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Abstract: We have simulated a Bose-Einstein condensate in a disordered potential, whose main
characteristics such as the frequency of its maxima and its amplitude can be controlled through
two parameters: the correlation length and the disorder strength. Studying the 1D case, we have
encountered Anderson localization, which is the localization of individual particles or waves in a
disordered energetic landscape, under specific parameters for both the interacting and the non-
interacting regime. We have not been able to unambiguously observe the same kind of localization
for 2D systems, although we provide an explanation for this result in terms of the topology of the
2D disordered potential, and interactions.

I. INTRODUCTION

Bose-Einstein condensation is a quantum phenomenon
that was first predicted in 1924 by Satyendra Nath Bose
and Albert Einstein, and consists in a macroscopic oc-
cupation of a single-particle state. This is an effect that
occurs below a certain critical temperature (of the or-
der of hundreds of nK), at which the thermal de Broglie
wave length of the particles becomes comparable to the
size of the system. In these conditions, the system can
be described by means of a macroscopic wave function
that corresponds to the condensate wave function. Bose-
Einstein condensation was merely theoretical until the
development of cooling techniques, such as laser cooling
or evaporative cooling [1]. It was in 1995, when Boulder
and MIT experimental groups succeeded in creating an
atomic Bose-Einstein condensate (BEC) of Na and Rb,
respectively [2].

When the diluteness condition is fulfilled (ρ|a|3 � 1),
the mean-field framework is a suitable theory to describe
the behaviour of BECs. The static properties and the dy-
namical evolution of the condensate wave function can be
analysed by means of the Gross-Pitaevskii (GP) equation
which is a Schrödinger-like equation with a non-linear
term that accounts for contact interactions [3].

0 from the interaction term, there is a non-interacting
single-particle hamiltonian in the GP equation that con-
tains an external potential whose form can widely vary
depending on the object of to study. In this work, we
want to see the effect of disorder in BECs.

Disorder is commonly present in nature and its effect
can modify the nature of physical systems, even when
the disorder is weak. One of the most important phe-
nomena under the presence of disorder is the localization
of individual particles or waves in a disordered energetic
landscape, also known as Anderson localization [4]. In
1958, P. W. Anderson proved that for random potential
barriers, the difference of their amplitudes and phases
can suppress the propagation amplitude of an electronic
matter wave. It is indeed possible to observe Anderson
localization also in atomic matter waves, such as atomic

BECs.
A disordered potential can be created with speckle pat-

terns. They are produced when a laser light is reflected
by a surface, which is created with randomly-distributed
impurities that cause the light to scatter. These coherent
light waves produce a complex distribution called speckle
pattern, producing a disorder potential proportional to
the local laser intensity [5]. Another emergent way of
creating any kind of external potential is using Digital
Micromirror Devices, consisting of an array of individ-
ual pixels that can modulate the light determinating its
deflected direction [6].

For Anderson localization to happen, we need to con-
trol multiple variables which are going to be explained in
detail in the results section. Consequently, it was difficult
to achieve an unambiguous observation of the Anderson
localization experimentally for BEC. It was in 2010 when
two experiments, one in Paris using 87Rb atoms and an-
other one in Florence using 39K atoms, studied this phe-
nomenon and succeeded to observe the localized states
[7].

Our aim is to numerically simulate these systems by
solving the GP equation describing a BEC in a disordered
potential, and observing Anderson localization. For this
work we have used the Trotter-Suzuki Python package [8],
which is a massively parallelized algorithm that efficiently
solves the GP equation both in the time-independent and
the time-dependent version in 1D and 2D.

Section II introduces the GP equation and the expres-
sion for the disordered potential. The Sect. III shows
the numerical results obtained from the solution of the
GP equation in the 1D case, and discusses the problems
and perspectives in the 2D case. The conclusions of our
work are analysed in Sect. IV.

