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Wolbachia are intracellular symbionts of many species of animals, mostly arthropods. 25 

Vertical transmission of Wolbachia is exclusively maternal and this endobacterium promotes 26 

reproductive manipulations of its hosts, increasing the fitness of infected females. Moreover, 27 

Wolbachia provides its hosts with a wide range of adaptive features ranging from protection 28 

against viral infections to dietary niche occupancy. Therefore, Wolbachia can potentially 29 

contribute to the evolutionary processes of sexual selection and speciation. The horizontal 30 

transmission of Wolbachia is strongly suggested by the non-concordant phylogeny of this 31 

endosymbiont and that of its hosts. However, the ecological mechanism(s) responsible for 32 

endosymbiont transmission between different hosts is still largely unknown. In the present 33 

study, we look at ingestion as a possible natural form of Wolbachia horizontal transmission. 34 

To this aim, we tested cannibalism between infected and uninfected Drosophila hosts, under 35 

different conditions of nutrition and gut integrity. Although ingestion represents a general and 36 

incontestable portal of entry for microorganisms, we did not find infection by Wolbachia in 37 

the progeny of cannibal individuals fed on infected flies. Our study suggests that if ingestion 38 

is a vehicle for horizontal transmission of Wolbachia in nature, either it happens very rarely or 39 

it requires other factors or conditions to be effective. We discuss the likeliness of this 40 

mechanism with respect to the likelihood of each step necessary for horizontal transmission. 41 
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 47 

1 Introduction 48 

The α-proteobacteria of the Genus Wolbachia live intracellularly in a variety of 49 

animals, including arthropods and nematodes (Werren 1997; Harris et al. 2010). In 50 

arthropods, Wolbachia is typically transmitted vertically from mother to offspring. It causes a 51 

wide range of reproductive manipulations in different host species whereby increasing the 52 

fitness of infected females and, consequently, also increasing its own transmission rate 53 

(Charlat et al. 2003). These mechanisms include: (i) the induction of cytoplasmic 54 

incompatibility between individuals that do not share infection status, (ii) the induction of 55 

parthenogenesis in diploid females and (iii) the feminization or death of infected males (for 56 

revision see Werren et al. (2008)). Additionally, recent studies have shown that in Drosophila 57 

melanogaster, Wolbachia infection may also confer an advantage to its host through an 58 

increased resistance to RNA virus infection (Hedges et al. 2008; Teixeira et al. 2008). 59 

It is estimated that Wolbachia infects 20-80% of insect species (Jeyaprakash and Hoy 60 

2000) possibly making it the most recurrent endosymbiont on the planet. The wide 61 

distribution of these bacteria is attributed to the high efficacy of vertical transmission. This 62 

efficacy may rely on Wolbachia using the host’s cytoskeleton and intracellular transport 63 

system to migrate towards the germline precursors and ensure its presence inside future 64 

embryos (Ferree et al. 2005; Serbus and Sullivan 2007). In addition to the colonization of the 65 

germline during embryogenesis, Wolbachia remaining inside the embryo are internalized in 66 

progenitor cells of the somatic tissue (Frydman et al. 2006; Goto et al. 2006), with potential 67 

physiological and evolutionary consequences (Faria and Sucena 2013). 68 

 The widespread presence of Wolbachia must also rely on horizontal transmission, 69 

which can be attested by the presence of close strains of Wolbachia in phylogenetically 70 

distant hosts (Vavre et al. 1999; Baldo et al. 2008). Indeed, unlike mitochondria or obligatory 71 
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bacterial endosymbionts, the molecular phylogeny of Wolbachia is not always concordant 72 

with that of its hosts (Werren and O’Neill 1997; Jiggins et al. 2002). These well-established 73 

patterns raise two important questions: i) which ecological conditions and mechanisms 74 

mediate horizontal transmission and ii) how does a transient horizontal transfer turn into a 75 

stable vertical transmission? Regarding this problem Frydman and colleagues reported that 76 

when haemolymph of an infected D. melanogaster fly is microinjected into adult uninfected 77 

females, Wolbachia could be transmitted vertically (Frydman et al. 2006). After 15 days upon 78 

haemolymph microinjection into uninfected female flies, Wolbachia could be detected in their 79 

offspring after preferentially establishing itself in the ovaries somatic stem cell niches. Also, it 80 

has been shown that Wolbachia is viable for several days outside the host’s cell, thus allowing 81 

