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ABSTRACT 

 

The purpose of this research is to investigate the relationships between the 

enrollment decision of first-time, first-year students admitted to Western Kentucky 

University and the amount of financial aid awarded, as well as demographic information. 

The Division of Enrollment Management provided a SAS dataset containing various 

information about all WKU students admitted in 2013, 2014, and 2015. Additionally, 

information about the 2016 class of admitted students was provided. The data has been 

analyzed in SAS Enterprise Miner. We performed analysis using decision tree modeling 

and logistic regression modeling. Results of these two procedures indicated the 

importance of credit hours earned by students before attending WKU, the student’s 

academic performance in high school, and the financial aid package offered to the student 

by the University.  
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CHAPTER ONE: INTRODUCTION 

 

Enrolling in college is one of the most beneficial decisions a high school student 

can make relative to his or her long-term prospects in life. Numerous studies have shown 

that enrolling in college leads to a better quality of life. As a college degree has become 

more and more of a necessity in order to succeed in the modern world, the cost of attending 

has risen dramatically. Tuition to attend Western Kentucky University (WKU) in the early 

1970s was $200 a semester. Now it is upwards of $8000 for in-state students and even more 

than that for students from outside the state of Kentucky (Western Kentucky University, 

2016).  

As costs have increased, the importance of financial aid for students has also 

increased. WKU provides academic merit-based scholarships, need-based scholarships, 

and need-based merit scholarships to incoming students as incentives to enroll here as 

opposed to choosing to attend some other university. This aid can be the deciding factor 

between a student choosing to enroll at WKU versus at some other university or sometimes 

even in choosing to not enroll in college at all.  

WKU is a four-year degree-granting institution with its largest campus situated in 

Bowling Green, KY. The institution was established in 1906 and has grown into a school 

with an enrollment of over 20,000 graduate and undergraduate students. The University’s 

current President, Dr. Gary A. Ransdell, has made it his goal during his twenty-year term 

to create a “Leading American University with International Reach.” His term has brought 

WKU into prominence, with the athletic programs continuing their long-standing traditions 

of success, the rise of the Honors College, the creation of the Gatton Academy of 
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Mathematics and Science, and the rebuilding of a campus in need of repair. In recent years, 

the University has struggled to make up for decreasing amounts of higher-education 

funding from the State of Kentucky in its yearly budget. One way to address this continuing 

deficit would be to increase enrollment at WKU.  

The research for this thesis seeks to find a statistical model that WKU can use to 

predict the enrollment decision of admitted students. Colleges and universities across the 

globe choose to admit students knowing that some will choose not to actually enroll at that 

particular institution. In order to make this decision, students typically must consider a host 

of factors, some potentially weighing higher than others on the final decision. The ultimate 

goal of this research is to provide information to WKU that can then be used to increase its 

yield of enrolling students. Predicting enrollment at WKU will benefit the University in 

three key areas. Within budgeting, WKU’s Student Financial Assistance Office can 

produce a prediction of scholarship dollars spent by the University. This prediction will 

not be exactly what the University will spend, but it can help the Office to stay within the 

bounds of their budgeted amount of merit-based, need-based, and need-based-merit 

scholarships. Within housing, a prediction of enrollment can help Housing and Residence 

Life to determine the approximate number of beds they will need for first-time, first-year 

freshmen heading to campus. This can allow for more clarity and precision in their 

messaging to current residents of freshman residence halls about moving out, and it will 

also allow them to have an idea of whether or not they can let current on-campus residents 

move off campus in greater numbers than before. Finally, in programming, the University 

can create an estimate of the number of instructors, classrooms, and staff members to bring 

in for M.A.S.T.E.R. Plan orientation week and for the rest of the semester. If the University 
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has a valid prediction of the first-time, first-year class, they can provide a better-informed 

number of courses for those students so that they can take the correct courses at the very 

beginning of their time in college.  

The data used in this research was provided by the WKU Division of Enrollment 

Management, with contributions from the Department of Student Financial Assistance. It 

contains information about every first-time, first-year accepted student to WKU from the 

2013-14, 2014-15, and 2015-16 academic years.  

Chapter two reviews the existing literature on modeling the collegiate enrollment 

decision. In chapter three, the dataset and WKU’s specific financial aid components are 

discussed. In chapter four, decision trees are introduced and the WKU model is revealed. 

A logistic regression model is presented in chapter five, and chapter six compares the 

predictive performance of both models. Chapter seven summarizes this research, discusses 

some concerns and applications, and indicates areas where future research could be 

completed. 
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CHAPTER TWO: LITERATURE REVIEW 

 

Modeling the student enrollment decision has consistently been an interesting topic 

in higher education. As time has passed, several authors have done multiple studies to 

update or change their model to better represent changing student desires, changing 

financial conditions, and the changing job market requirements. These studies typically fall 

into one of two categories: (1) a long-term study of high school students’ decision to enroll 

in any college versus choosing to go straight to the workforce or (2) a study done by a 

specific college to model what factors are causing students to attend that institution. 

Within the first category, several key points are echoed across different studies. The 

first is that financial aid is important to students who are looking to enroll in college. In 

fact, McPherson and Shapiro (McPherson & Schapiro, 1991), Perna (Perna, 2000), and 

(Doyle, 2010) confirm in their separate works that financial aid is a significant factor in 

students’ choosing to enroll in an institution of higher learning.  

McPherson and Shapiro (1991) cite evidence of students responding positively to 

either price cuts or aid increases. They also suggest that students’ decision to enroll changes 

based on changes in relative pricing. Finally, they confirm a study by Manski in 1983 that 

affirmed the positive effects of Pell Grants on enrollment. They find that students 

consistently respond to price cuts and aid increases, but their main claim is that students 

from low-income families are most likely to change their decision based on an aid increase 

or a price cut. Students from high-income families will find a college to attend regardless 

of federal aid provided, but students from low-income families often need that federal 

funding in order to affordably attend college.  
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Perna (2000) elaborated on these findings by examining different demographic 

groups. He found that white students, on average, received more in financial aid but that 

the cost of attending college was relatively higher. Hispanic and African-American 

students were more likely to receive financial aid than Caucasian students, and African-

American students were most likely to also receive federal loans to help pay for school 

than other demographic groups.  

Doyle (2010) summarized this category of research succinctly in 2010 by studying 

the changes in institutional aid over the 10-year period between 1992 and 2003. He came 

to the conclusion that institutions of higher learning have responded to known positive 

effects of increasing financial aid by creating systems that respond to a student’s academic 

characteristics rather than a student’s financial need. Essentially, schools use their financial 

aid capabilities to attract students who are likely to enroll and graduate rather than students 

who need funding in order to attend college.  

In the second category, there have been several different modeling strategies that 

institutions have taken to approach the student enrollment decision. Williams College 

economists Nurnberg, Schapiro, and Zimmerman (2012) published a paper about their 

model of the student matriculation decision at Williams. They found that applicant quality 

(measured by tests and grade point average), the net price, geographic origin, race, and 

artistic, athletic, or academic interests significantly affect the matriculation decision of a 

student. This private, liberal arts college is an incredibly small and selective institution, 

and as such it is important for them to manage enrollment. Both over and under yields can 

be devastating to the College. In order to use this information, the college admissions 

department was able to attach a probability of matriculation to each applicant so that it 
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could forecast its financial aid budget, potential housing situations, and other college-

specific aspects of the first-time, first-year freshman class. An important caveat to this 

research is that they were not able to provide evidence that Williams College could actively 

manipulate any of the key variables considered in the student’s enrollment decision to 

actually change that decision. Essentially, they were unable to prove that changing the 

amount of financial aid offered to a student would cause an increase in the likelihood of 

that student enrolling there.   

In 1993, Leppel created what she called a gravity model for enrollment at a small 

private college in Pennsylvania. She hypothesized that the closer a student is 

geographically to this college, the more likely that student is to enroll. In creating this 

model, she used Newton’s Law of Gravitation to create her model for matriculation at this 

college. This model creates a probability based on two utility functions, the utility of 

attending College A and the utility of not attending College A. She used data that included 

academic characteristics of students, and she also collected geographical location data and 

assigned the students into four groups to measure this distance effect. Within her analysis, 

she found that only geography and academic ability were statistically significant predictors 

of enrollment. She concluded that at her specific college, students did not consider 

academic programs or other characteristics when it came to making the final decision to 

enroll. She hypothesized that this distance effect is partly caused by a lack of information 

about the college that is received by the students as distance from the college increases.  

