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Abstract

Background: Genotypes not directly measured in genetic studies are often imputed to improve statistical power
and to increase mapping resolution. The accuracy of standard imputation techniques strongly depends on the
similarity of linkage disequilibrium (LD) patterns in the study and reference populations. Here we develop a novel
approach for genotype imputation in low-recombination regions that relies on the coalescent and permits to
explicitly account for population demographic factors.
To test the new method, study and reference haplotypes were simulated and gene trees were inferred under the
basic coalescent and also considering population growth and structure. The reference haplotypes that first
coalesced with study haplotypes were used as templates for genotype imputation. Computer simulations were
complemented with the analysis of real data. Genotype concordance rates were used to compare the accuracies of
coalescent-based and standard (IMPUTE2) imputation.

Results: Simulations revealed that, in LD-blocks, imputation accuracy relying on the basic coalescent was higher
and less variable than with IMPUTE2. Explicit consideration of population growth and structure, even if present,
did not practically improve accuracy. The advantage of coalescent-based over standard imputation increased with
the minor allele frequency and it decreased with population stratification. Results based on real data indicated that,
even in low-recombination regions, further research is needed to incorporate recombination in coalescence
inference, in particular for studies with genetically diverse and admixed individuals.

Conclusions: To exploit the full potential of coalescent-based methods for the imputation of missing genotypes in
genetic studies, further methodological research is needed to reduce computer time, to take into account
recombination, and to implement these methods in user-friendly computer programs. Here we provide
reproducible code which takes advantage of publicly available software to facilitate further developments in the
field.
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Background
The imputation of missing genotypes is a commonly used
technique to increase the statistical power of genetic asso-
ciation studies and to fine-map causal variants [1]. Geno-
type imputation strongly relies on linkage disequilibrium
(LD) and, since recombination breaks allelic association,
imputed genotypes mainly depend on genotypes measured
within the same LD-block. Several methods have been de-
veloped to impute genotypes, most of them rely on
current, observed LD patterns. For example, IMPUTE2 is
a well-established and accurate program for genotype im-
putation [2, 3]. It estimates the posterior probability of
missing genotypes in a study individual by conditioning
on the estimated haplotype of the study individual, on the
estimated haplotypes of individuals in an external refer-
ence panel for genotype imputation, and on an external
recombination map. As a result, the similarity of LD pat-
terns in the study and the reference populations is crucial
for a precise genotype imputation.
The accuracy of imputed genotypes is influenced by sev-

eral factors, e.g. the density of measured variants in the
study population and their physical location in the genetic
region of interest. Lack of reference haplotypes for rare
and low-frequency variants may lead to low imputation
accuracy and false-positive associations. Huang et al. dem-
onstrated that imputation accuracy is decreased for Afri-
can populations in comparison to European, Asian and
American populations due to the higher genetic diversity
and the lower LD levels [4, 5]. Imputation accuracy is also
determined by demographic factors. Marchini et al. stated
that IMPUTE2 accuracy is decreased when population
structure exists within the study and also as a result of dif-
ferences in LD patterns between the study and reference
populations [3]. For these reasons, genotype imputation
may benefit from methods which incorporate a population
genetics model to circumvent the dependence on LD, and
to explicitly consider demographic factors such as popula-
tion growth and structure.
Coalescence theory is essential when analyzing genetic

variants sampled at the present time with a focus on
evolutionary forces which shaped current genetic vari-
ability [6, 7]. Modeling the past can be done by a sto-
chastic process denominated the coalescent, which can
be interpreted as the genealogical view of mutation
backward in time. In a gene tree, sampled gene copies
are related to each other through coalescence events, i.e.
two distinct genetic lineages coalesce into one shared
ancestral lineage. The essential idea of coalescent-based
genotype imputation is to exploit the properties of the
population’s gene genealogy in order to identify haplo-
types from the reference panel that can adequately func-
tion as imputation templates for study haplotypes.
The aim of the present investigation was to develop

and test a novel imputation approach which relies on

the coalescent and permits to explicitly account for popu-
lation growth and structure. Instead of exclusively relying
on current LD patterns, we capitalize on the coalescent
process and estimate the underlying gene genealogies. The
advantages and limitations of this alternative approach in
comparison to standard genotype imputation were exam-
ined using simulated and real data.

Methods
Computer simulations and real data were used to assess
the potential and limitations of coalescent-based geno-
type imputation. Figure 1 provides an overview of the
conducted simulations and the investigated coalescent-
based imputation approach. In brief, haplotypes were
simulated under the basic coalescent and two extensions
thereof: population growth and population structure.
After random allocation to the study and the reference
population, haplotypes were arranged by chance in pairs
to mimic diploidy. Directly measured variants in the
study were randomly selected, and consensus gene trees
were built without and with consideration of growth and
structure. The reference haplotype(s) which first coa-
lesced with a study haplotype were used as imputation
template(s). In addition to simulation, coalescent-based
genotype imputation was evaluated based on real data
from the 1000 Genomes Project (1000 GP). Accuracy
was measured by the concordance between true masked
and imputed genotypes in both simulated and real data.
The software IMPUTE2 was regarded as gold standard
method for genotype imputation. The following sections
describe in detail the implemented computations and
the investigated real datasets. Table 1 provides back-
ground information about the programs and methods
used in the present study. Computer code to reproduce
all calculations is available through www.biometrie.uni-
heidelberg.de/StatisticalGenetics/Software_and_Data.

Haplotype simulations under the basic coalescent and
two extensions
Under the baseline simulation scenario, 1000 haplotypes
with 100 polymorphic sites each were generated under
the basic coalescent without recombination using msms
[8]. We fixed the effective population size to Ne = 10,000
and the mutation rate per site per generation to μ =
1.25 × 10−8. Assuming an average genetic variability of
one single nucleotide polymorphism (SNP) every 200
base pairs for the human genome, simulated haplotypes
covered deoxyribonucleic acid (DNA) segments of ap-
proximately 20 kilobases (kb) [9].
We hypothesized that study individuals were geno-

typed for a subset of variants in the region of interest,
that reference individuals from an external data reposi-
tory were genotyped for this subset and for additional
variants, and that haplotypes were available for all study
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and reference individuals (Fig. 1). To emulate the study
and the reference populations, 800 out of 1000 simu-
lated haplotypes were randomly assigned to the study
population and the remaining 200 haplotypes built the
external reference panel. Within the study and the refer-
ence populations, haplotypes were randomly paired in
order to mimic diploidy. Ten percent of the 100 variant
sites were randomly selected and assumed to be directly
measured in the study. Genotypes in the remaining sites
were masked and subsequently imputed. Under the
baseline simulation scenario, 10 replicates were gener-
ated using different seeds for haplotype simulation with
msms, and 10 different seeds were used for the random
selection of directly measured variants.

