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Abstract: We solve the Klein-Gordon equation for an axion field in a Kerr background analyti-
cally for Mµ� 1 and Mω � 1 for small spins via matching the near and far region solutions. This
yields a hydrogen-like frequency spectrum and, if the superradiance condition is met, an instability.
Moreover, we discuss some physically relevant elements of our system such as the potential associ-
ated to a black hole, the superradiance rate or the flux at the event horizon, comparing them with
the numerical solution where our approximations are no longer valid.

I. INTRODUCTION

Black hole (BH) superradiance is a dissipative effect
triggered by the scattering of monochromatic waves with
frequency ω off rotating BHs satisfying:

ω < mΩH (1)

where ΩH is the angular velocity of the event horizon and
m an azimuthal quantum number. As a consequence the
BH loses energy and angular momentum while the wave
is amplified 1. Since the existence of an event horizon in
a stationary and axisymmetric spacetime automatically
implies the existence of an ergoregion [1], the Kerr metric
provides a good background to study superradiance.

For the superradiance instability to be significant
enough to manifest in an astrophysical system, the
Compton wavelength of a field has to be comparable to
the size of the BH [2]. This is realized for ultra-light
bosons with small but non zero rest mass. In particular,
for masses in the range 10−9 − 10−21eV, astrophysical
BHs can become sensitive detectors, serving as tests for
fundamental physics theories [3]. One of these particles
is the QCD axion with a rest mass (in the QCD frame)
of µ ≤ 6 · 10−10eV or axion-like particles that are also
interesting dark matter candidates. [4].

The superradiance through the axion yields the Ax-
ionic BH Atom [3], where the BH acts as an hydrogen
atom and gravitons would be emitted by transitions be-
tween axion energy levels. The gravitational waves emit-
ted in this phenomena can be detected with Advanced
LIGO, and therefore we can constrain the axion mass.
We model the axion as a (light) massive scalar field [3]
and study its interaction with the Kerr BH.

∗Electronic address: gcrecike@gmail.com
†Electronic address: hwitek@icc.ub.edu
1 Superradiance is similar to the Penrose process, where an incom-

ing particle decays within the ergoregion producing an ingoing
negative-energy particle (as perceived by an observer at infinity)
and an outgoing particle with more energy than the incoming
one.

II. DIFFERENTIAL EQUATION

The Klein-Gordon equation reads:

(�− µ2)φ = 0, (2)

where µ =MG/~c for a particle of massM. The metric
in Boyer-Lindquist coordinates (t, r, θ, φ) is

ds2 =−
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr2

+ Σdθ2 +
(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θdϕ2,

(3)

where

∆ = r2 + a2 − 2Mr , Σ = r2 + a2 cos2 θ. (4)

M is the mass and J = aM is the angular momentum
of the BH. One of the properties of the Kerr BH is the
existence of an ergoregion. The ergoregion is the loca-
tion at which an observer is forced to co-rotate with the
BH and is defined as the region between the ergosphere
rergo = M +

√
M2 − a2 cos2 θ, an infinite red-shift sur-

face, and the event horizon r+ = M +
√
M2 − a2. Using

the Laplace-Beltrami operator and taking the ansatz [5]

φ = e−iωteimϕR(r)Θ(θ), (5)

we separate Eq. (2) into

1

sin θ
∂θ(sin θ∂θ)Θ(θ)

+

(
λ− a2κ2 cos2 θ − m2

sin2 θ

)
Θ(θ) = 0, (6)

∆∂r(∆∂r)R(r) + [ω2(r2 + a2)2 + a2m2 − 4Marωm

−∆(λ+ a2ω2 + µ2r2)]R(r) = 0 , (7)

where κ2 ≡ µ2 − ω2. Using Θ(θ) = y(x) and x = cos θ,
Eq. (6) becomes

d

dx
[(1− x2)

d

dx
y(x)] +

(
λ− a2κ2x2 − m2

1− x2

)
y(x) = 0.

