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Abstract 
 

COMPUTER-AIDED DETECTION OF PATHOLOGICALLY ENLARGED LYMPH NODES ON 

NON-CONTRAST CT IN CERVICAL CANCER PATIENTS FOR LOW-RESOURCE SETTINGS 

 

 

Brian Mark Anderson, B.S. 

Advisory Professor: Laurence E. Court, Ph.D. 

 

The mortality rate of cervical cancer is approximately 266,000 people each year, and 70% of the 

burden occurs in Low- and Middle- Income Countries (LMICs).  Radiation therapy is the primary 

modality for treatment of locally advanced cervical cancer cases. In the absence of high quality diagnostic 

imaging needed to identify nodal metastasis, many LMIC sites treat standard pelvic fields, failing to 

include node metastasis outside of the field and/or to boost lymph nodes in the abdomen and pelvis. The 

first goal of this project was to create a program which automatically identifies positive cervical cancer 

lymph nodes on non-contrast daily CT images, which are widely available in LMICs(1). 

A region of interest which is likely to contain the nodal volumes relevant for cervical cancer was 

defined on a single patient CT(2). This region was deformed onto new patients using an in-house, 

demons-based deformation software. Edge detection and erosion filtering were used to distinguish 

potential positive nodes from normal structures. Regions on adjacent slices were then connected into a 

potential nodal 3D-structure. To differentiate these 3D structures from normal tissues, eighty-six features 

were generated based on the shape and mean pixel values of the structures, and four classification 

ensemble methods were tested to differentiate the positive nodes from normal tissues. A cohort of fifty-

eight MD Anderson cervical cancer patients with pathologically enlarged lymph nodes were used as a 

training-test set. Similarly, twenty MD Anderson cervical cancer patients were obtained as a validation 

set. They contained 154 and 35 pathologically enlarged lymph nodes, respectively. 
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Model comparison led to the selection of the Adaboost ensemble model, utilizing 17 features. In 

the validation set, 60% of the clinically significant positive cervical cancer nodes were identified along 

with a false/true positive ratio of ~4:1. The entire process takes approximately 10/number-of-cores-

minutes. 

Our findings demonstrated that our computer-aided detection model can assist in the 

identification of metastatic nodal disease where high quality diagnostic imaging is not readily available. 

By identifying these nodes, radiation treatment fields can be modified to include pathologically enlarged 

lymph nodes, which is an essential element to providing potentially curative radiotherapy for cervical 

cancer.   
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1. Chapter 1: Introduction 

1.1. Cervical Cancer around the World 
In 2012 there were approximately 528,000 new cervical cancers cases world-wide (Figure 1), 70% 

(368,000) of which occurred within Low- and Middle-Income Countries (LMICs) (3). The mortality rate 

of cervical cancer is approximately half this number (266,000), with LMICs accounting for 70% of the 

mortality burden.  

 
Figure 1: Incidence and Mortality of Cervical Cancer by geographic location (3). Used with permission 
B. W. Stewart and C. P. Wild, “World cancer report 2014,” World Heal. Organ., pp. 1–2, 2014. 

These LMICs are defined based on the Human Development Index (HDI) which is a composite 

of three basic human metrics: a long and healthy life, education, and standard of living, Figure 2.  
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Figure 2: Low/Medium and High/Very High HDI by geographical location (3) Used with permission 

B. W. Stewart and C. P. Wild, “World cancer report 2014,” World Heal. Organ., pp. 1–2, 2014. 

The incidence of cervical cancer is particularly significant in southern Africa, India, and parts of 

South America, as seen in Figure 3 (4). 
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Figure 3: Incidence of Cervical Cancer by Geographical location (4). Used with permission 

Ferlay, J., H.-R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin. 2010. Estimates of worldwide burden of cancer in 

2008: GLOBOCAN 2008. Int. J. Cancer 127: 2893–2917. 

While cervical cancer is the fourth most common cause of cancer death among women in the world, it 

is the second most common cause in LMICs, second only to breast cancer. This is likely due to several 

factors: the higher prevalence of the Human papillomavirus infection (HPV) in LMICs [3,5], potential 

lack of PET data for identification of disease or access to necessary treatment resources (linear 

accelerators, brachytherapy, etc.) (1), and/or lack of resources to optimize individual radiation treatments 

(6). 

1.2. Anatomical Location of Cervical Cancer 
The nomenclature for the characterization of pelvic lymph nodes in cervical cancer patients are based 

on their location relative to the bifurcation of the aorta and common iliac arteries, and can be broken up 

into 4 general groups: external/internal iliac, common, obturator, and paraaortic. The external and internal 

iliac (EI/II) nodes are named due to their proximity to the external and internal iliac artery, the common 

iliac nodes are any nodes located between the bifurcation of the aorta and the bifurcation of the common 
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iliac arteries, obturator nodes are those surrounding the obturator artery, and the paraaortic are 

characterized by their location superior to the bifurcation of the descending aorta (named right and left 

lateral aortic in Figure 4) (7). 

 
Figure 4: Anatomical Display of Cervical Lymph Nodes (7). Used with permission 

Krahl, V. E. 1960. Anatomy of the human body (Gray’s Anatomy). By Henry Gray. Twenty-seventh edition (American Centennial 

Edition). Edited by Charles Mayo Goss. 1458 pages with 1174 illustrations. Lea &amp; Febiger, 600 Washington Square, 

Philadelphia, Pa., 1959. Anat. Rec. 136: 505–505. 
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1.3. Identification of Disease 
As can be seen in Figure 5, the overall 5-Year survival varies greatly based on the extent of disease. 

Localized disease has the highest chance of survival, while distant metastasis has the lowest (8). 

 
Figure 5: 5-Year Relative Survival by Stage at Diagnosis (8)  

SEER. 2013. Cancer of the Cervix Uteri (Invasive), 

From Figure 5 it is apparent that the identification of positive lymph nodes and other metastatic 

sites is especially important in determining the extent disease(9). The current standard of care for the 

identification of cervical cancer lymph nodes in the US involves the usage of Positron Emission 

Tomography (PET). PET is particularly successful in identifying both local disease and distant metastasis 

which is useful for initial staging and restaging of the patient (10). Unfortunately, some LMICs do not 

have PET to assist in the identification of cervical cancer which has metastasized, Figure 6 (1).  
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Figure 6: PET Data of Africa where available (1)  
“Baseline country survey on medical devices,” World Heal. Organ., 2014 

However, these same countries do often have access to CT scanners (1), providing an opportunity 

to identify disease from the CT rather than the PET scanner, Figure 7. 
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Figure 7: CT Data of Africa where available (1) 

“Baseline country survey on medical devices,” World Heal. Organ., 2014 
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1.4. Staging and Treatment of Cervical Cancer 
The severity of disease associated with cervical cancer depends on several things: extent of local 

disease, extent of spread to lymphatic system, and extent of spread to other organs. The Federation of 

Gynecology and Obstetrics (FIGO) staging of cervical cancer is broken down as seen in Table 1 (11).  

Table 1: FIGO staging and extent of disease (11) 

Stage Extent of Disease 

0 Carcinoma in Situ 

I Limited to Cervix 

Ia1 Microscopic Disease  
Stromal invasion < 3mm, lateral < 7 mm 

Ia2 Microscopic Disease  
Stromal invasion < 3mm & > 5mm, lateral < 7 mm 

Ib1 Macroscopic lesion < 4cm in greatest dimension 

Ib2 Macroscopic lesion > 4cm in greatest dimension 

II Extension to uterus/parametrial/vagina 

IIa1 Involvement of upper two thirds of vagina without 
parametrial invasion, < 4cm 

IIa2 Involvement of upper two thirds of vagina without 
parametrial invasion, > 4cm 

IIb1 Involvement of upper two thirds of vagina with 
parametrial invasion 

III Extension to pelvic side wall and/or lower third of vagina 

IIIa Involvement of lower third of vagina 

IIIb Extension to pelvic side wall and/or hydonephrosis 

IV Extension to adjacent organs or beyond true pelvis 

IVa Extension to adjacent organs e.g. bladder 

IVb Distant metastases 

 

A paper in 2016  offered recommendations for clinicians and policy-makers for treatment of 

cervical cancer in resource limited regions, advocating for the inclusion of EBRT if available for patients 

with IB-IVB cervical cancer (6). EBRT in this case came most often in the form of a four-field box or 

parallel opposed beams as well as boost treatment of any pathologic lymph nodes. 
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The four-field box can be created based on bony landmarks described in Table 2 (12), or from a 

CT based plan. It has been shown that conventional four-field radiotherapy based on bony landmarks does 

not always fully encompass the target volume  and that CT based treatment planning offers significant 

improvements ((13),(14),(15),(16)). 

Table 2: Typical Pelvic Field Borders for Treatment of Carcinoma of the Cervix (12) 

 

 

The four-box field comes in the form of an AP, PA, and two lateral fields (17), as shown in 

Figure 8. The borders, as described in Table 2, can be more easily visualized in a coronal and sagittal 

view, Figure 9 (18). 

 

Field Name Border

AP-PA fields Superior

Inferior

Lateral

Lateral fields Superior

Inferior

Anterior

Posterior

Lower border of the obturator foramen. In the case of vaginal extension, there should be 

a distal margin of 3-4 cm from the most caudal extent of the vaninal involvement

Anterior face (corvex) of the pubic symphasis

Include all the sacral hollow with margin (1-1.5 cm)

Bony Landmarks

Typical Pelvic Field Borders for Treatment of Carcinoma of the Cervix

L4-L5 or L5-S1 inter-vertebral space

Lower border of the obturator foramen. In the case of vaginal extension, there should be 

a distal margin of 3-4 cm from the most caudal extent of the vaninal involvement

2 cm lateral to the pelvic brim to adequately cover the external ilic and obturator nodes

L4-L5 or L5-S1 inter-vertebral space
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Figure 8: Four-box field, AP, PA, and two lateral treatment fields (17). Used with permission.  
Avinash, H. U., T. R. Arul Ponni, M. G. Janaki, A. S. Kirthi Koushik, and S. M. Kumar. 2015. A prospective dosimetric and 

clinical comparison of acute hematological toxicities in three-dimensional conformal radiation therapy and intensity modulated 

radiation therapy with concurrent chemotherapy in carcinoma cervix. J. Cancer Res. Ther. 11: 83–7. 
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Figure 9: (left) Coronal and (right) Sagittal view of bony-anatomy blocks, green and red respectively, in four-field box treatment. 

The multicolored sections are nodes from 50 patients mapped onto a single patient to create an atlas patient mask (18) Used with 

permission  
Fontanilla, H. P., A. H. Klopp, M. E. Lindberg, A. Jhingran, P. Kelly, V. Takiar, R. B. Iyer, C. F. Levenback, Y. Zhang, L. Dong, 

and P. J. Eifel. 2013. Anatomic distribution of [18F] fluorodeoxyglucose-avid lymph nodes in patients with cervical cancer. 

Pract. Radiat. Oncol. 3: 45–53. 

Radiation therapy in patients who have low risk (disease likely involving only microscopic 

regional disease) are usually treated with 45 to 50 Gy, utilizing EBRT to the pelvic lymph nodes. If 

disease involving pathologically enlarged lymph nodes has been identified, they are often given a boost of 

radiation to a total dose of 56-66 Gy for small nodes and 65 Gy or more to ‘bulky nodes’ (19). 

