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GMP-17 granule membrane protein of 17-kDa 

HMVECs human microvascular endothelial cells 

HSD11B1 hydroxysteroid 11-beta dehydrogenase 1 
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IGF insulin-like growth factor-1 
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iNOS inducible nitric oxide synthase 

ITC isothermal titration calorimetry 

LAMP-1 lysosomal-associated membrane protein 1 

LMP1 latent membrane protein 1 
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MAPK mitogen-activated protein kinase 

MCP-1 monocyte chemotactic protein 1 
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mM millimolar concentration 

mm millimeter 

MMP matrix metalloproteinase 
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mRNA messenger RNA 

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 

ng nanogram 

OA osteoarthritis  

OS overall survival 

p62lck zeta-interacting protein 
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PBMC peripheral blood mononuclear cell 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PFA paraformaldehyde 

pg picogram 

PGE prostaglandin E 

RA rheumatoid arthritis 

RELM-alpha retnla resistin like alpha 

RNA ribonucleic acid 

rcf relative centrifugal force 
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RT room temperature 

SAGE serial analysis of gene expression 

SGPP2 sphingosine-1-phosphate phosphatase 2 
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siRNA  small interfering RNA 

TAMs tumor-associated macrophages 
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TGFβR1 transforming growth factor, beta receptor I 

TGN trans Golgi network 

Th T helper 
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1 Introduction 

1.1 Chitinase-like protein family 

1.1.1 Chitin, chitinases, and chitinase-like proteins 

Chitin is the second most abundant polysaccharide in nature, after cellulose (Tharanathan and 

Kittur, 2003). It is found in the cell walls of fungi, exoskeletons of crustaceans and insects 

(Kzhyshkowska et al., 2007; Muzzarelli, 2013). In lower life forms, the deposition of chitin is 

regulated by the balance of biosynthesis and degradation, in which process chitinases act as 

key factors (Lee et al., 2011; Patel and Goyal, 2017). The chitinases are produced by the 

lower life forms as a defense mechanism against infection with chitin-containing organisms 

(Elias et al., 2005; Mondal et al., 2016). Mammals cannot synthesize chitin, however, several 

chitinases and chitinase-like proteins (CLPs) were identified in rodents and in human. 

Chitinases belong to the Glycoside hydrolase family 18 and possess enzymatic activities, 

being able to cleave chitin polymers into oligosaccharides of different sizes and release 

monosaccharides from the end of chitin polymer (Boot et al., 2001; Di Rosa et al., 2016). In 

human, two functional chitinases: Acidic Mammalian Chitinase (AMCase) and 

Chitotriosidase (CHIT1) were found. AMCase is induced by IL-13 and is found in allergic 

inflammation such as asthma (Donnelly and Barnes, 2004; Zhu et al., 2004). Chitotriosidase 

is expressed by phagocytic cells and is a biomarker for the Gaucher’s disease, the lysosomal 

storage disease that involves the dysfunctional metabolism of sphingolipids (Cox, 2001; 

Raskovalova et al., 2017). 

Chitinase-like proteins are also known as chitinase-like lectins, which have an amino acid 

sequence similarity to the chitinases but lack enzymatic activity (Kzhyshkowska et al., 2016b). 

In mammals following CLPs were identified: YKL-40, YKL-39, SI-CLP, YM1 and YM2 (Hu 

et al., 1996; Jin et al., 1998; Kzhyshkowska et al., 2006b; Owhashi et al., 2000; Volck et al., 

1997). Out of them, YKL-39 is present only in human but absent in rodents, while YM1 and 

YM2 are only present in rodents (Kzhyshkowska et al., 2016b). 
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1.1.2 Structure and properties of chitinase-like proteins 

 

Figure 1. The structure of mammalian chitinases and chitinase-like proteins. A. Domain 
organization of Glyco_18 containing proteins; B. Critical amino acids in catalytic sites of mammalian 
Glyco_18 containing proteins. Reproduced with permission from (Kzhyshkowska et al., 2016b), 
Copyright © Portland Press Limited. 
 