In addition to the baseline simulation scenario com-
prising 1000 haplotypes in total (800 study and 200 ref-
erence haplotypes), simulations were conducted for 800
(640 plus 160), 600 (480 plus 120), 400 (320 plus 80)
and 200 (160 plus 40) haplotypes. The possible effect of
population growth on imputation accuracy was exam-
ined considering different exponential growth rates (α).
Besides a constant population size (α = 0%) in the base-
line simulation scenario, four populations with 1000
haplotypes each were simulated assuming that exponen-
tial growth started 5000 years ago with rates 1.25, 2.50,
3.75 and 5.00%.
The possible effect of population structure on imput-

ation accuracy was investigated by varying the number

Fig. 1 Overview of conducted simulations and proposed algorithm for coalescent-based genotype imputation
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of subpopulations (β). The size of each subpopulation
was fixed to 200 haplotypes. Four populations totaling
1000, 800, 600 and 400 haplotypes each which split
50,000 years ago into β = 5, 4, 3 and 2 equally large sub-
populations, respectively, were simulated. The most
complex simulated scenario simultaneously considered
growth and structure. A population with 1000 haplo-
types was assumed to split 50,000 years ago into β = 5
equal subpopulations, of which each started 5000 years
ago to grow exponentially at rate α = 5.00%.

Real genotypes from the 1000 genomes project
Real data were retrieved from the 1000 GP phase 1 [9].
Genotype imputation was carried out for three hypothet-
ical studies. In the first hypothetical study, 85 CEU indi-
viduals built the study population and all remaining
1000 GP individuals constituted the external reference
panel for genotype imputation. This scenario represents
a study which includes persons from a relatively young
and genetically homogenous population, and where gen-
etically similar external reference subpopulations (GBR,
FIN, IBS and TSI) are available. In the second hypothet-
ical study, all African subpopulations (ASW, LWK and
YRI comprising 246 individuals) built the study popula-
tion, the remaining European, Asian and Latin American
individuals belonged to the reference population. This
scenario represents a study with individuals from an old
and genetically diverse population, without available

genetically similar reference panels. In the third hypo-
thetical study, Latin American subpopulations CLM,
MXL and PUR comprising 181 individuals mimicked the
study of a population subject to recent growth and sub-
structure related to genetic admixture.
Genotypes were imputed for a genetic region on

chromosome 22, which was selected based on recombin-
ation rates from map GRCh37 provided by the 1000 GP.
The region (28,252,000–28,272,000) showed a low average
recombination rate (ρ = 0.05 centimorgan per megabase
(cM/Mb). In contrast to simulation experiments where we
directly generated haplotypes, the assessment of
coalescent-based genotype imputation relying on real data
required phasing, which was implemented using SHA-
PEIT2 [10]. In analogy with simulated data, 10 % of real
genetic variants were assumed to be directly measured in
the study, the genotypes of the remaining variants were
masked and subsequently imputed. Measured genetic var-
iants were randomly selected after exclusion of incompat-
ible sites by pairwise four-gamete tests. Incompatible sites
were excluded using a built-in feature of Genetree since
this would imply recombination and the necessity to infer
gene graphs instead of gene trees [11].

Proposed algorithm for coalescent-based genotype
imputation
The lower part of Fig. 1 illustrates the novel approach
for genotype imputation, which consists of 1) the

Table 1 Brief background information about the programs and methods used in the present study

Program/
Method

Background information Application to the present study Reference

BATWING The program reads multi-locus haplotype data and uses a Mar-
kov chain Monte Carlo method based on coalescent theory to
generate approximate random samples of the underlying gene
genealogy. BATWING allows specification of the population
growth and structure models with their corresponding prior
distributions.

Estimation of gene genealogies underlying haplotypes
under the basic coalescent and also considering
population growth and structure

[12]

Genetree The program constructs gene trees describing the history of a
sample of DNA sequences and calculates maximum likelihood
estimates of the time to the most recent common ancestor
and mutation, migration and growth rates, also in
substructured populations.

Exclusion of incompatible sites by pairwise four-gamete
tests

[11]

IMPUTE2 Computer program for phasing observed genotypes and
imputing missing genotypes. Basically, phasing and imputation
are alternatively iterated in a Markov chain Monte Carlo
framework which accounts for phase uncertainty.

Used as gold standard for genotype imputation assuming
no recombination and also considering regional
recombination rates

[3]

msms Extension of Hudson’s coalescent simulator ms, which also
permits to study selection. Since selection was not considered
in the present study, our haplotypes were simulated using
standard coalescent methods: genealogies were generated by
tracing randomly sampled alleles backwards in time.

Haplotype simulation under the basic coalescent and also
considering population growth and structure

[8]

SHAPEIT2 Fast and accurate method for phasing from genotype or
sequencing data.

Phasing of real genotype data [10]

SumTrees The program constructs a summary tree based on tree samples
provided by the user. Supported methods for summary tree
construction include the Maximum Clade Credibility Topology,
and the majority-rule clade consensus.

