trial within a particular condition, the test stimulus 

contrast intensity was chosen using an adaptive algorithm. 
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3.2.1.1 - Hardware Setup 

Subjects were seated in a darkened room in front of a Hitachi SuperScan 21 Supreme 

CRT Monitor (Hitachi, Tokyo, Japan). The monitor provided the only source of illumination 

in the room. A Pentium 4, 3 Ghz Windows XP SP2 computer controlled the screen with a 

Cambridge Research Systems VSG2/5 graphics card (Cambridge Research Systems, 

Rochester, UK), which refreshed the monitor at a rate of 80 Hz and a resolution of 

769X1024. The screen’s width was 34.8 cm. A black cardboard sheet was placed in front 

of the screen with a 12-inch diameter circle cut out of it to avoid subject’s seeing the edge 

of the screen. This is due to distortion effect at the edge CRT monitors that may otherwise 

alter the stimuli. At least 5 minutes prior to every session, the screen was turned on to 

give it time to warm up and adjust the components to their operating temperature. The 

experiment was written and executed within MATLAB 2011B, and made heavy use of 

PsychToolbox-3, as well as functions provided by Cambridge Research Systems.  

 

3.2.1.2 - Training 

Subjects were trained prior to the task using a PowerPoint demonstration to familiarize 

themselves with what they were going to see. Following this initial training, they were 

given a shortened form of the normal task and asked to demonstrate that they understood 

what they were being asked to do. Subjects who performed below 70% accuracy on the 

training task were assumed not to have understood the directions, and given further 

instruction until they performed satisfactorily. 
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3.2.1.3 - Stimuli  

Subjects were presented with two sinusoidally defined gratings on the monitor, and asked 

to determine which one had a higher contrast. The gratings were presented as having 1 

cycle/degree of vision. This spatial frequency was chosen to correspond with Dean 

(1981a, 1981b), from which I have drawn my value for ρ to compare my results against 

(See Chapter 2 for discussion on ߩ).  Luminance of the gratings could range from 9.32 to 

44.27 lumens, and the average intensity was 26.80 lumens, for all gratings. The full range 

of the monitor (0-46.6 lumens) was not used due to empirically determined distortion 

effects at these extended levels. The gratings were always presented vertically, and a 

random phase was chosen for each presentation.  

 

To prevent subjects from having afterimages of the gratings (and therefore potentially 

integrating additional information after the grating was no longer presented), a 

randomized checkerboard pattern was used to mask the grating. The checkerboards 

were presented at the start of the trial, and presented for 500 ms each after the display 

of the reference and test gratings. Every presentation was independently randomized 

(i.e., each square could either be black or white, and was determined by a random number 

generator) to prevent subjects from being able to predict what they were going to see at 

each spot. 

 

Throughout the whole experiment, including the checkerboard masks, the average 

luminance of the screen was designed to be 26.80 lumens. This was to maintain the same 
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level of light adaptation throughout. The monitor brightness levels were verified several 

times throughout the data collection phase using a Tektronix J17 LumaColor meter with 

a J1803 luminance head, and did not vary substantially from month to month.  

 

The stimuli were varied over two conditions: reference magnitude and display time. The 

reference gratings, which fluctuated sinusoidally around the mean intensity of 26.80 

lumens, had a peak-to-peak magnitude difference of 3.50, 8.74, 13.98, 19.22, and 24.47 

lumens. Both the reference and test stimuli were presented at 600, 300, 150, 125, 100, 

75, and 50 ms. The experiment was performed in blocks of 45 trials, each with a fixed 

reference contrast and duration, but varying test contrast. Each block was performed at 

least twice to counter-balance any order effects – one block had the reference stimuli 

prior to the test stimuli, and the other reversed this (see Section 3.3.3 for analysis of order 

effects). A Bayesian adaptive algorithm, described in detail below, was used during each 

block to determine the level of the test contrast stimuli. 

 

We made an exception to the counterbalancing guideline in the 600 ms condition. It was 

added later in the testing protocol, and was only tested in the ‘reference first’ variation 

because previous testing had not suggested any choice bias. The order of these condition 

blocks was randomized to prevent behavioral variation between data collection days from 

affecting global analysis. 
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3.2.2 – Adaptive Algorithm 

For this experiment, using traditional techniques to estimate the psychometric function 

would have required upwards of 30,000 trials for each subject. To reduce the number of 

trials needed, an adaptive algorithm was chosen to more efficiently gather data.  Several 

adaptive methods exist within the literature (Leek, 2001), with benefits and drawbacks. 

Due to recent concerns about the convergence of traditional staircase procedures 

(Garcıá-Pérez, 1998), I chose to use a modified version of Kontsevich and Tyler (1999) 

for the current experiment (see Section 3.2.2.1 below for details on the modifications).  

 

To summarize the method, an extremely wide prior probability was established for the 

psychometric function’s slope in each condition, with a mean based on preliminary data. 

From this prior distribution, a test stimulus was chosen via an entropy based cost function 

to maximize the amount of information gained from the subject’s response. Upon 

response, the priors were updated with the new information, and a new test stimulus was 

chosen. This was repeated for 45 trials per condition (see Figure 3.1B for a graphical 

representation).  
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3.2.2.1 - Bayesian adaption algorithm alterations and set up  
 

Figure 8-3.2 

Figure 3.2: Alterations from Kontsevich and Tyler (1999)  
The psychophysical literature has a diverse method for creating psychometric curves. Two prominent 
methods involving the use of sigmoids are displayed here. In both cases, a variety of test stimuli are 
presented in tandem with the reference stimuli, and the response of the subject is recorded. A. The 
subject’s responses are coded as either right or wrong for the various test conditions, and test conditions 
are categorized by absolute difference from the reference stimuli. A sigmoid is then fitted to the data. 
This is the method that Kontsevich and Tyler developed (Kontsevich and Tyler, 1999) originally 
programmed for. B. The raw response of the subject (“Is the test stimuli higher or lower than the reference 
stimuli?”) is plotted on the Y-axis instead of ‘percent correct’. For mathematical simplicity, this is the line 
I fitted my data to. The solid blue line is the superimposition of Figure 3.2A. Note that the two lines, while 
similar above the reference stimuli magnitude, are not the same. 

 

Several modifications had to be made to the methods described in Kontsevich and Tyler 

(1999)  to connect it with the theory developed in Chapter 2. First, the range of the sigmoid 

JND function was adjusted from [.5 1] to [0 1]; this can be interpreted as changing the Y-

axis from ‘percent correct’ to ‘percent perceived as higher’.  See Figure 3.2 for a 

description and graphical representation of the differences between these two methods. 