To ensure optimized treatment of cervical cancer disease it is important for any identified 

metastatic disease to the lymph nodes be included and boosted (20). The superior aspect of the four-field 

box, which extends to the L4-L5 or L5-S1 interspace, does not include the para-aortic node anatomy. 

Physicians, through the usage of PET data and previous experience, would determine if the superior 

aspect of the four-field box needs to be raised to include potentially cancerous nodes.  

The incidence of lymphatic involvement in cervical cancer varies based on the FIGO score, with 

stages IB, IIB, and IIIB having approximately a 15, 30, and 50% chance of lymphatic involvement, 

respectively (12). Also patients with stage IIB or IIIB are expected to have para-aortic disease in 20-30% 
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of the cases, although it is rare for para-aortic nodes to occur without other nodal involvement (21). In 

lieu of PET data and previous experience, it was theorized that a Computer-Aided Detection (CAD) 

system could assist the physicians in identifying this disease. 

 

1.5. Computer-Aided Detection/Diagnosis (CAD) Systems 
Since there is currently no CAD program for identifying cervical cancer nodes, particularly with the 

lack of PET data, a literature review of CAD systems in breast cancer and lung cancer was used as a 

potential comparison. 

CAD systems can be broken up based on two general goals: Computer-Aided Detection (CADe) and 

Computer-Aided Diagnosis (CADx). CADe systems are normally created to identify potential disease, 

whether that is based on location or other features. CADx systems are usually created to evaluate 

suspicious structures and assist in differentiating disease; i.e malignant, benign, etc. These systems often 

differentiate between potentially pathologic objects from normal objects based on criteria such as 

intensity, surface features, size, etc. 

The goal of these systems is to help assist physicians identify disease which they might not be able to 

identify on their own. This can improve patient treatments and outcome, although these systems can also 

run the risk of providing incorrect feedback. It is for this reason that the CAD systems must often have 

not only a high sensitivity, or an ability to identify disease, but also have a high specificity, or ability to 

ignore normal structures. 

In the past decade, CAD systems which assist in the detection of lung cancer have an average false to true 

positive rate of approximately 11 to 1, although some are achieving 5 to 1 (22–29). This is better than 

some breast cancer systems which range from a ratio of 35 to 5 false to true positives, respectively (30, 

31). These systems generally have sensitivities of 90% and above. 
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1.6. Hypothesis 

Quantitative image features measured on non-contrast CT images are capable of identifying 75% of 

the pathologically enlarged lymph nodes in cervical cancer patients, with a false/true positive ratio of 5 

to 1. 

1.7. Specific Aims 

The hypothesis will be tested with the following specific aims: 

1) Develop a program capable of identifying potentially pathologically enlarged lymph nodes from 

non-contrast CT images 

2) Create and optimize a machine learning model which differentiates pathologically enlarged lymph 

nodes from normal tissues 

1.8.  Organization of Thesis 

The specific aims are divided into two chapters: Chapter 2: Identification of Potentially 

Pathologically Enlarged Lymph Nodes, which will address Specific Aim 1, and Chapter 3: Identification 

of differentiating features and optimization of model which will address Specific Aim 2. Final discussion 

and conclusions are presented in Chapter 4: Discussion. 
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2. Chapter 2: Identification of Potentially Pathologically Enlarged Lymph 
Nodes 

2.1. Introduction 
Lymph nodes have often been described as spherical or banana shaped in their appearance (32) and 

can appear circular in their axial cross section images. It was theorized the nodes could be identified 

based on their general circular appearance within axial slices and then connected into 3D structures. The 

steps taken for the identification of the positive lymph nodes in this program were first to identify all 2D 

axial slices of the node and then connect them into a 3D structure similar to their true appearance. 

 

2.2. Data Acquisition 
The non-contrast CT scans of fifty-nine patients from 2006-2013 with FDG-avid lymph nodes who 

had pretreatment PET/CT were retrospectively obtained from the electronic medical record. One patient 

was excluded due to presence of rectal contrast which had the potential to cause problems with the 

deformable image registration, leaving fifty-eight patients. These fifty-eight patients contained a total of 

154 pathologically enlarged (> 1cm) lymph nodes of which 4 were located within the inguinal region, 91 

in the External/Internal Iliac (EI/II) region, 25 in the common Iliac region, and 34 in the Para aortic 

region, see Figure 10. These patients were used for the testing and training of the program.  

A validation set of twenty cervical cancer patients with pre-treatment PET/CT from MD Anderson 

were acquired and are described in Chapter 3.7 Validation Set. 
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Figure 10: Distribution of pathologically enlarged lymph nodes in the fifty-eight patient dataset 

The positive lymph nodes of all seventy-eight patients had been previously contoured by 

physicians at MD Anderson cancer center during individual patient treatment. To create these contours, 

physicians relied on previous expertise in identification of nodal disease in the CT scans and PET data to 

identify tissues which are likely cancerous Figure 11.  

 
Figure 11: (left) Contours from physicians of two external iliac nodes, shown in red. (right) The associated PET data of these 

nodes. Note that the bright spots show a marked increase in FDG, assisting the physician to determine if they are disease 

 

2.3. Deformation of Region of Interest (ROI) to Patient 
Reducing the search space for the program will have the benefit of decreased computational time. 

Smaller search space means less area to look through, which will reduce the number of normal tissues 

identified. To reduce the search space on each patient, a region of interest was determined where 

pathologic nodes would likely occur, and this search space was deformed onto each new patient. This 
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region of interest was created in a previous work from 50 women who had lymph-node metastases (18). 

These metastases were all mapped onto an individual patient, Figure 12.  

 

 
Figure 12: The multicolored sections are nodes from 50 patients mapped onto a single patient. These nodes were used to create 

an atlas patient mask. Used with permission (18) 

Fontanilla, H. P., A. H. Klopp, M. E. Lindberg, A. Jhingran, P. Kelly, V. Takiar, R. B. Iyer, C. F. Levenback, Y. Zhang, L. Dong, 

and P. J. Eifel. 2013. Anatomic distribution of [18F] fluorodeoxyglucose-avid lymph nodes in patients with cervical cancer. 

Pract. Radiat. Oncol. 3: 45–53. 

From these known nodes, a region of interest was generated, shown on the left in red in Figure 13 

(18). This region of interest was then deformed onto each new patient using an in-house Demons based 

software (33),(34) as illustrated in Figure 13.  

The ‘demons’ algorithm was implemented as a fully automatic grayscale-based deformable image 

registration algorithm. Demon’s algorithms can be broadly categorized into two groups: feature-based and 

grayscale image-based. Feature-based algorithms attempt to minimize the difference between two images 

based on features, such as land mark points or reference fiducials. Grayscale image-based algorithms, like 

that used in this project, use voxel data directly to minimize the differences in intensity between the 

images. In order to make this algorithm as reproducible and robust as possible, a bone window (1050) and 

level (225) were implemented for all patients during deformation. To assist in the deformation of the 

contour to the new patient, the deformable region was defined to extend just superiorly to the mask and 
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inferior to the femoral heads. This is done manually on each patient; the automation of this step is 

currently under production. 

                                     

 
Figure 13: (left) Deformation of contour from atlas patient onto (right) new patient 

The mask which was provided from this work often stops inferior to the common and paraaortic 

region. For this reason expansions are required to ensure all possible disease can be identified. 

 

2.4. Expansion of Mask 
We found that this mask, directly transferred to the new patients, did not fully encompass the 

potential location of the lymph nodes described in the training dataset, Figure 10. To ensure the inguinal, 

iliac, sacral, and para-aortic nodes were included within the region of interest, expansions of the masked 

region in all directions were necessary, as described below. 
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2.4.1. SI Expansion 
To ensure the inclusion of potential para-aortic and common lymph nodes, the mask was 

expanded in the superior direction. These nodes are likely to be excluded from the basic four-field box 

plan and are thus their identification is very important for treatment modification purposes. 

The mask was extended superiorly until every axial slice of each node on all patients was contained 

inferior to the most superior slice. Based on the locations of the nodes with respect to the deformed mask, 

as shown in Figure 14, a superior expansion of 75 mm ensured any possible metastatic nodes would be 

identified inferior to the most superior slice across the fifty-eight patient cohort. This large superior 

expansion was necessary due to the lack of a paraaortic mask. The mask used therefore had to be 

projected superiorly to compensate. 

 
Figure 14: Percentage of lymph nodes inferior to the most superior slice of the masked region vs superior extension. An 

extension of 75 mm was selected in the final model. 

Similarly, in the inferior direction, the mask was extended until every axial slice of all 

pathologically enlarged nodes were included superior to the most inferior slice. The data shown in Figure 

15 shows that an inferior extension of 25 mm ensures all nodes from the fifty-eight patients were located 

superior to the most inferior slice. 
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Figure 15: Percentage lymph nodes superior to the most inferior aspect of the mask vs inferior extension. An extension of 25 mm 

was selected in the final model. 

 

2.4.2. Axial Expansion 
Despite being located within the SI range of the mask, some nodes were still not contained 

completely within the masked region of interest. To correct for this, a radial expansion was evaluated to 

ensure proper inclusion of the lymph nodes. The results shown in Figure 16 indicated that a radial 

expansion of 13 mm covered 99% of all possible positive cervical cancer lymph nodes within the fifty-

eight patient cohort. 
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Figure 16: Percentage of nodes included within masked region vs radial axial expansion 

The final results of all the expansion, SI and Axial, are summarized in Table 3. 

 
Table 3: Amount of expansion by direction expanded of mask to include 99% of the pathologically enlarged lymph nodes 

Direction of Expansion Amount of Expansions Required 

Superior 75 mm projection superiorly of mask 

Inferior 25 mm projection inferiorly of mask 

Axial 13 mm radial expansion of mask 

 

2.5. Identification of Potential Nodes 

2.5.1. Introduction 
As stated previously, Matlab contains a function known as regionprops, which is useful in the 

identification of nodal surfaces based on the 2D images. Regionprops does this by taking a binary image 

and exporting out a number of requested features. The outputs requested were the Centroid and the Area 

for each non-connected structure. These two values can be used to characterize any surface within the 

image, with the Centroid pointing to the row and column of its center, and a radius for the circle of 

equivalent area from the Area.  

Consider a circle with radius 10, placed at the center of a 100x100 square, this can be thought of as an 

axial cross section of a spherical lymph node (Figure 17,left). Regionprops will generate Centroid values 
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of 50,50 and an area of 100π (Figure 17, right). The area can be converted to a radius for a circle of equal 

area as radius=sqrt(Area/pi).  

 

 
Figure 17: Identification of a single binary circle with regionprops 

Note, however, if there are two circles which are touching, the function still only generates a 

single centroid and area, as seen in Figure 18. 

 

 
Figure 18: Identification of connected binary circles, as a single object with regionprops 

The goal then was to transform the raw CT data image into a binary image, which regionprops 

can then be used to identify potential positive nodal surfaces. 
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2.5.2. Binary Thresholding 
Attempting to threshold raw CT data based on HUs alone can have poor results, as shown in 

Figure 19, where bone thresholding shows dark regions placed throughout the normal tissue. Because of 

this, Gaussian smoothing was considered. Without smoothing the thresholding can appear grainy (see 

Figure 19, left) and the ability for the Laplacian of the Guassian (LoG) edge detection (explained in the 

following sections) which was needed to separate structures becomes more difficult due to heterogeneity 

of the HUs within the tissues, which results in erroneous edges. A large sigma value for the Guassian 

smoothing will result in a better homogeneity within the node, but runs the risk of removing the edges 

between a node and normal tissue, making it more difficult to identify both of these independent 

structures. The sigma value for the Gaussian smoothing was set at 1mm, based on the evaluation of 

patients with nodes in close proximity to normal structures, example Figure 19. 