Combination of gene genealogies estimated by BATWING
into a majority-rule consensus tree

[14]
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estimation of underlying gene genealogies, 2) the com-
bination of gene genealogies into a majority-rule consen-
sus tree, and 3) the estimation of allele probabilities
relying on identified imputation templates.
Gene genealogies underlying simulated haplotypes

were estimated with BATWING [12]. Note that genealogy
estimation relied on variant sites which were assumed to
be directly measured in the study (Fig. 1). Prior distribu-
tions were selected as suggested by Wilson and Balding
[13]. In total, 1000 gene trees were generated per config-
uration assuming a uniform(0,100) prior distribution of
the scaled mutation rate. The generation of 1000 gene
trees was repeated 10 times under the baseline simula-
tion scenario (basic coalescent). Gene genealogies were
also estimated considering population growth and struc-
ture. Population growth was taken into account assum-
ing that exponential growth started 5000 years ago and
that the growth rate α had a gamma prior distribution
(Γ(2160) for 1.25%, Γ(2,80) for 2.5%, Γ(2,53) for 3.75%
and Γ(2,40) for 5.00%). Population structure was taken
into account through the number of subpopulations, the
splitting time and the proportion of the total population
size taken up by each subpopulation (Dirichlet(β,2) dis-
tributed, where β was the number of subpopulations).
The 1000 gene trees inferred with BATWING were

combined into a majority-rule consensus tree using
SumTrees [14]. Thereafter, means of Bayesian posterior
coalescence times were mapped onto tree branches. Im-
putation templates were identified based on the consen-
sus tree as follows. If the reference panel included
haplotypes identical to the study haplotype regarding
directly measured variant sites, identical reference haplo-
types were used as imputation templates. If no identical
haplotype was present in the reference panel, the haplo-
type in the reference panel which first coalesced with
the study haplotype was used as imputation template. If
there were multiple haplotypes in the reference panel
which coalesced with a given study haplotype not more
than 0.001 coalescent units (10 generations) apart, all
these reference haplotypes served as imputation tem-
plates. Allele probabilities of masked genetic variants
were estimated relying on the distribution of alleles
among selected imputation templates.

Comparison of standard and coalescent-based genotype
imputation
Genotypes were imputed relying not only on the coales-
cent but also using IMPUTE2 [3]. IMPUTE2 was se-
lected as gold standard because it is one of the most
accurate imputation methods and because it is widely
applied [2]. IMPUTE2 estimates the posterior probability
of each study individual’s unmeasured genotype condi-
tioned on its estimated haplotype, the estimated haplo-
types of reference individuals and an external

recombination map. Let assume L diallelic SNPs with al-
leles coded as 0 and 1. Let H be a set of N known haplo-
types at the L SNPs, and let G be a set of genotypes at
the same L SNPs in K individuals with Gi = {Gi1,…, GiL}
denoting the genotypes of the ith individual. Individual
genotypes are either measured so that Gik ∈ {0, 1, 2}, or
they are missing. To predict genotypes which have not
been measured in study individuals, IMPUTE2 uses a
hidden Markov model of each individual’s genotype vec-
tor Gi, conditional on H, and a set of parameters:
P(Gi| H, µ, ρ) = ∑ZP(Gi| Z, µ), P(Z| H, ρ),
where Z = {Z1,…, ZL} with Zj = {Zj1, Zj2} and Zjk = {1,

…, N}. Here, Zj is the pair of haplotypes from the refer-
ence at SNP j that are being copied to form the genotype
vector. P(Z| H, ρ) models the change of copied haplo-
types along the sequence and is defined by a Markov
chain in which switching between states depends on a
recombination map with recombination rate ρ measured
in cM/Mb and scaled by 4Ne. P(Gi| Z, µ) allows each
measured genotype vector to differ through mutation
from the genotypes determined by the pair of copied
haplotypes and is controlled through the mutation par-
ameter μ. Since simulated data under the basic coales-
cent and the two investigated extensions presumed no
recombination, IMPUTE2 was run assuming a recom-
bination rate of ρ = 0 cM/Mb in simulation experiments.
In the baseline simulation scenario, IMPUTE2 was run
10 times using different seeds.
As described above, real data comparisons rested upon

a 20 kb chromosomal region with relatively low recom-
bination probability, specifically 0.001% per generation.
IMPUTE2 was applied to two different sets of variant
sites which represented 10 % of all sites in the investi-
gated region. The first set included only compatible vari-
ants. IMPUTE2 was applied to this set assuming no
recombination. Results from this set of variants,
denominated ‘IMPUTE2 without recombination’ in the
following sections, provide the basis for a theoretical
comparison with coalescent-based imputation in small
chromosomal regions with negligible recombination.
The second set included both compatible and incompat-
ible variants. IMPUTE2 was applied to the second vari-
ant set incorporating the regional recombination rates
provided by the 1000 GP. ‘IMPUTE2 with recombin-
ation’ results permit to examine the applicability of the
investigated coalescent-based imputation approach to
real practice.
The imputation accuracy was primarily quantified by

the genotype concordance, defined as the rate of cor-
rectly imputed genotypes over all study individuals and
all imputed SNPs. The imputation quality score (IQS),
which corrects for expected by-chance agreement ac-
cording to minor allele frequency (MAF), was also calcu-
lated [15]. Although the IQS adjusts for genotype
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agreement by chance, we base our result description on
concordance rates, which have a more intuitive inter-
pretation that a Cohen’s kappa coefficient. Means of
concordance rate and IQS with corresponding 95% con-
fidence intervals (95% CIs) assuming normality were re-
ported. Results were additionally stratified by MAF to
separately examine rare (MAF ≤ 0.01), low-frequency
(0.01 < MAF ≤ 0.05) and common (MAF > 0.05) vari-
ants. All monomorphic variants were excluded from
analysis.