Both methods are used somewhat interchangeably within the psychophysical literature, 

which can cause significant confusion.  
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The following equation represents the function that my algorithm optimizes for: 

(ߠ)ߖ (3.1) =  
1 + erf(ߚ ∙ ߠ) − ܶ))

2
  

where the psychometric function ߖ represents ‘percent of time perceived as higher’, ߠ is 

the magnitude of the stimulus. The two variables ߚ (the slope) and ܶ (the threshold) are 

the variables that the adaptive algorithm changes to better fit the psychometric function 

of the test subject. At the start of every experimental condition, prior probability 

distributions were constructed for ߚ and ܶ. These distributions (seen in Figure 3.1B) can 

be interpreted as the initial guess (and the confidence in that guess) as to what ߚ and ܶ 

will be. These probability distributions are updated over the course of the experiment 

based on the accuracy of the subject at sensory discrimination.  Preliminary data 

suggested little or no bias in user responses (i.e., the user was equally likely to be correct 

for test stimuli both above and below the reference stimuli), and behavioral data from the 

experiment confirmed this assumption (see Section 3.3.3). Thus, the prior for the 

threshold was chosen to be very narrow. Since my primary goal was to determine the 

slope of the curve, a very broad, nearly flat distribution was used for ߚ. A copy of the code 

used, as well as the raw data from subjects, is available upon request. 

 

3.2.2.2 – Convergence and exclusion criteria 

A known issue with adaptive tests is that, if the prior assumptions are far from the correct 

solution, there can be a failure to converge within the number of trials allotted. To deal 

with this, test blocks where performance was below 80% or above 95% accuracy were 

excluded from analyses. Two subjects who performed below the 80% threshold in over 
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half their experimental blocks were excluded entirely from the analysis under the 

assumption that they were guessing randomly for large parts of the experiment. 

 

3.2.2.2 - JND Value 

Typically, within the psychophysical literature, JND is defined as the difference between 

the reference stimulus and the test stimulus that the subject perceives as higher 75% of 

the time. The 75% point is arbitrary, and has been eschewed in this paper to make the 

math easier. Discussion of JND throughout the rest of the paper is defined as 84%, which 

corresponds to the first standard deviation above and below the reference stimuli for a 

Gaussian distribution. Since the Bayesian adaptive algorithm determines the slope and 

threshold of the psychometric function, rather than a specific point, it would be 

computationally trivial to switch between the 75% and 84% JND if it were necessary for 

future comparisons. 

 

3.2.2.4 – Proof of convergence through Monte Carlo simulation 

Within their paper, Kontsevich and Tyler (1999) provided a great deal of support for their 

work, which will not be reproduced here. However, I have made modifications to their 

suggested algorithm; while these justifications are well founded, it is prudent test the 

algorithm to show that there are no unexpected consequences of my modified 

assumptions. 
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As described in Section 3.2.2.1, the main features that my algorithm adapts for are the 

slope (ߚ) and threshold (ܶ) of the psychometric function (Equation 3.1). For clarity, we 

will call the true values of these variables ߚ௧௥௨௘ and ܶ ௧௥௨௘. At the start of each experimental 

condition, the adaptive algorithm is given a prior probability distribution for ߚ and ܶ, which 

I will denote as ߚ௣௥௜௢௥ and ௣ܶ௥௜௢௥. These distributions can be interpreted as the adaptive 

algorithms initial ‘belief’ (and confidence about that belief) about what ߚ௧௥௨௘ and ௧ܶ௥௨௘ are 

(see Figure 3.1B for a graphical representation). Over the course of the experiment, the 

algorithm updates the prior distributions based on the responses of the subject. 

Essentially, the algorithm starts with a (potentially wrong) belief, and converges onto the 

correct answer. Here, I develop a Monte Carlo simulation to test for this convergence in 

a variety of conditions. 

 

To build this simulation, I took the code developed for the experiment and inserted a 

simulated subject. This simulated subject was essentially a psychometric function (see 

Equation 3.1) whose slope (ߚ௧௥௨௘) and threshold ( ௧ܶ௥௨௘) I controlled. Each trial, the 

simulation was presented with a numerical value (ߠ), which represented the contrast 

intensity that would have been shown to a real subject. ߠ was then inputted into the 

psychometric function (߰(ߠ)), and it returned the probability that the computer would 

respond ‘Yes’ to the prompt ‘Was the second stimulus greater than the first?’. A random 

number was generated, and if it was less than the returned value, the simulation recorded 

a ‘Yes’; otherwise it recorded ‘No’.  
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This simulation can be run with a variety of different conditions for the simulated subject’s 

psychometric curve (ߚ௧௥௨௘ and ܶ ௧௥௨௘), as well as different prior probabilities for the adaptive 

algorithm (ߚ௣௥௜௢௥ and ௣ܶ௥௜௢௥). In Figure 3.3, I demonstrate several simulations on the 

convergence rate of ߚ. Three different simulated subjects are presented, with a wide (yet 

plausible) range of ߚ௧௥௨௘. Additionally, I present two different sets of ߚ௣௥௜௢௥ - one where 

 ௧௥௨௘, and one where it is 40% more. In all cases, I show that itߚ ௣௥௜௢௥ is 40% less thanߚ

converges on to the true answer within 45 trials, and often before. This result extends to 

all realistic conditions. 
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Figure 9-3.3 

 

Figure 3.3: A Monte Carlo simulation of the adaptive algorithm 
A: Here, we see a Monte-Carlo simulations of the adaptive algorithm over 45 trials, which are 
marked on the X-Axis. On the top graphs, I have 10 simulations overlaid on top of one another 
(separate lines), with the value for ߚ calculated as being most probable shown on the Y-Axis. 
The dashed black line is the true value of beta, i.e., the value for the simulated responder 
described in Section 3.2.2.4. Note that the three graphs at the top have separate values for 
the true value of β, denoted in their titles. For all three graphs, the prior estimate of β started 
40% below the true value of ߚ. The three graphs on the bottom show a mean of calculated ߚ 
(solid line) for the 10 simulations above, and the standard error (dashed lines) for the same. 
These graphs give a better insight on the average course of the convergence. B: This set of 
graphs show the same thing as A, with the only difference being that the starting prior estimate 
of ߚ set at 40% above the true value of ߚ.  
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Similar results were found for threshold, albeit with slower convergence rates. However, 

this is not an issue for the current experiment. While the threshold of the psychometric 

function is also technically being converged on, I did not expect it to change substantially. 