After smoothing, Hounsfield Unit thresholding was used to mask out the bone (HU values greater 

than 125) in the image. Values which are associated with bone are instead converted to -50, Figure 19, 

since -50 HU is lower than the binary thresholding cutoff, which will be explained shortly. This was done 

because, particularly in the para-aortic region, nodes are often proximal to bony structures, and in a binary 

image it was desired for the two to be separated. A more thorough explanation for this is explained in the 

remaining chapter.  

 

 
Figure 19: Note the difference in appearance after HU thresholding of the non-filtered image (left) vs the filtered image (right), 

in particular if the bone thresholding was done on the non-smoothed image vs smoothed image. 

If the node was not abutting any other structures it can easily be identified on the binary map and 

imposed back onto the original image with regionprops, Figure 20. The image was turned into a binary 
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with the threshold value set as -20 HU, a comparison of different HU values is shown later in Figure 25.

 
Figure 20: Internal iliac node (left), not being attached to anything else on the binary image (center), is identified using region 

props as a unique surface (right). 

When the binary image of a node was not abutting against other normal tissue structures, 

regionprops identified a potential nodal surface correctly. However, in situations where the node was 

connected to another structure within the binary map, it was unable to separately identity the potential 

node, and would instead identify both as a single object, see Figure 18. Therefore, a method of separating 

the node from normal structures in the binary map needed to be created. 

We developed two approaches to separate a node and normal tissue which are connected within 

the binary image. In the first case, the node and normal tissue were pressed into each other, but are 

separable enough that simple erosion methods can separate them (Figure 21, a). In the second case, where 

the node and tissue were overlapping, edge-detection techniques from the Gaussian smoothed image was 

used to separate them (Figure 21, b).  

These two scenarios can be seen in Figure 21, where the node on the left (a) is pressing into the 

iliac artery, and the node on the right (b) is nearly indistinguishable on the binary image from the iliac 

artery. These nodes are the same nodes shown in Figure 11. 

 

 
Figure 21: Axial slice of two II nodes, a) connects to artery anteriorly on the binary image and b) is nearly indistinguishable 

from the normal tissue on the binary image 

a b a b 
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Our solution to these two situations are explained below, where the node (a) can be identified 

with erosion and dilation correction, while (b) required edge detection along with erosion and dilation 

correction. 

 

2.5.3. Erosion and Dilation 
The largest challenge with identifying pathologic nodal tissues was separating them from 

surrounding normal tissues into which they often press against or collapse, especially nearby arterial 

structures. Particularly in the common and paraaortic region, there appeared to be a tendency for lymph 

nodes to be present directly against normal structures, such as the descending aorta or the left or right 

common iliac arteries. In the EI/II region, the nodes tend to collapse into the bladder or the arterial 

structures, Figure 22. 

 

 
Figure 22: (left) Axial image converted into (right) binary image to show connection of lymph node with normal tissue 

If the binary image in Figure 22 is eroded to the point that the node and artery are no longer 

touching, the node can be identified as a single surface. 

Theory: 

Erosion was performed through the usage of circular image filters of increasing radii on the 

binary image. After erosion by a matrix circle with radius, RErosion, the new area will be measured as 

𝐴0 = (√𝐴1 − 𝑅𝐸𝑟𝑜𝑠𝑖𝑜𝑛√𝜋)
2
 

Where A1 is the true area of the object without dilation, and A0 is the newly measured area. From 

this point a centroid and area are calculated for each unconnected binary surface. While the centroid could 

be of the correct spot of the no longer connected surfaces, the measured area will be less than it was 

originally, (Figure 23, center).  
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The area can be corrected, however, through the usage of the following equation, where RErosion is the 

radius of the matrix circle:  

 𝐴1 = (√𝐴0 + 𝑅𝐸𝑟𝑜𝑠𝑖𝑜𝑛√𝜋)
2
 

The centroid value can thus be maintained, while the area corrected for the amount of erosion, 

(Figure 23, right). 

An example of this can be seen in Figure 23, where 13 overlapping circles are eroded and area 

corrected to identify the 13 independent circles. 

 

  
Figure 23: (left) Image of circle before erosion filtering, each with an area of 375π. (center) After erosion filtering of a circular 

matrix with radius 11 pixels, each spot has area 70π. (right) Maintaining the centroid values found from the center image and 

correcting back for the amount of erosion, each circle correctly identified with area around 375π 

Practice: 

As long as the node and normal structure are not largely overlapping, they can be eroded down 

into independent surfaces, Figure 24 blue square. 

 
Figure 24: (left) Binary where lymph node and artery are connected (center) Image after erosion to the point which structures 

are separated (blue) and where erosion was unable to separate (red) (right) Corrected area for erosion, final identification. Note 

that the node within the blue box has been identified, but the one in the red box has not been. 

One of the issues encountered with this was that after the circle had been eroded enough to 

identify the node, every erosion after that will result in the same circle being placed over it. To remove 
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these overlaps, a function was created which removed repeated centroid (+/- 1mm) and radius values (+/- 

1mm). 

Simple erosion filtering will not be enough to identify the node located within the red box in Figure 24. To 

identify this, edge detection with information from the Gaussian smoothed image was taken, as explained 

below in 2.5.5 Edge Detection. 

2.5.4. Identification of ideal thresholding 
Much of the program’s ability to identify nodes resides on the value set to threshold the binary 

image. In the extreme, if the thresholding value is set to -1000, everything will appear as a ‘1’ and nothing 

will be identified. Similarly, if the value is set to 1000, everything will appear as a ‘0’.  

Values of binary cutoff between -70 to 20 HU were considered. These values were selected to 

cover a relatively wide range, since the values of tissue should be above 0 HU and lymph nodes are close 

to 10-20 HUs. The results of this in Figure 25 indicate that a maximum of nodes are found with a 

thresholding value of -20. A node was determined to have been detected if 75% of its axial slices or more 

are located within the radii of the surface. A false surface is any surface identified which does not occur 

on an axial node slice with the correct centroid (+/- 2mm) and correct radii (+/- 2mm). 



27 

 

 

 
Figure 25: (top) % of true positives and (bottom) ratio of false/true positives vs HU Cutoff 

Note that all nodes were not identified, as a single node could go from being an independent 

structure to pressing against normal tissue, resulting in part, but not all, of the required 75% of it being 

identified. This is caused by an inability for the erosion filtering to identify a node if there is not an edge 

around it (Figure 24, red box).  

 

2.5.5. Edge Detection 
In order to help separate tissues which have different HUs, but are still overlapping in the binary 

image, information from the Guassian filtered image is employed with a LoG edge detection algorithm. 

0

5

10

15

20

25

30

35

40

-50 -40 -30 -20 -10 0 10 20

%
 T

ru
e 

p
o

si
ti

ve
s 

fo
u

n
d

Binary Thresholding HU Cutoff

% True Positives found vs Binary Cutoff

True Nodes

430

450

470

490

510

530

550

570

-50 -40 -30 -20 -10 0 10 20

R
at

io
 F

al
se

/T
ru

e 
P

o
st

iv
e

Binary Thresholding HU Cutoff

False/True Ratio vs Binary Cutoff

Ratio FP/TP



28 

 

With this algorithm, the value of sigma can be selected by the user. The edges which are detected on the 

filtered image are then superimposed onto the binary image. Sigma values from 1.00 to 7.75 in 0.25 

increments were considered for usage. The smaller values of sigma will help create edges between 

structures when their values are already very close, but can result in extraneous edges, and the larger 

sigma values will help separate the tissues which have relatively larger differences in their HUs, Figure 

26. 

 

 
Figure 26: (left) Image with edges imposed from sigma = 3, (right) Image with edges imposed from sigma = 1 

With the proper sigma, it is possible to identify the top of the node located within the red box in 

Figure 27, which will allow erosion filtering to later identify as an independent surface. 
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Figure 27: (top left) Original, filtered image, (top right) Image of node collapsed into artery and near-by normal tissues on 

binary image and (bottom) Image of node with edge from LoG edge detection imposed, sigma = 3 mm 

Lower sigma values consistently generated larger numbers of false surfaces, Figure 28. 

Therefore, there was an incentive to find the combination of the largest sigma values which identify the 

most pathologic nodes. With 25 total possibilities, 24 from sigma 2.00 to 7.75 in 0.25 increments, and 1 

for the binary image with no edge detection, there are a total of 2^25 possible combinations of sigma. 
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Figure 28: Number of false surfaces generated vs sigma 

In order to avoid testing all possible combinations, forward selection (35) was employed to 

determine the optimal combination of sigma values. This means that the largest sigma was first selected 

(the binary, as it is essentially a sigma of infinity) and then the next largest sigma was employed and the 

number of nodes detected was recorded. After which, the second value was removed and instead the 3rd 

was placed in and repeated. Whatever combination resulted in the largest increase in nodes detected was 

carried onto the next step, and so on until at least 90% of the nodes had been identified. A hypothetical 

example of this is shown in Figure 29. 

 

 
Figure 29: Example of forward selection for sigma 
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The results of which were that the binary and sigma values of 5 mm and 3.5 mm were selected based 

on their ability to identify 90 percent of the true positive nodes. 

2.6. Correction for non-circular geometry and poor identification 
The erosion and edge detection methods thus far shown identified most of the positive pathologic 

nodes, with the caveat of also identifying a large number of surfaces which are not nodes, “false 

surfaces”. Recall that a false surface is any surface identified which does not occur on an axial node slice 

with the correct centroid (+/- 2mm) and correct radii (+/- 2mm). In order to remove some of these 

erroneous surfaces, criteria were employed based on information from the binary images and the 

Gaussian smoothed images. 

 

2.6.1. Binary Image Factors 
Within the binary images, four metrics were considered to differentiate the false surfaces from 

true surfaces: solidity, difference in radii, difference in radii*baseradii, and max radii. 

 

2.6.1.1. Binary Image Factors: Solidity 
Solidity is an output created by regionprops which gives the proportion of area contained within 

the convex surface, divided by the total area. A circle and rectangle would have a solidity equal to ~1, 

while a crescent moon would have a solidity less than 1, Figure 30. An equivalent example is placing a 

rubber-band around the object and identifying how much is binary ‘1’ within the area of the rubber band. 

 

 
Figure 30: (left) Solidity of connecting circles is .7, (center) solidity of single circle is ~1 and (right) solidity of a rectangle is 1 

Based on the results, a minimum solidity of 0.85 was selected as a cutoff as it maintained a large 

percentage of the true positives while allowing a reduction in the ratio of false to true positives, Figure 31. 
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Figure 31: (top) % of true positives found vs solidity and (bottom) ratio of false positives to true positives vs solidity. Cutoff of 

0.85 was selected 

2.6.1.2. Binary Image Factors: Radius Difference 
In order to further reduce the number of potential false surfaces, a criterium was created based on 

how circular was the identified surface. A circle of equal area (red) was masked onto the binary image for 

each surface identified, where a circle of equal area was then again measured, Figure 32. A difference in 

the radii between the two was found; if the surface identified is a circle, the difference will be 0. 
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Figure 32: (left) Identification of potential surface and (right) mask of surface 

The results, as shown in Figure 33, led to the selection that any surface with a radii difference 

greater than 3.5 mm was removed, as it maintained most of the true positives while removing some false 

surfaces. 