Results
Table 2 shows the number and the MAF distribution of
variants simulated under the basic coalescent. In the
baseline simulation scenario, the average genotype con-
cordance across all replicates was 0.95 (95%CI: 0.94 to
0.96) for genotype imputation based on the basic coales-
cent. This method resulted in higher and less variable
imputation accuracy than genotype imputation using
IMPUTE2, which showed an average genotype concord-
ance of 0.77 (95%CI: 0.74 to 0.81). For illustration, the
observed differences in sample means and variances cor-
respond to probability values <0.0001 from both t and F
tests. The variability of concordance rates for coalescent-
based genotype imputation and IMPUTE2 without re-
combination was higher among simulation replicates
than among iterations with independent selections of
measured variant sites (data not shown). For each MAF
category, coalescent-based imputation was more accur-
ate than IMPUTE2 (Fig. 2a). The difference in average
genotype concordance, and the difference in concord-
ance variability, increased with increasing MAF. Add-
itional file 1: Table S1 shows the corresponding IQS
values with analogue findings.
For every simulated population size, coalescent-based

genotype imputation achieved higher and less variable
concordance rates than IMPUTE2 (Table 2). No mono-
tonic trend of concordance rates was observed with in-
creasing number of simulated haplotypes (Fig. 2b). Most
simulated variants had a MAF over 0.05 for any popula-
tion size. The largest differences between coalescent-
based imputation and IMPUTE2 in average genotype
concordance, and in concordance variability, were con-
sistently found for this MAF category.
The first investigated generalization of the basic co-

alescent was population growth (Table 3, Fig. 2c). In-
cluding population growth in haplotype simulation
resulted in slightly lower concordance rates for
coalescent-based genotype imputation and IMPUTE2.
No trend in genotype concordance was observed with
increasing growth rates. Consideration of population
growth in the estimation of gene genealogies by the
coalescent-based approach did not improve imputation
accuracy. The coalescent-based method, with and

without consideration of growth, resulted in higher
genotype concordances and higher IQSs than IMPUTE2
in the category of common SNPs (Tables 3 and Add-
itional file 1: Table S2). For rare variants, the advantage
or disadvantage of coalescent-based imputation
depended on the growth rate, and on the considered ac-
curacy statistic.
The second investigated extension of the basic coales-

cent was population structure (Table 3, Fig. 2d). The lar-
gest difference in average genotype concordance
between coalescent-based and IMPUTE2 imputation was
found for two subpopulations. The number of subpopu-
lations did not practically influence the concordance
rates for coalescent-based imputation. By contrast, the
average concordance of genotypes imputed by IMPUTE2

Table 2 Distribution of simulated variants according to allele
frequency, and dependence of imputation accuracy on the sizes
of study population and reference panel. Different total
numbers of haplotypes were simulated under the basic
coalescent (Nsim). Genotypes were imputed based on the basic
coalescent and with IMPUTE2 without recombination. Mean
genotype concordance rates with the corresponding 95%
confidence intervals (CIs) are shown for all variants and stratified
by minor allele frequency (MAF)

Variants Basic coalescent IMPUTE2

Nsim MAF N (%) Mean (95% CI) Mean (95% CI)

Baseline simulation scenarioa

1000 all 96 (100.0) 0.95 (0.94,0.96) 0.77 (0.74,0.81)

≤0.01 30 (31.3) 0.97 (0.96,0.98) 0.90 (0.88,0.92)

>0.01, ≤0.05 24 (25.0) 0.94 (0.93,0.95) 0.85 (0.83,0.87)

>0.05 42 (43.8) 0.93 (0.92,0.95) 0.62 (0.58,0.66)

Total number of simulated haplotypes

800 all 88 (100.0) 0.91 (0.89,0.94) 0.77 (0.72,0.82)

≤0.01 27 (30.7) 0.99 (0.98,0.99) 0.99 (0.98,1.00)

>0.01, ≤0.05 25 (28.4) 0.95 (0.93,0.97) 0.91 (0.89,0.93)

>0.05 36 (40.9) 0.83 (0.78,0.89) 0.52 (0.47,0.58)

600 all 90 (100.0) 0.97 (0.96,0.99) 0.66 (0.61,0.71)

≤0.01 15 (16.7) 0.99 (0.98,1.00) 0.98 (0.97,0.99)

>0.01, ≤0.05 14 (15.6) 0.93 (0.91,0.95) 0.92 (0.89,0.94)

>0.05 61 (67.8) 0.98 (0.96,1.00) 0.52 (0.49,0.55)

400 all 87 (100.0) 0.92 (0.90,0.95) 0.77 (0.73,0.81)

≤0.01 19 (21.8) 0.98 (0.97,0.99) 0.97 (0.96,0.98)

>0.01, ≤0.05 28 (32.2) 0.95 (0.93,0.96) 0.88 (0.83,0.92)

>0.05 40 (46.0) 0.88 (0.82,0.94) 0.59 (0.56,0.62)

200 all 89 (100.0) 0.89 (0.86,0.92) 0.76 (0.72,0.79)

≤0.01 10 (11.2) 0.97 (0.96,1.00) 0.97 (0.96,0.99)

>0.01, ≤0.05 28 (31.5) 0.91 (0.89,0.94) 0.90 (0.88,0.93)

>0.05 51 (57.3) 0.85 (0.81,0.90) 0.64 (0.61,0.67)
aResults averaged over ten simulation replicates and ten iterations with
independent selection of measured variant sites
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increased with increasing number of subpopulations.
This result was attributable to the increasing proportion
of rare variants with increasing number of subpopula-
tions. Consideration of population structure in the esti-
mation of gene genealogies by the coalescent-based
approach did not improve imputation accuracy. As ex-
pected due to the small influence of population growth,
results for five subpopulations with and without growth
were quite similar.
Table 4 presents average accuracies from real data ana-

lyses. The MAF distribution of variants imputed based
on compatible variants was similar to the distribution of
variants imputed based on a set of random measured
(compatible and incompatible) variants. In the hypothet-
ical European (CEU) and African (AFR) studies, most
variants showed a low-frequency (0.01 < MAF ≤ 0.05).

In the hypothetical study in Latin America (AMR), rare
SNPs (MAF ≤ 0.01) built the largest variant category.
In the hypothetical European study, imputation based

on the coalescent, imputation with IMPUTE2 without
recombination, and imputation with IMPUTE2 incorpor-
ating 1000 GP recombination rates achieved similar
average concordance rates. In the hypothetical studies in
Africa (AFR) and Latin America (AMR), IMPUTE2 with
recombination slightly outperformed coalescent-based
imputation. Similar conclusions can be drawn based on
IQS values (Additional file 1: Table S3).

