Correspondence:

Miodrag Grbic',
Department of Biology, University of Western Ontario, London N6A 5B7, Canada, fax: (519) 661-2014
e-mail: mgrbic@uwo.ca

Élio Sucena
Instituto Gulbenkian de Ciência
Apartado 14,
2781-901 Oeiras, Portugal fax: +351214407970
email: esucena@igc.gulbenkian.pt

Number of words: 6410 (references: 2046; captions: 898)

Reversion of developmental mode in insects: evolution from long germband to short germband in the polyembrionic wasp Macrocentrus cingulum Brischke

Élio Sucena ${ }^{1,2^{*}}$, Koen Vanderberghe ${ }^{3 *}$, Vladimir $^{\text {Zhurov }}{ }^{3}$, and Miodrag Grbic ${ }^{\text {³ }}$
${ }^{1}$ Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
${ }^{2}$ Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, edifício C2, Campo Grande, 1749-016 Lisboa, Portugal
${ }^{3}$ Department of Biology, University of Western Ontario, London N6A 5B7, Canada
*these authors contributed equally to this work
Running title: Reverse evolution to short germband development

keywords: evolution of development, germband size, embryogenesis, insect patterning

Abstract

Germband size in insects has played a central role in our understanding of insect patterning mechanisms and their evolution. The polarity of evolutionary change in insect patterning has been viewed so far as the unidirectional shift from the ancestral short germband patterning of primitive hemimetabolous insects to long germband patterning observed in most modern Holometabola. However, some Brachycera (higher insects) orders display both short and long germband development though the absence of clear phylogenetic context does not permit definite conclusions on the polarity of change. Derived hymenoptera, i.e. bees and wasps, represent a classical textbook example of long germband development. Yet, in some wasps putative short germband development has been described correlating with lifestyle changes, namely with evolution of endoparasitism and polyembryony. To address the potential reversion from long to short germband, we focused on the family Braconidae, which displays ancestral long germband development and examined embryonic development in the derived polyembryonic braconid Macrocentrus cingulum. Using SEM analysis of Macrocentrus embryogenesis coupled with analyses of embryonic patterning markers, we show that this wasp secondarily evolved short germband embryogenesis reminiscent of that observed in the beetle Tribolium. This work shows that the evolution of germband size in insects is a reversible process that may correlate with other life-history traits and suggests broader implications on the mechanisms and evolvability of insect and arthropod development.

Introduction:

One key question in evolutionary developmental biology is how variable morphology relates to variation in genetic circuitry (Wilkins, 2002). Moreover, independent and/or reverse evolution and how it relates to the underlying genetic architecture, is at the core of the evo-devo research agenda (Stern and Orgogozo, 2008)(Peel, 2008)(Gompel and Prud'homme, 2009)(Christin et al., 2010). Evolutionary changes in developmental programs manifest both at the cellular and molecular levels, and have been dissected in a number of processes such as axis formation (Lall and Patel, 2001)(Goltsev et al., 2007), cell fate specification and patterning (Carroll et al., 1994)(Sommer and Sternberg, 1996)(Wittkopp and Beldade, 2009), oogenesis (Lynch and Roth, 2011)(Vreede et al., 2013), gene expression (Kalinka et al., 2010)(Robinson et al., 2011), cleavage geometry and morphogenetic movements (Wray and Bely, 1994)(Green et al., 2010), amongst others. Reconstruction of the evolutionary history of development, by mapping changes in developmental programs onto solid phylogenies, can lead to the determination of the polarity of change (ancestral vs. derived) and is heuristic as it generates hypotheses about the association between developmental change and morphology (Wray and Bely, 1994)(Sucena and Stern, 2000) and the effects of environment and life-history (Peel, 2008)(Gilbert and Epel, 2009). One way to approach this question is to analyze development in species that independently evolved a particular morphological feature or mode of development (Sucena et al., 2003)(Jeffery, 2009)(Gompel and Prud'homme, 2009). Such an analysis may point to conserved parts of the genetic program and/or identify segments of the regulatory hierarchy that underwent
evolutionary change (Prud'homme et al., 2006)(Stern and Orgogozo, 2009)(Manceau et al., 2010).

A major feature of insect development is the extreme variation in the segmentation mode manifested in long germband and short germband insects (Sander, 1976)(Davis and Patel, 2002). Short germband embryos form a blastoderm that consists of head lobes, the most anterior trunk segment and the terminus. Additional segments are added progressively during the course of embryogenesis arising from a proliferative posterior growth zone (Anderson, 1973). This form of development is displayed by primitive insects such as the grasshopper in contrast with more derived insects such as Drosophila which display predominantly long germband development (Peel et al., 2005). In between these two extreme types of development some insects, such as crickets, reach gastrulation with an intermediate number of segments (Mito, 2005). Short and intermediate germband type of embryogenesis are predominant in primitive, hemimetabolous, insects. More derived, holometabolous insects exhibit mostly long germband development including the fly Drosophila, Nasonia wasps and the honeybee (Davis and Patel, 2002).

The canonical short germband development of grasshoppers and the beetle Tribolium is marked by formation of the cellular blastoderm that contains only anterior segments. After the initiation of gastrulation, additional segments are added progressively from the posterior growth zone in an anterior to posterior direction (Patel et al., 1992)(Patel et al., 1994). The nature and mechanics of this growth zone is variable across organisms arthropods (Peel et al., 2005) and, even within insects, is likely to obey very different rules to those established in Drosophila (Pueyo et al., 2008).

These morphological differences are paralleled by the differential expression of the patterning genes and are diagnostic of the different types of germ band development. In Drosophila, interactions between gap genes expressed in broad domains along the anterior-posterior axis, are involved in the transition between the non-segmental and segmental organizations of the insect embryo (Jaeger, 2011). This organization is further refined through the double-segment periodic pattern of pair-rule gene expression. The expression of the pair-rule Even-skipped (Eve) protein at the time of gastrulation represents a reliable marker for germ band type (Davis and Patel, 2002). For example within Coleoptera, at the cellular blastoderm stage two Eve primary stripes are formed in the short germband Tribolium in contrast with the six Eve stripes displayed by its long germband counterpart Calosobruchus (Patel et al., 1994).

It has been established that the long germband mode of development is restricted to holometabolous insects and must have evolved from short germband development predominant in basal holometabolous and hemimetabolous insects (Sander, 1976)(Tautz et al., 1994). However, this division is not clear-cut, as illustrated above with the example of Coleoptera, composed of species displaying both short and long germband development (Patel et al., 1994). Moreover, it is likely that long germband development has evolved multiple times independently (Davis and Patel, 2002). Yet, no cases of reverse evolution from long germband to short germband have been reported thus far, suggesting a strict polarity in the transition between these two developmental modes. In many instances the difficulty lies in the absence of a strong phylogenetic framework that impedes definite conclusions on the polarity of this change. One putative exception lies in Braconidae wasps because of their phylogenetic framework (Dowton et al., 2002)(Shi et
al., 2005) and the distinct morphological characteristics of short germband development in the derived braconid Aphidius (Grbic and Strand, 1998). Yet, the lack of early molecular markers such as Eve precludes an unequivocal corroboration of reversibility in developmental mode.