 

 
Figure 33: (top) Percent of True positives found vs radii difference Ratio of false/true positives vs difference in radii from 

projection and (bottom). Cutoff criteria of 3.5mm was selected. 
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2.6.1.3. Binary Image Factors: Difference in radii*Base radii 
This criteria was created as a difference in radii, as explained previously, multiplied by the initial 

radius. With this, a large surface which is not circular will have a significantly larger value than a smaller 

structure with the same difference in radii. The results of this can be seen in Figure 34, where a cutoff of 

50 was selected as it maintained most of the true positives, while allowing a reduction in false/true 

positives. 

 

 

 
Figure 34: (top) Percent of true positives found vs difference in radii*radii. (bottom) Ratio of false to true positives vs difference 

in radii * radii Cutoff of anything greater than 50 was selected 
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2.6.1.4. Binary Image Factors: Max Radii 
Certain structures can immediately be removed based solely on their size. A surface identified 

over the bladder will have a significantly larger radii measured than that of a potential node, and can thus 

be removed. Based on the data shown in Figure 35, anything with a radius larger than 14 mm can be 

removed while not removing any potential true positives. 

 

 

 
Figure 35: (top) Percentage of true positives (TP) with radii less than cutoff. Radii greater than 14 mm were removed and 

(bottom) Ratio of false to true positives vs max radii cutoff. A cutoff of 14 mm was selected 
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2.6.2. Gaussian Smoothed Image Factors 
As shown in the previous figures, it is possible for connected binary surfaces to be identified as a 

single potential node. For each surface the mean pixel values of a circle of equivalent area within it are 

measured, as well as the mean pixels of a ring placed around the outside, Figure 36. In order to remove 

surfaces which might have been poorly placed, a base and base-ring criteria were created: (1) that the 

mean HUs of the base circle should be above a certain threshold and (2) that the difference between the 

base minus a ring around the base should be above a certain threshold. 

  
Figure 36: (left) Node was identified from binary image, (center) the mean of the area on the original image, ‘base’, and (right) 

the mean of the area on the outside of the circle, ‘ring’ 

Determination of the base and ring area was achieved by filtering a normalized circular matrix 

with radius equal to that identified from the regionprops function across the image.  

2.6.2.1. ‘Base’ Minimum mean HU 
Data from the surfaces, Figure 37, showed that a minimum mean HU base of 10 allowed for a 

reduction in the ratio of false/true positives while maintaining most of the true positives. 
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Figure 37: (top) Percentage of true positives found with min mean base cutoff and (bottom) Ratio of false/true positive with mean 

base cutoff. A minimum value of 10 was selected. 

 

2.6.2.2. ‘Base’ minus ‘Ring’ Minimum mean HU 
Visual inspection of cervical cancer nodes often demonstrates them to have a region immediately 

around them which has HUs less than that of normal tissue, Figure 36. In order to remove other potential 

false surfaces which occur within homogenous tissues, a ring around the outside of the node was imposed 

and then subtracted from the base. If the surface identified was similar to that shown in Figure 36, the 

base – ring value will be greater than 0. This ring area was determined as the minimum of a ring, which 
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was: the radius of the circle, the radius + 1 mm, and the radius + 2 mm. These additions were added to 

compensate for oblique nodes, which are not perfectly encapsulated by a circular ring, Figure 38. 

 

 
Figure 38: Ring mean value was taken as the minimum of the red, blue, and green ring values. 

Since the nodes ought to have values around them which are lower than the base, a comparison of 

the base mean minus the ring mean was plotted, Figure 39, and a cutoff value 15 of was selected, as it 

allowed for the detection of most of the true positive surfaces, while reducing the ratio of false to true 

positives. 
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Figure 39: (top) Percentage of true positive found with minimum requirement of Base-Ring (bottom) Ratio of false/true positives 

vs Base-Ring minimum HU. A minimum requirement of 15 was selected. 

 

2.6.3. Reshaping of Mask 
There appeared to be a large number of false surfaces identified in the anatomy inferior to the 

femoral heads. Observations of positive lymph nodes showed that superior projection of each slice would 

not directly overlap with bony anatomy. This observation was put to use to remove some of these false 

surfaces. Projection of each surface, much in the same way that mean values were calculated in 2.6.2 

Gaussian Smoothed Image Factors, onto superior slices was performed. If the mean of the projection was 

greater than 125, it was deemed to have coalesced with bone, and was therefore removed. A graph of the 
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results in Figure 40 led to the selection of a projection of 100 mm, as it maintained most of the true 

positives while reducing the false/true positive ratio drastically. 

 

 
Figure 40: (top) Percentage of true positives found vs superior projection and (bottom) False to true positive ratio vs superior 

projection. A projection of 100 mm was selected. 

The variable of increasing the projected radius by a fixed amount was investigated and the results 

are shown in Figure 41. An increase in projected area by 1 mm was ultimately selected as it included all 

the true positives and reduced the ratio of false to true positives. 
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Figure 41: (top) Percentage of true positives found vs axial expansion during superior projection (bottom) Ratio of false/true 

positives vs axial expansion during superior projection. Axial expansion of 1 mm was selected. 

 

2.6.4. Removal of Overlapping Structures 
Even with these criteria, the model often created surfaces which overlapped one another, Figure 

42. In order to remove unnecessary surfaces, a criteria was established such that if two surfaces met the 

following requirements the larger of the two was maintained while the smaller was removed 

 

√(𝑐𝑜𝑙𝑖 − 𝑐𝑜𝑙𝑗)
2

+ (𝑟𝑜𝑤𝑖 − 𝑟𝑜𝑤𝑗)
2

≤ ma x( 𝑟𝑎𝑑𝑖𝑢𝑠𝑖,𝑗) − min (𝑟𝑎𝑑𝑖𝑖𝑖,𝑗) + 𝐶0 
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Figure 42: Example of overlapping surfaces 
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The results of equation 1 are shown in Figure 43, where C0 was varied from -5 mm to +5 mm. 

 

 

 
Figure 43: (top) True positive found vs constant for overlap and (bottom) Ratio of false/true positives vs constant for overlap. C0 

of 0 was ultimately selected. 

 

2.7. Identification of start points to build 3D structures 
Now that 2D surfaces have been identified on the axial slices, the first step in creating a 3D structure 

is determining where to start the building process.  

Lymph nodes within the cervical region are often characterized by their sudden appearance and 

disappearance within axial slices (Figure 44).  
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Figure 44: (left) Image of two EI/II cervical cancer nodes and (right) 7 mm inferior, both completely gone 

In order to identify regions which signal the beginning of pathologic lymph nodes, each 

previously identified surface is superimposed onto the slices directly inferior to it, Figure 45. 

 

 
Figure 45: (left and center) Projection of surface onto inferior slice, finding no surfaces. (right) Consideration of surface as a 

starting point (blue circle). 

The criteria for determining if there is another surface located inferiorly is represented by the 

following equation: 

√(𝑐𝑜𝑙𝑖 − 𝑐𝑜𝑙𝑗)
2

+ (𝑟𝑜𝑤𝑖 − 𝑟𝑜𝑤𝑗)
2

≤ max(𝑟𝑎𝑑𝑖𝑢𝑠𝑖, 𝑟𝑎𝑑𝑖𝑢𝑠𝑗) ∗ 𝐶1 + 𝐶2 

Where i is the immediate surface, j is all possible surfaces on the inferior slice, and C1 and C2 are 

constants. If there are no surfaces which fall within this projection, the surface was considered to be a 

start point, Figure 45, right. Constants C1 and C2 are varied from 0 to 2.1 by .15 increments and -3mm to 

+3mm by 1mm increments. These values were selected anecdotally as covering a relatively large range 

based on the results, Figure 46. The results of this identified C1 equal to .6 and C2 equal to -2 mm to be 

useful in maintaining most of the true positives and reducing the false positives, Figure 46. 
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% True Positives Identified 

 C2 

  -3 -2 -1 0 1 2 3 

C1 

0 73.4 73.4 73.4 73.4 73.4 73.4 73.4 

0.15 73.4 73.4 73.4 73.4 73.4 72.7 70.1 

0.3 73.4 73.4 73.4 73.4 71.4 70.1 68.2 

0.45 73.4 73.4 72.7 70.8 70.1 67.5 61.0 

0.6 72.7 72.1 70.1 70.1 67.5 59.1 55.8 

0.75 71.4 70.1 69.5 64.9 59.1 54.5 53.9 

0.9 70.1 68.2 66.2 58.4 55.2 52.6 48.7 

1.05 67.5 66.2 57.1 55.2 51.3 48.1 44.8 

1.2 65.6 61.0 55.2 50.0 46.8 43.5 39.0 

1.35 61.0 53.9 50.0 46.1 43.5 37.7 35.1 

1.5 53.2 49.4 45.5 41.6 35.7 33.8 29.2 

1.65 48.7 42.9 39.6 34.4 33.1 27.9 26.0 

1.8 42.9 37.0 33.8 31.8 27.3 26.0 22.1 

1.95 36.4 32.5 30.5 27.3 25.3 20.8 19.5 

2.1 31.2 29.2 27.9 24.7 22.1 18.2 18.2 

Ratio of False Positives to True Positives 

 C2 

  -3 -2 -1 0 1 2 3 

C1 

0 370 370 370 356 313 259 202 

0.15 370 370 358 311 242 189 157 

0.3 364 340 292 226 181 149 126 

0.45 322 269 218 177 141 120 112 

0.6 258 212 171 135 115 111 101 

0.75 209 165 134 115 107 100 89 

0.9 165 131 109 105 96 87 83 

1.05 131 109 104 92 86 81 76 

1.2 109 96 91 87 81 75 73 

1.35 96 90 84 79 73 73 69 

1.5 90 82 77 74 74 69 69 

1.65 81 79 75 74 67 70 65 

1.8 78 78 73 67 69 63 63 

1.95 76 73 68 66 62 65 61 

2.1 73 68 62 61 59 63 55 
Figure 46:(top) Percentage of true positives found as a function of C1 and C2. (bottom) Ratio of false/true positives as a function 

of C1 and C2. 

2.7.1. Removal of extraneous start points 
There continued to be an issue that some ‘start points’ were being identified over tissue 

equivalent sections, and thus were not good ‘start points’ for the identification of possible pathologic 
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lymph nodes. Just because one surface was not identified inferiorly to another surface did not mean that it 

was a proper start point; it could simply be that the surface which was previously inferior had been 

removed in the previous iterations.  

In order to ensure that each start point was a true potential start point, a requirement based on the 

change in HU units was implemented. The metric created was the difference in respective HUs multiplied 

by the current surface radius. An example of this is shown in Figure 47 where the mean HU of the 

superior image is 15 with a radius of 5 mm, the mean HU of the inferior image is 0, and so the metric 

value will be 75 mm*HU. The metric value mm*HU has no intrinsic meaning. 

 
Figure 47: For the above images, the metric value would be equal to (15-0)*5mm, or 75 mm*HU. 