Discussion
This article describes the development of a novel
method for imputation of genotypes relying on the basic
coalescent, which was extended to consider population

Fig. 2 a-d Accuracy of imputation relying on the coalescent (black) and with IMPUTE2 (gray) represented by mean concordance rates with the
corresponding 95% confidence intervals (shown as error bars). a 1000 haplotypes were simulated under the basic coalescent. Genotypes were
imputed based on the basic coalescent and with IMPUTE2 without recombination. Results are presented for all variants and stratified by minor
allele frequency. b Different total numbers of haplotypes were simulated under the basic coalescent. Genotypes were imputed based on the
basic coalescent and with IMPUTE2 without recombination. c Haplotypes were simulated under the basic coalescent extended to
accommodate different exponential growth rates (α). Genotypes were imputed based on the coalescent with growth, and with IMPUTE2
without recombination. d Haplotypes were simulated under the coalescent extended to consider different numbers of subpopulations (β).
Genotypes were imputed based on the coalescent with population structure and with IMPUTE2 without recombination
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Table 3 Distribution of simulated variants according to allele frequency, and dependence of imputation accuracy on population
growth and structure. 1000 haplotypes were simulated under the coalescent with different exponential growth rates (α) and
numbers of subpopulations (β). Genotypes were imputed based on the basic coalescent, the coalescent incorporating population
growth and/or structure and with IMPUTE2 without recombination. Mean genotype concordance rates with the corresponding
95% confidence intervals (CIs) are presented. Results are shown for all variants and stratified by minor allele frequency (MAF)

Variants Basic coalescent Coalescent with
growth and/or

IMPUTE2

α (%) β MAF N (%) Mean (95% CI) Mean (95% CI) Mean (95% CI)

Population growth

1.25 1 all 87 (100.0) 0.95 (0.94,0.96) 0.95 (0.93,0.96) 0.77 (0.72,0.82)

≤0.01 30 (34.5) 0.99 (0.98,1.00) 0.99 (0.98,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 20 (23.0) 0.90 (0.88,0.92) 0.90 (0.88,0.92) 0.90 (0.88,0.92)

>0.05 37 (42.5) 0.94 (0.91,0.97) 0.94 (0.91,0.97) 0.51 (0.46,0.57)

2.50 1 all 86 (100.0) 0.94 (0.92,0.96) 0.94 (0.92,0.95) 0.76 (0.71,0.81)

≤0.01 25 (29.1) 0.98 (0.97,0.99) 0.98 (0.97,0.99) 0.98 (0.97,0.99)

>0.01, ≤0.05 23 (26.7) 0.90 (0.88,0.92) 0.90 (0.88,0.92) 0.89 (0.87,0.91)

>0.05 38 (44.2) 0.93 (0.89,0.96) 0.93 (0.89,0.96) 0.50 (0.45,0.55)

3.75 1 all 88 (100.0) 0.94 (0.93,0.96) 0.94 (0.93,0.96) 0.76 (0.70,0.81)

≤0.01 27 (31.0) 0.98 (0.97,0.99) 0.98 (0.97,0.99) 0.98 (0.98,0.99)

>0.01, ≤0.05 24 (27.3) 0.91 (0.89,0.92) 0.91 (0.89,0.92) 0.89 (0.88,0.91)

>0.05 37 (42.0) 0.93 (0.90,0.96) 0.93 (0.90,0.96) 0.50 (0.45,0.56)

5.00 1 all 88 (100.0) 0.94 (0.93,0.96) 0.94 (0.93,0.96) 0.76 (0.71,0.81)

≤0.01 27 (30.7) 0.99 (0.98,1.00) 0.99 (0.98,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 24 (27.3) 0.92 (0.90,0.93) 0.92 (0.90,0.93) 0.90 (0.88,0.92)

>0.05 37 (42.0) 0.93 (0.90,0.96) 0.93 (0.90,0.96) 0.50 (0.45,0.56)

Population structure

0.00 2 all 86 (100.0) 0.95 (0.93,0.97) 0.95 (0.93,0.97) 0.85 (0.81,0.89)

≤0.01 38 (44.2) 0.96 (0.93,1.00) 0.96 (0.93,1.00) 0.98 (0.97,0.99)

>0.01, ≤0.05 32 (37.2) 0.94 (0.92,0.95) 0.94 (0.92,0.95) 0.89 (0.88,0.91)

>0.05 16 (18.6) 0.93 (0.86,0.99) 0.92 (0.86,0.99) 0.44 (0.41,0.48)

0.00 3 all 83 (100.0) 0.94 (0.91,0.97) 0.94 (0.91,0.97) 0.87 (0.82,0.91)

≤0.01 47 (56.6) 0.97 (0.94,1.00) 0.97 (0.94,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 20 (24.1) 0.92 (0.90,0.94) 0.92 (0.90,0.94) 0.91 (0.89,0.94)

>0.05 16 (19.3) 0.86 (0.77,0.95) 0.86 (0.77,0.95) 0.47 (0.40,0.53)

0.00 4 all 86 (100.0) 0.93 (0.90,0.96) 0.93 (0.90,0.96) 0.92 (0.88,0.95)

≤0.01 56 (65.1) 0.97 (0.94,1.00) 0.97 (0.94,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 18 (20.9) 0.95 (0.93,0.97) 0.95 (0.93,0.97) 0.91 (0.89,0.94)

>0.05 12 (14.0) 0.67 (0.60,0.75) 0.68 (0.60,0.75) 0.59 (0.48,0.70)

0.00 5 all 86 (100.0) 0.94 (0.91,0.96) 0.94 (0.91,0.96) 0.94 (0.92,0.96)

≤0.01 48 (55.8) 0.97 (0.93,1.00) 0.97 (0.93,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 30 (34.9) 0.93 (0.92,0.94) 0.93 (0.92,0.94) 0.93 (0.91,0.94)

>0.05 8 (9.3) 0.76 (0.63,0.89) 0.76 (0.63,0.89) 0.67 (0.58,0.76)

Population growth and structure

5.00 5 all 85 (100.0) 0.93 (0.91,0.96) 0.93 (0.90,0.96) 0.94 (0.92,0.96)

≤0.01 47 (55.3) 0.97 (0.93,1.00) 0.97 (0.93,1.00) 0.99 (0.98,1.00)