II. THE GROSS-PITAEVSKII EQUATION AND
THE DISORDER POTENTIAL

Let us first start by introducing the many-body Hamil-
tonian written in second quantization, with the field op-
erators Ψ̂†(~r) and Ψ̂(~r):
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Ĥ =

∫
d~r Ψ̂†(~r)

[
− ~2

2m
~∇2 + Vext(~r)

]
Ψ̂(~r)+

1

2

∫
d~r d~r ′Ψ†(~r)Ψ†(~r ′)V (|~r − ~r ′|)Ψ̂(~r)Ψ̂(~r ′). (1)

Using the Heisenberg equation of motion:

i~
∂

∂t
Ψ̂ =

[
Ψ̂(~r), Ĥ

]
. (2)

Replacing the operator fields with their mean value since
the non condensed fraction of the BEC can be neglected:
ϕ(~r) = 〈Ψ̂(~r)〉, we get:

i~
∂

∂t
ϕ(~r , t) =

[
− ~2

2m
~∇2 + Vext(~r )

]
ϕ(~r , t)+∫

d~r ′ϕ∗(~r ′, t)V (|~r − ~r ′|)ϕ(~r ′, t)ϕ(~r , t). (3)

Where ϕ(~r ) is normalized to the total number of particles
N , Vext represents an external potential and V (|~r − ~r ′|)
is the interaction potential.

For a dilute system (so that ρ|a|3 � 1, being ρ the
density and a the scattering length), there will be only
interaction if there is direct contact between particles,
thus we can replace the interaction potential, V (|~r − ~r ′|)
with gδ(~r − ~r ′), g = 4π~2a/m being the coupling con-
stant. If we replace this term in Eq. (3) we obtain the
Gross-Pitaevskii [9] (GP) equation:

i~
∂

∂t
ϕ(~r , t) =

[
− ~2

2m
~∇2 + Vext(~r )

]
ϕ(~r , t)+

g|ϕ(~r , t)|2ϕ(~r , t). (4)

This GP is a non-linear Schrödinger-like equation that
in general has to be solved using numerical methods. In
this work we are going to solve the GP equation with a
disordered potential using the Trotter-Suzuki algorithm.

There are mainly two ways of creating numerical dis-
order. There is a rough method that consists in overlap-
ping sinusoidal functions with incommensurable frequen-

cies: Vdes(~r ) =
∑N

i=1Ai sin(~ki · ~r ). The second method
is to compute an inverse Fourier transform of gaussianly-
distributed disorder:

Vdes(~r ) = Re

[
F−1

[
2π2ld/2c u0 exp (iϕ~k) exp

(
−
~k2l2c
16

)]]
,

(5)
where F−1 represents the inverse Fourier transform, lc
is the correlation length, u0 the strength of the disorder,
d is the dimension, ϕ~k is a random matrix with values
uniformly between 0 and 2π (which is going to be the
cause of noise) [10]. This expression allows us to control
the parameters of the disorder thanks to the correlation
length lc[12], which is related to the average distance
between maxima and minima, and the disorder strength

FIG. 1: The form of the disorder potential used (eq 5). a) rep-
resents the disorder form in a 2D grid, with its maxima (red)
and minima (blue), b) is the x-axis view of the same disorder
potential showed above, with the units expressed in µm, c)
is the y-axis view, again for the same disorder showed above
and lastly d) is the histogram of the points of our grid where
the potential is acting and shows the Gaussian behaviour of
the width of the potential peaks, with the amplitude of this
histogram being of the order of u0. The potential is written in
terms of ε = 0.476 peV. We have used for this case u0 = 1.5ε
and lc = 4.5 µm.

u0: the amplitude of the potential. The 2D disorder
potential form is shown in Fig. 1. Panel a) being a
color map of the disorder potential. The potential along
the x and y-axis are represented in panels b) and c),
respectively. The panel d) shows the histogram of the
disorder.

III. RESULTS

To observe Anderson localization, initially, we create a
Bose-Einstein condensate with a gaussian wave function
in a disorder potential, and we let the BEC to expand
until it reaches localization after a certain time. When
the BEC has surpassed this localization time, it remains
localized, and we can then state that Anderson localiza-
tion has taken place.