The results of this can be seen in Figure 48, where a cutoff of 45 mm*HU was selected based on 

the observation of number of true positives found and reduction in the ratio of false to true positives. 

Mean HU: 15 

Radius 5 mmm 

Mean HU: 0 
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Figure 48: (top) Percentage of true positives found vs difference in HU * Radius (bottom) Ratio of false to true positives vs 

difference in HU * Radius. A cutoff of 45 mm*HU was selected 

2.8. Generation of 3D Structure 
After identification of starting surfaces, the remaining axial surfaces are connected to one another to 

create 3D structures of potential nodes. As in the previous section, these structures are created if the 

centers of both circles occur within the maximum of their two radii, Figure 49. A surface was considered 

to continue inferiorly or superiorly if the centers of both circles occur within the maximum of their two 

radii, represented by the following equation: 
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√(𝑐𝑜𝑙𝑖 − 𝑐𝑜𝑙𝑗)
2

+ (𝑟𝑜𝑤𝑖 − 𝑟𝑜𝑤𝑗)
2

≤ max(𝑟𝑎𝑑𝑖𝑢𝑠𝑖, 𝑟𝑎𝑑𝑖𝑢𝑠𝑗) ∗ 𝐶3 + 𝐶4 

where i is the immediate surface, j is all possible surfaces on the superior slice, and C3 and C4 are 

constants. If there are surfaces which fall within this criteria they are added onto the candidate node.  

 
Figure 49: (left-center) Surface in red has been identified as a potential starting point (center-right) this surface is projected onto 

the superior slice, where another surface is identified, the two are connected. 

Based on the data shown in Figure 50, C3 and C4 were selected to be .65 and 0 mm, respectively, 

due to the observation of true positives found and reduction of the ratio of false to true positives. 

Slice 10 Slice 9 Slice 8 
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% True Positives Identified 

 C4 

C3 

0 -3 -2 -1 0 1 2 3 

0 0 0 0 1 12 31 53 

0.1 0 0 0 1 25 48 60 

0.2 0 0 2 14 43 57 64 

0.3 0 1 11 39 55 64 67 

0.4 1 8 24 53 62 65 69 

0.5 8 19 47 58 66 67 69 

0.55 16 44 56 64 66 70 77 

0.6 38 54 64 66 71 77 78 

0.65 10 27 58 69 70 70 71 

0.7 22 50 60 71 69 71 79 

0.8 53 60 66 69 75   
0.9 57 65 72 69 79   

Ratio of False Positives to True Positives 

 C4 

C3 

0 -3 -2 -1 0 1 2 3 

0    20 11 14 17 

0.1    11 11 16 22 

0.2   3 6 13 20 37 

0.3  3 5 10 18 34 79 

0.4 4 4 7 15 31 79 171 

0.5 2 7 13 32 71 192 558 

0.55 7 11 31 73 214 580 1500 

0.6 2 7 22 62 160 422 1184 

0.65 6 10 18 30 120 342 961 

0.7 10 18 52 119 358 1030 2400 

0.8 35 78 262 701 1831   

0.9 99 298 780 1995 4884   
Figure 50: (top) Percentage of true positives found as a function of C3 and C4 (bottom) Ratio of false to true positives as a 

function of C3 and C4. C3 was selected to .65 and C4 0 mm.  

This iteration was continued onwards until there were no additional surfaces superior with which 

to connect, at which point the surfaces grouped together can considered as an individual pathologic node 

candidate. An example of a candidate node is shown in Figure 51. 
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Figure 51: Connection of surfaces from a single lymph node candidate 

This methodology creates structures analogous to tree branches: if there are multiple surfaces 

located directly inferiorly or superiorly to a particularly large surface, each would generate a unique 

potential node, even if they overlap at the beginning, as shown in Figure 52. 

 
Figure 52: Two node candidates which share the same initializing point 

2.9.  Additional Extension 
The first iteration of this work led to the addition of another segment in the generation of the 3D 

structure. The ends, or most superior and most inferior surface on the connected candidate node, are 

projected superiorly and inferiorly by one more slice, respectively. The projection image was transformed 

into a binary image with a threshold of -20 HU, much like that described in section 2.5- Identification of 
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Potential Nodes. If the area contained within the binary image was less than that of the original surface 

area, a new surface was appended onto the end of the structure. 

2.10. Results 
The results of all the selection criteria for creation of the 3D nodes and removal of extraneous 

surfaces can be seen in Table 4. 

 

Table 4: All criteria used for the creation of the 3D nodes, as well as criteria for removal of extraneous surfaces. X is the 

measured variable, removed if equation is satisfied. Example Solidity: remove if x is less than 0.85. 

Factor Name Cutoff Criteria 

Binary Image Factors   

  Solidity x < 0.85 

  Radius Difference x < 3.5 mm 

  Radius Difference*Radius x < 50 mm^2 

  Max Radii x > 14 mm 

Image Factors   

  Minimum 'Base' x < 10 HU 

  Minimum 'Base'-'Ring' x < 15 HU 

Reshaping of Mask   

  Superior Projection Distance 100 mm 

  Axial Expansion 1 mm 

Removal of Overlap   

  C0 0 mm 

Identification of Start Points   

  C1 0.6 

  C2 -2 mm 

  HU Difference x < 45 HU*mm 

Generation of 3D Structure   

  C3 0.65 

  C4 0 mm 

 

With the completion of section 2.8- Generation of 3D Structure, the program identified ~69% 

(109/154) of the pathologically enlarged lymph nodes on the fifty-eight patients. This resulted in a ratio of 

false to true positives of 30 to 1.  
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2.11. Discussion 
While the ability to identify 69% of the pathologic nodal tissue was less than the hypothesized 75%, it 

was determined to be a reasonably acceptable value for identification. The most significant issue was the 

large number of false to true positives, which was substantially higher than desired. Likely this was 

caused by the fact that previous attempts to reduce the number of false-positives had been performed with 

respect to the 2D slices, and not utilizing the candidate node as a 3D structure. A cross-section as might 

be seen on an axial slice of a candidate node can be very similar in appearance to that of the cross-section 

of an artery, and thus exacerbates the difficulty of differentiating the two when using a 2D basis alone. 

The reshaping of the mask (Section 2.6.3- Reshaping of Mask) assumes that the patient is imaged with 0 

degrees of angle, and this may cause an issue if large scan angles are used, although this has not been 

tested. 

2.12. Conclusion 
In summary, it is possible to identify 69% of the potentially pathologically enlarged lymph nodes 

based on 2D axial slices in a non-contrast CT. However, the surface differences occurring between 

normal tissues and pathologically enlarged nodal tissues on individual axial slices are at times not great 

enough to differentiate the two without a large number of false positives to true positives (30:1). Further 

efforts to reduce the false positive/true positive ratio are described in Chapter 3: Identification of 

differentiating features and optimization of model. This effort is based on 3D rather than 2D identification 

of pathologically enlarged nodal structures, to reduce the false-to-true positive ratio. 
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3. Chapter 3: Identification of differentiating features and optimization 
of model 

3.1. Introduction 
It was theorized that the ratio of pathologically enlarged candidate nodes to normal tissues, as 

presented in Chapter 2: Identification of Potentially Pathologically Enlarged Lymph Nodes, could be 

improved with a machine learning model and the introduction of features regarding the 3D candidate 

nodes. While 2D requirements had been previously created to remove unwanted surfaces, this chapter will 

focus solely on the 3D structures and creating a model which utilizes features associated with the 3D 

structures to differentiate pathologically enlarged lymph nodes from normal tissues. For each potential 

node entered into the trained model, a ‘score’ is created for the likelihood that a potential node is in fact a 

pathologically enlarged lymph node. The lower the score, the more confident the model is that the 

potential node is a pathologically enlarged lymph node. 

3.2. Training and Test Generation 
Random removal of ten patients from the original fifty-eight was used to generate thirty groups of 

forty-eight training patients and ten test patients, to provide data for model analysis, as shown in Figure 

53. 
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Figure 53: Random selection without replacement of 48 patients for training and 10 patients for test.  Repeat random selection to 

make 30 unique groups 

 

 

 

58 Patients 

48 Training 10 Test 
Group 1 

48 Training 10 Test 
Group 2 

48 Training 10 Test Group 3 

Group 30 
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3.3. Feature identification 
Proper differentiation of nodes from normal tissues required the generation of features which were 

consistently different between normal tissue structures and nodal structures. Eighty-six features were 

created for consideration based on the general physical shape of nodes (20), being banana or spherical in 

appearance (32), their location within the anatomy (1), their volume (1), and histogram features (64). 

3.3.1. Shape Features and Location Feature 
The 21 shape features can be divided into 2 major groups: 16 of these regarding the radii between 

slices which make up the node, 1 for the volume of the node, and 4 concerning the change in center of 

each node across the axial slices. The location feature is simply the axial location at the middle of the 

node candidate. 

3.3.1.1. Radii Features 

An example of the metric used to create the 16 features based on the radii is given below in 

Figure 54. 

 
Figure 54: Radii of a candidate node 

These features were created to help differentiate normal tissue from pathologic nodes, which 

normally had a continuous increase in radius to the middle axial slice and then a continuous decrease in 

radius, until reaching the end of the node. The 16 radii, 1 volume, and 1 location feature can be more 

easily shown in Table 5. Variable number is used in lieu of feature name in the univariate analysis shown 

later. 

Radii 2 

Radii 4 
Radii 5 Radii 8 Radii 4 

Radii 2 
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Table 5: Shape Features: Radii. (left column) The variable equation which is used by the model, (center column) the name which 

it is assigned, and (right column) variable number  

Feature Equation Feature Name Variable Number 

Mean slice Location 65 

max(abs(diff(radii))) Shape: Max: Diff: Radius 68 

max(abs(diff(radii(mid-1:)) Shape: Max: Diff: Radius 69 

max(radii) Shape: Max: Radius 70 

max(radii 1, radii end) Shape: Max: Radius 71 

max(radii (2:end-1)) Shape: Max: Radius 72 

max(radii)/AxialExtent Shape: Max: Radius 73 

max(radii 2, radiiend-1) Shape: Max: Radius 74 

min(radii) Shape: Min: Radius 75 

min(radii 1, radii end) Shape: Min: Radius 76 

min(radii 2, radii end-1) Shape: Min: Radius 77 

min(radii (2:end-1)) Shape: Min: Radius 78 

std(radii) Shape: Std: Radius 79 

sum(abs(diff(radii)) Shape: Sum: Diff: Radius 82 

sum(abs(diff(radii))/AxialExtent Shape: Sum: Diff: Radius 83 

sum(radii) Shape: Sum: Radius 84 

sum(radii)/AxialExtent Shape: Sum: Radius 85 

volume Shape: Volume 86 

 

3.3.1.2. Difference in Centers Features 
Some normal tissues, such as the external and internal arteries, traveled significantly from their 

start to their end point. In order to help differentiate these from potential nodes, a metric was created 

based on the distance of the centroid of each surface to that of the largest surface in the middle of the 

node, Figure 55. 

 
Figure 55: Difference in Distance about centers of surfaces 

These 4 features can be more easily shown in Table 6. 