Braconidae is a large family comprising close to 18,000 species and belonging to the Hymenoptera (the sister group of modern holometabolous insects) that groups sawflies, bees, wasps and ants (Savard et al., 2006)(Krauss et al., 2008). Derived parasitic wasps originated from an ancestor that displayed long germband development (reviewed in (Grbic, 2003)). Basal parasitic wasps from this family such as the Cyclostome braconid Bracon hebetor, display an ectoparasitic life style (Gauld, 1988). They oviposit their eggs on the surface of the host and the emerging parasitic larvae consume the host from the exterior. This species has large and yolky eggs and undergoes long germband development as determined by both morphological and molecular markers (Grbic and Strand, 1998). In contrast, derived braconids exhibit an endoparasitic lifestyle where females oviposit their egg in the host's body cavity. The parasitic larva develops within the host body and consumes the host from within. Many different modifications of development are associated with endoparasitism including polyembryony (reviewed in (Zhurov et al., 2007)), a process whereby a single egg gives rise to multiple embryos. Phylogenetic analysis reveals that replicated shifts in life history strategy have occurred in the Hymenoptera such that free-living, ectoparasitic, endoparasitic and polyembryonic lifestyles have arisen independently multiple times within different monophyletic families (Whitfield, 1998)(Grbic, 2003). For example, polyembryony evolved four independent
times in parasitic insects, raising the question of how conserved are their respective programs of embryonic patterning (Grbic, 2000).

In this study we examined embryonic development in the derived polyembryonic braconid Macrocentrus cingulum. The morphological description of Macrocentrus development shows that this wasp undergoes a canonical short germband development. Further, we analysed the expression of maternal coordinate, gap, pair-rule and segment polarity genes and show that Macrocentrus cingulum utilizes the segmentation gene cascade with the hallmarks of short germband development. However, analysis of cell proliferation suggests that posterior growth is not associated with increased mitotic activity in this region. Mapping this mode of development onto the branch containing advanced wasps shows that long germband patterning can evolve to short germband development, and that the polarity of evolutionary change for this trait is reversible. Moreover, this work illustrates that reversion of germband type associates with the independent evolution of polyembryony observed also in this branch of the Braconidae, reinforcing the intimate relationship between life-history features and development.

Material and methods:

Colonies of Macrocentrus cingulum were cultured using european cornborer Pyrausta nubilalis as host at the insect rearing facilities of the Agriculture Canada at the Southern Crop Protection and Food Research Centre, London, Ontario. Host larvae were parasitized daily in acrylic cages by exposing 3-5 third instar host larvae placed onto cornmeal diet to 25-40 M. cingulum females. Following parasitisation, 2 hosts were
placed in 50 ml glass vials filled with cornmeal diet. Parasitized hosts were maintained at $+27^{\circ} \mathrm{C}$ and 16:8 (L:D) photoperiod.

To analyse morphogenesis, M. cingulum embryos were dissected from the host body cavity in the PBS and fixed overnight at $+4^{\circ} \mathrm{C}$ in the 3.7% formaldehyde in PBS. The following day, embryos were dissected from the extraembryonic membrane and dehydrated in ethanol (20-40-60-80-100\% ethanol in PBS, 10 minutes each). Embryos were placed in Samdri-PVT-3B critical point dryer, mounted on stubs and gold coated in Hummer VI Sputter Coater. Processed embryos were examined on a Hitachi S-570 scanning electron microscope. Images were taken using a Quartz PCI digital imaging system and processed with Adobe Photoshop 5.5 software.

Cloning of M. cingulum Krüppel, in situ hybridization and immunocytochemistry

 In order to isolate the $K r$ homolog of M. cingulum, we amplified by PCR a fragment of M. cingulum Krüppel using the conserved degenerate primers TAYAARCAYGTGYTRCARAAYCA and YTTYARYTGRTTRSWRTCRSWRAA taken from Sommer et al. (Sommer et al., 1992). The short PCR fragments were extended using the GenomeWalker System (BD Biosciences Clontech, USA). This sequence (Gene Bank accession number FJ685649) was used for in situ analysis using an in situ hybridization protocol described previously (Zhurov et al., 2004).To characterize expression of Eve, Engrailed (En) and Vasa (Vas) proteins during M. cingulum morphogenesis, embryos were dissected from fifth instar hosts in PBS buffer. Dissected embryos were transferred to a nine-well dish and fixed for 40 minutes in 3.7% formaldehyde. Following fixation, embryos were dissected from the extraembryonic membrane in PBS using tungsten
needles. Antibody staining was performed as described by Grbic et al. (Grbic et al., 1996). The following concentrations of primary antibodies diluted in 60nl PBST and 1\% BSA were used: 1:3 En (mAbEN4D9 (Patel et al., 1989)), 1:3 Eve (mAb2B8 (Patel et al., 1992)), 1:3 Vasa (formosa-1 (Chang et al., 2002)). Secondary antibodies (anti-mouse Cy5 and anti rabbit Cy2 Jackson) were diluted 1:200 in PBST. Analysis of mitoses was performed using rabbit anti-phosphoH3 in a 1:1000 concentration (Upstate, Inc., Lake Placid, NY, USA). Following antibody staining, embryos were counterstained for 40 minutes with rhodamine-phalloidin diluted 1:3 (Molecular probes). Embryos were mounted in glycerol and examined on a Zeiss 510 LSM Confocal microscope.

Results

Macrocentrus cingulum early morphogenesis

M. cingulum morphogenesis is initiated after a period of embryonic proliferation that generates up to 30 embryos from a single egg (Voukassovitch, 1927)(Parker, 1931). At the onset of embryogenesis, individual embryonic primordia are surrounded by a thick extraembryonic membrane (Fig 1A, asterisk). At an early stage, the embryonic primordium is radially symmetric, consisting of several hundred cuboidal cells that form a ball (Fig 1A). This ball-like embryonic primordium has a hollow blastocoel (Fig 1A, arrow). During the early embryonic primordium stage, embryonic cells are round and adhere loosely to each other (arrowhead). As development proceeds, the apical cell surfaces flatten to form the smooth surface of the primordium (Fig 1B). A cross section of the embryo shows that surface flattening is associated with changes in cell shape from cuboidal to columnar (Fig. 1C, arrowhead). These elongated cells become tightly inter-
digitated. This transformation of cell shape results in the formation of a unicellular epithelium that surrounds the blastocoel cavity. At this point in development it is not possible to determine the anterio-posterior embryonic axis in the radially symmetrical embryonic primordium. Following the change in cellular shape, the embryonic primordium increases in size (Fig. 1D, compare with B) and becomes ellipsoidal. This shortening of the vertical axis marks the initiation of dorso-ventral flattening. Dorsoventral flattening proceeds, until the embryo becomes almost square-shaped (Fig. 1E) and opposing layers of cells come close to each other. At this point, an opening is formed on the dorsal side (Fig. 1F) initiating the formation of a flat epithelium. The longer axis of the dorsal opening runs perpendicularly to the presumptive anterio-posterior embryonic axis, separating future anterior and posterior regions (Fig. 1G, arrow). This results in a donut-shaped embryo. Further widening of the dorsal opening transforms it into a cupshape (Fig. 1H). At this point, the wider side of the embryonic primordium will form the posterior region (Fig. 1H, arrow), while the narrower area will give rise to anterior structures (arrowhead). Both anterior and posterior folds form a symmetric furrow along the middle (pointed by arrow and arrowhead). Cells of the embryonic primordium extend cellular projections and filopodia consistent with active cellular movement during the reorganization of the embryo (Fig. 1H, inset).