If we take into account the atom-atom interaction,
the repulsion between them screens the disorder [7] and
therefore weakens Anderson localization. However, dur-
ing the expansion of the BEC, the interaction energy re-
duces, and the repulsion effect becomes less important.

As we mentioned, our aim is to numerically find An-
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derson localization by using the Trotter-Suzuki package
[8] to simulate a BEC under the disorder potential intro-
duced in the previous section. We are going to have a
simulation controlled by six parameters. The first one is
the grid length, which is going to be centered to 0 so the
grid length is 2 times the maximum value xmax in the
x-axis, and correspondingly for the y-axis. The second
one is the grid step ∆x and ∆y for x and y-axis, respec-
tively. The number of points in the lattice nx for the
x-axis, are related with the previous parameters in such
a way that 2xmax = nx∆x, and correspondingly for the
y-axis. The last four parameters are the disorder strength
u0, the correlation length lc, the coupling constant g (or
equivalently, the scattering length a) and lastly the initial
amplitude of the gaussian-state condensate σ.

For the observation of Anderson localization, one has
to take into account some restrictions when choosing val-
ues for the different parameters. A sufficiently large grid
is necessary to prevent the condensate from localizing
after reaching the end of the lattice, since this kind of lo-
calization is not physical. Nevertheless, large grid lengths
require very large computational times. Therefore, one
has to be careful with these dimensions. If the grid length
is changed and the number of points remains the same,
we have to take into account that the grid step is mod-
ified as well. To keep the same step we have therefore
to change the number of points for each axis too. In
addition, the amplitude of the initial gaussian-state con-
densate σ needs to be at least 2 or 3 times the correlation
length to be able to see the effect of the disorder. Once
the initial expansion is finished, we expect the amplitude
to remain relatively constant, assuming that it has be-
come localized.

Reducing the correlation length prevents the appear-
ance of bound states in the minima of the disorder po-
tential. This provides an energy scale, called mobility
edge Em = h2/2ml2c , that has to be much larger than
the disorder strength u0, to forbid trivial localization in
the minima of the potential. Moreover, if we assume that
the coupling constant is very small but non zero, another
energy scale is added in the system. It is known (and
we have checked it in the present work), that Ander-
son localization can appear in non-interacting 1D BECs.
However, it is still an ongoing research the study of the
role of interactions in 2D and 3D systems, and we will
briefly comment about the 2D case later on.

To conclude this previous analysis of the simulation,
there is still another relevant factor to be mentioned: the
time. It is known that for 87Rb atoms, used as the ref-
erence for this simulation, the localization time occurs
approximately after a second [11]. We have to perform
a time evolution using a sufficiently small time step to
control that the total energy remains approximately con-
stant, but large enough for the program to be optimized
and spend acceptable running times. We have periodi-
cally checked the density and energy of the condensate
to control if localization is taking place or not and if the
energy remains constant.
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FIG. 2: Full width at half maximum (in µm) of the BEC
gaussian-form density during a time evolution, for different
values of u0. This disorder strength u0 has the same adi-
mensional units as the potential in Fig. 1. The x-axis is
adimensionally t/τ where τ = 2.76 × 10−3 s.

A. 1D analysis

We have finally seen unambiguous Anderson localiza-
tion with the following parameters: 3000 µm for the grid
length with nx = 1000 points, so that the grid step is
∆x = 3 µm. The correlation length is lc = 10µm. The
initial full width at half maximum (FWHM) of the den-
sity in the gaussian-state BEC is 17 µm, which means
that the amplitude of the wave function is 20 µm, which
is 2 times the correlation length so that we can see the
effect of the disorder. Once having fixed these parame-
ters and for no interaction (so that g = 0), we proceed
to check the evolution of the FWHM of the condensate
as a function of time for different values of u0, as seen
in Fig. 2. The dot-dashed violet line, the dashed green
line, the dotted blue line and solid red line corresponds
to u0 = 0, 0.0005, 0.0008 and 0.001 in units of ε.