In behavioral terms, the only time that the threshold (ܶ) would shift would be if there were 

a bias in the ‘Yes/No’ response. No such bias was found in any of the preliminary data 

collected. With this in mind, the prior probability distribution for ܶ was set very narrowly; 

this has the side benefit of reducing the probability space calculated over, therefore 

increasing the rate of convergence for ߚ.  An analysis described in Section 3.3.3 (which 

discusses bias in the experimental data) demonstrated that this was a correct 

assumption. 

 

3.2.3 - Calculating JND Related Measures  

To quickly recapitulate the main point of Chapter 2, I developed a model that made a 

specific prediction relating the characteristics of neural noise to perceptual errors. This is 

prediction is made explicit in Equation 2.2, copied below for reference: 

ܴܬܮ (2.2) = ݃݋݈  ൬
ఛܦܰܬ

௦௔௧ܦܰܬ
൰ = (ρ − 1) ∙ log(߬) − (ρ − 1) ∙ log(߬௦௔௧) ;          ߬ < ߬௦௔௧  

where ܴܬܮ is the Log-JND-Ratio (defined here), ρ is the neuronal noise characteristic, 

߬ for ܦܰܬ ௦௔௧ is theܦܰܬ for a time window of length ߬, and ܦܰܬ ఛ is theܦܰܬ ≥ ߬௦௔௧. For ߬ >

߬௦௔௧, the ܴܬܮ = 0.  The current experiment allows us to determine ܦܰܬ௦௔௧ and, using that, 

the ܴܬܮ, ߬௦௔௧ and ߩ.  
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For each condition combination, the Bayesian algorithm converged on the correct slope 

and threshold of the psychometric function. To determine ܰܬ ఛ, I found the stimulus value 

that would correspond to 84% (~1ߪ) on the determined psychometric function. ܦܰܬ௦௔௧ 

(necessary for solving Equation 2.2) was found by averaging the ܰܬ ఛ for the 300 and 

600 ms conditions. These time values are presumed to be above ߬௦௔௧ because ܰܬ ଷ଴଴ 

and ܦܰܬ଺଴଴ are statistically indistinguishable from one another when combined across all 

subjects (unpaired t-test, ݌ =  .௦௔௧ was calculated individually for each subjectܦܰܬ .(0.28

 

Once established, the value of ܰܬ ௦௔௧ permits us to calculate the ܴܬܮ (see Equation 2.2) 

for each subject and condition (Figure 3.4). For each subject, I used a non-linear fitting 

procedure (the nlinfit function within MATLAB) to fit the data to Equation 2.2 and extract 

the parameters ߬௦௔௧ and ߩ. Several distinct fitting methods were used and yielded similar 

results. 
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3.3 - Results 

Figure 10-3.4 

 
Figure 3.4: Individual and combined Log-JND-Ratio plots 
Above, we have plotted the individual subject data along with the best fit line for 
Equation. 2. The calculated τୱୟ୲ is denoted by the dashed blue line, and ρ (the 
noise term) is equivalent to the slope of the initial segment of the line plus one. The 
final graph, ‘Combined Data’, brings together all of the data from every subject, 
and also finds the best fit for Equation 2. 

 
 

3.3.1 - Primary results 

The theoretical analysis in Chapter 2 relates the statistics of perceptual errors to the 

statistics of the neural code. Specifically, I noted how perceptual errors would vary with 

changes to the window of temporal integration given different models of noise. On the 

basis of this theory, I designed an experiment to test if the source of perceptual errors is 

indeed the variability of the encoding sensory neurons, as is suspected in much of the 
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literature (Britten et al., 1993, 1996; Cohen and Newsome, 2009; Mazurek et al., 2003; 

Shadlen et al., 1996; Shouval et al., 2013).  

 

The perceptual errors of my subjects were tested in a contrast discrimination task for 

different durations of stimulus presentation and different contrasts. The results of each 

subject (shown in Table 3.1 and Figure 3.4) were fit separately to Equation 2.2 (dashed 

red line in Figure 3.4).  Taking the inter-subject statistics (i.e., averaging across the values 

calculated for each subject), I found the average of the slope on the log-log plot to be 

approximately -1.2, which implies that ߩ =  −0.20 ± 0.31. This value of ߩ is significantly 

different (݌ ≅ .00014) from the Poisson-like value of ߩ =   .58 found through an 

electrophysiology experiment (Dean, 1981a). However, it is statistically indistinguishable 

from a constant noise condition (ߩ ≅ 0). I also found that ߬ݐܽݏ  =  232 ± 83 ms (Figure 3.4 

and Table 3.1). Note that this value of ߬ ௦௔௧ is consistent with the estimation of ܦܰܬ௦௔௧ done 

in Section 3.2.3, which showed ߬௦௔௧ should be less than 300 ms. Similar results are also 

derived and presented in both Table 3.1 and Figure 3.4 under ‘Combined Data’ by 

combining all the data points across subject, time, and reference conditions, and fitting 

Equation 2.2.  
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Individual Data ࢙࣎࣋ࡱࡿ ࣋ (࢙࢓) ࣎ࡱࡿ (࢙࢓) ࢚ࢇ 

Subject 1 169.22 13.17 -0.2180 0.1551 
Subject 2 339.73 38.55 0.0496 0.0984 
Subject 3 165.09 9.50 -0.6990 0.1492 
Subject 4 182.85 14.98 -0.5598 0.1815 
Subject 5 148.42 12.27 -0.0571 0.1486 
Subject 6 330.60 29.57 -0.0661 0.0949 
Subject 7 284.93 71.17 0.1184 0.1976 
     
Combined Data 211.20 12.19 -0.1057 0.0774 
     
Inter-subject 
Statistics 

 ࣋࣌ ࣋ࣆ (࢙࢓) ࣎࣌ (࢙࢓) ࣎ࣆ

231.55 83.62 -0.2046 0.3111 
 

 

Table 3.1: Summarized data from each subject  
Here, we see the calculated τୱୟ୲ and ρ, along with their standard error, for each 
subject. To do analysis of the data, I have taken two approaches. First, under 
‘Combined Data’, I have combined the derived ܴܬܮ for every subject, time, and 
reference condition; following that, I fit Equation 2 to this cluster of data and 
extracted τୱୟ୲ and ρ. Second, under Inter-Subject Statistics’, I simply averaged the 
values of τୱୟ୲ and ρ found for each subject. 