WKU Institutional Research conceived of a strategy to increase enrollment and 

retention in 2013 (Bogard, 2013). Bogard and his team suggested that WKU could improve 

its enrollment and retention by simply accepting students that are more likely to graduate. 
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He hypothesized that creating more strenuous admissions standards by which to naturally 

create this process was impractical based on the current conditions of the University, so he 

and his team created a model instead based on the data available to them. They categorized 

students in separate enrollment and retention models based on four levels of likelihood. 

The goal for the university was to enroll more students who are likely to persist and 

graduate from the institution. This model was created to quantify the enrollment situation 

so that university employees could use the information in admissions and enrollment 

decisions. 

Another type of model that has been used in the literature is a regression 

discontinuity (RD) model, proposed by Van der Klauww (2002). This study is the most 

similar to the situation at WKU, in that it was performed at a large public four-year 

institution, using admitted-student data. Van der Klauww wisely remembered to consider 

omitted variable bias within the model, because admitted-student data lacks key pieces of 

information that students will use to make their final matriculation decision (namely other 

financial aid offers from competing schools and interest in a particular academic major or 

curriculum). This analysis is centered on a regression discontinuity within the institution’s 

financial aid program. The school creates an ability index via a weighting of high school 

GPA and the student’s standardized test score. This ability index has a direct effect on 

financial aid received from the university. Because a university has no control over these 

two variables, the author hypothesizes that there will be significant differences in 

enrollment at the boundaries of the ability scores when students are not all that different 

from one another on one side or the other. This RD approach eliminates some of the bias 

in ordinary least-squares regression analysis in this situation and creates accurate 
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estimators to predict enrollment at the college. The author expects that the results would 

be slightly different given another college’s unique system to assign institutional aid, but 

the effects should be fairly similar once the model is adjusted appropriately. Financial aid 

offered by the institution remains a significant predictor of matriculation. 

The research conducted both by WKU and outside of WKU clearly demonstrates 

the importance of financial aid to students. Other models similarly demonstrate the 

importance of geographical, academic program (choice of major), and other academic 

ability-related factors are statistically significant predictors based on the specific 

institution. In order to accurately characterize the matriculation decision at WKU, I will 

extend the decision tree modeling approach, create a logistic regression model, compare 

the predictive performance of both of these models, and focus on how WKU can utilize 

this information to increase enrollment in first-time, first-year freshmen. 
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CHAPTER THREE: A PICTURE OF WKU FIRST-TIME, FIRST-YEAR 

ENROLLMENT 

 

The data used for creating the statistical models in this research is from a dataset 

containing information about all students who were accepted to WKU as first-time, first-

year freshmen in the 2013-14, 2014-15, and 2015-16 academic years. This amounts to 

21,442 individuals, with key information such as gender, age, ethnicity, high school GPA, 

state of residence, ACT scores, SAT scores, prior credit hours earned, financial aid offered 

and awarded, loans offered and awarded, Pell grant eligibility, and the student’s enrollment 

decision, along with other several other variables that are not used in this analysis. All data 

was provided by the Division of Enrollment Management, the Division of Student 

Financial Assistance, and WKU Institutional Research. 

WKU is a comprehensive, four-year degree-granting institution located in Bowling 

Green, Kentucky. The institution is not highly selective in nature, but instead attracts 

diverse students from nearly all fifty states, students from abroad, students in the Honors 

College, students who barely meet the admissions requirements, students from many 

different ethnic backgrounds, and students of all socioeconomic classes. WKU prides itself 

upon being a “Leading American University with International Reach.” This slogan 

describes a university that sends its students around the world, but it also applies to the 

students who attend classes on the campuses in Bowling Green, Elizabethtown, Glasgow, 

and Owensboro as well. Although WKU chooses to admit on a non-selective basis, the 

yield rate of first-time, first-year freshmen in each incoming class is less than 50% (Bogard, 

2013).  
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The results of this research are meant to be used by University employees to inform 

decisions related to the admissions process, so the information used to build the model 

must be available to the employees before the student chooses to enroll. The dataset 

contains a total of 49 variables about each admitted student. For this research, we focus on 

twelve of these variables to predict the enrollment decision of each student. These variables 

contain information about demographic information, geographic information, high school 

performance, credit hours earned at WKU, academic interests, and the financial aid 

package offered to the student. With this information gathered by WKU’s online 

application, we are able to analyze students’ decision to enroll based on changing 

characteristics. 

The student demographic information is all provided on a volunteer basis by the 

student. A student can choose to answer all, some, or none of the demographic questions. 

Some of the variables that are collected include an ethnicity description, a first-generation 

college student identifier, a gender variable, and an age variable. Gender consists of three 

possible values: male, female, and prefer not to answer. Nearly 60% of the admitted 

students are female. Figure 3.1 displays the gender of all students within the dataset. Nearly 

40% of the admitted students in the dataset are first-generation college students. Figure 3.2 

displays the first-generation status of all students within the dataset. Finally, the average 

age of the admitted first-time, first-year students is 18.33. All figures in this section are 

separated based on enrollment decision (where “ENROLL = N” indicates that the student 

did not ultimately enroll at WKU and “ENROLL = Y” indicates that the student did choose 

to enroll at WKU). 

 



  

11 

Figure 3.1: Gender of Admitted Students 
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Figure 3.2: First-Generation Status of Admitted Students 

 

Another key piece of the admitted-student data is the geographic component stored 

in each application. The student’s high school, residential location, and county are 

collected. For this analysis, students were characterized as either in-state students, border-

state students (Tennessee, Virginia, West Virginia, Ohio, Indiana, Illinois, and Missouri), 

or from somewhere else, based on the location of their high school. Of the admitted 

students, 15,068 were from Kentucky, and the majority of the remaining students are from 

bordering states. Only 1449 of accepted students were from other locations. Figure 3.3 

displays the amount of admitted students from Kentucky, states that share a border with 

Kentucky, and states that do not share a border with Kentucky. 
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Figure 3.3: Location of High School State of Admitted Students 

 

The ethnicity description present in the WKU application allows the student to 

select one of nine ethnicity identifiers (white, black or African-American, Hispanic, 

Asian, pacific islander/native Hawaiian, native Alaskan/American Indian, two or more 

races, non-resident alien, or unknown). Although the large majority of students who 

apply are white, there are instances of each of these ethnicities choosing to enroll and 

choosing not to enroll at WKU. In Figure 3.4, the ethnicities of the admitted students in 

our dataset are displayed grouped by enrollment decision. 
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Figure 3.4: Ethnicity of Admitted Students 

 

Within high school performance, there are two key quantitative components of 

interest. The first is the student’s standardized test performance, which is captured by either 

the SAT or the ACT. WKU accepts scores from both tests with no preference. In order to 

preserve consistency, we used the application data to create a new variable that measures 

a student’s “best” score out of the reported values. To do this, we converted SAT scores 

into a comparable ACT score (http://www.studypoint.com/ed/sat-to-act-conversion/, 

2017). Then, for students who took both tests, we used the maximum value between their 

ACT score and their converted SAT score. The other quantitative area of interest within 

high school data is a student’s unweighted GPA. This is entered directly into the 
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application.  The average value of the admitted students’ standardized test score is 22.35, 

and the average high school GPA is 3.24. The distribution of the maximum standardized 

test scores is shown in Figure 3.5, and the distribution of high school GPA is shown in 

Figure 3.6.  