(8)
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We see that it is the differential equation for the
spheroidal wave equation [6]

d

dη
[(1− η2)

d

dη
Smn(−ic, η)]+(

λmn + c2η2 − m2

1− η2

)
Smn(−ic, η) = 0,

(9)

with η = x, c2 = −a2κ2, n = l and λmn = λ. Thus,
the eigenfunction is y(x) = Smn(−ic, cos θ). Note that
for c=0 the eigenfunctions are the Legendre polynomials.
Normalization yields the shperoidal harmonics

Zlm(θ, ϕ) =
[2l + 1

4π

(l −m)!

(l +m)!

]1/2
Slm(−ic, cos θ)eimϕ,

(10)

that satisfies
∫

Ω
Z∗lmZl′m′d(cos θ)dϕ = δll′δmm′ . To write

Eq. (7) in Schrödinger-like form, we transform from
spherical to tortoise coordinates

dr∗
dr

=
r2 + a2

∆
, (11)

and substitute X(r) =
√
r2 + a2R(r). Then, we obtain[ d2

dr2
∗

+ V
]
X(r) = 0, (12)

with the effective potential

V =ω2 +
a2m2

(r2 + a2)2
− 4Marωm

(r2 + a2)2
(13)

−∆

[
λ+ a2ω2 + µ2r2

(r2 + a2)2
− ∆(2r2 − a2)

(r2 + a2)4
+

2r(r −M)

(r2 + a2)3

]
.

In tortoise coordinates the limits to the event horizon
and to infinity are, respectively, limr→∞ r∗ = ∞ and
limr→r+ r∗ = −∞.

A. Boundary conditions and limit solutions

For large radii we find X(r) ∼ e±ikr∗ ∼ e±ikr with

k =
√
V (r →∞) =

√
V (r∗ →∞) =

√
µ2 − ω2 ≡ κ

(∀r, r∗). As we want an outgoing wave the corresponding
sign is (+). Thus

R(r) =
A√

r2 + a2
ei
√
µ2−ω2r, (14)

is the solution for an outgoing wave in the infinity limit.
For the event horizon limit we must discuss the bound-

ary conditions. In the coordinate frame we may think of
a solution corresponding to an ingoing wave. However,
this is not correct because the wave must be ingoing for
a physical observer rather than the coordinate frame.

With no loss of generality (because all physical ob-
servers are related by Lorentz transformations) let us

take an observer near the horizon, right in the ergo-
sphere. As a consequence the observer moves whitin the
ergosphere with an angular velocity dϕ

dt = ΩH = a
2Mr+

.

The wave solution for the observer takes the form φ ∝
e−i(ω−mΩH)te±ikr∗ . The observer must see an ingoing
wave and therefore we must choose the sign of k oppo-
site to the sign of (ω−mΩH). Hence, taking into account

k =
√
V (r → r+) =

√
V (r∗ → −∞) = ω −mΩH

R(r) =
B√

r2 + a2
e−i(ω−mΩH)r∗ , (15)

The situation when ω < mΩH corresponds to the su-
perradiance effect and the wave extracts energy from the
rotating BH (see Sec. IV).

III. MATCHING SOLUTIONS

In the limit of small spins, a � M , and of small fre-
quencies, i.e., when the Compton wavelength of the field
is much larger than the size of the BH, we can perform a
matched asymptotic expansion. We divide the problem
in three regions: the far, near and overlapping-region.
We take the limits r − r+ � M and r − r+ � 1/ω
for the far and the near-region, respectively. Then we
match the solution of both regions in the limit where
M � r − r+ � 1/ω.

In this limit the separation constant λ of Eqs. (6)
and (7) behaves as [7]

λ = l(l + 1) +O(a2ω2). (16)

Therefore the spheroidal harmonics (10) reduce to
spherical harmonics

Ylm(θ, ϕ) =
[2l + 1

4π

(l −m)!

(l +m)!