Macrocentrus cingulum germband elongation and segmentation

The initiation of embryonic growth is marked by further flattening and elongation of the primordium and by the folding of the epithelial sheets at the presumptive anterior and posterior tips (Fig 2A). As a consequence, the hollow area on the future dorsal side of the
embryo widens. At the cup-stage, the embryo's ventral ridge (Fig 2A, arrow) is seen extending from the anterior and containing rounded cells, which appear to delaminate from the tightly packed cells of the ectoderm. These ingressing cells represent the first signs of gastrulation. Subsequently, the posterior region of the embryo starts to fold forming a coiled structure (Fig. 2B). At this stage of development, the cup opening is filled with extracellular matrix (arrows), which stains intensely with phalloidin (not shown) indicating accumulation of actin in this area. In parallel with the onset of gastrulation the embryo initiates germband extension. Initially, the embryo remains tightly coiled with enlarged bilateral lobes formed at the posterior (Fig. 2C). As morphogenesis advances, embryos become progressively more coiled as new regions of the trunk are formed. The posterior region further elongates forming a transient furrow separating the posterior tip from the newly formed trunk regions (Fig. 2D, arrow). In a mechanically uncoiled embryo of a similar stage, we can observe the extension and widening of the dorsal opening (Fig. 2E, arrowhead). The embryo continues to elongate and the cephalic furrow appears at the anterior (Fig. 2F, arrowhead) demarcating the future head. At this time, the gastrulation furrow extends along the ventral midline (arrow). During germband extension, the embryo consists of a unicellular epithelial sheet of elongated and tightly packed cells (Fig. 2G). Following the formation of the cephalic furrow, the presumptive head region becomes elongated and the head lobes bulge out (Fig. 2H). Subsequent to the enlargement of the head lobes, another furrow forms in the future gnathal region (Fig. 2I, arrow). It is unclear whether this fold demarcates the entire gnathal area or just the mandibular and maxillary segments. At a later stage, mandibular and maxillary segments are refined (Fig. 2J) and a furrow forms in the cephalic region
separating the labrum from the rest of the head (Fig. 2J, arrow). As embryonic elongation proceeds, a progressive bulging of the gnathal segments can be observed (Fig. 2K) followed by the appearance of a transient furrow in the future thoracic area (arrow). At the complete extended germband stage (Fig. 2L), a furrow demarcating the next segment of the thoracic area begins to form (arrow). Following germband extension, the embryo undergoes germband condensation. In the condensed germband stage, all future segments become visible (Fig. 2M) and bilateral protrusions along the ventral midline abdominal segments show in the thoracic and the first two abdominal segments, representing proleglike primordia (arrowheads). The gnathal segments begin to involute (arrow) and the labral segment extends anteriorly. Soon after, the gnathal segments ingress completely into the oral cavity (Fig. 2N, arrow) and all future proleg-like primordia are formed (Fig. 2N, arrowheads). Finally, we can observe a completely segmented larva composed of three thoracic and thirteen abdominal segments, each having proleg-like structures, and a telson (Fig. 2O). The description of embryogenesis in M. cingulum indicates that this species undergoes an extreme form of short germband development where only anterior structures appear to be patterned at the blastoderm stage and that segments are sequentially formed during the course of morphogenesis.

Expression of gap and maternal coordinate genes

Previous description of another putatively short germband derived braconid, Aphidius ervi (Grbic and Strand, 1998) failed to provide the early molecular markers necessary to unequivocally classify its type of embryonic development. Thus, in M. cingulum we examined the expression patterns of genes covering the main patterning cascade classes
defined in Drosophila: Krüppel mRNA (gap gene), and the proteins of the maternal coordinate gene Vasa (Vas), the pair-rule gene even-skipped (eve) and the segment polarity gene Engrailed (en).

Vasa is a Drosophila maternal coordinate gene and universal marker of the germ line in metazoans (Saffman and Lasko, 1999). In the rounded stage M. cingulum embryo (Fig. 1E), a small population of the interior cells stains with anti-Vasa antibody (Fig. 3A). These cells adopt a sub-terminal localization in the cup-shaped embryo, forming a compact group of cells. Vasa-positive cells remain in a sub-terminal position (Fig 3 B, C) even as the germband extends (marked by addition of En stripes Fig. 3 D-G, green). Upon completion of germband extension, Vasa-positive cells localize between En stripes 13 and 14 in two bilaterally symmetrical cell patches corresponding to the gonadal precursors (Fig. 3 H). Vasa protein localization suggests that the posterior terminus of the M. cingulum embryo is specified early at the blastoderm stage and that additional segments are added to a region anterior to Vasa-positive cells.

In Drosophila, Krüppel is a gap gene involved in the segmentation cascade and demarcates the blastoderm between the mesothorax and the third abdominal segment. However, in the short germband insect Tribolium castaneum, $\mathrm{Tc}-\mathrm{Kr}$ marks a more anterior region than in Drosophila, its expression domain encompassing only the thoracic segments (Bucher and Klingler, 2004). Also, in intermediate germband insects such as Oncopeltus fasciatus (Liu and Kaufman, 2004) and Gryllus bimaculatus (Mito et al., 2006), the pattern of $K r$ demarcates the thoracic region suggesting that its expression
pattern can be used as a marker of thoracic structures. In M. cingulum, $\mathrm{Mc}-\mathrm{Kr}$ is not expressed in the donut-shaped embryo (Fig. 4 A). Only later, at the cup-shaped embryo can $\mathrm{Mc}-\mathrm{Kr}$ be detected as a sub-terminal band 10-12 cell diameters wide (Fig. 4B). The posterior terminus of the embryo does not express $\mathrm{Mc}-\mathrm{Kr}$ mRNA. During the initiation of germband elongation, the $\mathrm{Mc}-\mathrm{Kr}$ domain appears at a more anterior location (Fig. 4 C) but the posterior terminus continues to be devoid of $\mathrm{Mc}-\mathrm{Kr}$ staining. Unfortunately, we were unable to perform simultaneous in situ hybridization and antibody staining to determine the boundaries of this early domain more precisely. However, our SEM sequence of developmental stages and carefully staged Eve and En stainings (see below) suggest that this early domain is posterior to the first two En stripes (compare Fig. 4 B and Fig. 6 A). Since the first En stripes to appear are mandibular and maxillary, it is likely that the early $\mathrm{Mc}-\mathrm{Kr}$ expression domain covers roughly the future thoracic region, similarly to the short germband coleopteran Tribolium castaneum. As the germband elongates, $M c-K r$ shows a sharp anterior boundary approximately at the level of the presumptive transition between thorax and gnathal segments (Fig. 4 D). This sharp expression limit is maintained midway through germband extension (compare Fig. 4 E and Fig 6 D). Following this stage, expression becomes more dynamic (Fig 4 F-G) culminating in the highly conserved neural expression observed across all insects studied thus far. In conclusion, the expression of $M c-K r$ shows a pattern that parallels the domains and dynamics described in short and intermediate germband embryos.