 

Further, I have done analysis across the different reference contrast levels to tell if there 

is any trend relating the reference contrast stimulus to the resulting ߩ or ߬௦௔௧ values. 

Largely, I find that no such effect exists, except for the lowest contrast level (see Figure 

3.5). At extremely low contrast intensities, subjects see a significant reduction in both ߩ 

and ߬௦௔௧. This could be taken as evidence that different processes rule at extremely low 

contrast intensities, but further research should be done at the edges of perception. 
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Figure 11-3.5 

 

Figure 3.5: ρ and ࢙࢚࣎ࢇ values across reference contrast conditions. 
In both charts, contrast in measured via Michelson Contrast. A: The dependence 
of ߬௦௔௧ on the reference contrast magnitudes.  B: The dependence of ρ on the 
reference contrast magnitudes. Values were obtained by taking the mean across 
all subjects within a reference condition. Significant differences (݌ < .05) were only 
found by comparing to the lowest reference contrast level, and are denoted by a *. 

 

3.3.2 – Testing with respect to scalar timing 

My analysis above assumed that spike counts are the primary feature being decoded, 

and that the spike counts for the reference and test stimuli are being compared during 

decoding. However, since we can distinguish between a short but intense grating and a 

long but weak grating (beyond 50ms) (Bloch, 1885; Gorea, 2015), the time of the stimulus 

presentation must also be known or inferred. If the decoding mechanism is provided with 
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an estimate of stimulus duration, it can calculate the spike rate and then infer the contrast 

intensity. It is, however, well established that timing perception is also prone to errors and 

that these errors increase linearly with the magnitude of the stimulus in an effect called 

scalar timing (Buhusi and Meck, 2005; Church, 2003; Gibbon et al., 1984). In Section 

2.2.4, I found that for any system that had the stimulus estimation errors derived primarily 

from errors in temporal estimation, the predicted slope of the ܴܬܮ graph (i.e., Figure 3.4) 

would approach 0. This result is obviously inconsistent with my data (with a slope of 

approximately -1.2), and suggests that timing related errors make an insubstantial 

contribution to perceptual errors (ߪఏ). 

 

3.3.3 – Bias and order preference 

In psychophysical experiments, it important to make sure that the experimental paradigm 

does not lend itself to systematic errors. In the case of the current experiment, there are 

two controls that I performed to guard against these. In the first control, I wanted to make 

sure that subjects were not more inclined to select ‘yes’ rather than ‘no’ when prompted 

with “Was the second stimulus higher than the first?”. To find this out, I looked at the 

response characteristics of each subject. In Table 3.2 below, I have recorded the percent 

of time that subjects responded ‘yes’ in both the normal condition, where the reference 

contrast is presented before the test condition, and the reverse condition, where the 

opposite is true. Testing with a one-sample t-test, I failed to reject the null hypothesis (i.e., 

that the data is not biased in a statistically significant way) in the normal condition (݌ =

.93), the reverse condition (݌ = .19) or a combination of the two conditions (݌ = .37). This 

failure to reject suggests that there is no bias in response.  
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Subj. 

1 
Subj. 

2 
Subj. 

3 
Subj. 

4 
Subj. 

5 
Subj. 

6 
Subj. 

7 
Combined 

 
Normal 
Condition 
 

 
0.50 

 
0.49 

 
0.49 

 
0.48 

 
0.54 

 
0.50 

 
0.49 

 
0.50 

Reverse 
Condition 

0.52 0.49 0.49 0.53 0.53 0.56 0.49 0.52 
       

Total 0.51 
 

Table 3.2: Measurements of bias 
The table above records the probability that a subject will respond ‘Yes’ to the prompt 
‘Does the second grating have a higher contrast than the first?’. Every subject responds 
in an unbiased manner. 

 

In my second control for systematic errors, I looked at the possibility that subjects might 

have an order preference for stimuli – i.e., the first grating presented may consistently be 

perceived as higher or lower than the second. To test against this, halfway through the 

test the reference and test gratings were switched without informing the subject. Calling 

back to Table 3.2, I used a two-sided t-test to test between the normal and reverse 

conditions, and failed to reject the null hypothesis (i.e., that the two conditions are 

statistically indistinguishable) at a ݌ = .26. This bolsters the hypothesis that there was no 

effect of order. 

 

In addition, we have looked at the calculated JND across all subjects. If there were an 

order effect, we would have expected to see differences between the normal and reverse 

presentations. In Table 3.3, I have recorded the average and standard deviation of the 

JND in every time and reference condition, collapsed across subjects. When the normal 

and reverse conditions of the same Time X Reference combination are compared to one 

another with a two-sided t-test, no condition reaches statistical significance when 

corrected for multiple comparisons. When left uncorrected, one condition (150 ms X .125 
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MC) exceeds a traditional significance of ߙ = .05; this is to be expected via random 

chance. Another test that can be performed is comparing all the ܦܰܬ values directly rather 

than averaging across subjects first. To do this, I used a paired-sample t-test, which 

makes a direct comparison for every Subject X Time X Reference condition in the normal 

and reversed presentation condition. Once again, I fail to reject the null hypothesis (݌ =

 .40), further reinforcing the notion that there is no order effect. 
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Normal Presentation 
 

    

 
Reference Magnitude (Michelson Contrast) 

Display Time 0.05 0.125 0.2 0.275 0.35 

300 ms .014 ±  .003 .021 ± .0086 .023 ± .0083 .034 ± .0085 .038 ± .019 

150 ms .015 ± .014 .043 ± .025 .050 ± .035 .051 ±  .023 .064 ± .032 

125 ms .056 ± .10 .046 ± .023 .060 ± .028 .045 ± .0099 .090 ± .055 

100 ms .029 ± .015 .059 ± .035 .059 ± .021 .096 ± .034 .11 ± .041 

75 ms .093 ± .033 .059 ± .015 .13 ± .090 .087 ± .044 .15 ± .11 

50 ms .18 ± .08 .11 ± .062 .18 ± .15 .34 ± .40 .19 ± .070       

Reversed Presentation 
 

    

 
Reference Magnitude (Michelson Contrast) 