>0.01, ≤0.05 28 (32.9) 0.93 (0.92,0.94) 0.93 (0.92,0.94) 0.93 (0.92,0.94)

>0.05 10 (11.8) 0.76 (0.67,0.85) 0.76 (0.67,0.85) 0.72 (0.65,0.79)

Kabisch et al. BMC Genomics  (2017) 18:798 Page 8 of 12



growth and structure. Standard methods for genotype
imputation take advantage of present LD patterns. By
contrast, coalescent-based imputation capitalizes on the
process which originated current haplotype structure.
Our simulations revealed that, in LD-blocks, the con-
cordance of genotypes imputed under the basic coales-
cent was higher and less variable than for IMPUTE2
independently of the size of the study and reference pop-
ulations. Explicit consideration of population growth did
not practically improve imputation accuracy, even if
growth was present. Nordborg suggests that although
population growth has clearly taken place during the last
200,000 years, it may be reasonable to ignore it when
modelling human evolution [16]. Genealogies coalesce
earlier in history for growing than for constant-size pop-
ulations, but this is hardly relevant in an imputation
context where templates are identified based on the
ranking rather than actual coalescence times.
Our simulations also suggested that the advantage of

coalescent-based over standard imputation increased
with the allele frequency and decreased with population
stratification. The increasing proportion of rare variants
with an increasing number of subpopulations probably
explains the similar performance of genotype imputation
based on the coalescent and with IMPUTE2 in the simu-
lated scenario with five subpopulations. To date,
coalescent-based imputation is computationally much
more demanding than IMPUTE2. For example, one

imputation run based on the coalescent required about
6.5 h for simulated haplotypes in a UNIX based high
performance computing cluster. The same run on the
sample cluster took 30 min for IMPUTE2, with and
without recombination.
The basic coalescent was initially developed in the

1980s [17]. One decade later, it was generalized in order
to accommodate populations with a demographic history
of growth and subdivision [6, 7, 18, 19]. Kimmel et al.
proposed in the late 2000s a genealogy-based algorithm
for fine-mapping, which permitted to evaluate the sig-
nificance and location of putative causal variants [20].
Paşaniuc et al. applied the coalescent to select personal-
ized reference panels for genotype imputation [21]. They
proposed to select reference individuals based on
weights inversely proportional to the coalescence time
between study and reference haplotypes and genotype
imputation was actually carried out with standard
methods, concretely with IMPUTE2. The methodology
introduced in the present article is substantially different
from the techniques proposed by Paşaniuc et al. regard-
ing both the use of coalescence times to identify imput-
ation templates, and the actual imputation of missing
allele states in study individuals. In spite of these differ-
ences and in line with our real data results, Paşaniuc
et al. also found that coalescent-based techniques may
offer some advantage for genotype imputation, in par-
ticular for genetic regions of low LD. Jewett et al. relied

Table 4 Distribution of simulated variants according to allele frequency, and accuracy of variants imputed based on the basic
coalescent, with IMPUTE2 without recombination, and with IMPUTE2 with recombination. Real genotypes were retrieved from
the 1000 Genomes Project (1000 GP) assuming that the CEU, AFR and AMR subpopulations constituted hypothetical study
populations. Remaining 1000 GP individuals built the external reference panel for genotype imputation. Mean concordance rates
with the corresponding 95% confidence intervals (CIs) are represented. Results are shown for all variants and also stratified by minor
allele frequency (MAF)

Variants Basic coalescent IMPUTE2 without
recombination

Variants IMPUTE2 with
recombination

Study MAF N (%) Mean (95% CI) Mean (95% CI) N (%) Mean (95% CI)

CEU all 41 (100.0) 0.92 (0.89,0.95) 0.90 (0.86,0.93) 42 (100.0) 0.93 (0.89,0.96)

≤0.01 11 (26.8) 0.98 (0.97,0.99) 0.98 (0.97,0.99) 12 (28.6) 0.98 (0.97,0.99)

>0.01, ≤0.05 21 (51.2) 0.92 (0.91,0.93) 0.91 (0.91,0.92) 19 (45.2) 0.99 (0.97,1.00)

>0.05 9 (22.0) 0.84 (0.70,0.99) 0.75 (0.62,0.88) 11 (26.2) 0.76 (0.68,0.85)

AFR all 123 (100.0) 0.93 (0.92,0.95) 0.93 (0.91,0.95) 121 (100.0) 0.96 (0.94,0.97)

≤0.01 35 (28.5) 0.99 (0.98,1.00) 0.99 (0.98,1.00) 37 (30.6) 0.99 (0.98,1.00)

>0.01, ≤0.05 58 (47.2) 0.97 (0.96,0.98) 0.97 (0.96,0.97) 56 (46.3) 0.96 (0.95,0.97)

>0.05 30 (24.4) 0.81 (0.76,0.85) 0.79 (0.74,0.83) 28 (23.1) 0.90 (0.85,0.95)

AMR all 66 (100.0) 0.92 (0.90,0.95) 0.92 (0.89,0.94) 67 (100.0) 0.96 (0.94,0.98)

≤0.01 36 (54.5) 0.98 (0.97,0.99) 0.98 (0.97,0.99) 36 (53.7) 0.99 (0.98,1.00)

>0.01, ≤0.05 5 (7.6) 0.91 (0.88,0.94) 0.90 (0.86,0.95) 7 (10.4) 0.93 (0.90,0.96)

>0.05 25 (37.9) 0.84 (0.79,0.89) 0.82 (0.76,0.87) 24 (35.8) 0.93 (0.87,0.98)