]1/2
Plm(cos θ)eimϕ. (17)

A. Far region solution

The differential equation (7) within the limits dis-
cussed above is

d2

dr2
[rR(r)] +

[2Mµ2

r
− κ2 − l(l + 1)

r2

]
rR(r) = 0. (18)

By doing the following substitutions [8]

ν = Mµ/κ, χ = 2κr, (19)

we arrive to the Whittaker equation [9]

d2

dχ2
[χR(r)] +

[
− 1

4
+
ν

χ
− l(l + 1)

χ2

]
χR(r) = 0. (20)

The solution of this equation is related to the confluent
hypergeometric function of first kind and second kind (or
Whittaker functions). With analogy with the hydrogen
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atom equation, we can define the reduced radial function
P (r) ≡ χR(r). The general solution is

P (χ) =χl+1e−χ/2 (21)

×
[
C1U(l + 1− ν, 2l + 2, χ) + C2L

2l+1
ν−l−1(χ)

]
,

where C1 and C2 are constants, U(a, b, χ) is the conl-
fuent hypergeometric function of the second kind and

Lkn(x) =
∑n
m=0(−1)m (n+k)!

(n−m)!(k+m)!m!x
m. Assuming ν −

l − 1 ≡ n+ δν to be non negative (since we want the
radial function to be non-zero at infinity) and within the
limit Mµ� 1 the solution takes the form

R(r) = C1(2κr)le−κ/2U(−n− δν, 2l + 2, 2κr). (22)

Just like the hydrogen atom, we expect a free oscillation
of the scalar field to behave like a bound state of the hy-
drogen atom. The main difference to solving the hydro-
gen equation is that, instead of imposing boundary condi-
tions at the origin, we impose them at the event horizon.
In general it yields complex frequencies ω = ωR+iδ, with
δ < 0 or δ > 0 for stable and unstable modes respectively.
Therefore, assuming slowly growing instabilities, we treat
the imaginary part of the frequency as a first-order per-

turbation, i.e., κ = κ
(

1 − ω
κ2 iδ

)
+ O(δ2). The relation

between κ, n, l and µ is

µ2 − ω2
R = µ2

( µM

n+ l + 1

)2

. (23)

This is, taking µM � 1 we find

ωR ≈ µ
[
1− 1

2

( µM

n+ l + 1

)2]
= µ+O(µM)2. (24)

The perturbation yields ν = ν + µMω
κ3 iδ ≡ ν + δν and

therefore

iδ =
δν

M

( µM

n+ l + 1

)3

. (25)

Using the Maclaurin series of the confluent hypergeo-
metric function of second kind and taking the behavior
at z → 0 we only take into account the following terms

U(a, b, z) =
Γ(−b+ 1)

Γ(1 + a− b)
+ z1−bΓ(b− 1)

Γ(a)
. (26)

Therefore, the solution in the far region, in the limit of
small r, becomes

R(r) =C1
(2κ)lΓ(−2l − 1)

Γ(−2l − n− 1)
rl

+ C1(2κ)−l−1 Γ(2l + 1)

Γ(−n− δν)
r−l−1 (27)

B. Near region solution

In the near horizon region, we take the approximation
r− r+ � 1/ω, the differential radial equation within this

limit is

∆∂r(∆∂r)R(r) + [r4
+(ω −mΩH)2 − l(l + 1)∆]R(r) = 0.

(28)

Substituting z = r−r+
r−r− we find

z(1− z)∂2
zR(z) + (1− z)∂zR(z)

+$2
(1− z

z

)
R(z)− l(l + 1)

(1− z)
R(z) = 0,

(29)

with $ the superradiant factor defined as

$ ≡ (ω −mΩH)
r2
+

r+ − r−
. (30)

Since every second-order ordinary differential equation
with at most three regular singular points can be trans-
formed into the hypergeometric differential equation [10],
we can express the radial function as R(z) = zi$(1 −
z)l+1F (z) [11] . Then, Eq. (29) becomes

z(1− z)∂2
zF (z)− [(l + 1 + 2i$)(l + 1)]F (z)

+
[
(1 + 2i$)− [2(l + 1) + 2i$ + 1]z

]
∂zF (z) =0 .