3 mm 

1 mm 1 mm 

0 mm 
1.5 mm 

2.5 mm 
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Table 6: Shape Features: Distance between slices. (left column) The variable equation which is used by the model, (center 

column) the name which it is assigned, and (right column) variable number 

Feature Equation Feature Name Variable Number 

max(abs(diff(difindist))./ radii) Shape Features: Max: Diff: Distance Btw Slices 66 

max(abs(diff(difindist))) Shape Features: Max: Diff: Distance Btw Slices 67 

sum(abs(diff(difindist)))/AxialExtent Shape: Sum: Diff: Distance Between Slices 80 

sum(abs(diff(difindist))) Shape: Sum: Diff: Distance Between Slices 81 

 

3.3.2. Histogram Features 
The 64 histogram features can be broken up into two general groups: (56) are in regards to four 

surfaces imposed onto each potential node: the ‘base’, ‘subbase’, ‘ring’, and ‘subring’, and (8) features 

are devised from the HU difference of the ‘subbase’ minus the ‘ring’. The base and ring are values which 

were previously calculated in Gaussian Smoothed Image Factors, Figure 56 a-b. The subbase is the base 

radius subtracted by 2 mm, and the subring is the ring around this reduced base, Figure 56 c-d. 

 
Figure 56: (a) (red) Base area with radius r mm, (b) (blue) Ring area with radius r mm, (c) (green) Subbase area with radius r-2 

mm and (d) (yellow) Subring area with radius r-2 mm. 

The first 56 histogram features can further be broken up into 4 groups: 14 for the subbase, 14 for 

the subring, 14 for the base, and 14 for the ring. The equations and names for the base and subbase shown 

in Table 7, and those for the ring and subring are shown in Table 8. 

a b c d 
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Table 7: Base and SubBase (left column) The variable equation which is used by the model, (center column) the name which it is 

assigned, and (right column) variable number 

Feature Equation Feature Name Variable Number 

max(abs(diff(node(:,SubBase).*radii))) Histogram Features: Max: Diff: Mean: SubBase 1 

max(abs(diff(node(:,Base).* radii))) Histogram Features: Max: Diff: Mean: Base 2 

max(abs(diff(node(:,SubBase)))) Histogram Features: Max: Diff: Mean: SubBase 5 

max(abs(diff(node(:,Base)))) Histogram Features: Max: Diff: Mean: Base 6 

max((node(:,Base))) Histogram Features: Max: Mean: Base 11 

max((node(:,Base).*radii)) Histogram Features: Max: Mean: Base 12 

max((node(:,Base).*radii.^2)) Histogram Features: Max: Mean: Base 13 

max((node(:,SubBase))) Histogram Features: Max: Mean: SubBase 20 

max((node(:,SubBase).*radii)) Histogram Features: Max: Mean: SubBase 21 

max((node(:,SubBase).*radii.^2)) Histogram Features: Max: Mean: SubBase 22 

mean((node(:,Base).*radii.^2)) Histogram Features: Mean: Mean: Base 25 

mean((node(:,Base).*radii)) Histogram Features: Mean: Mean: Base 26 

mean((node(:,Base))) Histogram Features: Mean: Mean: Base 27 

mean((node(:,SubBase).*radii.^2)) Histogram Features: Mean: Mean: SubBase 31 

mean((node(:,SubBase).*radii)) Histogram Features: Mean: Mean: SubBase 32 

mean((node(:,SubBase))) Histogram Features: Mean: Mean: SubBase 33 

 min(abs(diff(node(:,Base)))) Histogram Features: Min: Diff: Mean: Base 37 

min(abs(diff(node(:,Base).*radii))) Histogram Features: Min: Diff: Mean: Base 38 

min(abs(diff(node(:,SubBase).*radii))) Histogram Features: Min: Diff: Mean: SubBase 39 

 min(abs(diff(node(:,SubBase)))) Histogram Features: Min: Diff: Mean: SubBase 42 

min((node(:,Base).*radii.^2)) Histogram Features: Min: Mean: Base 45 

min((node(:,Base).*radii)) Histogram Features: Min: Mean: Base 46 

min((node(:,Base))) Histogram Features: Min: Mean: Base 47 

min((node(:,SubBase).*radii.^2)) Histogram Features: Min: Mean: SubBase 51 

min((node(:,SubBase).*radii)) Histogram Features: Min: Mean: SubBase 52 

min((node(:,SubBase))) Histogram Features: Min: Mean: SubBase 53 

std(node(:,Base)) Histogram Features: Std: Base 59 

std(node(:,SubBase)) Histogram Features: Std: SubBase 63 
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Table 8: Ring and Subring (left column) The variable equation which is used by the model, (center column) the name which it is 

assigned, and (right column) variable number 

Feature Equation Feature Name Variable Number 

max(abs(diff(node(:,Ring)))) Histogram Features: Max: Diff: Mean: Ring 3 

max(abs(diff(node(:,Ring).*radii))) Histogram Features: Max: Diff: Mean: Ring 4 

max(abs(diff(node(:,SubRing)))) Histogram Features: Max: Diff: Mean: SubRing 7 

max(abs(diff(node(:,SubRing).*radii ))) Histogram Features: Max: Diff: Mean: SubRing 8 

max((node(:,SubRing))) Histogram Features: Max: Mean: SubRing 14 

max((node(:,SubRing).*radii)) Histogram Features: Max: Mean: SubRing 15 

max((node(:,SubRing).*radii.^2)) Histogram Features: Max: Mean: SubRing 16 

max((node(:,Ring))) Histogram Features: Max: Mean: Ring 17 

max((node(:,Ring).*radii)) Histogram Features: Max: Mean: Ring 18 

max((node(:,Ring).*radii.^2)) Histogram Features: Max: Mean: Ring 19 

mean((node(:,Ring).*radii.^2)) Histogram Features: Mean: Mean: Ring 28 

mean((node(:,Ring).*radii)) Histogram Features: Mean: Mean: Ring 29 

mean((node(:,Ring))) Histogram Features: Mean: Mean: Ring 30 

mean((node(:,SubRing).*radii.^2)) Histogram Features: Mean: Mean: SubRing 34 

mean((node(:,SubRing).*radii)) Histogram Features: Mean: Mean: SubRing 35 

mean((node(:,SubRing))) Histogram Features: Mean: Mean: SubRing 36 

 min(abs(diff(node(:,Ring)))) Histogram Features: Min: Diff: Mean: Ring 40 

min(abs(diff(node(:,Ring).*radii))) Histogram Features: Min: Diff: Mean: Ring 41 

 min(abs(diff(node(:,SubRing)))) Histogram Features: Min: Diff: Mean: SubRing 43 

min(abs(diff(node(:,SubRing).*radii))) Histogram Features: Min: Diff: Mean: SubRing 44 

min((node(:,Ring).*radii.^2)) Histogram Features: Min: Mean: Ring 48 

min((node(:,Ring).*radii)) Histogram Features: Min: Mean: Ring 49 

min((node(:,Ring))) Histogram Features: Min: Mean: Ring 50 

min((node(:,SubRing).*radii.^2)) Histogram Features: Min: Mean: SubRing 54 

min((node(:,SubRing).*radii)) Histogram Features: Min: Mean: SubRing 55 

min((node(:,SubRing))) Histogram Features: Min: Mean: SubRing 56 

std(node(:,Ring)) Histogram Features: Std: Ring 62 

std(node(:,SubRing)) Histogram Features: Std: SubRing 64 

 

The final 8 histogram metrics are related to the subbase minus the ring. Recalling back to 2.6.2 

Gaussian Smoothed Image Factors, a metric was created which consisted of the base minus the ring. 

Considering that the subbase ought to be more entirely enclosed within potential nodal tissue, these 8 

metrics were created to help separate out nodes which were ideally situated without surrounding normal 

tissue, Table 9. 
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Table 9: Subbase - Ring. (left column) The variable equation which is used by the model, (center column) the name which it is 

assigned, and (right column) variable number 

Feature Equation Feature Name Variable Number 

max(subbase-ring) Histogram Features: Max: Diff: Subbase-Ring 9 

max(subbase-ring).*radii Histogram Features: Max: Diff: Subbase-Ring 10 

mean(subbase-ring) Histogram Features: Mean: Diff: Subbase-Ring 23 

mean(subbase-ring).*radii Histogram Features: Mean: Diff: Subbase-Ring 24 

min(subbase-ring) Histogram Features: Min:Diff: Subbase-Ring 57 

min(subbase-ring).*radii Histogram Features: Min:Diff: Subbase-Ring 58 

std(subbase-ring) Histogram Features: Std: Diff: Subbase-Ring 60 

std(subbase-ring).*radii Histogram Features: Std: Diff: Subbase-Ring 61 

 

3.4. Feature Selection 

3.4.1. Model Selection 
Four separate binary classification ensemble models (36) were investigated: AdaBoost (37), 

RUSBoost (38), RobustBoost (39), and GentleBoost (37). 

These potential models were selected based on recommendations from Matlab and literature with 

regards to their abilities with binary classification. The AdaBoost model is a recommended starting 

ensemble method. RUSBoost is best utilized for skewed data, where the ratio of false to true positives is 

greater than 1.  RobustBoost is best utilized for label noise, or accidentally mislabeling a true positive or 

normal tissue. Lastly, GentleBoost works best when there are more than 31 levels of predictors. 

 

3.4.2. Univariate Analysis 
Univariate analysis was performed on each variable with each of the four models listed above. 

The metric used in this analysis was the AUC generated based on the forty-eight training patients and ten 

test patients as explained in Training and Test Generation. This was repeated independently on the 30 

groups to create an average AUC and standard deviation for each feature, using each model, as shown in 

Figure 57. 
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Figure 57: Univariate Analysis - AdaBoostM1, AUC for each variable 

3.4.3. Correlation Test 
A Spearman correlation test was performed on all variables, as shown in Figure 58. A Spearman 

test was performed instead of a Pearson test to account for the potential of the variables being related in a 

non-linear fashion. 
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Figure 58: Spearman Correlation Test, x-axis is the same as y-axis 
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3.4.4. Multi-Variate Analysis 
Four methods of feature selection for model building were examined: Serial addition, Forward 

Selection (35), Backward Selection (35), and Forward/Backward Selection (35). 

3.4.4.1. Serial Addition 
The theory behind Serial addition is to sort all features based on their univariate AUC scores. 

That being, the feature which had the best ability to differentiate true nodes from normal surfaces would 

be added first and the worst feature would be added last. 

Taking these sorted features, the model is built by adding in the first feature with the highest 

univariate AUC, and then adding in the variable with the second highest univariate AUC, etc.  

Note, however, that there are some problems associated with this. For example, if two variables have high 

AUCs, but are also highly correlated, adding them into the model will not greatly improve it. 

To help remove this problem, correlation cutoffs of 1, 0.9, 0.8, 0.7, 0.6, and 0.5 were used to 

make 6 groups of features. This means, for the 0.5 group, if two features have a correlation coefficient 

greater than 0.5, the one with the higher Univariate AUC will be selected and the other removed.  

3.4.4.2. Forward Selection 

Forward selection removes the need for making correlation cutoffs. This method involves 

creating a model with features with the highest univariate AUC. Next, a second feature is input into the 

model and a comparison AUC is calculated. This second feature is then removed and a different feature is 

input with a comparison AUC calculated (Figure 59).  
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Figure 59: Example of Forward Selection. Note the highest AUC on the first iteration is variable 1 and 3. These two are then 

saved into the 2nd iteration, etc. 

The results of this are that an individual test group will have an optimized set of features which 

best differentiate the positive nodes from the normal tissues. 