for a possible transfer across cells (Rasgon et al. 2006). Together these reports provide a link 82 

between horizontal and vertical transmission, indicating that any mechanism capable of 83 

introducing Wolbachia into the female’s haemolymph may permit the establishment and 84 

perpetuation of Wolbachia in new hosts. 85 

Despite their importance for understanding the epidemiological and evolutionary 86 

dynamics of Wolbachia infection, the ecological mechanisms responsible for the transfer of 87 

bacteria to new hosts in nature are still largely unknown (Haine et al. 2005). One strong 88 

candidate mechanism consists of parasitoid wasps acting as Wolbachia vectors. This is based 89 

on different evidence: i) the extensive similarities between Wolbachia strains found in 90 

parasitoids and their hosts (Vavre et al. 1999; Li et al. 2013); ii) Wolbachia can be transmitted 91 

to a parasitic wasp from its infected host (Heath et al. 1999; Morrow et al. 2014); iii) when 92 

infected and uninfected parasitoid wasp larvae share the same host egg, intra- and 93 

interspecific horizontal transfer of parthenogenesis-inducing Wolbachia may occur 94 

(Schilthuizen and Stouthamer 1997; Huigens et al. 2000; Huigens et al. 2004). Another 95 

hypothetical vector for horizontal transmission of Wolbachia are ectoparasitic mites, known 96 
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to transfer the Drosophila endosymbiont, Spiroplasma poulsonni, from infected D. nebulosa 97 

to D. willistoni (Jaenike et al. 2007). Based on our observations of Drosophila larval and adult 98 

behaviour in crowded environments, we reasoned that cannibalism or scavenging, often 99 

witnessed not only in the laboratory but also in nature, could constitute a route for horizontal 100 

Wolbachia transfer. Moreover, occasional horizontal transmission via the oral route has been 101 

reported for the pea aphid Bemisia-like symbiont (Darby and Douglas 2003). Indeed, the 102 

digestive system is considered to be the major interface between the insect host and the 103 

microbial environment, constituting a privileged gateway for microorganism invasion 104 

(Douglas and Beard 1996). However, as most ingested bacteria are eliminated by the immune 105 

system or by peristalsis, few bacteria can persist in large numbers in the digestive tract of 106 

insects (Vallet-Gely et al. 2008). Nonetheless it is important to note that some bacterial 107 

species ensure their proliferation in recent hosts by passing through the digestive tract to other 108 

organs or cavities (Marsollier et al. 2005; Chiel et al. 2009). 109 

Recent studies have demonstrated that, after predation of infected hosts, previously 110 

uninfected isopods, Armadillidium vulgare and Porcellio dilatatus dilatatus, would become 111 

infected with Wolbachia (Le Clec’h et al. 2013).  Also, in the ant Acromyrmex echinatior, it 112 

has been hypothesized that the faecal-oral route could constitute a means for horizontal 113 

transmission of Wolbachia (Frost et al. 2014). 114 

In this work, we have tested if upon ingestion Wolbachia could be transmitted stably 115 

to the offspring of a Drosophila host. For this, several ingestion experiments were performed 116 

using infected and uninfected hosts of D. melanogaster and D. simulans, at different 117 

developmental stages. Nutritional variation, dehydration and intestinal injury were used in an 118 

attempt to mimic naturally-occurring potentiating factors for the passage of Wolbachia into 119 

the body cavity of the fly and the subsequent establishment of a symbiotic relationship with 120 

the new host. Through a PCR-based analysis of the offspring we were unable to find any 121 
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infection by Wolbachia, both in early and late progeny. This result suggests that the ingestion 122 

of Wolbachia by a non-infected new host is not sufficient in itself to establish a stable 123 

infection horizontally or is too rare to be detected within the limits of our experiment. 124 

 125 

2 Materials and Methods 126 

2.1 Foundation and maintenance of Drosophila outbred populations 127 

Outbred populations of Drosophila melanogaster and Drosophila simulans were established 128 

in the laboratory (Martins et al. 2013). Wolbachia-infected D. melanogaster and D. simulans, 129 

collected from the southwest of Portugal (Azeitão) were used to establish two laboratory 130 

populations (MelO+ and SimO+, respectively). After over 50 generations in the laboratory, 131 

MelO+ and SimO+ were replicated for the establishment of four new populations: two infected 132 

with Wolbachia as the founding populations (mel+ and sim+) and two treated with tetracycline 133 

during four generations for total Wolbachia elimination (mel- and sim-). We confirmed the 134 

absence of Spiroplasma in all populations. For the Serratia assays, the D. simulans 135 

populations were established using two isofemale lines from the Drosophila Species Stock 136 