Even-skipped expression

The expression of pair-rule genes at the onset of gastrulation represents the earliest landmark of the periodic organization at the core of the metameric insect embryo (Davis and Patel, 2002) and constitutes a canonical marker for germband type (Patel et al., 1994). For example, at this stage the short germband T. castaneum expresses two Eve primary stripes, the intermediate germband beetle Dermestes displays four primary stripes and Calosobruchus maculatus exhibits six Eve stripes consistent with its long germband mode of development (Patel et al., 1994).

To further sustain our classification of the type of development in M. cingulum, we examined Eve expression pattern. At the embryonic primordium stage, Eve expression is absent (corresponding to Fig. 2A-D, data not shown). We first detect Eve protein in the flattened embryo stage (Fig. 5A), corresponding to the SEM stage in Fig. 1H. At this stage Eve protein is observed at low intensity around the circumference of the embryo starting from 70% of the embryo length to the posterior (Fig. 5 A arrows). In subsequent stages, corresponding to Fig. 1G-H, this pattern and sub-cellular localization are maintained (Fig. 5B) in what recapitulates the well-established early broad domain of Eve expression present in many insect embryos (Liu and Kaufman, 2005b). At the onset of gastrulation (late cup stage, Fig. 2A), Eve expression disappears from the future interstripe region defined by the first Eve stripe (Fig. 5C). This stripe (designated 1ab) is six to seven nuclei-wide and is followed by a posterior domain of expression (arrowheads). As the embryo starts to extend (as in Fig. 2B), the first wide Eve stripe starts to split into the secondary (segmental) stripes. The split of the stripe is initiated by a fading of the protein in the middle of the stripe (Fig. 5D, arrow), resulting in a 4-5 nuclei-wide strong anterior stripe designated 1a, and a narrower 2 nuclei-wide posterior stripe named 1 b .

Meanwhile, the next Eve pair-rule stripe resolves from the posterior Eve expression domain (arrowhead, 2ab). As the embryo progresses through germband extension, the second stripe starts to split into segmental stripes (Fig. 5E, arrow). The split of this stripe results in the wider anterior (2a) and narrower posterior stripes (2b). Simultaneously, the first Eve stripe (1a and 1b) begins to fade and disappears at the stage shown in Fig. 2F, when second and third stripes form secondary a and b stripes and the fourth Eve stripe starts to split from the posterior zone (Fig. 5F, arrowhead). This dynamic logic is obeyed as development proceeds such that when the fourth and fifth stripes split into secondary stripes (a and b), the sixth and seventh Eve wide stripes appear almost simultaneously (Fig. 5G). Finally, at the completely extended germband stage almost all Eve stripes have faded and only the last pair of secondary stripes are visible (8a and 8b, Fig. 5H). At the condensed germband stage (Fig. 2 M), Eve protein is expressed in neurons and dorsal mesoderm (Fig. 5I). The morphogenetic movements of invaginating cells and the general morphology and stage of development shown in Fig. 2A demonstrate that these embryos are initiating gastrulation. Consequently, the presence of only one primary Eve pair-rule stripe at this stage (Fig 5C) classifies M. cingulum as a short germband insect where only a portion of the gnathal segments are likely to be specified at the time of gastrulation.

Engrailed expression

To extend our morphological and molecular analysis of M. cingulum morphogenesis we analysed expression of the segment-polarity protein En. Segment specification in arthropods is marked by the expression of En protein (Patel et al., 1989)(Fleig, 1990). In long germband insects, including Drosophila and honeybee, segments are established
nearly simultaneously with all En stripes forming almost at the same time (Patel et al., 1989). In contrast, in short germband insects such as grasshopper and T. castaneum En stripes are established one by one as segments are being formed sequentially from the posterior growth zone (Peel et al., 2005).

In the early stages of the embryonic primordium, En protein was not detected (data not shown). The first and second En stripes are detected in the cup stage embryo (Fig. 6A), that corresponded to SEM stage described in Fig 3B. The first stripe (corresponding to mandibular segment) is 3 cell diameters-wide (arrow) almost immediately followed by the 1-cell diameter second stripe, corresponding to maxillary segment (arrowheads). However, it increases in diameter during germband elongation. As the germband extends, reaching the stage described in Fig. 2C, the third En stripe is formed (Fig. 6B, arrow) corresponding to the labial segment. Formation of the third stripe is followed by the initiation of the fourth En stripe that marks the first thoracic segment (Fig. 6B asterisk). Again, this odd stripe is wider than even stripes. Upon cephalic furrow formation five En stripes may be observed and formation of the sixth stripe has been triggered (Fig. 6C). This stage is followed by a rapid germband extension such that, at the stage of formation of gnathal furrows (see Fig. 3J), fifteen En stripes are observed (Fig. 6 D). The mature En pattern, corresponding to 3 gnathal, 3 thoracic and 10 abdominal stripes is laid out at the extended germband stage (Fig. 6E), corresponding to SEM stage described in Fig. 3K. This pattern persists during the germband condensation stage with the addition of En cephalic stripes (Fig. 3 F).

The sequential generation of En pattern further confirms that M. cingulum embryo exhibits short germband development containing only anterior structures at the cup-stage (blastoderm).

Posterior elongation in Macrocentrus cingulum

The budding of the posterior segments in short germband embryogenesis is not well characterized and it is yet unclear how body axis elongation is regulated by the putative growth zone (Peel et al., 2005). Two processes have been proposed to explain axial elongation: the higher mitotic activity of the growth zone and/or cell shape changes and convergent extension movements contributing to sequential segment formation (Heming, 2003). To characterize the elongation of the M. cingulum embryo, we examined expression of the segmental marker En together with expression of the phosphorylated histone that marks mitotically active cells. At the cup-stage embryo (prior to expression of the segmental markers) anti-histone H3 marks scarce groups of mitotically active cells interspersed with non-dividing cells (Fig. 7 A). At the onset of gastrulation, the posterior region of the embryo shows higher mitotic activity than the anterior (Fig. 7 B). However, a distinct mitotic domain was not observed and dividing cells appear to be spread uniformly throughout the entire posterior domain. During the process of germband elongation, mitotically active cells remain randomly distributed (Fig 7C) as well as during germband condensation (Figure 7 D). We failed to observe any distinct highly mitotic active domain. We also performed Z scans through multiple embryos at particular developmental stages (marked by En stripes, data not shown) but were not able to determine a specific region with higher mitotic activity.