CLPs possess the chitin-binding grove in the (α/β)8 TIM-barrel domain, which can bind chitin 

and chitin oligosaccharides with high affinity (Kzhyshkowska et al., 2016b; Ranok et al., 

2015). CLPs lack the enzymatic activity because of the substitution of the critical catalytic 

residue (glutamic acid) at the end of the DxxDxDxE conserved motif with either leucine, 

isoleucine or tryptophan (Figure 1) (Kzhyshkowska et al., 2016b). The sugar-binding 

properties of CLPs are attributed to the Glyco_18 domain of CLPs (Table 1). These properties 

are critical for the interactions of CLPs with glycoproteins on the cell surface or with specific 

carbohydrate molecules in the extracellular matrix. The binding ability of YKL-40 for heparin 

sulfate fragments allows its interaction with syndecan-1 and αvβ3 integrin, which promotes 

the activation of the ERK1/2 pathway and vascular endothelial growth factor (VEGF) 
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production in endothelial cells (Francescone et al., 2011; Shao et al., 2009). Moreover, 

SI-CLP was shown to bind lipopolysaccharide (LPS) in vitro and thereby to neutralize the 

toxic effect of LPS on macrophages (Meng et al., 2010). 

 

Table 1. The lectin properties of CLPs. 
CLP Carbohydrate-binding Method of analysis References 
YKL-39 Chitooligosaccharides, 

(GlcNac)5 and (GlcNac)6 
Glycan array screen and 
intrinsic tryptophan 
fluorescence  

(Schimpl et al., 2012) 

Chitooligosaccharides  Isothermal titration 
calorimetry (ITC) 

(Ranok et al., 2015) 

YKL-40 Type I collagen Affinity chromatography 
and surface plasmon 
resonance 

(Bigg et al., 2006) 

Chitooligosaccharides Protein X-ray 
crystallography 

(Fusetti et al., 2003) 

(GlcNac)5 and (GlcNac)4 Western blotting (Renkema et al., 1998)

Heparin Heparin affinity and HPLC 
chromatograph 

(Nishikawa and 
Millis, 2003) 

SI-CLP Galactosamine, glucosamine, 
chitooligosacharide, 
(GlcNac)4, ribose and 
mannose 

Isothermal titration 
calorimetry (ITC) 

(Meng et al., 2010) 

YM1 Glucosamine, galactosamine 
and glucosamine polymers 

Surface plasmon resonance (Chang et al., 2001) 

1.2 Biological activities of chitinase-like proteins 

1.2.1 Growth factor-like activity 

CLPs are involved in the regulation of cell growth and proliferation by activating the MAPK 

and AKT pathways. YKL-40, as the most investigated CLP, was reported to induce the 

proliferation of human synovial cells and skin fibroblasts by mediating AKT pathways 

(Recklies et al., 2002). It also has been reported to promote the proliferation of HEK-293 and 

U-373 MG cells through the activation of the ERK-MAPK pathway (Areshkov et al., 2012). 

The elevated levels of YKL-40 expression were found to be associated with the proliferation 

of epithelial cells in colitis-associated cancer (Low et al., 2015). Moreover, YKL-40 was 

demonstrated to activate AKT/ERK-mediated pathway and to be associated with poor 

prognosis in cholangiocarcinoma (Thongsom et al., 2016). 
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Interestingly, as a homolog of YKL-40, YKL-39 was found to activate ERK1/2 

phosphorylation in human glioblastoma U87MG cells (Areshkov and Kavsan, 2010) and 

glioblastoma-astrocytoma epithelial-like cells U-373 cells (Areshkov et al., 2012). The 

activation of ERK1/2 phosphorylation by YKL-40 resulted in the cell proliferation, while the 

activation of ERK1/2 phosphorylation by YKL-39 inhibited cell mitogenesis and proliferation 

(Areshkov et al., 2012). This opposing regulation of MAPK signaling by these two proteins 

can potentially result in distinct effects on tumor progression. However, YKL-39 protein used 

by Areshkov et al. was from bacterial source, and it is the only report that showed the 

negative effect of YKL-39 on cell proliferation. Thus, further studies using 

mammalian-derived YKL-39 are required to confirm this observation. Moreover, YKL-39 

was also shown to act as a growth factor in chondrogenic cells (Miyatake et al., 2013). 

Collectively, all these studies indicate that CLPs are involved in the regulation of cell 

proliferation similar to the growth factors. 