Centre (UC San Diego, California, US) sim+ (14021-0251.138) and sim- (14021-0251.01). All 137 

populations were kept in cages with an effective size between 1500 and 2000 individuals with 138 

non-overlapping generations, in a day/night cycle of 12 hours, constant temperature of 25º C, 139 

standard level of relative humidity (70%) and fed on standard cornmeal-agar medium. The 140 

infection status of populations was monitored regularly through PCR (see below).  141 

 142 

2.2 Wolbachia extraction 143 

Wolbachia was extracted by crushing 100 infected adults or approximately 500 embryos of D. 144 

melanogaster or D. simulans, previously washed in 70% ethanol, and transferred to 1mL of 145 

ice-cold PBS (adapted from (Frydman et al. 2006)). For adult co-infected ingestion assays and 146 
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adapting a protocol described previously (Rasgon et al. 2006), Wolbachia were extracted by 147 

smashing approximately 500 infected flies in 10mL of Schneider’s medium. The confirmation 148 

of bacterial viability after extraction was also performed as described in Rasgon et al. (2006). 149 

In all cases, the homogenate was used entirely.  150 

 151 

2.3 Adult Ingestion assay 152 

For ingestion experiments with adults, 4-7 day old females were used from the mel- 153 

population. From the regular stock of flies (which were maintained in rich medium), 20 154 

replicates of 20 adult females were used to exclusively ingest 250µL of a Wolbachia-155 

containing suspension homogenized in PBS (from infected adults of mel+ populations) for a 156 

period of 48-hours. These experiments were also undertaken with a previous 72-hour 157 

treatment either with a poor medium (rich medium diluted 1:10 in water) or in a condition of 158 

starvation, where the females spent a 48-hour period in total absence of nutritional resources 159 

until the beginning of the ingestion treatment.  160 

 161 

2.4 Larval ingestion assay 162 

For the ingestion experiments with larvae, we used mel- larvae from the three larval stages. 163 

Larvae ingested a homogenate, containing adults (or embryos), from mel+ or sim+ populations 164 

infected with Wolbachia for a period of 24 hours. In each of the experiments, 5 replicates of 165 

50 larvae were fed on 500µL of homogenate from 40 flies.  166 

 167 

2.5 Adult co-infected ingestion assays 168 

For ingestion experiments with adults, 4-7 day old females were used from the mel- 169 

population. From the regular stock of flies, 10 adult females were used per replicate to 170 

exclusively ingest i) 250µL of Serratia marcescens (a kind gift from B. Lemaitre) for a period 171 
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of 24 hours ii) 250µL of a Wolbachia-containing suspension for a period of 24 hours. The 172 

food solution containing Serratia was prepared from an overnight culture grown 173 

exponentially at 37 ºC and was diluted with a sterile 50-mM sucrose solution to a final 174 

OD600= 15. These experiments were also undertaken either with Wolbachia with a previous 175 

24-hour ingestion treatment with LB or with Serratia and posterior treatment with sim- and 176 

mel-.  177 

 178 

2.6 Diagnostic PCR 179 

In all procedures, tested females gave rise to the adult F1 from which genomic DNA was 180 

extracted (in pools of 10 adult females) and screened for Wolbachia infection by PCR through 181 

the amplification of wsp gene fragment using primers wsp81F 5´TGG TCC AAT AAG TGA 182 

TGA AGA AAC 3´ and wsp691R  5´AAA AAT TAA ACG CTA CTC CA 3´ (Zhou et al. 183 

1998). Wolbachia strains of D. melanogaster and D. simulans generate PCR amplicons of 184 

different sizes, 632bp and 611bp, respectively. This diagnostic PCR was further confirmed in 185 

10% of samples chosen randomly by sequencing the respective PCR products. 186 

 187 

3 Results and Discussion 188 

We fed D. melanogaster larvae and adults of the Wolbachia negative outbred 189 

population (mel-) with embryo or adult fly homogenates from Wolbachia infected populations 190 

of D. melanogaster (mel+) and D. simulans (sim+). As controls we applied the same 191 

procedures using homogenates from uninfected populations referred to as mel- and sim-. The 192 

status of Wolbachia infection of the populations used in these experiments is shown in Figure 193 