Discussion

Macrocentrus cingulum is a short germband insect

The comprehensive SEM description of embryogenesis carried out in this work suggests that M. cingulum undergoes short germband morphogenesis. In addition, this mode of development is further confirmed through the use of classical molecular markers of segmentation, which show that at the time of gastrulation the embryo exhibits only anterior gnathal structures. Subsequent addition of segments at the posterior of the embryo is specified at the early blastoderm stage in a sequential manner. Cumulatively, both cellular and molecular aspects of M. cingulum development concur in that this wasp undergoes short germband development.
M. cingulum morphogenesis is initiated with formation of a hollow embryonic primordium, which quickly reorganizes into an embryonic blastoderm displaying the future head lobe and the posterior tip. At that time only one Eve stripe is present, suggesting that at this point only a portion of the gnathal segments are being specified and attesting that M. cingulum is the first bona fide example of short germband development in the Hymenoptera. Indeed, and despite the unpredictability across insects of the Eve expression pattern as pair-rule and/or segmental (Patel et al., 1994)(Liu and Kaufman, 2005a)(Mito et al., 2007), its dynamics constitute a solid diagnostic feature of developmental mode. In short germband insects such as Tribolium castaneum, the sequential growth of the germband is followed by a sequential expression of the subsequent Eve stripes in a pair-rule pattern (Patel et al., 1994)(Brown et al., 1997). In both species sequentially formed stripes are transient and disappear in an anterior to posterior progression. This sequential pattern of stripe formation is in sharp contrast with
the (near) simultaneous appearance of the complete Eve pair-rule pattern from an anterior domain in the honeybee (Wilson et al., 2010a) and Bracon hebetor (Grbic and Strand, 1998). In Apis mellifera pair-rule stripes split to form secondary, parasegmental, stripes in a brief anterior to posterior progression, while in B. hebetor they split simultaneously. Interestingly, M. cingulum also resolves a secondary, parasegmental Eve pattern by the split of the individual stripes. Spatially, Eve antigen disappears from the inter-stripe region in a manner reminiscent of that described for its long germband counterparts, the honeybee Apis mellifera and B. hebetor. However, temporally the split of the stripe happens soon after formation of the individual pair-rule stripe, in an anterior to posterior progression as described in the short germband insect T. castaneum. In contrast to the honeybee where Eve even stripes appear more intense than odd parasegmental stripes, in M. cingulum we find that after the split anterior (odd) stripes are more intense than the posterior (even) stripes. These aspects reinforce the notion that the role(s) of evenskipped is particularly labile in the evolution of insects and that short germband development as observed in M. cingulum may have an independent origin from that described in the canonical Tribolium castaneum system. Yet, our data suggests that other aspects of eve function, notably the (probably indirect) regulation of engrailed by eve, is a conserved feature of M. cingulum development. In Drosophila, Eve protein indirectly regulates expression of Engrailed (a segment polarity gene) that specifies the posterior segmental compartments (Fujioka et al., 1995). In all other examined insects except grasshopper (Patel et al., 1992) the expression patterns of Eve and En are consistent with this relationship. Due to technical difficulties we have not performed double staining of Eve and En proteins. However, based on morphological markers En expression appears
to be within Eve stripe domains and En stripes appear sequentially, following the appearance of Eve stripes. Also, Odd stripes of En expression are transiently larger than even stripes (see Fig 3A). Taken together, these observations suggest a regulation of en by eve.

Reverse evolution to short germband development

The phylogeny of Hymenoptera suggests that the suborder Apocrita (parasitic wasps, ants and bees) originated from a dryinid-like ancestor that underwent long germband development. The canonical representative of the basal Apocrita is the long germband Apis mellifera (reviewed in Grbic 2000). The long germband development of cyclostome braconids illustrated by Bracon hebetor suggests that long germband development also represents the ancestral type of development in braconidae (Grbic and Strand 1998). In contrast, the phylogenetic position of the non-cyclostome braconid Macrocentrus cingulum (Shi et al., 2005) suggests that its short germband development constitutes a secondarily derived trait. This notion is reinforced by the strong suspicion that Aphidius ervi, which occupies the sister clade to M. cingulum, undergoes short germband development (Grbic, 2003).

This direction of evolutionary trajectories demonstrates that evolutionary processes can drive not only evolution from the short germband to long germband development, but also that the directionality of evolutionary change can be reversed. Our data suggest that short germband embryogenesis evolved multiple times complementing the proposal that long germband development may have evolved on multiple occasions (Dawes and Patel 2002).

It is firmly established that at the base of the insect lineage lies some version of short germband development (Sander, 1976)(Davis and Patel, 2002). Though originally defined for insects by Krause (Sander, 1976), the short and long germband contrasting modes of development (and all intermediate forms) may be extended to arthropods as a whole, since this dichotomy has been reported in chelicerates, myriapods and crustaceans (Scholtz and Wolff, 2013). Also, in recent years it has suggested that this ancestral mode of segmentation could be shared by vertebrates and invertebrates and date back to the Urbilateria (Peel, 2004)(De Robertis, 2008). One particularly interesting model points to the generic involvement in this mechanism of the Wnt and Notch pathways, coordinately controlling proliferation and segmentation, respectively (McGregor et al., 2009). Indeed, Wnt signalling appears to play a role in axis elongation in all short/intermediate germband arthropods analysed thus far, including spiders (McGregor et al., 2008), Gryllus bimaculatus (Miyawaki et al., 2004) and Tribolium (Bolognesi et al., 2009)(Beermann et al., 2011). Also, central to this idea is evidence showing that Notch signalling participates in short germband embryo segmentation in arthropods such as spiders (Stollewerk et al., 2003) and the cockroach Periplaneta americana (Pueyo et al., 2008), in which the presence of a clock-like mechanism was established recently (Sarrazin et al., 2012). Yet, conflicting evidence gathered in G. bimaculatus (Mito et al., 2011)(Kainz et al., 2011), as well as parsimony arguments speak against the common ancestry scenario and point to an independent co-option of this gene regulatory network (GRN) in the parallel evolution of the short germband mode of segmentation in vertebrates and arthropods (Couso, 2009)(Chipman, 2010). Interestingly, strong evidence
supports the idea that germband growth and segmentation may be decoupled in crustaceans (Williams et al., 2012), chelicerates (Stollewerk et al., 2003) as well as insects, namely Gryllus bimaculatus (Kainz et al., 2011) and Apis mellifera (Wilson et al., 2010b).

It has been proposed that long germband development may have evolved through a heterochronic shift in the ancestral short germband development through a relative delay in segmentation and/or an acceleration of embryo growth (Scholtz, 1992).

Thus, the evolution of short germband development in M. cingulum could be explained as a reversion of this heterochronic change in growth dynamics or a temporal extension of the patterning mechanisms from the ancestor typified by Bracon hebetor. In any case, a burning question raised by this independently evolved short germband type of development, concerns the involvement and importance of the Wnt (and caudal) and Notch pathways in this process. Confirming a role of these pathways would strengthen the notion that the decoupling of elongation and segmentation is plastic and probably a result of the intrinsic properties of the underlying GRN. This would reinforce the hypothesis that segmentation has evolved independently through co-option of an ancient Notch/Wnt-based interaction module devoted to balance cell fate decisions in a wide range of animal development contexts (Hayward et al., 2008). Moreover, the proposed pivotal role of the Notch/Wnt regulatory module in the shift between germband modes may help resolving the difficulties raised by the extreme difference in signalling contexts of Bracon hebetor (long) and M. cingulum (short). Indeed, B. hebetor, the honeybee and Drosophila develop in a syncytium where nuclear divisions are not followed by cytokinesis and depend on a diffusion-based patterning system. In contrast, the M.
cingulum embryo, as other short and intermediate germband arthropods, consists of individualized cells from very early on and must rely on a cell-cell communication patterning system. Future work on the role of this pathway in M. cingulum and other insects and arthropods will clarify the mapping of germband development modes and associated mechanisms onto a high-resolution phylogenetic context. This will permit more robust conclusions on the polarity of change and the mechanistic bases of germband type and segmentation evolution.