CEU…Utah residents with Northern and Western European ancestry; AFR…African populations including African Ancestry in Southwest US (ASW), Luhya in
Webuye, Kenya (LWK) and Yoruba in Ibadan, Nigeria (YRI); AMR…American populations including Colombian in Medellin, Colombia (CLM), Mexican Ancestry in
Los Angeles, California (MXL) and Puerto Rican in Puerto Rico (PUR)
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on a two-population model to investigate the depend-
ence of imputation accuracy on the size of the reference
panel and on the coalescence time of study and refer-
ence haplotypes [22]. The same two-population model
was assumed by Huang et al., who derived approximate
expressions for the imputation accuracy as a function of
population-genetic factors including the mutation rate
[23]. The focus of this article is markedly different. Here
we developed and tested a novel procedure to impute
genotypes based on the coalescent, and applied the new
method to simulated and real datasets. Jewett et al.
found that a small reference panel from the same popu-
lation as study individuals yields higher imputation ac-
curacy than a large reference panel from a markedly
different population. Our results complement this find-
ing and indicate that the relationship between the size of
the study and reference populations and imputation ac-
curacy is complex.
The effective population size, mutation rate and se-

quence length that were assumed to simulate haplotypes
under the coalescent are comparable to the parameter
setting in other simulation experiments. Fu et al. investi-
gated effective population sizes up to 8000, a mutation
rate of 1.5 × 10−8 per site per generation, sequence
lengths of up to 50 kb and growth rates of up to 2.5%
per generation [24]. Kang and Marjoram simulated 1000
haplotypes over a 500 kb region assuming a scaled mu-
tation rate of 100 [25]. Zhang et al. imputed 100 kb in
2000 simulated haplotypes of 1 Mb total length and used
an effective population size of 10,000 and a mutation
rate of 10−8 per site per generation as simulation param-
eters [26]. The time points for population growth and
subdivision selected in present simulation experiments
are also conform to established models for human dem-
ography, e.g. the Out-of-Africa model [27]. Therein, the
Eurasian population, which developed through a bottle-
neck from the African population, split into the Asian,
American and European subpopulations approximately
50,000 years ago. The starting point of exponential
population growth was set to a later time point. Here,
5000 years seemed reasonable, because intense agricul-
ture involving various cultivated crops and the domesti-
cation of farm animals had developed throughout Asia,
Europe and America.
We constrained our investigations to LD-blocks.

Even if genotypes are imputed in practice over the
whole genome, recombination breaks allelic associ-
ation and imputed genotypes essentially depend on
measured genotypes in the same LD-block. LD-block
confinement permitted to estimate gene genealogies
under the assumption that genetic variability was
completely due to mutation without recombination.
This assumption is essential for estimating perfect ge-
nealogical trees. Analyses of real European data

showed similar accuracies for coalescent-based and
standard imputation. Only compatible sites according
to pairwise four-gamete tests were selected as directly
measured in order to be able to represent real data,
which naturally comprises variants originated from re-
combination, by single trees. This was accompanied
by some computational complexity and selected vari-
ants unlikely represented the complete genetic vari-
ability, which could be one reason of the relatively
weak performance of coalescent-based and IMPUTE2
without recombination imputation methods for real
African and Latin American data. For these two sce-
narios which represent hypothetical studies with gen-
etically diverse and admixed individuals, respectively,
imputation accuracy improved after incorporating es-
timates of recombination based on a set of randomly
selected measured SNP sites. When IMPUTE2 was
run incorporating estimates of recombination based
on a set of randomly selected measured SNP sites,
the imputation accuracy was clearly superior to
coalescent-based imputation. Hence, the difference in
imputation accuracy between coalescent-based and
standard imputation for real data might be due to the
inclusion of variants created through recombination.
A lot of effort has been made to incorporate recom-
bination in coalescent-based methods [11]. In theory,
ancestral recombination graphs (ARGs) can be used
to model the ancestral relationship between haplo-
types, which include nodes for recombination in
addition to coalescence nodes. Due to the very com-
plex nature of this problem, the construction of ARGs
is extremely difficult in practice. Often the search for
possible ARGs is computationally intractable and
there is not enough information in the data to recon-
struct an ARG with adequate confidence [28]. Present
findings clearly illustrate the potential of coalescent-
based genotype imputation and emphasize the urgent
need for feasible solutions to incorporate recombin-
ation in coalescence inference.

Conclusions
Coalescent-based genotype imputation within LD-
blocks showed a better accuracy than standard imput-
ation in simulations with variable population sizes,
with and without population growth and with few
subpopulations. However, standard imputation is com-
putationally much less demanding. To exploit the full
potential of coalescent-based methods for the imput-
ation of missing genotypes in genetic studies, further
methodological research is needed to reduce com-
puter time, to take into account recombination, and
to implement these methods in user-friendly com-
puter programs. The contribution of the present in-
vestigation in this direction is twofold. First, we
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provide computer code which takes advantage of pub-
licly available software in order to impute genotypes
relying on the basic coalescent and two extensions
thereof. Second, we use simulations and real 1000 GP
data to explore the potential of this alternative ap-
proach with a focus on the accuracy of imputed ge-
notypes. Both the provided material and reported
findings shall boost methodological research and the
use of coalescent methods in general, and of
coalescent-based genotype imputation in particular.
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imputation quality scores (IQS) with corresponding 95% confidence
intervals) on the sizes of study population and reference panel. An IQS
equal to 1 can be interpreted as 100% imputation accuracy, an IQS of 0
corresponds to random genotype assignment, and negative IQS points
to a genotype assignment worse than by chance. Table S2. Dependence
of imputation accuracy on population growth and structure (mean
imputation quality scores (IQS) with corresponding 95% confidence
intervals). Table S3. Accuracy of variants imputed based on the basic
coalescent, with IMPUTE2 without recombination, and with IMPUTE2
with recombination (mean imputation quality scores (IQS) with
corresponding 95% confidence intervals). (DOCX 39 kb)

Abbreviations
1000 GP: 1000 Genomes Project; AFR: African populations; AMR: American
populations; ARG: Ancestral recombination graph; ASW: African Ancestry in
Southwest US; CEU: Utah residents with Northern and Western European
ancestry; CLM: Colombian in Medellin, Colombia; cm/kb: centimorgan per
megabase; DNA: deoxyribonucleic acid; IQS: Imputation quality score;
LD: Linkage disequilibrium; LWK: Luhya in Webuye, Kenya; MAF: Minor allele
frequency; MXL: Mexican Ancestry in Los Angeles, California; PUR: Puerto
Rican in Puerto Rico; SNP: Single nucleotide polymorphism; YRI: Yoruba in
Ibadan, Nigeria

Acknowledgements
None.