Display Time 0.05 0.125 0.2 0.275 0.35 

300 ms .017 ± .0064 .024 ± .007 .028 ± .0073 .035 ± .0076 .039 ± .0091 

150 ms .024 ± .013 .046 ± .037 .051 ± .027 .055 ± .019 .050 ± .022 

125 ms .047 ± .047 .064 ± .054 .068 ± .026 .075 ± .049 .063 ± .023 

100 ms .053 ± .034 .084 ± .057 .10 ± .058 .13 ± .074 .11 ± .066 

75 ms .079 ± .031 .13 ± .068 .12 ± .051 .14 ± .058 .15 ± .050 

50 ms .17 ± .093 .17 ± .081 .15 ± .064 .19 ± .05 .23 ± .16 
 

 
Table 3.3: JND results across different conditions 
JND data is averaged across subjects and presented for every Time X Reference condition. The top 
table (‘Normal Presentation’) contains data from the first half of the experiment, where the reference 
grating is presented prior to the test grating. The bottom table (‘Reversed Presentation’) contains data 
from the second half of the experiment, where the test grating is presented prior to the reference 
grating. This change occurs without the subject’s knowledge. The prompt (‘Did the second grating have 
a higher contrast than the first?’) remained unchanged. Note that the 600 ms condition is not presented 
here, since was only presented in the ‘Normal Presentation’ condition. 

 

The above analysis leaves open the possibility that, while most people do not have an 

order preference, occasionally a single subject may have an order preference. To 

evaluate this possibility, we can look at individual subject JND data, and perform the same 

paired-sample t-test described above. In this, after corrections for multiple comparisons, 

I found that one subject shows an order effect (݌ =  .0013). Since this affected only one 
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subject, I believe that the counterbalancing that was done (i.e., averaging the results of 

the normal and reverse presentation conditions) should be sufficient to overcome any 

problems. However, future studies should be aware of the possibility that individual 

subjects may have order preferences. 

 

3.3.4 – Fitting stimulus magnitude and duration 

In Section 2.2.5, I discussed predictions that the current model makes if we were to 

analyze it across both display time and reference magnitude using the following equation: 

,߬)ܦܰܬ (2.44) (ߠ = ௙௜௧ߙ ∙ (߬ି௫ିߠ௬)  

where ߬ is the stimulus presentation time (up to ߬௦௔௧), ߠ is the reference stimulus 

magnitude, and ߙ௙௜௧ = ௦௔௧ߙ ∙ ߬௦௔௧
ଵିఘ.  

 

To correctly run the analysis (either analytically or through simulation) and make 

comparisons to the data, we must find ߩ, ߬௦௔௧ and ߙ௦௔௧. While I have found that ߩ ≅ 0 and 

߬௦௔௧ ≅  ௦௔௧ canߙ ௦௔௧. The valueߙ in Section 3.3.1, I have yet to explicitly determine ݏ݉ 230

be derived in one of two ways. If we believe that the stimulus modality in question follows 

Weber-Fechner’s law (see Chapter 1 for a brief overview), then ߙ௦௔௧ can be determined 

by calculating the slope of the Reference vs. JND graph at presentation times greater 

than ߬௦௔௧. Using standard linear regression, I determined ߙ௦௔௧ ≅ ଶݎ) 071.  =  .38; see Fig 

3.6).  
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Figure 12-3.6 

 

Figure 3.6: Establishing ࢻ 
Here, I plot the reference intensity against the JND for all subjects for all data recorded 
above ߬௦௔௧ (i.e., 300 ms and 600 ms conditions). Standard linear regression is used, 
and ߙ௦௔௧ is established by measuring the slope (ߙ௦௔௧  = .071, ଶݎ = .38). 

 

Alternatively, if we were to believe my current data does not follow Weber-Fechner’s law, 

we can fit the same graph to the following equation to calculate a ‘correction factor’: 

ܦܰܬ (2.36) = ௦௔௧ߙ ∙   ଵିథߠ

where ߶ is the correction term for sensory modalities that do not perfectly fit Weber-

Fechner’s law. Note that when ߶ = 0, Equation 2.36 is exactly Weber-Fechner’s law. If 

the sensory modality is not Weber, ߶ will also be necessary later for predictions in my 

two-dimensional fit. 
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By plotting all the reference stimuli vs. the JND and fitting Equation 2.36, it is possible to 

simultaneously establishing ߶ and ߙ௦௔௧. Using the nlinfit function in MATLAB, I generated 

Figure 3.7A and found that ߙ௦௔௧ = .17 and ߶ = .39. However, this is condensed across 

display times. It is conceivable that there are large differences for ߶ and ߙ௦௔௧ across 

different time conditions. In Figure 3.7B, I separate by times and perform the same fitting 

procedure. Numerical results are listed below in Table 3.4. While there is variability in ߙ௦௔௧ 

and ߶, when I average for times above ߬௦௔௧, I find ߙ௦௔௧ ≅ .056 and ߶ ≅ .54.  

 

 50 ms 75 ms 100 ms 125 ms 150 ms 300 ms 600 ms 

 0507. 0612. 1010. 1620. 2462. 1879. 1962. ࢻ

ࣘ .7904 .6192 .2689 .3168 .5346 .5121 .5641 

 

Table 3.4: Numerical results for Weber correction in different time conditions 
The above table records the fits of ߶ and ߙ as established fitting the behavioral data to 
Equation 2.36. The data is broken up into fits for different stimulus display times, 
corresponding to the different fits shown in Figure 3.7B 
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Figure 13-3.7 

 

Figure 3.7: Determining ࣘ 
A: Fitting Equation 2.36 to all the behavioral data (߶ = .39). B: Fitting the data after 
separating by stimulus display times. Numerical values for ߙ and ߶ for the different curves 
are presented in Table 3.4.  
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With ߩ, ߬௦௔௧, ߙ௦௔௧, and (if necessary) ߶ determined, we can determine how well the data 

fits the two-parameter model described in Equation 2.43. Using the nlinfit tool from the 

MATLAB statistical toolbox, I find that ߙ௙௜௧  =  .024 ± = ݔ ,0078.  .83 ± .11, and ݕ =

 −.47 ± .11, with ± X denoting 95% confidence intervals. This fit, along with the empirical 

behavioral data, is presented in Figure 3.8. 