Comparing the patterning of Macrocentrus cingulum and Tribolium castaneum, as representative of the putative ancestral state of short germband development, reveals striking similarities. Yet, the extent to which this reversion from long germband development back to short germband may parallel the ancestral situation remains to be determined. One putatively interesting departure from the canonical process of segmentation and growth described for short germband organisms, specifically Tribolium castaneum, is the apparent absence of a growth zone at the posterior tip of the embryo. Indeed, we have failed to confirm a higher density of proliferating cells across the extending abdominal region of the developing embryo. This observation suggests a putative change in the mechanisms operating in these independently evolved short germband organisms. At this point, our analysis is too broad to ascertain conservation or divergence in the players that read the early (maternal) determinants and in those, which regulate the balance between growth and segmentation. We have hypothesized that the Wnt/Notch module may be at the core of this reversion. To test this hypothesis will be highly informative in this respect (the biological system permitting) as the
characterization of a larger regulatory network will help to ascertain the similarities and differences of this GRN to that of Tribolium and provide a putative mechanistic basis for this homoplasy. Moreover, the comparison of the GRN operating in M. cingulum to that of other Braconidae or Hymenoptera would reduce the timescale of the comparison and possibly provide a comprehensive map of GRN topology evolution. The role of constraints and the evolvability of fundamental developmental processes such as segmentation may be best studied and properly quantified at short time scales (Peter and Davidson, 2011) such as those provided by the Braconidae. Indeed, it is becoming more and more evident that the topology of well-established GRNs (typically defined in D. melanogaster) is evolutionarily more plastic than expected (Hinman and Davidson, 2007)(Vreede et al., 2013) despite the undisputed weight of historical contingency (Payne and Wagner, 2013).

Future work on the genetic architecture of germband development modes in M. cingulum and other insects and arthropods, where solid phylogenies for relatively short timescales containing multiple examples of developmental programme (reverse) change, constitute a fertile ground for a proper understanding of the intimate relationship between development and evolution.

Acknowledgements

The authors wish to acknowledge help of Lou Verdon and Jay Whistlecraft for culturing Macrocentrus cingulum. We also thank Tanya Humphrey for critical reading of this manuscript. This work was supported by a Parke-Davis fellowship to K. W. and a

Canadian Foundation for Innovation new opportunity grant and NSERC operating grant awarded to M.G. ES is supported by Instituto Gulbenkian de Ciência/ Fundação Calouste Gulbenkian.

References

Anderson, D.T. 1973. Embryology and phylogeny in annelids and arthropods (Oxford, New York: Pergamon Press).

Beermann, A., Prühs, R., Lutz, R., and Schröder, R. 2011. A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 138: 2793-2805.

Bolognesi, R., Fischer, T.D., and Brown, S.J. 2009. Loss of Tc-arrow and canonical Wnt signaling alters posterior morphology and pair-rule gene expression in the short-germ insect, Tribolium castaneum. Dev. Genes Evol. 219: 369-375.

Brown, S.J., Parrish, J.K., Beeman, R.W., and Denell, R.E. 1997. Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech Dev 61: 165173.

Bucher, G., and Klingler, M. 2004. Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function. Development 131: 1729-1740.

Carroll, S.B., Gates, J., Keys, D.N., Paddock, S.W., Panganiban, G.E., Selegue, J.E., and Williams, J.A. 1994. Pattern formation and eyespot determination in butterfly wings. Science 265: 109-114.

Chang, C., Dearden, P., and Akam, M. 2002. Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev. Biol. 252: 100-118.

Chipman, A.D. 2010. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. BioEssays 32: 60-70.

Christin, P.-A., Weinreich, D.M., and Besnard, G. 2010. Causes and evolutionary significance of genetic convergence. Trends Genet. 26: 400-405.

Couso, J.P. 2009. Segmentation, metamerism and the Cambrian explosion. Int. J. Dev. Biol. 53: 1305-1316.

Davis, G.K., and Patel, N.H. 2002. Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu. Rev. Entomol. 47: 669-699.

Dowton, M., Belshaw, R., Austin, A.D., and Quicke, D.L.J. 2002. Simultaneous molecular and morphological analysis of braconid relationships (Insecta: Hymenoptera: Braconidae) indicates independent mt-tRNA gene inversions within a single wasp family. J. Mol. Evol. 54: 210-226.

Fleig, R. 1990. Engrailed expression and body segmentation in the honeybee Apis mellifera. Rouxs Arch. Dev. Biol. 198: 467-473.

Fujioka, M., Jaynes, J.B., and Goto, T. 1995. Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. Development 121: 4371-4382.

Gauld, I.D. 1988. Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenopetra: Ichneumonidae and Braconidae). Biol. J. Linn. Soc. 35: 351-377.

Gilbert, S.F., and Epel, D. 2009. Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, Sunderland, MA.

Goltsev, Y., Fuse, N., Frasch, M., Zinzen, R.P., Lanzaro, G., and Levine, M. 2007. Evolution of the dorsal-ventral patterning network in the mosquito, Anopheles gambiae. Development 134: 2415-2424.

Gompel, N., and Prud'homme, B. 2009. The causes of repeated genetic evolution. Dev. Biol. 332: 36-47.

Grbic, M. 2000. "Alien" wasps and evolution of development. Bioessays 22: 920-932.

Grbic, M. 2003. Polyembryony in parasitic wasps: evolution of a novel mode of development. Int. J. Dev. Biol. 47: 633-642.

Grbic, M., Nagy, L.M., Carroll, S.B., and Strand, M. 1996. Polyembryonic development: insect pattern formation in a cellularized environment. Development 122: 795-804.

Grbic, M., and Strand, M.R. 1998. Shifts in the life history of parasitic wasps correlate with pronounced alterations in early development. Proc. Natl. Acad. Sci. USA 95: 1097-1101.

Green, A.A., Kennaway, J.R., Hanna, A.I., Bangham, J.A., and Coen, E. 2010. Genetic control of organ shape and tissue polarity. PLoS Biol. 8: e1000537.

Hayward, P., Kalmar, T., and Arias, A.M. 2008. Wnt/Notch signalling and information processing during development. Development 135: 411-424.

Heming, B.S. 2003. Insect development and evolution. Comstock Pub. Associates, Ithaca, NY.
Hinman, V.F., and Davidson, E.H. 2007. Evolutionary plasticity of developmental gene regulatory network architecture. Proc. Natl. Acad. Sci. USA 104: 19404-19409.

Jaeger, J. 2011. The gap gene network. Cell. Mol. Life Sci. 68: 243-274.

Jeffery, W.R. 2009. Regressive evolution in Astyanax cavefish. Annu. Rev. Genet. 43: 25-47.

Kainz, F., Ewen-Campen, B., Akam, M., and Extavour, C.G. 2011. Notch/Delta signalling is not required for segment generation in the basally branching insect Gryllus bimaculatus. Development 138: 5015-5026.

Kalinka, A.T., Varga, K.M., Gerrard, D.T., Preibisch, S., Corcoran, D.L., Jarrells, J., Ohler, U., Bergman, C.M., and Tomancak, P. 2010. Gene expression divergence recapitulates the developmental hourglass model. Nature 468: 811-814.