 

Figure 3.5: Maximum Standardized Test Score of Admitted Students 
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Figure 3.6: High School GPA of Admitted Students 

 

The dataset also contains information about the number of credit hours a student 

has earned through work prior to college. Some students take dual-credit, Advanced 

Placement, or International Baccalaureate courses that WKU accepts for introductory 

classes. Others earn specific credit for component test scores (e.g., English 100 credit is 

given to all students with a 26 or above on the ACT English), departmental exams, or 

various other opportunities (Western Kentucky University, 2016). The average admitted 

student has earned 2.88 credit hours at WKU, which is just short of the credit for one typical 

class. In context, this means that more students are admitted with 0 hours than non-zero 

hours. Although students are not required to earn prior credit in order to meet the 120 
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credit-hour obligation for graduation in four years, many who do earn this credit are able 

to take advantage of the head start by graduating early or pursuing more complex course 

schedules. These credits are specific to WKU and are not necessarily reciprocated by the 

other institutions a student may be interested in attending. A summary of the number of 

prior hours earned by admitted students is displayed in Figure 3.7. 

 

 

Figure 3.7: Number of WKU Prior Credit Hours Earned by Admitted Students 

 

WKU also collects information about an applicant’s potential academic interests, 

including a potential major and the academic college that major is housed in. The most 

popular incoming potential major within the dataset is the intended Bachelor of Science in 
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Nursing, and the second most popular is a Bachelor of Science in Biology. Accordingly, 

the most popular academic colleges for a first-time, first-year student to enter into are 

Ogden College of Science and Engineering (OCSE) and the College of Health and Human 

Services (CHHS). Figure 3.8 displays the amounts of admitted students entering in to each 

of the academic colleges at WKU.  

Figure 3.8: Intended College of Admitted Students 

 

The final area of importance contained within the dataset is the financial aid 

information. The dataset contains the amount of financial aid offered and accepted in merit 

awards, need-based awards, and need-based merit awards. Merit awards are determined 

entirely by prior academic performance in high school through test scores and high school 
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GPA (Western Kentucky University, 2016). Need-based awards are selected through the 

state and federal government, specifically through the FAFSA application. Need-based 

merit awards are given through a similar process as need-based awards; however, there is 

a qualification process based on prior academic performance. The mean amount of funding 

offered for all admitted students on a merit basis is $1854.86. The mean amount of need-

based funding for all admitted students is $12.72, and the mean amount of need-based merit 

funding offered is $44.04.  

In order to qualify for merit-based funding at WKU, one needs at least a 25 

composite score on the ACT and a 3.3 unweighted high school GPA (Western Kentucky 

University, 2016). In 2016, WKU changed the way this merit-based funding was allocated. 

Now, this funding is split into four block grant award amounts: a $1500 award, a $2500 

award, a $4000 award, and an $8000 award; these are all renewable for four years of 

attendance with a maintained 3.0 cumulative GPA. There are two merit-based scholarships 

above these grants: a $12000 award and a $16000 award. These are competitively awarded 

to WKU’s top applicants and are renewable with a maintained 3.4 cumulative GPA. Prior 

to 2016, any student who had above a 31 on the ACT and above a 3.8 unweighted GPA 

received a scholarship that is approximately equivalent to the $12000 award, with the most 

successful 20 students receiving an award approximately equivalent to the $16000 award.  

There are also separate awards sponsored by private donors, academic units, and 

the University at large. These awards are made available to students through the 

wku.edu/topdollar application. When a student fills out that application, it will provide him 

or her with the opportunity to enter scholarship competitions that he or she qualifies for 

based on differing characteristics (Western Kentucky University, 2016).  
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The State of Kentucky provides need-based and merit-based scholarship funding 

through the Kentucky Lottery. However, its need-based funding scholarships have recently 

seen a decrease in the total amount of dollars provided by the Kentucky State Legislature. 

Although the lottery funding is structured to provide 55% of its revenue to need-based 

grants and 45% to the merit-based Kentucky Educational Excellence Scholarship (KEES), 

the Legislature has not provided funding in that ratio over the past five years. In 2015, for 

example, $221.1 million was handed over to the state by the Lottery Corporation. Need-

based funding should have received $120 million of this money, but only $91.9 million 

was given to those programs (Kentucky Center for Economic Policy, 2016). From 2011-

2015, 15,000 students were not able to access need-based funding specifically due to the 

need-based scholarships not being fully funded after the actions of the Kentucky State 

Legislature (Kentucky Center for Economic Policy, 2016). 

In order to qualify for need-based or need-based merit funding, a student has to 

show financial need for his or her family.  In order to qualify for the automatic need-based 

state awards, students must demonstrate financial need through the FAFSA application. 

This application also qualifies students for need-based merit scholarships provided by the 

state, the campus, and other groups. The state awarded “need-based” scholarships are 

automatically given to students and are renewable as long as the family continues to file 

the FAFSA every year.  Need-based merit scholarships are awarded competitively and are 

renewable based on a student’s college grade point average. 

The independent variables that cause variation within the student enrollment 

decision at WKU each demonstrate key differences in how students behave when making 

their collegiate decision. On the whole, the group of first-time, first-year students at WKU 
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looks similar to the group of students that choose not to enroll at WKU in nearly each of 

the variables (with exceptions seen in some variables, such as the number of prior credit 

hours earned). As such, further analysis is needed to truly determine how variation in these 

variables affects the student enrollment decision at WKU. To complete this analysis, we 

use both a decision tree model and a logistic regression model, and we compare the results. 

The created models were then tested using a second dataset consisting of the same 

information about all students accepted for admission at WKU as a first-time, first-year 

freshman in the 2016-17 academic year; this consists of data for 8,475 students.  
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CHAPTER FOUR: DECISION TREES 

 

4.1 Decision Tree Algorithms 

In order to perform an analysis of WKU enrollment and inform predictive analytics, 

decision tree modeling was first utilized. A decision tree is a decision support tool that uses 

a tree-like graph to illustrate a model of decisions and their possible consequences. A 

decision tree is created through an algorithm that identifies different ways to split the data 

based on the response of a target variable (in this research, the enrollment decision) relative 

to input variables. These are called decision rules.  

The discovery of the decision rule to form the branches or segments underneath the 

root node is based on a method that extracts the relationship between the object of analysis 

(that serves as the target field in the data) and one or more fields that serve as input fields 

to create the branches or segments. The values in the input field are used to estimate the 

likely value in the target field (de Ville & Neville, 2013). 

De Ville and Neville go on to explain, “Rules can be selected and used to display 

the decision tree, which provides a means to visually examine and describe the tree-like 

network of relationships that characterize the input and target values. Decision rules can 

predict the values of new or unseen observations that contain values for the inputs, but 

might not contain values for the targets” (de Ville & Neville, 2013).  An important process 

in identifying decision rules exists when deciding how to “bin” the data together. Each 

decision rule is mutually exclusive, guaranteeing that a single observation cannot qualify 

for more than one bin.  
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Decision trees attempt to find a strong relationship between input values and target 

values in a group of observations that form a data set. When a set of input values is 

identified as having a strong relationship to a target value, then all of these values are 

grouped in a bin that becomes a branch on the decision tree. (de Ville & Neville, 2013). 

This test utilized is a Chi-Square Test of Independence.  If the input variable being 

considered (with a set of bins being tested) is not statistically significant, then there should 

be no difference in the distribution of the value of the target variable (i.e., successes and 

failures) for the bins.   If a contingency table of the dataset is created with k rows for the k 

bins being considered and two columns for the two values of the binary target variable, 

then the test statistic is 

 𝑄 = ∑ ∑
(𝑦𝑖𝑗−𝑛𝑗𝑝𝑖)2

𝑛𝑗𝑝𝑖

2
𝑖=1

𝑘
𝑗=1  , (4.1) 

where yij is the number of observations falling into row j and column i of the table, and 

𝒏𝒋�̂�𝒊 is the expected number that would fall into that cell if there is no relationship between 

the target variable and the potential input variable (binned in the way that is being 

considered). Since the distribution of Q is approximately 𝝌𝟐 with k – 1 degrees of freedom, 

the p-value is found by finding P(𝝌𝒌−𝟏
𝟐 ≥ 𝑸) (Hogg & Tanis, 2015). When the p-value is 

small, a statistically significant relationship has been detected by the algorithm generating 

the decision tree. Once this relationship is found, the algorithm tests all of the binning 

possibilities to determine which has the strongest relationship with the target variable 

outcome. To do this, the p-value generated by the test statistic is transformed to a measure 

called logworth, where logworth = -log(p-value). The binning possibility with the largest 

logworth is the one that is added to the decision tree (SAS, 2017). Continuing the process, 
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the algorithm will run tests of significance on the decision rule created to determine 

whether the input variable is a significant descriptor of the target value and to assess its 

relative strength compared to other input variable rules (de Ville & Neville, 2013). This 

process ensures that only statistically significant relationships, relationships demonstrably 

different from random effects, are included in the model. It also addresses biases in 

selection of input variables in branch partitioning. Tree growth is terminated when there is 

no significant relationship created when splitting the data in further branches (de Ville & 

Neville, 2013). 