1A, also illustrating the size difference between wsp gene amplification products of 194 

Wolbachia strains from D. melanogaster and D. simulans. Confirmation of the different 195 

strains was obtained by sequencing the wsp gene fragment (Figure 1B). These results validate 196 
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our procedure for the simultaneous determination of the infection status and Wolbachia strain 197 

present in individual or pooled adult flies (as to ascertain instances of intra- or interspecific 198 

transmission). We tested the F1 of fed females at two time points: early F1 (8 to 10 days) and 199 

in late F1 (more than 15 days), determined by the description of Wolbachia dynamics upon 200 

entry into the haemolymph and subsequent stable establishment in the germline (Frydman et 201 

al. 2006). A representative gel of the PCR-based screen for Wolbachia infection is presented 202 

in Figure 1C. 203 

Larval ingestion could lead to the stable transmission of Wolbachia by one of two 204 

ways: i) establishing itself in cells of somatic tissue, surviving the metamorphosis stage of the 205 

host and colonizing the ovaries of adult females, or ii) crossing the epithelium of the digestive 206 

system and colonizing the stem cells of the future ovary. To validate these findings, we fed D. 207 

melanogaster larvae of different stages, previously maintained in normal medium, a 208 

homogenate of mel+ and sim+ infected embryos or adults for 24 hours (Table 1). In a second 209 

set of experiments, we placed mel- adult flies on a diet composed of a mel+ adult homogenate 210 

for 48 hours (Table 2 – A). If ingestion of Wolbachia occurs in the adult stage, it should be 211 

enough for a successful transmission that the endosymbiont crosses the midgut and passes to 212 

the haemolymph (Frydman et al. 2006). Yet, it should be stressed that it is unclear what is the 213 

necessary concentration of haemolymph Wolbachia for the establishment of these bacteria in 214 

the ovaries.  215 

Both in the larvae and adult ingestion experiments, the early and late F1 flies tested 216 

did not show the presence of Wolbachia (Table 1 and Table 2 – A, “Wol F1e and Wol F1l”). 217 

This negative result holds true even when varying the Wolbachia source, both D. 218 

melanogaster and D. simulans (intra- or interspecific), and the stage at which the Wolbachia 219 

homogenate was extracted, embryos or adults. Our findings indicate that if horizontal 220 
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transmission by ingestion occurs in nature, within or between Drosophila species, it is a rare 221 

event. 222 

Another aspect to consider is that our progeny analysis treats the whole putative 223 

process of infection as a binary outcome (F1 infected or non-infected) and cannot pinpoint the 224 

critical step at which the infection fails to progress. We may consider the absence of 225 

Wolbachia in the D. melanogaster F1 flies as the product of low probability events, each one 226 

necessary for the occurrence of horizontal transmission. We can formalize this idea through 227 

the equation: 228 

PHT(W)  =  PEI (α)  X  PAH (β)  X  PBS (γ)  X  POC (δ)  X  PVT (ε) 229 

where the probability of any horizontal transmission of Wolbachia (PHT (W)) is equal to 230 

multiplying the probabilities of all the independent steps required for its occurrence: the 231 

environmental interaction between Wolbachia infected and non-infected individuals (PEI), 232 

here tested as ingestion; the access of Wolbachia to the haemolymph (PAH); the bacterial 233 

survival in the new host (PBS); the colonization of ovaries (POC); and the vertical transmission 234 

(PVT). Each of these steps can still be associated with a correction factor (α, β, γ, δ and ε) 235 

linked to specific ecological conditions.  236 

Wolbachia ingestion by a non-infected new host is not in itself sufficient to establish a 237 

stable infection in Drosophila but specific ecological conditions may favour this process 238 

(here, formalized as α, β, γ, δ and ε). Indeed, there is ample evidence that several aspects of 239 

host life-history have a significant impact on the transmission of Wolbachia (McGraw and 240 

O’Neill 1999; Hurst et al. 2001; Mouton et al. 2007). Thus, we have manipulated some of 241 

these factors in order to favour horizontal transmission via ingestion, namely starvation and 242 

infection with a known natural bacterial pathogen. Interestingly, under nutritional restriction, 243 

the apoptotic region present in the ovaries (region 2a/2b of the germarium) (Drummond-244 