Krauss, V., Thümmler, C., Georgi, F., Lehmann, J., Stadler, P.F., and Eisenhardt, C. 2008. Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Mol. Biol. Evol. 25: 821-830.

Lall, S., and Patel, N.H. 2001. Conservation and divergence in molecular mechanisms of axis formation. Annu. Rev. Genet. 35: 407-437.

Liu, P.Z., and Kaufman, T.C. 2004. Krüppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 131: 4567-4579.

Liu, P.Z., and Kaufman, T.C. 2005a. even-skipped is not a pair-rule gene but has segmental and gap-like functions in Oncopeltus fasciatus, an intermediate germband insect. Development 132: 2081-2092.

Liu, P.Z., and Kaufman, T.C. 2005b. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol. Dev. 7: 629-646.

Lynch, J.A., and Roth, S. 2011. The evolution of dorsal-ventral patterning mechanisms in insects. Genes Dev. 25: 107-118.

Manceau, M., Domingues, V.S., Linnen, C.R., Rosenblum, E.B., and Hoekstra, H.E. 2010. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365: 2439-2450.

McGregor, A.P., Pechmann, M., Schwager, E.E., and Damen, W.G. 2009. An ancestral regulatory network for posterior development in arthropods. Commun. Integr. Biol. 2: 174-176.

McGregor, A.P., Pechmann, M., Schwager, E.E., Feitosa, N.M., Kruck, S., Aranda, M., and Damen, W.G.M. 2008. Wht8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr. Biol. 18: 1619-1623.

Mito, T. 2005. Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132: 2069-2079.

Mito, T., Kobayashi, C., Sarashina, I., Zhang, H., Shinahara, W., Miyawaki, K., Shinmyo, Y., Ohuchi, H., and Noji, S. 2007. even-skipped has gap-like, pair-rule-like, and segmental functions in the cricket Gryllus bimaculatus, a basal, intermediate germ insect (Orthoptera). Dev. Biol. 303: 202-213.

Mito, T., Okamoto, H., Shinahara, W., Shinmyo, Y., Miyawaki, K., Ohuchi, H., and Noji, S. 2006. Krüppel acts as a gap gene regulating expression of hunchback and even-skipped in the intermediate germ cricket Gryllus bimaculatus. Dev. Biol. 294: 471-481.

Mito, T., Shinmyo, Y., Kurita, K., Nakamura, T., Ohuchi, H., and Noji, S. 2011. Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 138: 3823-3833.

Miyawaki, K., Mito, T., Sarashina, I., Zhang, H., Shinmyo, Y., Ohuchi, H., and Noji, S. 2004. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech. Dev. 121: 119130.

Parker, H.L. 1931. Macrocentrus gifuensis Ashmead, a poliembryonic braconid parasite of the European corn borer. USDA Tech Bull 230: 62.

Patel, N.H., Ball, E.E., and Goodman, C.S. 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357: 339-342.

Patel, N.H., Condron, B.G., and Zinn, K. 1994. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367: 429-434.

Patel, N.H., Martin-Blanco, E., Coleman, K.G., Poole, S.J., Ellis, M.C., Kornberg, T.B., and Goodman, C.S. 1989. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58: 955-968.

Payne, J.L., and Wagner, A. 2013. Constraint and contingency in multifunctional gene regulatory circuits. PLoS Comput. Biol. 9: e1003071.

Peel, A. 2004. The evolution of arthropod segmentation mechanisms. BioEssays 26: 1108-1116.
Peel, A.D. 2008. The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Philos. Trans. R. Soc. B Biol. Sci. 363: 1539-1547.

Peel, A.D., Chipman, A.D., and Akam, M. 2005. Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet. 6: 905-916.

Peter, I.S., and Davidson, E.H. 2011. Evolution of gene regulatory networks controlling body plan development. Cell 144: 970-985.

Prud'homme, B., Gompel, N., Rokas, A., Kassner, V.A., Williams, T.M., Yeh, S.D., True, J.R., and Carroll, S.B. 2006. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440: 1050-1053.

Pueyo, J.I., Lanfear, R., and Couso, J.P. 2008. Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc. Natl. Acad. Sci. USA 105: 16614-16619.

De Robertis, E.M. 2008. The molecular ancestry of segmentation mechanisms. Proc. Natl. Acad. Sci. USA 105: 16411-16412.

Robinson, S., Barbier de Reuille, P., Chan, J., Bergmann, D., Prusinkiewicz, P., and Coen, E. 2011. Generation of spatial patterns through cell polarity switching. Science 333: 1436-1440.

Saffman, E.E., and Lasko, P. 1999. Germline development in vertebrates and invertebrates. Cell. Mol. Life Sci. 55: 1141-1163.

Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12: 125-238.

Sarrazin, A.F., Peel, A.D., and Averof, M. 2012. A Segmentation Clock with Two-Segment Periodicity in Insects. Science 336: 338-341.

Savard, J., Tautz, D., Richards, S., Weinstock, G.M., Gibbs, R.A., Werren, J.H., Tettelin, H., and Lercher, M.J. 2006. Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. Genome Res. 16: 1334-1338.

Scholtz, G. 1992. Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda) : germ band formation, segmentation, and early neurogenesis. Roux's Arch. Dev. Biol. 202: 36-48.

Scholtz, G., and Wolff, C. 2013. Arthropod embryology: cleavage and germ band development. In A. Minelli, G. Boxshall, G. Fusco (eds). Arthropod Biology and Evolution: Molecules, Development, Morphology. Springer, Berlin-Heidelberg, pp. 63-89.

Shi, M., Chen, X.X., and van Achterberg, C. 2005. Phylogenetic relationships among the Braconidae (Hymenoptera: Ichneumonoidea) inferred from partial 16S rDNA, 28S rDNA D2, 18S rDNA gene sequences and morphological characters. Mol. Phylogenet. Evol. 37: 104-116.

Sommer, R.J., Retzlaff, M., Goerlich, K., Sander, K., and Tautz, D. 1992. Evolutionary conservation pattern of zinc-finger domains of Drosophila segmentation genes. Proc. Natl. Acad. Sci. USA 89: 10782-10786.

Sommer, R.J., and Sternberg, P.W. 1996. Evolution of nematode vulval fate patterning. Dev. Biol. 173: 396-407.

Stern, D.L., and Orgogozo, V. 2008. The loci of evolution: how predictable is genetic evolution? Evolution 62: 2155-2177.

Stern, D.L., and Orgogozo, V. 2009. Is genetic evolution predictable? Science 323: 746-751.
Stollewerk, A., Schoppmeier, M., and Damen, W.G.M. 2003. Involvement of Notch and Delta genes in spider segmentation. Nature 423: 863-865.

Sucena, E., Delon, I., Jones, I., Payre, F., and Stern, D.L. 2003. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 42:, 935-938.

Sucena, E., and Stern, D.L. 2000. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc Natl Acad Sci USA 97: 4530-4534.

Tautz, D., Friedrich, M., and Schroeder, R. 1994. Insect embryogenesis - what is ancestral and what is derived? Development suppl: 193-199.

Voukassovitch, P. 1927. Observations biologiques sur le Macrocentrus abdominalis Fab., braconide parasite. Hebd. Soc. Biol. 94: 379-381.