Figure 14-3.8 

 

Figure 3.8: Two parameter fitting of the behavioral data 
The above 3-Dimensional plot shows the relationship between the reference stimulus 
magnitude, the display time, and the JND. Behavioral data is shown as red dots. The 
multicolored plane is a projection of the best fit Equation 2.43 for the behavioral data. 
Note that at the shortest time (50 ms) and lowest reference magnitude (.05 Michelson 
contrast), there is an outlier in the data. This is related to the outlier discussed in Figure 
3.5, and is not included in the fitting data. 
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In Section 2.2.5, I showed that different assumptions in my model resulted in different 

predictions for the parameters ߙ௙௜௧, ݔ, and ݕ. I have recapitulated those predictions in 

Table 3.5. It is important to note that ߙ௙௜௧ varies from the predictions in the last chapter 

because I am using a behaviorally determined ߙ௦௔௧; for the Weber cases, I use ߙ௦௔௧ =

.071 (as calculated for Figure 3.6), while for Non-Weber cases, I used ߙ௦௔௧ = .056  (as 

calculated in Figure 3.7). For reference, the conditions being tested are: 

 Weber/Poisson: This was my original hypothesis. Poisson noise from neural 

firing rate stochasticity would influence behavior for a stimulus that followed 

Weber’s law. This would require ߶ =  0 and a ߩ = .5. 

 Weber/Constant Noise: In this condition, Gaussian noise from some decoder 

(e.g., memory retrieval, decision, etc.) is used rather than Poisson neuronal 

noise. This would set ߶ = 0 and ߩ = 0.  

 Non-Weber/Poisson: Here, noise would come from variability in the spike rate 

= ߩ)  .5), but it would be for a sensory modality with a Non-Weber stimulus. We 

would set ߶  =  .5, like what was found for the current data 

 Non-Weber/Constant Noise: Finally, I will test for both a non-Weber condition 

(߶ = .5, same as above) and a constant noise condition (ߩ = 0). 
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 RSS AICc ࢟ ࢞ ࢚࢏ࢌࢻ 
 

Behavior Fit 

 

0.017±.01 0.95±.11 -0.46±12 .011 1 

 

Weber/Poisson 

 

.034 .5 -1 57.86 .18 

 

Weber/Constant 

 

.0163 1 -1 31.06 .25 

 

Non-Weber/ 

Poisson 

 

.027 .5 -.5 14.49 .37 

 

Non-Weber/ 

Constant 

 

.013 1 -.5 2.80 .84 

 

Table 3.5: Comparing experimental results to model predictions 
In Section 2.6, I derived a model that predicted a double power law relationship 
(Equation 2.43) between the stimulus magnitude, display time, and JND. 
Depending on the assumptions the model takes on noise characteristics, as well 
as whether the stimulus follows the Weber-Fechner law, it changed the expected 
parameters of the double power law. The assumptions, and their predictions, are 
listed here. Additionally, I have the parameters determined by the best ‘Fit to 
Behavior’ (as seen in Figure 3.8) listed at the top. We can compare the goodness 
of fits of these different models using the Residual Sum of Squares (RSS) and the 
corrected Akaike Information Criterion (AICc) listed on the right. 

 

To compare these models against one another, I used two techniques (also reported in 

Table 3.5). The first is a simple Residual Sum of Squares (RSS), which is a useful 

technique to find the absolute amount of error between the predictions of the model and 

the behavioral data. The RSS of the model fitted to the experimental results is 
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tautologically the lowest value. However, the Constant Noise/Non-Weber case comes 

shockingly close.  

 

To compare these models in a more rigorous way, I also use a technique called the 

corrected Akaike Information Criterion (AICc). Contrasted to the RSS, the AICc value 

does not show how good a fit each model is in absolute terms; rather, it shows how good 

different models are relative to one another. It also adds a complexity cost. In the AICc 

evaluation, models are penalized for each additional parameter they have. In the case of 

the ‘Fit to Behavioral Results’, there is a penalty because it has four free parameters (ߙ௙௜௧, 

 are ݕ and ݔ ,௙௜௧ߙ and a Gaussian noise term). In the other models, the values of ,ݕ ,ݔ

determined, simply leaving the Gaussian noise as the only fit parameter. 

 

Here, the AICc values are all relative to the best fit to behavioral data as found by the 

nlinfit method seen in Figure 3.8. The resulting values can be interpreted like so: ‘The 

Constant Noise/Non-Weber prediction explain the information 84% as well as a least 

square fit to behavior’ (replace the condition and AICc value as appropriate). These 

results suggest that a tuning curve model with a constant noise and a contrast-scaling 

exponent (߶) of 0.5 can explain the data almost perfectly. Note that this conclusion 

contradicts my initial hypothesis, namely that the noise controlling the perceptual errors 

would be close to Poisson. 
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3.4 - Conclusion  

My experimental results show that (1) the noise affecting contrast discrimination is roughly 

constant and independent of the magnitude of the sensory variable, and that (2) the brain 

uses a very limited temporal integration window (≈230 ms) to form percepts of contrast. 

The first result contradicts the hypothesis that perceptual errors arise from the variability 

of the sensory neurons that encode the percept. Below, I discuss how these results 

compare to previous publications, the theoretical explanations for these results, and the 

testable ramifications of these theories. 

 

3.4.1 - Behavioral noise 

I hypothesized that a likely source for behavioral variability is the trial-by-trial spike count 

variability (Shouval et al., 2013). My results are inconsistent with this hypothesis since the 

behaviorally determined ߩ value is significantly different (݌ ≅ .00014) from the previously 

determined physiological value of ߩ = 0.58 for single contrast encoding neurons in V1 

(Dean, 1981a). This conclusion remains even if we assume a realistic variable firing rate 

as described in Section 2.2.3; such an assumption would require the slope of the ܴܬܮ 

graph (݉) to be −.5 ≤ ݉ ≤ 0, which is not the case. 

 

A previous experiment also varied the presentation time in a contrast dependent 

behavioral task (Legge, 1978), but differed from mine in several respects: it used a 

contrast detection task rather than a discrimination task, a staircase procedure (Wetherill 

and Levitt, 1965) to estimate the parameters of the psychometric curve rather than 

Bayesian adaption (Kontsevich and Tyler, 1999), and a smaller number of subjects. I have 



 

76 
 

approximated the value of ߩ from the most comparable portion of that published dataset 

(i.e., spatial frequency of .75), and found it to be approximately .25. Although this differs 

from my estimate, due to the difference in the actual experiments I cannot determine what 

the origin of this difference is, and cannot even determine if it is statistically different from 

my result.  