SAS Enterprise Miner was used to create models and to perform all analyses (SAS). 

This program was created as an offshoot of base SAS, specifically for business analytics 

and predictive modeling. It runs SAS code based on a point-and-click diagram created by 

the user and creates output that varies based on the path, process, and analysis that the user 

wants to perform. Although many different types of analysis are possible with SAS 

Enterprise Miner, this portion of the research relied solely on the program’s decision tree 

modeling. SAS Enterprise Miner’s Decision Tree Algorithm relies on traditional 

significance testing as mentioned above. This test essentially answers the question: “Are 

there differences in magnitude among the groups so great that the null hypothesis of no 

differences can be rejected as not tenable?” for each individual branch of the tree (de Ville 

& Neville, 2013). The outcome of the tree can change based on the input selection, but the 

process for growing and pruning the tree remains the same.  

SAS also uses a validation method to verify the integrity of a statistical model. To 

do this, it sets aside a selected percentage of the original dataset to test the performance of 

the model. This partitioning of the data into training, validation, and test data creates 
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safeguards within the dataset to check the validity of the predictions. SAS Enterprise Miner 

has a command called data partition, which separates the data into these three sub-sets, 

with the percentages of the overall dataset allotted to each group chosen by the user. The 

statistical testing to determine the decision rules is run with the training data set. These 

rules are then used in the validation data set. Both sets of results are displayed in the 

decision tree in order to highlight the similar outcomes exhibited in training and validation 

data.  The test data is used for later modeling not present in this research.  

 

 

Figure 4.1: An Example SAS Enterprise Miner Diagram 

 

A path for creating decision trees in SAS Enterprise Miner looks similar to what is 

shown in Figure 4.1. 

The first node (FINAL) is the SAS Data Table containing the dataset. The next step 

is the Data Partition node, which separates the data into the training, validation, and testing 

sets. After this node, there is the decision tree node, which initiates the modeling. The user 

can decide several key settings within the decision tree node before the analysis is run by 

the program. In determining these settings, de Ville and Neville suggest considering the 
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following: how will input categories be combined to form branches, how will branches be 

sorted, how many nodes are allowed on a branch, what is the predictive power between 

branches, how are branches evaluated, when will the decision tree processor stop 

identifying potential branches and nodes, and will branch growth be based on hypothesis 

tests or empirical tests of accuracy (de Ville & Neville, 2013). All of these factors can be 

decided by the user and incorporated into the decision tree algorithm. These decisions will 

affect the output of the process, which is why it is important for the user to carefully 

consider the effects that changing settings can have on the model. 

The settings of the decision tree algorithm in SAS Enterprise Miner can create 

differences in the final tree outcome. One can make upwards of thirty different adjustments 

to the decision tree algorithm. Three key settings in the decision tree model that produce 

noticeable changes are “maximum branch,” “use input once,” and “maximum depth.” The 

maximum branch setting changes the number of branches into which an input variable can 

split. Its default setting is two, so changing this will create the opportunity for branches of 

more than two bins. Another key decision is whether or not to use an input variable more 

than once in a decision tree. When this option is chosen to be “no,” a variable is used for 

at most one splitting rule and then cannot be used again at a point later in the algorithm. A 

“yes” setting for this option would allow for further decision rules to be created with an 

input variable. For example, if a tree’s first splitting rule was in high school GPA, a “yes” 

setting would allow the algorithm to continue testing for new significant relationships with 

that same variable as the data splits. High school GPA could re-appear at any point further 

down the tree with a new decision rule. The final key setting that a user can change is the 

maximum depth of the tree. This setting controls the number of generations a tree algorithm 
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can produce before being forced to stop. The default setting is six, so changing this can 

create larger trees or smaller trees depending on the user’s preference.  

 

4.2 The WKU Decision Tree 

 To create the decision tree for the student enrollment decision at WKU, we had to 

decide which variables to include and which not to include. The goal of our list of 

variables was to avoid anything that would automatically indicate that a student chose to 

enroll at WKU; i.e., any amount of financial aid actually accepted and Math Placement 

Exam score. We also had to ensure that our variables used in the decision tree model 

would be able to also be used in a logistic regression modeling approach (chapter 5) for 

comparison purposes. Finally, we had to make sure that our variables were easily gleaned 

from looking at application data, so that the model could be used in admissions, financial 

aid, and enrollment decisions in the future. 

 The potential input variables for the decision tree include: high school GPA, the 

maximum standardized test score, amount of merit scholarships awarded, amount of 

need-based scholarships awarded, amount of need-based merit scholarships awarded, the 

first-generation identifier, gender, the number of prior hours earned, the geographical 

categorical variable, the ethnicity categorical variable, the student’s age, and the student’s 

choice of academic college to enter. In this analysis, we separate the data into 50% 

training and 50% validation because we have the data from the 2016-17 admitted 

students to use as test data. To create this decision tree, we selected a maximum branch of 

five, to only use input variables one time, and to select a maximum depth of six. The 

results of the tree are displayed in Figure 4.2. 
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Figure 4.2: The WKU Student Enrollment Decision Tree Model
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Figure 4.3: Decision Tree Model, Generation 1 

 

Figure 4.2 is displayed in more detail in Figures 4.3 to 4.9. Figure 4.3 displays the 

root node of our decision tree model and also its first decision rule. The root node, which 

is the first box, summarizes the response variable in our data separated into two sets, the 

training data and the validation data. These two sets of data display the basic equilibrium 

of the WKU enrollment situation. About 40% of admitted students actually enroll at WKU, 

and nearly 60% choose not to attend this institution. As shown in Figure 4.3, prior hours 

(the number of credit hours the student earned prior to attending WKU) is the first split, 

meaning it is the most valuable predictor out of the potential input variables considered. 

Students with more than 6.5 prior hours chose to enroll at WKU just over 86% of the time. 

This statistically significant relationship between prior hours and the student enrollment 

decision does not split any further; no other predictor variables were found to be significant 

for this group. The students with fewer than 6.5 hours of prior credit chose to enroll at only 
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a 34% rate, which is smaller than the overall percentage of students that chose to enroll at 

WKU. This type of split is exactly why decision trees were created; that is to observe if 

groups make decisions differently and then predict future decisions based on the prior data. 

  

Figure 4.4: Decision Tree Model, Generations 2 and 3A 

 

Figure 4.4 displays the left side of the second and third generations of the final 

decision tree model. This split in the dataset is for the students who have earned fewer than 

6.5 hours of prior credit. The decision rule that is the next most significant predictor is the 

maximum standardized test score (denoted as “maxscore”). This means that the maximum 

test score has a statistically significant interaction effect with the number of prior credit 

hours earned for students that have fewer than 6.5 hours of prior credit earned. Students 

accepted to WKU that score lower than a 23.5 (or equivalent) on their standardized test, 

while also earning fewer than 6.5 hours of prior credit, chose to enroll at WKU at a similar 

rate to our overall training population. As the test score increases, the percentage of 

students accepted to WKU that chose to enroll at WKU decreases. When examining the 

interaction, this makes logical sense. If a student is receiving fewer than 6.5 hours of prior 

college credit but has a high standardized test score, that student is most likely going to 
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enroll at a different university. In generation three, the students with the lowest test scores 

have a splitting rule based on the amount of merit scholarships offered. If these students, 

who have earned fewer than 6.5 hours of prior credit and lower than a 23.5 maximum test 

score, get merit scholarship opportunities, they are more likely to enroll at WKU than any 

random student from the training population. Students who have a maximum test score 

between 23.5 and 27.5 split based on need-based merit scholarships being offered, and they 

are more likely to enroll at WKU if they receive an offer from the need-based merit pool 

of funding. These findings are also intuitive; students that are not able to secure prior credits 

and have mid-range test scores but find a way to secure merit or need-based merit funding 

at WKU will likely enroll here because this may be the only offer of financial aid on the 

table. Students respond to changes in net price, and this aspect certainly changes the net 

price of attendance for these specific students.  