For no disorder (dot-dashed violet line, u0 = 0) the
BEC expands at a constant rate indefinitely until it
reaches the boundaries of the lattice. As the disorder
strength increases, the BEC starts to localize after a cer-
tain localization time that decreases with u0. For the
particular case of u0 = 0.0005, we have not been able to
see localization. It can be a signature of two possible ef-
fects in the system. Since at weak disorder strength, the
localization time is very large, maybe the simulation has
not been long enough to capture the localization of the
condensate in this potential. Nevertheless, if the simula-
tion is reliable, it would mean that there exists a criti-
cal value for the disorder strength below which there is
no Anderson localization. Unfortunately, our simulations
are not able to distinguish between these two cases.

We have also studied the effect of the interaction in
the expansion of the BEC. The results are displayed in
Fig. 3. The green-dashed line represents the FWHM of
the condensate as a function of time for u0 = 0.001 ε and
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FIG. 3: Full width at half maximum (in µm) of the BEC
gaussian-form density during a time evolution with and
without interaction, using the scattering length parameter
a in µm. Again, the x-axis is adimensionally t/τ where
τ = 2.76 × 10−3 s.

scattering length a = 0.024 µm, and the solid red line
represents the FWHM for a non-interacting condensate
and u0 = 0.001 ε.

As we can see, the localization time is much larger
in the interacting case than in the non-interacting case.
The reason of that is that interaction screens disorder,
and effectively reduces the disorder strength. As we have
discussed before, the localization time increases when the
disorder strength decreases and thus the localization time
also increases with interactions.

B. 2D analysis

We have also analysed Anderson localization in a 2D
system. However, the large grid lengths and the long
time evolutions made the simulation unattainable and
we were not able to obtain conclusive results. Moreover,
that was not the only problem that we had in the 2D
case. The 2D disordered potential possesses a crucial
difference with respect to its version in the 1D case, re-
garding the topology. Whereas in 1D there is always a
maximum between two minima, in 2D one can trace a
path continuously following the different minima of the
lattice. It leads to two effects. One of them is the ef-
fective screening of the disorder strength due to the fact
that particles can avoid the maxima of the potential, just
become these points unexplored for the system. The sec-
ond effect is that it is easier to find bound states localized
in the minimum of the potential, effectively reducing as
well the mobility edge.

It is possible that Anderson localization can not be
found in non-interacting 2D Bose-Einstein condensates.
The introduction of interaction can maybe solve this
problem, but we have not been able to find unambiguous
Anderson localization even in the interacting case, which

is the worst situation for numerical calculations, since in-
teractions increase the localization time, and therefore,
the size of the condensate in the localized regime, thus
requiring prohibitive grid lengths.

IV. CONCLUSIONS

In this work we have simulated a Bose-Einstein conden-
sate and studied its behaviour under a disordered exter-
nal potential, by numerically solving the time-dependent
Gross-Pitaevskii equation with the Trotter-Suzuki pack-
age, to observe unambiguously Anderson localization in
both 1D and 2D systems.

We first study how to get a proper expression for the
disordered potential, checking that its proper form can
be controlled through its parameters. We then have pro-
ceeded in creating the simulation program and analyzing
the different parameters which have to be controlled to
fulfil the observation of a localized state, such as the grid
dimensions, the disorder parameters (lc and u0), the in-
teraction, the initial amplitude of the condensate and the
evolving time.

Finally, we have concluded that for 1D systems the
Anderson localization occurs when properly controlling
all the variables that will influence the simulation: the
BEC initially expands at different rates depending on
the strength of disorder applied, and if the disorder is
sufficiently big, we have observed localization of the con-
densate. Localization in 1D occurs both for interacting
and non-interacting systems. In contrast, in the 2D case,
it has not been possible to observe Anderson localization.
We have not been able to distinguish if this is due to the
fact that we have not achieved the numerical conditions
for localizing the initial BEC, or there are physical limi-
tations, such as topology, or interactions.
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