(31)

As expected, this differential equation corresponds to the
hypergeometric differential equation with the following
parameters:

a = l + 1 + 2i$, b = l + 1, c = 1 + 2i$, (32)

The most general solution near z = 0 (i.e. r = r+) is

R(z) = Az−i$(1− z)l+1
2F1(a+ 1− c, b+ 1− c; 2− c; z)

+Bzi$(1− z)l+1
2F1(a, b; c; z) (33)

This solution represents an ingoing and outgoing wave.
As discussed in Sec. II we only want an ingoing wave
and therefore we set B = 0. Since we are looking for
the behavior at large r (i.e. z → 1), we must shift the
equation from z to 1− z. This can be done with Euler’s
hypergeometric transformations. Therefore, taking the
limit r →∞ i.e. (1− z)→ r+−r−

r

R(r) =AΓ(1− 2i$)
[ (r+ − r−)−lΓ(2l + 1)

Γ(l + 1)Γ(l + 1− 2i$)
rl

+
(r+ − r−)l+1Γ(−2l − 1)

Γ(−l − 2i$)Γ(−l)
r−l−1

]
, (34)

where we have used the property 2F1(a, b; c; 0) = 1.

C. Matching

Once we have computed the far and near-region solu-
tions we match them to get the solution in the overlap-
ping region. The matching yields

(r+ − r−)−l

Γ(l + 1− 2i$)

Γ(2l + 1)

Γ(l + 1)

Γ(−2l − n− 1)

Γ(−2l − 1)
= (2κ)l,

(35a)
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(r+ − r−)l+1

Γ(−l − 2i$)

Γ(−2l − 1)

Γ(−l)
Γ(−n− δν)

Γ(2l + 1)
= (2κ)−l−1.

(35b)

Dividing (35b) by (35a) and using the gamma func-
tion property [10] Γ(1 + x) = xΓ(x) one can derive (for

n = 1, 2, 3 . . . ) Γ
(

1
2 + n

)
= (2n−1)!!

2n

√
π and Γ

(
1
2 − n

)
=

(−1)n2n

(2n−1)!!

√
π. Then, the imaginary part of the frequency

is

δnlm = −2r+(µ−mΩH)µ(µM)4l+4γnlm, (36)

where

γnlm ≡
24l+2(2l + n+ 1)!

(l + n+ 1)2l+4(n!)

[ l!

(2l)!(2l + 1)!

]2
×

×
l∏

k=1

[
k2
(

1− a2

M2

)
+ 4r2

+(µ−mΩH)2
]
. (37)

As expected, for ωR ∼ µ > mΩH the imaginary part
decays. However, if the superradiance condition ωR <
mΩH is satisfied, the imaginary part becomes positive
and indicates an instability. As the field has an expo-
nential dependence φ ∝ e−iωt = e−iRe(ω)eδt the growth
is exponential with a growth timescale τ = 1

δ . Then, the
frequency is

ωnlm 'µ−
1

2

( µM

n+ l + 1

)2

−

− 2ir+(µ−mΩH)µ(µM)4l+4γnlm. (38)

As we can see, the real part of the frequency follows, as
expected, a hydrogen-like spectra with ñ = n+ l + 1.

IV. ENERGY FLUX ACROSS THE HORIZON

In this section we investigate the effect of superradi-
ance on the energy balance. In particular, the energy
flux across the horizon must be negative within the su-
perradiant regime (see Sec. II). It is given by [12]

d2Ehole
dtdΩ

=
ω

kH
2Mr+T

µνnµnν , (39)

where Tµν is the energy-momentum tensor, kH =
limr→r+ V̄ (r) and nµ the normal vector pointing in the
inward direction. For a massive complex field the energy-
momentum tensor is given by

Tµν = ∇(µφ
∗∇ν)φ− gµν(∇ρφ∗∇ρφ− µ2|φ|2). (40)

Taking the normal vector to the horizon to be nµ = −χµ,
where χµ = (∂t, 0, 0,ΩH∂ϕ) is the Killing field associated
to the Kerr spacetime, we find

d2Ehole
dtdΩ

= 2Mr+kH |S(θ)|2|Ahole|2, (41)

where Ahole is the amplitude of the ingoing wave at the
event horizon. As we can see, within the superradiance
regime kH = (ω −mΩH) < 0 the energy flux across the
horizon is negative and there is energy extracted from the
BH, evincing the dissipative nature of this phenomena.

V. MODEL DISCUSSION AND RESULTS

As we have derived the solutions within a certain range
(see Sec. III), it is of interest to plot some physically
relevant quantities such as the superradiance rate and
the potential associated to our solution.