 

 

Figure 4.5: Decision Tree Model, Generation 2, 3, and 4B 
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The significant splits in Figure 4.5 are in two separate areas. The node displaying 

the statistically significant split in need-based merit scholarship amounts offered comes 

from the subset of students that earned fewer than 6.5 hours of prior credit and a maximum 

standardized test score between 27.5 and 31.5. Although not many students received need-

based merit scholarships above $250, the ones that did enrolled at WKU around 66% of 

the time, which is a massive increase relative to the rest of this subset of the student 

population.  

The other area where a split occurs is the subset of students that have not taken a 

standardized test (the top right node in Figure 4.5). Those particular students already enroll 

at WKU in a higher proportion than the general accepted-student population. The split, 

which occurs at the 3.125 mark in high school GPA, displays about a 26% gap between the 

two groups of students in the training datasets. This split displays the fact that even within 

this area of students, those who achieve highly in the high school classroom are more likely 

to choose not to enroll at WKU. A further split for the students who are on the higher end 

of this spectrum is also displayed. It represents students with fewer than 6.5 hours of prior 

credit earned, no standardized test score, a high school GPA above 3.125 or a missing 

value, and then separates based on the first-generation college student identifier. Students 

that are first-generation college students with these characteristics enroll around 60% of 

the time, while students that are not enroll at about the same percentage as the overall 

admitted student population does at WKU.  
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Figure 4.6: Decision Tree Model, Generation 4A 

 

Figure 4.6 spawns from previous nodes that include students with fewer than 6.5 

prior credit hours, lower than a 23.5 (or equivalent) on the standardized test, and less than 

$25 in merit scholarships offered (on the left of Figure 4.6), or they have fewer than 6.5 

prior hours, between a 23.5 and a 27.5 on the standardized test, and they have received less 

than $150 in need-based merit scholarships (on the right of Figure 4.6). The students are 

further subdivided based on their geographic areas, and unsurprisingly, students with these 

characteristics who are from Kentucky continue to enroll at WKU at roughly the same rate 

as the overall admitted-student population if they fall below a 23.5 on the standardized test 

and are grouped by merit scholarship dollars offered. If these students are instead slightly 

higher achieving and grouped by need-based merit scholarship dollars offered, they enroll 

only around 30% of the time. In both cases, students not from Kentucky experience a drop 

in the likelihood of enrolling at WKU. In the case of the students who are below a 23.5 on 

their standardized test, the drop is around 10%, whereas the students in the higher areas of 

academic achievement experience a 15% decrease in likelihood of enrolling at WKU. 
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Figure 4.7: Decision Tree Model, Generation 5A 

 

 

Continuing into the fifth generation of the tree, the splits in Figure 4.7 come from 

the nodes which grouped students with fewer than 6.5 hours earned, lower than a 23.5 on 

the standardized test, less than $50 of merit scholarships earned, and then either being from 

Kentucky or not from the state. Those students who are from the state of Kentucky (on the 

left side of Figure 4.7) are further split by the amount of need-based merit scholarship 

dollars offered. In this case, students who are offered $425 or more are much more likely 

to enroll than the students who do not receive this much funding. The out-of-state students 

(on the right side of Figure 4.7) are instead split by high school GPA. Continuing the trend, 

the more successful a student is in the high school classroom, the less likely s/he is to enroll 

at WKU. 

 

 

Figure 4.8: Decision Tree Model, Generation 5B 
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Figure 4.8 comes directly from the node describing Kentucky students with less 

than $425of need-based merit scholarships offered, between a 23.5 and 27.5 on the 

standardized test, and fewer than 6.5 hours of prior credit earned (from Figure 4.6). This 

split again shows the trend that students who demonstrate more success in the high school 

classroom are less likely to choose to attend WKU. 

 

Figure 4.9: Decision Tree Model, Generation 6 

 

Figure 4.9 is the last figure depicting a section of our decision tree model. As the 

modeling process gets to this point, one will observe that we do not have many students 

left available in our subset populations. The largest nodes at this point contain only around 

1900 students total (training and validation combined) after beginning with nearly 22000, 

and the smallest nodes in this section contain fewer than 15 total observations. As such, it 

is difficult to rely on this section to learn anything necessarily new about the dataset. 

However, we can continue to observe patterns. Each of these nodes has to do with the 

amount of funding a student receives, either through need-based, need-based merit, or 

merit-based scholarships. As the amount a student is offered increases, we see an increased 

likelihood in that student enrolling at WKU. 
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To summarize the decision tree findings, the most important statistical indicator of 

student enrollment decision is the student’s number of prior credit hours earned. If a student 

who is admitted as a first-time, first-year freshman has earned more than 6.5 hours of credit, 

that student is much more likely to enroll (over 86%) than the average admitted student in 

his or her class (approximately 40%). The second key conclusion we can take from this 

model is that increased academic success, whether it is through high school GPA or the 

standardized test score, decreases a student’s likelihood of enrolling at WKU if that student 

has earned fewer than 6.5 hours of prior credit. In section six, we will further discuss the 

predictive performance of this model when used to model the enrollment decisions of the 

2016-17 first-time, first-year freshman class, and also compare it to the logistic regression 

model presented in chapter five.  
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CHAPTER FIVE: LOGISTIC REGRESSION 

 

5.1: Logistic Regression Analysis 

Logistic regression was the second modeling approach utilized to analyze this 

dataset. This type of regression modeling is typically used to model the relationship of a 

binary response variable and several predictor variables (Mendenhall & Sincich, 2012). 

The response variable is coded as 1 if the response is a success and 0 if the response is a 

failure.  Since the response variable in least-squares linear regression is not restricted to be 

between 0 and 1, it is not appropriate to use when the response is binary. 

The logistic regression model ensures that the estimated response variable lies 

between 0 and 1, so it provides an appropriate model for the student enrollment decision at 

WKU. It does this by utilizing the odds and log-odds of an event occurring.  The odds of 

an event occurring are defined as 

 𝐨𝐝𝐝𝐬 =  
𝝅

𝟏−𝝅
=  

𝑷(𝒚=𝟏)

𝑷(𝒚=𝟎)
, (5.1) 

and the log-odds are defined as 

 log-odds = 𝐥𝐧 (
𝝅

𝟏−𝝅
) =  𝐥𝐧 (

𝑷(𝒚=𝟏)

𝑷(𝒚=𝟎)
), (5.2) 

where π is the true probability of a successful response.  When there are k predictor 

variables, we fit the model 

 𝐥𝐧 (
𝝅

𝟏−𝝅
) = 𝜷𝟎 + 𝜷𝟏𝒙𝟏 + 𝜷𝟐𝒙𝟐 + ⋯ + 𝜷𝒌𝒙𝒌, (5.3) 

which looks very similar to a multiple linear regression model.  As π→0, the log-odds→ -

∞; as π→1, the log-odds→∞.  Thus, the response is no longer restricted to be between 0 

and 1.  Using algebraic operations, (5.3) can be rewritten in the general logistic regression 

model form, 
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 𝑬(𝒚) =  
 𝒆(𝜷𝟎+ 𝜷𝟏𝒙𝟏+ 𝜷𝟐𝒙𝟐+ ⋯+𝜷𝒌𝒙𝒌)

𝟏+𝒆(𝜷𝟎+ 𝜷𝟏𝒙𝟏+ 𝜷𝟐𝒙𝟐+⋯ + 𝜷𝒌𝒙𝒌), (5.4) 

where the expected value of y, E(y), is equal to the probability of a successful response 

occurring, π, which is restricted to a value between 0 and 1 (Mendenhall & Sincich, 2012).  