Availability of data and material
Computer code to reproduce all calculations is available through
www.biometrie.uni-heidelberg.de/StatisticalGenetics/Software_and_Data.

Funding
This study was financially supported by the Deutsche
Forschungsgemeinschaft and the Ruprecht-Karls-Universität Heidelberg
within the funding program Open Access Publishing.

Authors’ contributions
MK programmed and conducted all described calculations and drafted the
manuscript. JLB designed the study and was a major contributor in writing
the manuscript. MK, UH und JLB read, corrected and approved the final
manuscript.

Ethics approval and consent to participate
Does not apply since this study has not involved plants, animals or humans
directly.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1Molecular Genetics of Breast Cancer, German Cancer Research Center
(DKFZ), 69120 Heidelberg, Germany. 2Institute of Medical Biometry and
Informatics, University of Heidelberg, 69120 Heidelberg, Germany.

Received: 10 November 2016 Accepted: 12 October 2017

References
1. Marchini J, Howie B. Genotype imputation for genome-wide association

studies. Nat Rev Genet. 2010;11(7):499–511.
2. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype

imputation method for the next generation of genome-wide association
studies. PLoS Genet. 2009;5(6):e1000529.

3. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint
method for genome-wide association studies by imputation of genotypes.
Nat Genet. 2007;39(7):906–13.

4. Huang L, Jakobsson M, Pemberton TJ, Ibrahim M, Nyambo T, Omar S,
Pritchard JK, Tishkoff SA, Rosenberg NA. Haplotype variation and genotype
imputation in African populations. Genet Epidemiol. 2011;35(8):766–80.

5. Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P.
Genotype-imputation accuracy across worldwide human populations. Am J
Hum Genet. 2009;84(2):235–50.

6. Hudson RR. The variance of coalescent time estimates from DNA
sequences. J Mol Evol. 2007;64(6):702–5.

7. Hudson RR, Kaplan NL. The coalescent process in models with selection and
recombination. Genetics. 1988;120(3):831–40.

8. Ewing G, Hermisson J. MSMS: a coalescent simulation program including
recombination, demographic structure and selection at a single locus.
Bioinformatics. 2010;26(16):2064–5.

9. Genomes Project C, Abecasis GR, Auton A, Brooks LD, MA DP, Durbin RM,
Handsaker RE, Kang HM, Marth GT, GA MV. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

10. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing
for disease and population genetic studies. Nat Methods. 2013;10(1):5–6.

11. Griffiths RC, Marjoram P. Ancestral inference from samples of DNA
sequences with recombination. J Comput Biol. 1996;3(4):479–502.

12. Wilson IJ, Dawson KJ. A Markov chain Monte Carlo strategy for sampling
from the joint posterior distribution of pedigrees and population
parameters under a fisher-Wright model with partial selfing. Theor Popul
Biol. 2007;72(3):436–58.

13. Wilson IB, Balding D. Inferences from DNA data: population histories,
evolutionary processes and forensic match probabilities. J R Stat Soc Ser A.
2013;166:155–201.

14. Sukumaran J, Holder MT. DendroPy: a python library for phylogenetic
computing. Bioinformatics. 2010;26(12):1569–71.

15. Lin P, Hartz SM, Zhang Z, Saccone SF, Wang J, Tischfield JA, Edenberg HJ,
Kramer JR, M Goate A, Bierut LJ et al: A new statistic to evaluate imputation
reliability. PLoS One 2010, 5(3):e9697.

16. Nordborg M: Handbook of statistical genetics, Coalescent theory; 2008.
17. Kingman JF. Origins of the coalescent. 1974-1982. Genetics. 2000;156(4):

1461–3.
18. Bahlo M, Griffiths RC. Coalescence time for two genes from a subdivided

population. J Math Biol. 2001;43(5):397–410.
19. Marjoram P, Donnelly P. Pairwise comparisons of mitochondrial DNA

sequences in subdivided populations and implications for early human
evolution. Genetics. 1994;136(2):673–83.

20. Kimmel G, Karp RM, Jordan MI, Halperin E. Association mapping and significance
estimation via the coalescent. Am J Hum Genet. 2008;83(6):675–83.

21. Pasaniuc B, Avinery R, Gur T, Skibola CF, Bracci PM, Halperin E. A generic
coalescent-based framework for the selection of a reference panel for
imputation. Genet Epidemiol. 2010;34(8):773–82.

22. Jewett EM, Zawistowski M, Rosenberg NA, Zollner S. A coalescent model for
genotype imputation. Genetics. 2012;191(4):1239–55.

23. Huang GH, Tseng YC. Genotype imputation accuracy with different
reference panels in admixed populations. BMC Proc. 2014;8(Suppl 1 Genetic
Analysis Workshop 18Vanessa Olmo):S64.

24. Fu W, O'Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder
MJ, Altshuler D, Shendure J, et al. Analysis of 6,515 exomes reveals the
recent origin of most human protein-coding variants. Nature. 2013;
493(7431):216–20.

Kabisch et al. BMC Genomics  (2017) 18:798 Page 11 of 12

dx.doi.org/10.1186/s12864-017-4208-2
http://www.biometrie.uni-heidelberg.de/StatisticalGenetics/Software_and_Data


25. Kang CJ, Marjoram P. A sample selection strategy for next-generation
sequencing. Genet Epidemiol. 2012;36(7):696–709.

26. Zhang P, Zhan X, Rosenberg NA, Zollner S. Genotype imputation
reference panel selection using maximal phylogenetic diversity.
Genetics. 2013;195(2):319–30.

27. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the
joint demographic history of multiple populations from multidimensional
SNP frequency data. PLoS Genet. 2009;5(10):e1000695.

28. Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. Genome-wide inference of
ancestral recombination graphs. PLoS Genet. 2014;10(5):e1004342.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Kabisch et al. BMC Genomics  (2017) 18:798 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Haplotype simulations under the basic coalescent and two extensions
	Real genotypes from the 1000 genomes project
	Proposed algorithm for coalescent-based genotype imputation
	Comparison of standard and coalescent-based genotype imputation

	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Availability of data and material
	Funding
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