A. Potential

In Fig. 1 we plot the potential, Eq. (13), exemplarily
for the l = m = 1 mode of a field with mass coupling
Mµ = 0.5 and for different values of the spin. As the
spin increases, we see that the potential seems to de-
velop a pronounced well in which modes with ωR . µ
are trapped. These are the modes that are reflected back
onto the BH by the potential wall, and that are super-
radiantly amplified as they return to the BH. Note that,
strictly speaking, our approach is only valid for small
spins and small masses. Therefore, we compare our re-
sults to numerical and analytical calculations for arbi-
trary mass coupling Mµ and near extremal spins. As
computed in Ref. [13], the form of the potential for high
spins is very similar to the one that we have obtained.
Also, we have seen that the centrifugal barrier gets high
as l increases. Therefore, we have the maximum instabil-
ity, associated to the maximum probability of tunneling,
for minimum l 6= 0, i.e. l = 1. On the other hand, the
maximum m is associated to a thicker barrier. Therefore,
the l = m = 1 mode has the largest instability growth
rate, in accordance with numerical calculations [2].

a/M= 0.

a/M= 0.1

a/M= 0.2

a/M= 0.3

a/M= 0.4

a/M= 0.5

a/M= 0.6

a/M= 0.7

a/M= 0.8

a/M= 0.9

a/M= 1.

5 10 15 20

-0.04

-0.03

-0.02

-0.01

0

0.01

r/M

V
(r
/M

)

FIG. 1: Plot of the potential (13) for different spin values,
l = m = 1, n = 0 and Mµ = 0.5.
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B. Superradiance rate

In Fig. 2 we show the imaginary part of the frequency,
which indicates the growth or decay rate of a mode, as a
function of the mass coupling Mµ and for different values
of the spin. We focus on the l = m = 1 mode. We see
that the growth rate increases with increasing Mµ until
the superradiant condition ωR ∼ µ = mΩH is saturated.

The maximum value of the imaginary part is Mδ =
8.42 · 10−9 at Mµ = 0.279 for a/M = 0.9. Comparing
with numerical calculations for high spins [2], the maxi-
mum value for the same spin and mass is Mδ ∼ 1.55·10−8

at Mµ ∼ 0.231, i.e., a relative error of 21% for Mµ and
46% for Mδ.

a/M= 0.1

a/M= 0.2

a/M= 0.3

a/M= 0.4

a/M= 0.5

a/M= 0.6

a/M= 0.7

a/M= 0.8

a/M= 0.9

a/M= 1.

0.0 0.1 0.2 0.3 0.4 0.5

10-31

10-26

10-21

10-16

10-11

10-6

Mμ

M
δ

FIG. 2: Log-plot of the imaginary part of the frequency (36),
rescaled by M to make it dimensionless, as a function of the
field mass µ for the l = m = 1 mode.

VI. CONCLUSIONS

We have solved the Klein-Gordon equation analyti-
cally within the range Mµ � 1 and Mω � 1, for small

spins via a matched asymptotic expansion. The obtained
hydrogen-like frequency spectrum shows that superradi-
ance can occur when the condition (1) is met. Moreover,
we can associate a growth time-scale due to the exponen-
tial dependence of the field and compute the superradi-
ance rate of our physical system.

While our results agree well with numerical calcula-
tions [2] when the spin and mass coupling are small, they
deviate by about 21% for a/M ∼ 0.9 and Mµ ∼ 0.231,
where our approximation breaks down. Also, our poten-
tial has the same form as the one obtained by [13] for all
the spin values. This allows us to make some deductions
about the maximum values of the instability that also
matches the numerical computation by [2].

Most studies of the evolution of the superradiant in-
stability have focused on the fastest growing mode; see
e.g. Ref. [14] for an adiabatic approximation. This is a
specific setup, and in the future it would be interesting to
investigate the BH response to a more generic field con-
figuration. For example, fully nonlinear evolutions [15]
indicate a more complex behaviour of the system in the
presence of both stable and unstable modes. Moreover,
several improvements are done in the field of gravita-
tional waves detection [16], so we expect to have enough
data within the next decade in order to clarify and con-
strast our different theories about axions and BHs in gen-
eral.
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