As shown in (5.4), the general logistic regression model is not a linear function of 

the βi parameters. Instead, estimates of the parameters are obtained by a method of 

maximum likelihood estimation. Since this is not a linear estimation, one has to be careful 

interpreting the coefficients in the regression equation. In the case of least-squares linear 

regression, the estimate of βi, denoted �̂�𝒊, quantifies the estimated change in the expected 

value of the response variable for each one-unit increase in xi, assuming all other predictor 

variables are held constant.  However, this is not the way that �̂�𝒊 can be interpreted in 

logistic regression.  The βi parameter in a general logistic regression model would represent 

the additive change in log-odds for every one-unit increase in xi, assuming all other 

variables are held constant (Mendenhall & Sincich, 2012). To make this more interpretable, 

consider 𝒆𝜷𝒊, the odds ratio.  This represents the multiplicative change in the odds of an 

event for every one-unit increase in xi, assuming all other variables are held constant.  If xi 

is binary, then 𝒆𝜷𝒊 represents the ratio of the odds when xi = 1 to the odds when xi = 0; i.e., 

the odds ratio between these two groups. 

Since our goal is to estimate the probability of a successful response (π), it can be 

helpful to consider how the value of βi is related to π.  Assuming all other variables are 

held constant, if 𝒆𝜷𝒊 > 𝟏, then π increases as xi increases.  If 𝒆𝜷𝒊 < 𝟏, then π decreases as 

xi increases.  If 𝒆𝜷𝒊 = 𝟏, then π does not change as xi increases. 
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5.2: WKU Logistic Regression Model 

 We performed logistic regression modeling in SAS Enterprise Miner with a very 

similar process to the Decision Tree Model. A pre-built logistic regression process is 

included with the software, so we use that node to perform our logistic regression analysis.  

In order to accurately characterize the WKU enrollment decision and to make valid 

comparisons between models, we chose to use the same predictor variables in the logistic 

regression model that were outlined previously in the decision tree modeling process. 

However, some changes needed to be made.  For each of the qualitative predictors, 

“dummy” or indicator variables had to be created.  For a qualitative predictor with j 

categories, j – 1 dummy variables were created; each of these indicates whether or not an 

individual falls into a particular category.  For example, consider the geographical variable, 

which has three categories:  Kentucky, border state, and other (called “far”).  Since there 

are three categories, two dummy variables were created.  For the first dummy variable, a 

student is assigned a value of 1 if s/he is from Kentucky and a 0 otherwise.  For the second 

dummy variable, the student is assigned a value of 1 if s/he is from a bordering state and a 

0 otherwise.  A third dummy variable for students from elsewhere is not needed; values of 

0 for both of the already created dummy variables indicate that a student falls into the third 

category.  All variables utilized in the logistic regression model are defined in Table 5.1.  
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i xi 

1 1 if College of Education and Behavioral Sciences, 0 otherwise  

2 1 if College of Health and Human Services, 0 otherwise 

3 1 if Gordon Ford College of Business, 0 otherwise 

4 1 if Ogden College of Science and Engineering, 0 otherwise 

5 1 if Potter College of Arts and Letters, 0 otherwise 

6 number of prior hours earned at WKU 

7 amount of merit scholarship dollars offered 

8 amount of need-based merit scholarships dollars offered 

9 amount of need-based scholarship dollars offered 

10 student age 

11 high school GPA 

12 maximum standardized test score 

13 1 if student is from Kentucky, 0 otherwise 

14 1 if student is from a bordering state, 0 otherwise 

15 1 if Asian, 0 otherwise 

16 1 if black, 0 otherwise 

17 1 if Hispanic, 0 otherwise 

18 1 if Hawaiian or Pacific Islander, 0 otherwise 

19 1 if multiple races, 0 otherwise 

20 1 if Native American, 0 otherwise 

21 1 if unknown race, 0 otherwise 

22 1 if white, 0 otherwise 

23 1 if first-generation college student, 0 otherwise 

24 1 if male, 0 otherwise 

Table 5.1: Predictor Variables in the Logistic Regression Model 

 

The resulting logistic regression equation is 

 𝐥𝐧 (
�̂�

𝟏−�̂�
) = 𝟎. 𝟒𝟑𝟒𝟔 − 𝟎. 𝟎𝟑𝟕𝟒𝒙𝟏 − 𝟎. 𝟏𝟎𝟗𝟗𝒙𝟐 − 𝟎. 𝟎𝟐𝟒𝟕𝒙𝟑 − 𝟎. 𝟏𝟕𝟏𝟕𝒙𝟒 +

𝟎. 𝟎𝟐𝟗𝟔𝒙𝟓 + 𝟎. 𝟏𝟖𝟔𝟔𝒙𝟔 + 𝟎. 𝟎𝟎𝟎𝟎𝟓𝟖𝒙𝟕 + 𝟎. 𝟎𝟎𝟎𝟗𝟒𝟑𝒙𝟖 + 𝟎. 𝟎𝟎𝟏𝟔𝟏𝒙𝟗 +

𝟎. 𝟏𝟎𝟔𝟗𝒙𝟏𝟎 − 𝟎. 𝟑𝟔𝟕𝟐𝒙𝟏𝟏 − 𝟎. 𝟏𝟐𝟒𝟑𝒙𝟏𝟐 + 𝟎. 𝟖𝟎𝟏𝟎𝒙𝟏𝟑 + 𝟎. 𝟐𝟑𝟐𝟔𝒙𝟏𝟒 + 𝟎. 𝟏𝟑𝟑𝟔𝒙𝟏𝟓 −

𝟎. 𝟏𝟖𝟐𝟒𝒙𝟏𝟔 − 𝟎. 𝟐𝟖𝟖𝟕𝒙𝟏𝟕 + 𝟎. 𝟓𝟕𝟕𝟑𝒙𝟏𝟖 − 𝟎. 𝟎𝟔𝟕𝟓𝒙𝟏𝟗 − 𝟎. 𝟒𝟏𝟎𝟐𝒙𝟐𝟎 − 𝟎. 𝟏𝟗𝟏𝟗𝒙𝟐𝟏 +

𝟎. 𝟏𝟏𝟐𝟕𝒙𝟐𝟐 − 𝟎. 𝟐𝟐𝟔𝟐𝒙𝟐𝟑 + 𝟎. 𝟎𝟓𝟒𝟓𝒙𝟐𝟒,  (5.5) 

where x1 through x24 are as defined in Table 5.1. 
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Of these variables, only age, high school GPA, the in-state dummy variable, all 

three levels of financial aid, the first-generation college student variable, the maximum 

standardized test score, and number of prior hours earned are statistically significant at a 

0.01 significance level. 

As such, the effects of a one-unit increase in these statistically significant 

independent variables (holding all else constant) on the binary student enrollment decision 

are as summarized in Tables 5.2 and 5.3. 

 

Variable Effect on Odds of Enrolling 

student age 11.28% higher 

high school GPA  30.73% lower 

amount of merit scholarship dollars offered  0.000058% higher 

amount of need-based merit scholarships dollars offered  0.000943% higher 

amount of need-based scholarship dollars offered 0.00161% higher 

maximum standardized test score  11.69% lower 

number of prior hours earned at WKU  20.51% higher 

Table 5.2: Effects of a One-Unit Increase in Statistically Significant Variables 

 

 

Variable Effect on Odds of Enrolling 

student from Kentucky 122.78% higher 

first-generation college student 20.24% lower 

Table 5.3: Effects of a Categorical Change in Statistically Significant Variables 

 

As an example, consider the student age (x10).  The estimated logistic regression 

coefficient for this variable is 0.1069, as shown in (5.5).  Since e0.1069 – 1 = 0.1128, each 

one-year increase in student age increases the odds of the student enrolling at WKU by 

11.28% (assuming all other variables are held constant).  As a second example, consider 

the maximum standardized test score (x12), which has an estimated coefficient of -0.1243.  