 

The value of the ρ that I find in this experiment, as well as that just estimated from previous 

data (Legge, 1978), is very different than the value one expects from single neurons that 

encode contrast (Churchland et al., 2010; Dean, 1981a). One possible explanation of this 

discrepancy is that, since the stimulus is encoded by an ensemble of correlated neurons 

(and not by a single neuron), some forms of averaging over the population may give rise 

to a constant noise distribution across the entire ensemble. There is some empirical 

support for this notion (Chen et al., 2006). However, such an interpretation very puzzling 

if one assumes that perceptual noise (ߪఏ) were to indeed arise from the encoding 

neurons. Although a combination of correlated Poisson-like neurons could have statistics 

that differ significantly from Poisson statistics, there seems to be no conceivable way of 

combining them to obtain a variable in which signal accumulates over time, but noise 

does not. Therefore, it is highly unlikely that the behavioral errors in contrast perception 

arise from the variability of the encoding sensory neurons in V1. 

 

An alternative explanation is that the source of perceptual errors arises from a suboptimal 

decoding process (possibly involving noisy decision or memory operations) with a 

constant noise level (ߩ = 0). This suboptimal decoding process would overwhelm any 
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noise from spike count or timing variability (Johnson, 1980). Such noise added during 

decoding would be independent of the stimulus duration or contrast. This interpretation is 

consistent with observations that perceptual errors are far greater than expected from 

averaging over many sensory neurons (Britten et al., 1993; Tolhurst et al., 1983). 

However, this alternative seems inconsistent with experiments that report significant 

choice probabilities in sensory cortical neurons (Britten et al., 1996). One possible 

explanation is that significant choice probabilities arise from sensory neurons that get top-

down feedback from the decoding neurons. In such a case, the behavioral variability does 

not arise from the variability of the sensory neurons; rather, the decoding process affects 

the variability of the sensory neurons. Further experiments are needed to resolve this 

apparent contradiction between my results and previous results regarding choice 

probabilities of sensory neurons. 

 

To summarize, I have shown that the primary introduction of noise is not in the encoding 

phase (i.e., stochastic processes translating time and stimulus intensity into firing rates), 

but rather in the decoding phase (e.g., decision, memory storage and retrieval, 

comparison). Future experiments should attempt to isolate aspects of the decoding 

process, and determine which one is the primary contributor to our sensory errors. 

 

3.4.2 - Integration Window 

I have found the length of the integration window for discrimination of contrast stimuli to 

be approximately 232 ms. This is again somewhat similar to Legge (1978) which found 

߬௦௔௧ ranging from 50 to 1000 ms, depending on the spatial frequency of the stimuli. For 
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the spatial frequency closest to my experiment’s (.75 cycles/degree of vision), ߬௦௔௧ was 

found to be approximately 100 ms. While different, as I noted in the above ‘Behavioral 

Noise’ section, Legge (1978) used a contrast detection paradigm, where stimuli are 

determined to be present or absent compared to a blank screen. My study used a 

discrimination paradigm; similar gratings are displayed, and subjects choose the one with 

the higher contrast. It may be that detection uses a different mental strategy than 

discrimination, resulting in the distinct (albeit similar in magnitude) results we see here. 

 

Although the integration window I find is quite short, I propose that it is consistent with 

established cellular responses to contrast stimuli. It has been shown that contrast-

detecting neurons have a highly transient firing rate response whose information content 

returns to baseline levels after approximately 200 ms (Heller et al., 1995). Given the 

properties of such sensory neurons, it might not be possible to extract useful information 

from longer presentation times. While it may be surprising that our visual system is unable 

utilize temporal windows longer than 230 ms for contrast perception, it is intriguing to note 

that this is approximately the same length of time as a standard inter-saccade interval 

(Carpenter, 1988). I postulate that, if the eyes rarely stay in a single position for longer 

than ~200 ms, there would be little reason for the brain to be able to integrate over longer 

time intervals. Both the short inter saccade intervals and integration time window might 

have arisen because evolutionary pressures favor fast reaction times over very precise 

stimulus estimation.  
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Chapter 4 - Conclusion 

The process of perception is prone to systematic errors, and while these systematic errors 

have been extensively studied, their origin remains a mystery. The goal of this dissertation 

has been to use a mixture of theoretical and experimental work to show what the 

physiological basis of sensory errors is – or, failing that, clarify what it is not.  

 

To do this, I started with the hypotheis that neuronal noise was responsible for errors in 

perception. In Chapter 2, I built a model that showed how spike rate variability could be 

linked to a behavioral measure of perceptual acuity. Further, I extended upon work done 

in Shouval et al. (2013) and built a comprehensive neural-like model that could predict 

the perceptual error rate using stimulus magnitude and duration. In Chapter 3, I 

developed and implemented a psychophysical experiment that could test the predictions 

of the work in Chapter 2. The results showed that it was impossible for firing rate variability 

to account for perceptual errors. At the same time, I verified the neural-like model 

described above. This model shows that it is possible to construct plausible tuning curves 

that can explain the effects of stimulus magnitude and duration on perceptual acuity. 

 

In Chapter 2, I focused on building a model based on a series of simple assumptions to 

link neuronal noise to perceptual errors. The central innovation used was that different 

statistical distributions for spike counts would be effected differentially by reductions in 

stimulus duration. This relationship between spiking statistics and behavior was defined 

analytically, and had the benefit of being easily translatable into a psychophysical 
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experiment (done later in Chapter 3). This relationship was shown to work regardless of 

whether the sensory neurons in question had a static or dynamic firing rate. 

 

As a possible alternative to my assumption that perceptual errors originate from the 

variable spike count of sensory neurons, I considered whether uncertainty of stimulus 

duration could account for the scaling of perceptual errors as described here. To briefly 

restate the concern, perceptual judgment is based on the firing rate of the appropriate 

neurons. To calculate a rate value, time duration must be known. Since it is well 

established that errors exist in time perception (Buhusi and Meck, 2005; Church, 2003; 

Gibbon et al., 1984), it is possible that this rate calculation is the origin of perceptual errors 

for magnitude estimation. I showed that, if timing errors were the primary source of 

perceptual errors, then it would require there be a nearly constant error rate no matter 

how the long the stimulus duration lasted. This was later shown not to be the case 

(Chapter 3), suggesting that some other noise source was the origin of perceptual errors. 

 

Finally, I extended the model so that it not only made predictions with respect to how 

errors depend on stimulus duration, but also how they depend on stimulus magnitude. 