There is a new issue created with this technique however: each of the 30 groups will generate a 

different set of ideal features to be used. Figure 60 show that for RUSBoost in Group1, there is a set of 8 

features which are best able to create a model. Therefore, to get a metric on how useful these 8 features 

are on the entire test population, the other 29 groups of forty-eight training and ten test sets are run with 

only these 8 features. This is repeated again with the optimized set of features determined in each of the 

30 groups, for all 4 models. 
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Figure 60: Number of features included for optimized differentiation of true positives and normal tissues on Group 1 

3.4.4.3. Backward Selection 
Backward Selection works in much the same was as Forward Selection, but in the opposite 

direction. Whereas Forward Selection begins by essentially doing univariate analysis and adding on 

variables as they increase the performance in regards to AUC, Backward selection starts with all of the 

variables included, and then removes variables as they increase the overall AUC.  

An example of this can be seen as follows, Figure 61: 

1st iteration 2nd iteration 3rd Iteration 

Variables AUC Variables AUC Variables AUC 

1,2,3,4,5,6,7 0.75 1,2,3,4,6,7 0.82 1,2,3,4,6 0.86 

1,2,3,4,5,7,8 0.78 1,2,3,4,6,8 0.85 1,2,3,4,8 0.85 

1,2,3,4,5,7,8 0.77 1,2,3,4,7,8 0.75 1,2,3,6,8 0.87 

1,2,3,4,6,7,8 0.8 1,2,3,6,7,8 0.79 1,2,4,6,8 0.8 

1,2,3,5,6,7,8 0.72 1,2,4,6,7,8 0.7 1,3,4,6,8 0.84 

1,2,4,5,6,7,8 0.62 1,3,4,6,7,8 0.65 2,3,4,6,8 0.82 

1,3,4,5,6,7,8 0.68 2,3,4,6,7,8 0.69   
2,3,4,5,6,7,8 0.72     

Figure 61: Example of Backward Selection. Each iteration removes the variable which results in the largest increase in AUC. 

3.4.4.4. Forward/Backward Selection 
Forward selection and Backward selection both have another drawback: while Feature 1 might 

have the highest univariate AUC, Features 2 and 3 may have a higher combined AUC than Feature 1. 

This possible combination of features will never occur with the forward selection method and there are 

other combinations which are not possible from backward selection alone. To try and mitigate this 

problem, the Forward/Backward Selection technique was investigated. 
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Much like Forward Selection, this method employs sequentially adding variables to see which 

gives the largest increase in AUC, Figure 59. However, between each step a second Backward selection is 

run, and if the AUC increases, it is removed permanently. The example in Figure 62 demonstrates what 

would happen on the 5th potential iteration. 

Start Point 1st Iteration 2nd Iteration 3rd Iteration Final Selection 

Variables AUC Variables AUC Variables AUC Variables AUC Variables AUC 

1,3,6,8,12 0.85 1,3,6,8 0.84 1,3,8 0.82 3,8 0.87 3,8,12 0.9 
  

1,3,6,12 0.825 1,3,12 0.87 3,12 0.8 
  

  
1,3,8,12 0.875 1,8,12 0.8 8,12 0.75 

  

  
1,6,8,12 0.85 3,8,12 0.9 

    

  
3,6,8,12 0.85 

      

Figure 62: Example of Forward/Backward selection. The 'StartPoint' comes from the previous forward selection and each 

iteration within the backward selection is a removal of one variable, trying to maximize the AUC 

After each iteration of Backward selection, the final result is then re-entered back for the next 

iteration of Forward selection. Similar to Forward Selection, the optimized features selected from each 

trial were then exclusively used in the other trials to get an average AUC and standard deviation.  

 

3.5.  Results 
An example of the results of Serial Addition for GentleBoost can be seen in Figure 63. Note that the lower the 

correlation cutoff, the fewer variables are present, which makes intuitive sense as it removes variables which are 

correlated. Here, it’s possible to see that the GentleBoost model has the best ability to differentiate true positive 

nodes from normal structures when 15 features are used with a correlation cutoff of 0.9. 
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Figure 63: Serial Addition for AdaBoost, AUC vs # of variables included by correlation cutoff 

A comparison of the maximum average AUC values across the four models and their standard 

deviations is shown in Table 10. From this data it can be deduced that, by serial addition, the best 

differentiation occurs, on average, by using the GentleBoost methodology: 

Table 10: Comparison of Models from Serial Addition 

Model Max 

Average 

Std 

AdaBoost 0.890 0.0257 

RUSBoost 0.866 0.0299 

RobustBoost 0.791 0.0440 

GentleBoost 0.894 0.0229 

This model selected 15 features, as shown in Table 11. 
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Table 11: Feature Formula and Feature Name for AdaBoostM1 from Serial Selection 

Feature Formula 
Feature Name 

max(abs(diff(Radii(mid-1:)) Shape: Max: Diff: Radius 

max(Radii)/r Shape: Max: Radius 

sum(Radii) Shape: Sum: Radius 

sum(abs(diff(Radii)) Shape: Sum: Diff: Radius 

sum(abs(diff(difindist)))/r Shape: Sum: Diff: Distance Between Slices 

mean((node(:,SubBase))) Histogram Features: Mean: Mean: Base 

min((node(:,SubBase))) Histogram Features: Min: Mean: Base 

min((node(:,SubRing))) Histogram Features: Min: Mean: Ring 

min((node(:,Base))) Histogram Features: Min: Mean: Base 

max(abs(diff(node(:,SubBase)))) Histogram Features: Max: Diff: Mean: Base 

max(abs(diff(node(:,SubRing)))) Histogram Features: Max: Diff: Mean: Ring 

 min(abs(diff(node(:,Base)))) Histogram Features: Min: Diff: Mean: Base 

max(abs(diff(node(:,Ring)))) Histogram Features: Max: Diff: Mean: Ring 

mean slice Location 

max(abs(diff(node(:,SubBase).*Radii))) Histogram Features: Max: Diff: Mean: Base 

std(subbase-ring).*Radii Histogram Features: Std: Diff: Subbase-Ring 

 

In forward selection, a comparison of all the models shows that AdaboostM1 has the second 

highest overall AUC average, but the lowest standard deviation, Table 12. 

Table 12: Comparison of max average AUC and Standard deviation by model 

Forward Selection 

Model Max Average Std 

AdaBoost 0.89 0.031 

GentleBoost 0.90 0.032 

RUSBoost 0.88 0.031 

RobustBoost 0.80 0.077 

 

The AdaBoost model utilizes 17 features identified as best differentiating the normal tissues from 

pathologically enlarged lymph nodes, as shown in Table 13. 
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Table 13: Feature Formula and Feature Name for AdaBoostM1 from Forward Selection 

Feature Formula 
Feature Name 

volume Shape: Volume 

max(abs(diff(radii(mid-1:)) Shape: Max: Diff: Radius 

sum(radii) Shape: Sum: Radius 

sum(abs(diff(radii)) Shape: Sum: Diff: Radius 

sum(abs(diff(difindist)))/r Shape: Sum: Diff: Distance Between Slices 

mean((node(:,SubBase).*radii)) Histogram Features: Mean: Mean: Base 

mean((node(:,SubRing).*radii.^2)) Histogram Features: Mean: Mean: Ring 

mean((node(:,Base).*radii.^2)) Histogram Features: Mean: Mean: Base 

mean((node(:,Ring).*radii.^2)) Histogram Features: Mean: Mean: Ring 

min((node(:,SubBase))) Histogram Features: Min: Mean: Base 

 min(abs(diff(node(:,Base)))) Histogram Features: Min: Diff: Mean: Base 

max(abs(diff(node(:,Ring)))) Histogram Features: Max: Diff: Mean: Ring 

std(node(:,SubBase)) Histogram Features: Std: Base 

mean slice Location 

max(abs(diff(node(:,SubRing).*radii))) Histogram Features: Max: Diff: Mean: Ring 

min(abs(diff(node(:,Ring).*radii))) Histogram Features: Min: Diff: Mean: Ring 

min(subbase-ring).*radii Histogram Features: Min:Diff: Subbase-Ring 

 

From the backward selection model, the results can be seen in Table 14. 

 
Table 14: Comparison of max average AUC and std by model 

Backward Selection 

Model Max Average Std 

AdaBoost 0.90 0.033 

GentleBoost 0.89 0.038 

RUSBoost 0.87 0.034 

RobustBoost 0.76 0.053 

 

AdaBoost was selected here based on its highest max average AUC and low standard deviation. 

The 12 features selected are shown in Table 15: 
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Table 15: Feature Formula and Feature Name for AdaBoostM1 from Backward Selection 

Feature Formula Feature Name 

sum(abs(diff(radii)) Shape: Sum: Diff: Radius 

mean slice Location 

min((node(:,subbase))) Histogram Features: Min: Mean: SubBase 

sum(abs(diff(difindist)))/Axial Extent Shape: Sum: Diff: Distance Between Slices 

mean((node(:,subbase).*radii)) Histogram Features: Mean: Mean: SubBase 

min((node(:,ring).*radii)) Histogram Features: Min: Mean: Ring 

max(abs(diff(node(:,ring)))) Histogram Features: Max: Diff: Mean: Ring 

min(abs(diff(node(:,ring).*radii))) Histogram Features: Min: Diff: Mean: Ring 

min(abs(diff(node(:,subring).*radii))) Histogram Features: Min: Diff: Mean: SubRing 

max(abs(diff(radii(mid-1:)) Shape: Max: Diff: Radius 

mean(subbase-ring).*radii Histogram Features: Mean: Diff: Subbase-Ring 

mean((node(:,ring).*radii.^2)) Histogram Features: Mean: Mean: Ring 

 

For the mixed Forward/Backward feature selection method, the results can be seen in Table 16. 

  
Table 16: Comparison of max average AUC and std by model 

Forward and Back 

Model Max Average Std 

AdaBoost 0.89 0.031 

GentleBoost 0.89 0.033 

RUSBoost 0.88 0.032 

RobustBoost 0.80 0.075 

 

AdaBoost was selected based on its lowest standard deviation value and selected 12 features, 

shown in Table 17 
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Table 17: Feature Formula and Feature Name for AdaBoostM1 from Forward/Backward Selection 

Feature Formula 
Feature Name 

max(abs(diff(Radii(mid-1:)) Shape: Max: Diff: Radius 

sum(Radii) Shape: Sum: Radius 

sum(abs(diff(Radii)) Shape: Sum: Diff: Radius 

sum(abs(diff(difindist)))/r Shape: Sum: Diff: Distance Between Slices 

mean((node(:,Ring).*Radii.^2)) Histogram Features: Mean: Mean: Ring 

min((node(:,SubBase))) Histogram Features: Min: Mean: Base 

 min(abs(diff(node(:,SubBase)))) Histogram Features: Min: Diff: Mean: Base 

max(abs(diff(node(:,SubBase)))) Histogram Features: Max: Diff: Mean: Ring 

max(abs(diff(node(:,Ring)))) Histogram Features: Max: Diff: Mean: Ring 

mean slice Location 

min(abs(diff(node(:,SubBase).*Radii))) Histogram Features: Min: Diff: Mean: Ring 

std(subbase-ring) Histogram Features: Std: Diff: Subbase-Ring 

 

A comparison of the best AUC and standard deviation from each method, Serial, Forward, 

Backward, and Forward/Backward, was created using leave-one-out cross validation. These are shown in 

Figure 64, Figure 65, Figure 66, and Figure 67, respectively.  