Since e-0.1243 – 1 = 0.1169, each one-point increase in maximum standardized test score 
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decreases the odds of the student enrolling at WKU by 11.69% (assuming all other 

variables are held constant).  Now consider the categorical dummy variable x13, which has 

an estimated coefficient of 0.8010.  Since e0.8010 – 1 = 1.2278.  The odds of a student from 

Kentucky enrolling at WKU are 122.78% higher than the odds of a student not from 

Kentucky enrolling at WKU (assuming all other variables are held constant). 

The logistic regression model demonstrates some general trends within the 

enrollment situation at WKU with a look to specific discrete changes in independent 

variables. One way to easily characterize these trends is to examine the odds ratio for each 

statistically significant parameter.  For instance, an increase of 1 point in high school GPA 

decreases the probability of a student actually enrolling at WKU if every other independent 

variable is held constant because e-0.3672 < 1. A similar negative effect is seen with a 1-point 

increase in the maximum standardized test score. This demonstrates a general struggle to 

recruit academically successful students (when they are equivalent to other students in all 

other categories).  

Since the standard errors vary among the coefficient estimates, they cannot be 

directly compared to investigate the relative strength of the predictors within the model. In 

order to accurately compare the magnitude of the expected change in a student’s probability 

of enrolling, one must examine the standardized coefficients of the logistic regression 

model.  Standardized coefficients eliminate the units of the variables and are all on the 

same scale, allowing us to observe which predictor variables are associated with the largest 

magnitude change in our response variable. The higher the absolute value of the 

standardized coefficient, the greater the relative strength of the predictor.  The standardized 
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coefficients for the significant predictors in the logistic regression model are displayed in 

Table 5.4. 

 

Variable Standardized Coefficient 

student age 0.0488 

high school GPA -0.1125 

amount of merit scholarship dollars offered 0.1330 

amount of need-based merit scholarships dollars offered 0.2098 

amount of need-based scholarship dollars offered 0.1598 

maximum standardized test score -0.3209 

number of prior hours earned at WKU  0.6866 

student from Kentucky 0.1980 

first-generation college student -0.0606 

Table 5.4: Standardized Coefficients of Statistically Significant Variables 

 

Another general trend that we can deduce from the logistic regression results is the 

overall increase in the odds of enrolling when a student’s financial aid package is increased, 

regardless of whether that increase comes from need-based, merit-based, or need-based 

merit scholarship funds. As shown in Table 5.4, the magnitude of the change in odds is 

larger for need-based scholarships and need-based merit scholarships than it is for 

exclusively merit-based scholarships, which demonstrates WKU’s ability to recruit 

students with demonstrated financial need better than students who are offered merit 

scholarships.  

Table 5.4 highlights a key distinction in students who are successful in the 

classroom in high school. The standardized coefficient on the maximum test score variable 

(-0.3209) is nearly triple the standardized coefficient on high school GPA, (-0.1125). This 

means that the decrease in the odds of enrolling that is associated with an increase in the 

maximum test score is much larger than the decrease associated with an increase in GPA. 
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WKU struggles generally with converting highly successful admitted students, but the 

students with higher standardized test scores are the demographic WKU struggles with the 

most to convert into enrolled students.  

The standardized coefficient for the number of prior credit hours earned is much 

larger (in absolute value) than any other value in Table 5.4. This finding demonstrates 

WKU’s ability to convert admitted students who have earned credit from the University 

before pursuing admission as a first-time, first-year student on campus. WKU also 

effectively converts admitted students from the state of Kentucky into enrolled students 

quite well, but on the flip side this result displays a lack of ability to effectively recruit 

admitted students from outside the state to actually enroll at WKU. The University also 

struggles with converting first-generation college students from admitted to enrolled 

students. WKU typically does a good job of converting admitted students of higher ages to 

first-time, first-year college enrollees, but as displayed in Table 5.4, this is the smallest 

standardized coefficient of any statistically significant variable in the model.  

The standardized coefficients and the odds ratios are helpful estimators for 

determining important characteristics to look for when it comes to increasing enrollment. 

First and foremost, examining Tables 5.2-5.4 reveals that WKU does an excellent job 

recruiting students from the state of Kentucky, students with more hours of prior credit 

earned at WKU, and students with demonstrated financial need. Some areas where the 

institution could put a priority on improving with the goal of lifting enrollment numbers 

include out-of-state students, students who are high achieving in the high school classroom, 

and first-generation college students.  
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It is important also to recognize that this model does not predict large changes in 

the odds of enrolling for students who are exactly alike in every way except for the amount 

of merit scholarships they were offered. This suggests that a change in the merit scholarship 

plan to give more students money, while decreasing the amount of funding given to 

students at the top of the academic performance metrics, may actually increase enrollments.  
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CHAPTER SIX: PREDICTIVE PERFORMANCE 

 

Within each model, there are different indicators of model performance in a 

predictive setting. The average squared errors are given as part both models’ outputs in 

SAS Enterprise Miner. For the decision tree, this value was 0.19, and for the logistic 

regression model it was 0.20. This would suggest that the decision tree modeling 

approach is perhaps slightly more accurate in predictive measures. We put this claim to 

the test by creating a prediction from each model based on the 2016-17 admitted student 

dataset and then comparing that prediction to the actual student’s enrollment decision. 

This prediction is created by assigning a probability of enrolling to each student in the 

dataset using the characteristics defined in the modeling procedure. In decision trees, the 

program finds the correct node from Figure 4.2 for each student and then assigns the 

probability of enrollment from this bin to that student. In logistic regression modeling, 

the program inserts the actual values of the variables for each student into (5.5), and 

solves the resulting value for �̂� to create a predicted probability of enrollment. If the 

predicted value is greater than 0.5, the student is assigned as a “yes,” and if the predicted 

value is less than 0.5, the student is assigned as a “no.”  Figure 6.1 displays the results of 

the predictions of the decision tree model, and Figure 6.2 displays the results of the 

predictions of the logistic regression equation. 
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Figure 6.1: Decision Tree Model Predictions 
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Figure 6.2: Logistic Regression Predictions 

 

 In both figures displayed above, the students who chose not to enroll at WKU are 

in the two left-most bars in the graph. The students in the right half of the graph are those 

who enrolled at WKU as first-time, first-year freshman. Within the groups, the students 

who are not predicted to enroll at WKU are on the left, and the students who are predicted 

to enroll are on the right. To truly compare the two models, we need to split the data into 

four categories: students who are predicted to enroll at WKU and do matriculate (a true 

positive), students who are predicted to enroll and do not matriculate (a false positive), 

students who are predicted not to enroll at WKU that do matriculate (a false negative), and 

students who are predicted not to enroll at WKU that do not matriculate (a true negative).  
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The false positive rate is around 5%. This can be seen through examining the 

students who did not choose to enroll at WKU that were predicted to enroll. However, 

because of the relative strength of correctly predicting students to not enroll when they 

actually do not enroll at WKU, both models perform poorly when predicting the number 

of admitted students who will actually enroll at WKU. The rate of a false negative is around 

40%, as displayed in Figures 6.1 and 6.2. Both models classified over half of the class that 

actually enrolled at WKU as not likely to enroll. This suggests that perhaps many of the 

students that chose to enroll at WKU for the academic year of 2016-2017 did not make 

similar decisions to students with similar characteristics from the previous classes of first-

time, first-year students that were used to create these models. This could be due to year–

to-year variation, but we also must consider that there was a potential change in student 

behavior based on the change in merit-based financial aid strategies that occurred just 

before these students were recruited. This must be quantified in the future in order to fully 

understand the effects of this change in the long-term modeling process. 