This was accomplished by further generalizing the model, allowing it to work with sensory 

modalities that did not perfectly follow Weber-Fechner’s law. The analytical work done 

here resulted in a prediction of a double power law function to explain the relationship 

between the JND, the stimulus magnitude and its duration. These results were also tested 

in Chapter 3. 
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There are several possibilities to extend this analytical work further. One promising theory 

proposed the idea that uncertainty about the meta-information of a signal (i.e., the 

information about the information, such as its duration or position of the stimuli) could 

potentially explain many of the characteristics of perceptual errors that have been 

discovered (Pelli, 1985). In Chapter 2, I addressed the meta-information of stimulus 

duration, and showed that it made very specific prediction on the shape of behavioral 

noise, which turned out to be incompatible with my results (Chapter 3). It would be prudent 

to look at the other possible types of meta-information uncertainty (e.g., uncertainty on 

location of the data) and see if a similar functional relationship between this and behavior 

can be established. 

 

Another possibility for future work is to push the behavioral predictions of my model even 

further. In nature, stimuli vary in presentation times, sometimes enormously. The current 

model does not specifically state predictions on what would happen were the reference 

and test stimuli to have different durations. It is not clear analytically how this would affect 

perceptual acuity. Further work could establish this, and provide additional feasible test 

cases.  

 

Finally, the model does not have a method to deal with noise intrinsic to the stimulus, 

such as occurs in choice probability experiments (Britten et al., 1993, 1996; Shadlen et 

al., 1996). An interesting phenomenon within these types of experiments is that the 
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integration time window seems to be substantially longer than for simpler stimuli such as 

contrast. It is not immediately apparent how introducing noise directly into the stimulus 

would affect the behavioral predictions of the current model. However, it may be useful to 

attempt to explain these the results of these noisy stimuli experiments, particularly 

considering the results from Chapter 3. 

 

In Chapter 3, I applied the work done in Chapter 2 by carrying out a psychophysical 

experiment. I chose to use contrast stimulus because it satisfied the assumptions in my 

model, namely that the tuning curve was monotonic (Dean, 1981b) and that the spike 

count variability was well characterized (Dean, 1981a). To recap the basics of the 

experiment, varying intensities of gratings were presented to subjects to find their contrast 

discrimination ability (measured by JND – see Chapter 1 for overview). In order to test 

the predictions in Chapter 2, the display time of the gratings was manipulated, and the 

results plotted against Equation 2.2.  

 

Because contrast sensitive neurons have a Poisson spiking variability, I predicted that the 

slope of the plotted line would be -.5. Surprisingly, I found that the slope was 

approximately -1, which corresponded to a constant variability, and precludes the 

possibility that spiking variability is the source of stimulus magnitude estimation errors.  In 

the same analysis, I also discovered that the brain uses a somewhat limited integration 

time window (approximately 230 ms) to form the percept of contrast.  
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Finally, I compared the mean contrast discrimination ability across subjects to the neural-

like tuning curve model described in Chapter 2. I found that, solely from first principles, it 

was possible to predict perceptual acuity from stimulus magnitude and duration. 

Assuming constant noise, and two statistical parameters derived from the data, I can 

design a tuning curve that will describe the behavior nearly perfectly. 

 

The results here are somewhat surprising. I have shown that, at least with respect to 

contrast perception, neural variability cannot account for perceptual errors. Rather, 

whatever physiological mechanism is determining perceptual acuity must have constant 

noise variability. This likely means that something within the decoding process of the 

spike train is introducing the noise, possibly memory storage/retrieval (Hubbard, 1994) or 

decision-making (Johnson, 1980). Another alternative is that, as discussed above, 

uncertainty regarding the meta-information of a stimulus is causing perceptual errors. 

While I established analytically that the uncertainty of the meta-information of a stimulus’s 

duration could not account for the current behavioral results, uncertainty of other types of 

meta-information (e.g., stimulus location)  may. 

 

The results regarding the temporal integration window for the perception of contrast are 

also significant. I found that subjects reach peak performance at approximately 230 ms 

of presentation time. After this time window, they perform no better regardless of how 

much time they are given to view the stimuli. This is somewhat in line with previous results 

(Gorea and Tyler, 1986; Legge, 1978; Schofield and Georgeson, 2000; Watson, 1979), 
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although it is difficult to compare previous experiments to the current one for 

methodological reasons.  

 

The most interesting thing about the derived time window here is that it corresponds with 

two physiological measurements. The first is that neurons show a dynamic response to 

stimuli; even if a stimulus is presented for extended periods of time, it has been shown 

that most of the information in neuronal response is found in the first 200 ms of a spike 

train (Heller et al., 1995). After this, the amount of information with respect to the stimulus 

drops off precipitously. Second, the inter-saccade-interval (ISI; i.e., the time an eye must 

wait before it is possibly to saccade again) is also approximately 200 ms (Carpenter, 

1988). It may be the case that these values are interrelated: from an evolutionary 

perspective, if your eye does not remain still for longer than 200 ms, there would be no 

pressure to be able to integrate visual information for longer periods of time, even if it may 

gain further perceptual accuracy.  

 

The experimental results here suggest many possible future directions. First, I would 

naturally want to repeat this experiment in different sensory modalities. If saccades play 

a role in determining the integration window (as hypothesized above), then choosing a 

modality such as pitch or loudness would help remove the effects of eye movements on 

sensory processing. Alternatively, I could repeat the current experiment with an eye 

tracker and see if there is an association between each subject’s ISI and their integration 

window. It also may be possible to ‘train’ a longer integration window if subjects are given 
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biofeedback with respect to their eye position and given an incentive to keep their eyes 

fixed.  

 

Finally, using more complex stimuli would open new avenues of research, and allow us 

to test the current model in higher order cortical areas. In particular, the results from 

experiments on ‘Choice Probabilities’ are extremely relevant to the current line of 

research (Britten et al., 1993, 1996; Shadlen et al., 1996). This field of psychophysics 

concerns itself with stimuli that have intrinsic noise. One  particular test that they do is 

having subjects look at moving dots and determine which direction they are moving in; 

this is complicated by a subset of the dots that are moving in random directions. As stated 

above, it is not clear how such a stimulus would function within the current model. 

However, the more interesting fact is that variability in MT neurons has been shown to 

explain perceptual errors (Britten et al., 1993, 1996; Shadlen et al., 1996). This contradicts 

the current results, albeit in a different perceptual system and brain region than the one 

studied here. While I have proposed a possible reason for this (feedback from higher level 

systems influencing neuronal variability), further experimentation is needed to fully 

explain this contradiction. 
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