Vreede, B.M., Lynch, J.A., Roth, S., and Sucena, É. 2013. Co-option of a coordinate system defined by the EGFr and Dpp pathways in the evolution of a morphological novelty. EvoDevo 4: 7.

Whitfield, J.B. 1998. Phylogeny and evolution of host-parasitoid interactions in hymenoptera. Annu. Rev. Entomol. 43: 129-151.

Wilkins, A.S. 2002. The evolution of developmental pathways. Sinauer Associates, Sunderland, MA.

Williams, T., Blachuta, B., Hegna, T.A., and Nagy, L.M. 2012. Decoupling elongation and segmentation: Notch involvement in anostracan crustacean segmentation. Evol. Dev. 14:372382.

Wilson, M.J., Havler, M., and Dearden, P.K. 2010a. Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev. Biol. 339: 200-211.

Wilson, M.J., McKelvey, B.H., van der Heide, S., and Dearden, P.K. 2010b. Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Dev. Genes Evol. 220: 179-190.

Wittkopp, P.J., and Beldade, P. 2009. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20: 65-71.

Wray, G.A., and Bely, A.E. 1994. The evolution of echinoderm development is driven by several distinct factors. Development Suppl: 97-106.

Zhurov, V., Terzin, T., and Grbic, M. 2004. Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432: 764-769.

Zhurov, V., Terzin, T., and Grbic, M. 2007. (In)discrete charm of the polyembryony: evolution of embryo cloning. Cell Mol. Life Sci. 64: 2790-2798.

Figure legends:

Figure 1

Early morphogenesis of Macrocentrus cingulum
(A) Early embryonic primordium. The arrow points to the hollow cavity. Asterisk marks extraembryonic membrane and arrowhead points to rounded cells with specific "cobblestone" appearance. (B) Radially symmetric early embryonic primordium dissected from the extraembryonic membrane. Apical cell surface flattened (compare to A). (C) Broken embryonic primordium showing the blastocoel cavity (arrow) and tightly organized columnar cells (arrowhead). (D) Initiation of dorso-ventral flattening of the embryonic primordium. (E) Flattened embryonic primordium. (F) Onset of dorsal opening formation (arrow). (G) Expansion of dorsal opening (arrow) and formation of donut-shaped embryo. (H) Folding of the embryonic epithelium at anterior (arrowhead) and posterior (arrow). Embryo forms a cup-shape. Inset: high magnification of posterior area marked by rectangle. Anterior is up.

Figure 2
Germband extension and segmentation of Macrocentrus cingulum
(A) Initiation of the embryonic growth and gastrulation. Arrow marks the gastrulating cells. (B) Posterior coiling of the embryo. Arrow points to extracellular matrix in dorsal area. (C) Embryo undergoing the germband extension. (D) Progressive elongation of the embryo. Posterior transient furrow is marked by the arrow. (E) Embryo at the similar stage as D but uncoiled, showing enlarged dorsal opening (arrow). (F) Initiation of cephalic furrow formation (arrowhead). At this time, the gastrulation furrow extends along the ventral midline (arrow). (G) Broken embryo showing tightly interdigitated columnar epithelium. (H) Bulging of the head lobes. (I) Formation
of the gnathal furrow (arrow). (J) Separation of mandibular (m), maxillary (ml) and labial (l) segments. An arrow marks labral furrow. (K) Bulging of gnathal segments and formation of the thoracic furrow (arrow). (L) Formation of another furrow in the thoracic region. (M) Germband condensation and initiation of gnathal involution (arrow). All segmental furrows are visible. Arrow marks primordia of the proleg-like structures. (N) Completely condensed embryo. Involution of gnathal segments is marked by arrow and proleg-like structures by arrowheads. (O) Completely formed larva comprising of 3 thoracic (T1-3) 10 abdominal segments (A1-10) and telson (T). Anterior is to the left and dorsal is up.

Figure 3

Expression of Vasa and Engrailed proteins in Macrocentrus cingulum
(A-D) The initial Vasa protein localization to the posterior terminus of the embryo is consistent with a conserved role in specifying posterior in M cingulum. (C-E) At later stages, the number of Engrailed stripes increases through sub-terminal growth of the embryo, anterior to Vasa-positive cells. (F-H) As the embryo grows, Vasa-positive cells exhibit the canonical migration to a more medial-posterior bilateral localization, consistent with germ cell placement at the differentiating gonad primordium.

Figure 4

In situ hybridization analysis of Macrocentrus cingulum Krüppel
Krüppel expression in M. cingulum is reminiscent in its patterns and dynamics to other described short and intermediate germband embryos. (A) Very early embryos do not
show $K r$ expression. (B-E) Early $M c-K r$ expression exhibits a typical gap-like pattern and covers the presumptive thoracic region. (F-H) As in all insects studied thus far, later expression in CNS can be observed.

Figure 5

Expression of Eve in Macrocentrus cingulum

(A) Expression of Eve in the flattened embryo primordium. The arrow marks nuclear antigen localization in the anterior region. (B) Expression of Eve in the cup-stage embryo. The arrow marks the posterior group of cells that do not express Eve and arrowheads the anterior Eve boundary. (C) Formation of the first Eve stripe (marked 1ab). Arrowheads mark the anterior boundary of the posterior Eve domain, which is visible as a continuous expression only on edges of the embryo due to embryo curvature (D) Split of the first stripe (arrow) where anterior stripe is marked 1a and posterior 1 b . A second stripe has been formed (arrowhead). (E) The split of the second Eve stripe (2a and 2b). Note that the first Eve stripe already started to fade. Arrowheads mark the anterior boundary of the posterior Eve domain. (F) Formation of third secondary (3a and 3b) and fourth pair-rule (4ab) Eve stripes. The arrowhead demarcates the posterior zone expressing Eve. (G) Split of fourth and fifth Eve stripe and formation of sixth and seventh pair-rule stripe. Stripe 5 b is partly obscured by the embryo head. (H) Completely extended germband showing expression of Eve in stripe 8a and 8b. Note that all Eve anterior stripes have faded. (I) Expression of Eve in the nervous system and dorsal
mesoderm. The arrow marks Eve-positive neurons and the arrowhead expression in dorsal mesoderm that has faded in the anterior region.

Figure 6

Expression of En in Macrocentrus cingulum

(A) Formation of first (arrow) and second (arrowheads) En stripes (red) in the cup-stage embryo.
(B) Formed third (arrow) and initiation of the fourth En stripe (asterisk marks this stripe in B-F) during germband extension. (C) Sequential formation of fifth and sixth En stripe. Asterisk marks the first thoracic stripe and arrowhead shows the initiated sixth En stripe. (D) Embryo at the extended germband stage displaying fifteen En stripes. (E) Completely extended germband with sixteen En stripes. (F) Embryo undergoing the germband condensation expressing the mature pattern on En. Embryos are counterstained with phalloidin (green) and oriented with anterior to the left and dorsal up except A and C, which display a ventral view.

Figure 7

Cell proliferation profile throughout Macrocentrus cingulum development (A-D) Simultaneous anti-En and anti-Histone H3 antibody staining in the segmenting embryo show no clear preferential mitotic domain associated to embryo elongation. mb - mandibular; mxmaxillary.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

B

$$
\mathrm{ma}^{\mathrm{mx}}
$$