In all of the predictive areas, the logistic regression model performs slightly better 

than the decision tree model. However, there are benefits to using both of these models 

alongside one another. The logistic regression model is easily interpretable, allowing one 

to estimate the change in odds of enrolling associated with changes in the values of the 

predictor variables.   This information can be useful, for example, to admissions counselors 

when communicating with students about the opportunity to earn collegiate credit at WKU 

before finishing their high school curriculum. The decision tree model allows WKU 

Admissions staff to quickly categorize a student into a group and assign a rough probability 

of enrollment. It can be used by the staff members to quickly decide which groups of 
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prospective students need to receive important information about WKU, and this 

information could be tailored so that all students with similar probability receive 

information designed to increase their likelihood of matriculation. 
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CHAPTER SEVEN: DISCUSSION 

 

 

In summary, decision trees and logistic regression are both tools used to inform 

predictive analytics. Using either model presented in this paper, one can determine that the 

key variables that are useful in predicting enrollment at WKU include the number of prior 

credit hours earned, the maximum standardized test score, the amount of merit scholarship 

dollars offered, the amount of need-based merit scholarship dollars offered, the amount of 

need-based scholarship dollars offered, state residence, age, and high school GPA. When 

these models are completed, measures of fit such as the average squared error and 

misclassification rate demonstrate that both models produce similar predictions, with the 

logistic regression model performing slightly better. Both models lean towards predicting 

that students will not choose to enroll at WKU. This follows the pattern we have seen 

across the data which has shown that only around 40% of admitted students choose to 

enroll at WKU.  

There are several key applications to take from this research with an eye toward 

increasing enrollment at WKU. This analysis demonstrates that students are more likely to 

attend WKU if they have earned more than 6.5 hours of credit prior to attending. There are 

also increased odds of attendance if a student is from the state of Kentucky and if the 

student is receiving some type of financial aid. However, WKU can clearly improve its 

yield rate with out-of-state students and with students who are more successful in their high 

school performance. 

To begin in immediate applications for this data, WKU can recognize the limited 

number of students who are predicted to enroll. Since this number is much smaller than the 
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total number of applicants, the University can specifically design a communication 

structure that delivers these select students through the acceptance and enrollment stages 

of their college decision so that they ultimately end up choosing to become a WKU student. 

A student that is predicted to enroll that actually enrolls is one that the University can count 

on in budgeting strategies, housing decisions, and classroom offerings, all of which have a 

great deal of variables in play. Consistently delivering on projections can help WKU better 

deal with the rest of its programming in a more efficient way. This strategy can also help 

to identify why students who are predicted to enroll choose not to do so. WKU is not the 

right institution for everyone, so the more information the institution can gather from all of 

its admitted students, the better the predictive modeling will be in the future.  

Another immediately applicable aspect of this data lies in analyzing all of the 

students who are not predicted to enroll at WKU. One limitation of these models is that 

many of these students who are not predicted to enroll at WKU actually do enroll at the 

institution. A little under 28% of admitted students are misclassified in this way according 

to our predictive models. We can be fairly confident that when the predicted probability of 

enrolling is close to zero, WKU should spend less resources on communicating with these 

students than others because these students are more likely to not enroll at WKU. However, 

our model currently leaves some gray area where WKU could learn more about this 

particular group of students’ decisions while also reaping the benefits of a false negative 

prediction by actually enrolling the student on campus.  

Overall, the impact of merit-based scholarship aid is small, but it does exist. 

Especially if a student is not on the highest end of the high school academic performance 

spectrum (a standardized test score between 23 and 27 and a GPA less than 3.6 for 
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instance), providing this student with a small merit-based scholarship to decrease the 

sticker price of their education could be beneficial to WKU in the long run. If a student 

performs more successfully in high school, WKU may need to highlight the increased 

amount of credit those students can earn with a few additional classes or tests before 

officially enrolling at the University.  

The increased odds of enrolling from an increase in need-based aid or need-based 

merit aid are magnitudes larger than the merit-based consideration, and could also provide 

WKU with the marginal ability to improve its enrollment situation if the university is able 

to recoup some of its losses from the state of Kentucky.  

If WKU pursues these changes, the long-run proportion of students who are 

accepted that choose to enroll at WKU may increase from 40%. This increase in conversion 

rate of accepted students into enrolled students will help stabilize the institution’s budget 

in the long-run, especially considering the continually decreasing assistance from the state 

and increasing costs of higher education across the nation.  

There are some caveats to the application of this research. Throughout this process, 

we did not do anything to prove that WKU has the ability to cause a student to change from 

a “no” to a “yes” in their enrollment decision. Although relationships were determined, we 

cannot classify those relationships as being causal since observational (rather than 

experimental) data was used.  As such, we have to be very careful when it comes to the 

applications. In reality, WKU could do everything “correctly” and still have students 

decide not to enroll at this institution. The research we have done allows anyone with access 

to the application data to develop a predicted probability of enrollment that could update 

as a student enters more information into the WKU application. This prediction will never 
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be perfect, but it can be used to better inform decisions made by WKU in spending issues, 

admissions team contact, departmental involvement, and a whole host of other institutional 

factors entirely in WKU’s control. 

To advance upon this research, and continue to build on the study completed by 

Bogard in 2013, WKU needs to combine this application data with some information about 

admissions contact, collect more data on the effects of changing the merit scholarship 

award process, and connect it all to retention and persistence.  

I suggest combining information from the Division of Enrollment Management, the 

Office of Student Financial Assistance, and the Office of Institutional Research together 

with data from the Office of Admissions so that we have a more holistic picture of each 

individual student. The models presented in this paper still predicted false negatives for 

over half of the 2016-17 first-time, first-year freshman class (as seen in the right-hand sides 

of Figures 6.1 and 6.2). Clearly, there is more variation within the student enrollment 

decision that our dataset could not accurately measure. Adding admissions data, such as 

contact with a counselor, a high school visit, a tour completed on campus, a view book 

sent, etc., will most likely add more valuable information to improve the predictive 

accuracy of this data. Another key piece of additional information that the University could 

pursue in order to better predict student behavior is to follow up with students that chose 

not to enroll at WKU. If we had information about why a student chose to attend a different 

college, it would help to determine comparative strengths and weaknesses of WKU relative 

to its competitors in higher education. Both pieces of additional information can help 

increase the predictive accuracy of the model.    
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A second way to advance this research is to continue to study the effect of changing 

the merit scholarship program. Drawing from my own personal experience as a tour guide 

for the Honors College, I know that there are students who have chosen not to enroll 

because of the changes in the merit scholarship program. I have no doubts that there are 

students who have decided to enroll at WKU because of this change as well. This topic 

needs to be fully investigated to determine if the change had the desired outcome on 

enrollment. If it did not have that effect, then learning more about this particular aspect of 

the enrollment decision will continue to provide valuable information to WKU so that the 

next change to the scholarship program will be a successful one.  

Finally, WKU needs to connect this data into more information about persistence 

to graduation. Much of WKU’s budgetary struggles the past few years have stemmed from 

a small enrollment decline and a much larger problem with retention once a student is 

actually enrolled here. WKU currently has the data necessary to make predictions on both 

enrollment and persistence of a student, classify each student into a specific category, and 

then make decisions with regard to specific classes of students to attempt to head-off the 

retention problem. Much of the difficulty within this task is combining all of the data into 

one central location that provides usable information to any staff or faculty member with 

access to it.  

If WKU can successfully further this research by better predicting student 

enrollment through use of admissions and application data, continued understanding of 

financial aid’s impact on admitted student behavior, and connect all of this information to 

a model that continuously tracks the probability of persistence to graduation, the benefits 

are far reaching across several key areas of WKU’s campus. First, the serious budget 
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shortfall problem caused by struggles in enrollment and retention would finally be heading 

in a beneficial direction for the University. Enrolling more students and keeping more of 

them present until graduation has positive effects for the students and for the financial 

aspect of campus as well. Finally, WKU’s Admissions and Enrollment teams will be much 

more efficient in their communication with prospective students and their contact with 

current students. Modeling behavior is not a perfect solution to all of our recruitment and 

retention questions, but the results of the models can certainly inform decision makers so 

that the outcomes are more cost efficient and beneficial for students.  

In conclusion, modeling the student enrollment decision at WKU with a decision 

tree and a logistic regression model led to three key takeaways. First, WKU can improve 

at recruiting high-achieving high school students, students from outside the state of 

Kentucky, and first-generation college students. Second, WKU does very well at recruiting 

students with a high number of credits earned at the institution, students from the state of 

Kentucky, and students who receive financial aid through either merit-based, need-based, 

or need-based merit sources. Finally, WKU can improve upon these models and become 

more data-driven in their strategies implemented across the campus departments by 

integrating data from applications, admissions, and retention to make decisions focused on 

solving the budgetary shortfalls and student persistence to graduation.  
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