 

 
Figure 64: % TP and Ratio False/True positives vs score for GentleBoost on Serial Addition 
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Figure 65: %TP and Ratio False/True positives vs score for AdaBoost for Forward Selection 

 
Figure 66: %TP and Ratio False/True positives vs score for AdaBoost for Backward Selection 
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Figure 67: %TP and Ratio False/True positives vs score for AdaBoost for Forward/Backward Selection 

A comparison of all three can be better visualized as the ratio of false/true positives vs the % true 

positives identified, seen in Figure 68. 

 
Figure 68: Ratio of False/True Positives vs % True Positives for the top models of each technique 
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positive ratio of 4:1. The final features, consisting of being 5 shape features, 1 location feature, and 11 

histogram features can be seen in Table 13.  

3.6. Pinnacle Contour Creation 
A score for each node candidate would be useless unless it is normalized or grouped as to the 

likelihood that it is truly pathological. For contour naming purposes, the scores were grouped into 3 

potential categories: ‘Highly-Likely’, ‘Likely’, and ‘Somewhat-Likely’ with regards to how likely the 

score was associated with being a true-positive pathologic node. 

The score cutoffs for each group are represented in Figure 69, where blue is representative of the ‘Highly-

Likely’ group, and therefore has the lowest score range, green is for the ‘Likely’ group, and yellow for the 

‘Somewhat-Likely’. 

 

 
Figure 69: Breakdown among groups by score: Blue 'Highly-Likely', green 'Likely', and yellow 'Somewhat-Likely' 

Structures with a score less than 1.1 will be grouped into the ‘Highly-Likely’ group, and the contour 

generated in Pinnacle will be blue. Similarly, structures with a score between 1.1 and 2.1 are categorized 

as ‘Likely’, structures scoring above 2 are categorized into ‘Somewhat-Likely’, and anything above 3.1 

will be removed. 
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3.7. Validation Set 
In order to validate these results, twenty new patients from MD Anderson with pretreatment PET/CT 

were entered into the program, these not being part of the initial training or test set as outlined in the 

previous section. These patients had 35 total pathologic nodes, with a distribution as shown in Figure 70. 

 
Figure 70: Distribution of Nodes in Validation Set 

The optimized model, generated from the fifty-eight initial patients, was then used on this new 

validation patient set, generating the curve shown in Figure 71. 
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Figure 71: % True Positives and Ratio False/True Positives vs Score for Validation Set. TP means True Positive and FP means 

False Positive. A score cutoff of 3.1 has been previously determined based on the fifty-eight patient dataset. All scores are 

included for illustration purposes only. Axis have been changed to start at 0.1 for visualization purposes 

The results from leave-one-out cross validation of the initial fifty-eight identified ~63% of the 

pathologically enlarged lymph nodes, along with a false to true positive ratio of ~4 to 1. These findings 

were further investigated with a validation set of twenty patients, with ~60% of the pathologically 

enlarged lymph nodes identified and a false to true positive ratio of ~4 to 1 was determined. 

 

3.8. Discussion 
It is possible to differentiate pathologically enlarged lymph nodes from normal tissue using machine 

learning and a set of variable features. While the 86 features created here to differentiate normal tissues 

from the pathologically enlarged lymph nodes, it is entirely possible that there exist better features not yet 

imagined. Such feature improvement may further enhance results with this model in the future.  

The scoring cutoffs for the groups ‘Highly Likely’, ‘Likely’, and ‘Somewhat Likely’ are relatively 

arbitrary, and might also be improved upon. It was considered reasonable to select the scores which had 

false/true positive ratio around 1, 3, and 4 to designate each group, and the final ‘cutoff’ was selected due 
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to the general plateau seen in Figure 69, in the percent of true positives found. Further work in this area 

may also lead to a more robust methodology in future iterations of this program. However, it is hoped that 

the current model will improve patient care in those locations where imaging modalities and physician 

expertise is limited. 
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4. Chapter 4: Discussion 

4.1. General Review 
It was hypothesized that a program could be developed that would be capable of identifying 75% of 

the pathologically enlarged lymph nodes with a false to true positive ratio less than 5:1. The program’s 

sensitivity for the original fifty-eight patients was ~63% and for the twenty patient validation set was 

~60%. Although this is lower than what would be expected in a CAD system for lung nodules, the false 

positive ratio is relatively similar (~4:1 false/true positive). Also, the abdomen and pelvis are a much 

more difficult area to separate pathologic structures from normal tissue, when compared to chest CAD 

systems. Ultimately the goal of being identifying 75% of the pathologically enlarged lymph nodes was 

not met. However, an ability to maintain a ratio of false positives to true positives of 5:1 was 

approximately achieved. 

4.2. Strengths and Weaknesses by Location 
The ability of the program to identify nodes based on anatomical location using leave-one-out model 

building of the original fifty-eight patients is shown in Figure 72. The original fifty-eight patients were 

used since these patients had a more even distribution of nodes across the anatomical regions than the 

validation set. 

 
Figure 72: % of Nodes identified by anatomical location of the original fifty-eight patients 
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The program appeared best able to identify external/internal iliac nodes and paraaortic nodes, 

identifying 69% (63/91) and 67% (23/34) nodes, respectively. The program did not identify the inguinal 

nodes in the original fifty-eight patients. However the small dataset (4 inguinal nodes) makes it difficult 

to draw conclusions about its ability in this region. It appears that the program had the largest difficulty 

with identifying nodes in the common iliac region, identifying 40% (10/25) of the pathologically enlarged 

nodes present.  

The nodes identified within the paraaortic region are arguably the most important, as any positive 

lymph nodes identified within this region will result in raising the superior aspect of the four-field box to 

include this likely diseased nodal field. 

One of the largest challenges in detecting pathologically enlarged lymph nodes is that their HUs 

are very similar to normal tissue which surrounds them. Also, the way in which the nodes often press or 

collapse against normal structures can make them difficult to separate out as independent surfaces and 

structures. Evaluation of the program’s failure to identify nodes show that most of the failures are nodes 

pressed tightly into the normal tissue structures, as seen in Figure 73, and the program cannot separate 

them. 
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Figure 73: Example of a node that the program could not find, contoured in red/green by physician 

The program appears to be able to best identify nodes when they are separable from normal 

tissues, allocating them the lowest score, Figure 74. This appears to occur most frequently in the 

external/internal iliac region and the paraaortic region, which could explain those anatomical regions 

having the highest rate of identification. 

 
Figure 74: Examples of identification of two external iliac nodes and paraaortic node (blue) that the program correctly identified 

A comparison of the ratio of false positives to true positives identified by anatomical location is 

shown in Figure 75. This demonstrates that the failures of the program to identify common iliac nodes 
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greatly increases the ratio of false to true positives. The program appears to perform best in the 

internal/external iliac region. This is likely because, with the mask, there are not a large number of 

relatively circular objects on an axial slice which could be misidentified as lymph node. 

 
Figure 75: Ratio of false positives to true positives identified by anatomical location of the original fifty-eight patient cohort 

I believe that the reason for the validation set achieving a better ratio of false/true positives is 

based on these patients having a slice thickness of around 2 to 2.5 mm, while the initial fifty-eight 

primarily had slice thicknesses around 3.27mm. While the program has been written to take slice 

thickness into account, better image quality and thinner slices are likely to improve its ability to 

differentiate between normal tissues and potential disease pathology. 

4.2.1. Limitations 

This work has several limitations. All patients were acquired from a single institution, MD 

Anderson Cancer Center, in the United States. It is possible that these patients are not comparable 

between the United States, given their residence in a very high HDI country, and a LMIC. The validation 

set only contains twenty patients, within which only 3 paraaortic nodes were present. It would be useful to 

include more patients for confirmation, particularly those with paraaortic involvement. While this work 

has not been validated with other patient groups outside the US, work is currently being down with a 

clinic in Botswana utilizing this program.  
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The program has been written such that the slice thickness of the CT scanner is accounted for, 

however, pathologically enlarged nodes on thicker slices will likely be more difficult to identify than on 

thinner slices. The sensitivity of the program in regards to this has not been investigated. While pixel size 

varied among the patients due to the changes in FOV, the sensitivity of the program with respect to 

varying pixel size was not characterized. Image quality could affect the capability of the program’s ability 

to identify pathologically enlarged lymph nodes. Factors leading to changes in the measured HUs, such as 

metal or body habitus that is larger than the field-of-view, would affect the program, as surface separation 

criteria are based on HUs. 

The deformation of the initial CTV is a manual process. While work is currently being done to 

automate this, it is a major limitation in the feasibility of this program becoming a truly fully automated 

system. 

All of the CTs scans on the patients used for this program were with 0 degrees of angle. Large 

scan angles could, hypothetically, cause issues in the program’s ability to identify ‘starting points’ in the 

3D identification of pathologic nodes, as described in section 2.7- Identification of start points. The effect 

of different scan angles on the accuracy of the program has not been investigated. 

The program’s accuracy based on stage of patient disease (IIA, III, etc.) has not been 

investigated. The fifty-eight original patients were selected based on the presence of significant lymphatic 

disease, often with a large amount of paraaortic involvement. The paraaortic proportion of disease in the 

validation set was much less than that of the training set, so sensitivity by anatomical location was used in 

the original fifty-eight with leave-one-out cross validation. This might not be an accurate representation 

of the population, and more patients with disease in locations other than the EI/II would be beneficial. 

4.2.2. Future Implementation 

This program was created as a tool to improve cervical cancer treatment by identifying disease 

which might otherwise go untreated. In particular, it is suggested that this would assist in the 

identification of disease that might require raising the superior block of the four-field box. As is, this 



83 

 

program does not have a high enough sensitivity and specificity to run without supervision. It has been 

created as a tool to assist in the identification of disease. However, each contour created should be 

evaluated critically, and the lack of a contour on an object is not justification for considering it to be non-

nodal. 

The entire program is ~50 Megabytes in size and takes approximately (10/number of cores 

minutes) to run on an individual patient. As most computers have 2-4 cores, each patient takes 

approximately 2.5 minutes to run on a 4 core machine, or up to 5 minutes on a 2 core machine. It runs as a 

standalone .exe, with the user input required to select the desired image files after image deformation and 

output folder, Figure 76. 
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Figure 76: Example of program operation 
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The deformable registration is currently being automated, although for this work it required 

manual user interface. The DICOM structure file, created in the designated output location, can then be 

imported into a treatment planning system for evaluation of generated contours 

 

 
Figure 77: Example of structure imported into treatment planning system. Two EI/II nodes properly identified in the ‘Highly 

Likely’ group (blue), and artery falsely identified in the ‘Somewhat Likely’ group (yellow) 

4.3. Conclusion 
This program provides an inexpensive, simple, and rapid way to improve cervical cancer treatment 

planning in resource limited settings with little impact on clinical workflow. The ability to identify 

pathologically enlarged nodes from non-contrast CT images which are already acquired can vastly 

improve treatment. These improvements include: providing boost treatment for any pathologic nodes and, 

in the case of paraaortic metastasis, raising the superior aspect of the four-field box to include otherwise 
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untreated disease. Positive node identification is essential, and can lead to optimal field of treatment or 

boost (20). This is especially important in locations lacking PET imaging, and those with limited 

resources. 
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