Barbosa and Spradling 2001) overlaps with the region of Wolbachia entrance into the 245 
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germinal tissue (Frydman et al. 2006), raising the hypothesis that the invasion of the germinal 246 

tissue by Wolbachia is opportunistic (δ). Additionally, the absence of nutritional resources in 247 

nature could also trigger an increase in cannibalism (α) and in bacterial infections due to the 248 

weakening of the host’s tissue barrier by cell death (β). With this aim, we placed mel- adult 249 

females, previously maintained in nutritionally poor medium or under starvation, on a diet 250 

composed of a mel+ adult homogenate for 48 hours (Table 2 – B). Under these conditions we 251 

observed a total absence of Wolbachia in F1 tested females. Next, we used an oral infection 252 

model by previous infection with Serratia marcescens as an enhancer of secondary infection 253 

with ingested Wolbachia (β). Indeed, it has been shown that severe intestinal injury produced 254 

by S. marcescens promotes its crossing from the gut to the fly’s body cavity (Nehme et al. 255 

2007). The subsequent ingestion of Wolbachia could follow the same route, increasing the 256 

probability of Wolbachia entry into the Drosophila haemolymph. In this experiment, adult 257 

females ingested a suspension of the entomobacterium S. marcescens and, subsequently, 258 

ingested Wolbachia extracted from infected adults of D. melanogaster and D. simulans (mel+ 259 

and sim+) (Table 3). Here, only the late progeny of female flies was analyzed and the 260 

percentage of female mortality three days after ingestion of S. marcescens is shown (Table 3 – 261 

“F0 Mortality”). Regardless of a previous exposure to injury stress, these females did not give 262 

rise to Wolbachia infected F1s, indicating the absence of Wolbachia transmission (Table 3 – 263 

“Wol F1l”). Despite the absence of Wolbachia in late progeny of tested females, this co-264 

infection scenario presents itself as an excellent model to study the horizontal transmission of 265 

several endosymbionts to different potential new hosts. Indeed, recently it has been proposed 266 

that the ingestion of mushrooms could constitute the gateway for Wolbachia transmission 267 

between species (Stahlhut et al. 2010). 268 

After an ingestion episode and once inside a potential new host, bacteria must endure 269 

the local defence deployed by the digestive system, such as low pH, the production of 270 
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Reactive Oxygen Species (ROS) and Anti-Microbial Peptides (AMPs). Insect parasitoids, 271 

mites or wounding can avoid this immune local challenge by providing a more direct path for 272 

bacteria to penetrate the body cavity of the new host. This route is not without danger as  273 

invading Wolbachia must survive the host melanization reaction triggered by injury. Finally, 274 

for Wolbachia to establish a viable horizontal infection once in the haemolymph (Frydman et 275 

al. 2006), it must overcome the systemic action of AMPs and phagocytosis by haemocytes. 276 

As a result, it is still unclear if the individual frequencies or efficiencies of each one of these 277 

potential mechanisms would be enough to explain all the evidence for horizontal 278 

transmission. An additional important element consists on the effects that ecological co-279 

factors (such as those studied here: resource limitation and co-infection) have on Drosophila 280 

immune response translating into changes in the success of bacteria to invade and establish (γ) 281 

(Schneider 2009). 282 

Thus, the mechanisms governing horizontal transmission of facultative endobacteria, 283 

particularly of Wolbachia, remain unknown. As mentioned above, insect parasitoids and 284 

parasitic mites may promote some of these symbiotic exchanges; however, other mechanisms 285 

that complete the puzzle of the pathways that facultative endobacterial species utilize to 286 

accomplish a new invasion, have yet to be explained. Although Wolbachia has been 287 

specializing throughout evolution in the vertical transmission strategy, we do not know the 288 

true horizontal transmission capacity of this endobacterium, a feature which is an ancestral 289 

characteristic of rickettsial bacteria and is still conserved in close related Genera (Anderson 290 

and Karr 2001). Therefore, it is essential to continue the study of the mechanisms responsible 291 

for horizontal transmission phenomena that associated with several phenotypic and 292 

reproductive manipulations and may play an important role in the enormous diversity of 293 

arthropods (Faria and Sucena 2015). 294 

 295 
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Figure legends 422 

 423 

Figure 1 – Screen for Wolbachia in the initial and tested populations. A) Infection status 424 

in males and females of initial populations – F0; B) Differentiation of Wolbachia strains of 425 

D.melanogaster and D.simulans by wsp gene sequencing; C) Representative PCR for 426 

Wolbachia wsp gene in tested females progeny, indicating Wolbachia absence in F1 (10 427 

replicates + controls). 428 
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