1.2.2 Chemotactic activity 

Several chitinase-like proteins were demonstrated to have chemotactic activities. YM1 has 

been first identified as eosinophil chemotactic protein (ECF-L) isolated from the culture 

supernatant of splenocytes of mice (Owhashi et al., 2000). In addition to the chemotactic 

activity towards eosinophils; YM1 also attracted T lymphocytes and bone marrow 

polymorphonuclear leukocytes in vitro and induced selective extravasation of eosinophils in a 

mouse model (Owhashi et al., 2000). Zhao et al. showed that YM1 was highly expressed in 

brain and cerebrospinal fluid (CSF) of Angiostrongylus Cantonese's infected mice and 

participated in the brain inflammation. Microglia-secreted YM1 secreted was suggested to be 

involved in eosinophilic meningitis and meningoencephalitis caused by A. Cantonese's 

infection (Zhao et al., 2013). Moreover, it was found that both YM1 and YM2 are strongly 

induced in a mouse model for proliferative dermatitis characterized by the accumulation of 

eosinophils in the skin (HogenEsch et al., 2006). 

Human YKL-40 was reported to have chemotactic activity towards different cell types. 

Nishikawa et al. showed that YKL-40 is associated with vascular smooth muscle cell (VSMC) 

migration and invasion into the gelatinous matrix (Nishikawa and Millis, 2003). YKL-40 

expressed in the human colon cancer SW480 cells enhanced the migration of human 

monocytes-like cells THP-1 cells and human umbilical vein endothelial cells (HUVEC). The 

expression of YKL-40 was associated with macrophages infiltration and micro-vessel density 

(MVD) in the tumors of human colorectal cancer patients and in a xenograft mouse model 
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(Kawada et al., 2012). Also, Thongsom et al. reported that YKL-40 were shown to promote 

the growth and migration of cholangiocarcinoma cells in vitro (Thongsom et al., 2016). 

YKL-40 was also found to contribute to the migration of bronchial smooth muscle cells via an 

indirect way by inducing the expression of IL-8 (Tang et al., 2013). 

1.2.3 Induction of cytokine production 

Chitinase-like proteins are reported to promote the expression and secretion of various 

cytokines. YKL-40 was demonstrated to promote cytokine production in different cell types. 

The expression of MCP-1 and IL-8 was up-regulated in SW480 human colon cancer cells 

transfected with YKL-40 expressing construct (Kawada et al., 2012). The expression of IL-8 

was also up-regulated in YKL-40 stimulated human bronchial epithelial cells (Tang et al., 

2013). Moreover, YKL-40 enhanced the expression of CCL2 and CXCL2 in a mouse model 

of lung cancer (Libreros et al., 2013). Other CLPs also contribute to the production of 

cytokines. SI-CLP promotes the secretion of IL-1β, IL-6, IL-12 and IL-13 in THP-1 cells 

treated with PMA (phorbol 12-myristate 13-acetate. In SI-CLP knockout (ko) mice, the serum 

levels of IL-1β, IL-6, and IL-12 were decreased when compared with wild-type (wt) mice 

(Xiao et al., 2014). 

1.2.4. Angiogenesis 

Angiogenesis contributes to the development of abundantly vascularized tumors, such as 

melanoma, glioblastoma and breast cancer (Riabov et al., 2014). The pro-angiogenic effects 

of YKL-40 have been demonstrated in several studies. YKL-40 was shown to promote the 

ability of tube formation in human microvascular endothelial cells (HMVEC) (Kawada et al., 

2012; Shao et al., 2009). VEGF production was induced by YKL-40 in U87MG glioblastoma 

cells, which indirectly promoted HMVEC tube formation in vitro (Francescone et al., 2011). 

siRNA knock-down of YKL-40 resulted in suppressed tumor angiogenesis both in endothelial 

cells and in vivo (Shao et al., 2009). A correlation between blood vessel density and YKL-40 

expression level was also observed in human glioblastoma (Shao, 2014) and human breast 

cancer (Shao et al., 2009). Since anti-VEGF antibody failed to block migration of HMVEC 

cells as well as tube formation induced by YKL-40, it was hypothesized that the 

pro-angiogenic effects of YKL-40 were independent of VEGF (Shao et al., 2009). Overall, all 

these studies indicate that YKL-40 act as a major factor in angiogenesis. 
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1.3 Chitinase-like proteins in disease 

1.3.1 Chitinase-like proteins in cancer 

Accumulating data reveals that CLPs are playing a role in the progression of different types of 

cancer. Elevated levels of circulating YKL-40 are related to poor outcome or short 

disease-free survival in glioblastoma, melanoma, ovarian, breast, colon, lung, and prostate 

cancers in humans (Cintin et al., 1999; Høgdall et al., 2009; Hormigo et al., 2006; Iwamoto et 

al., 2011; Johansen et al., 2007; Libreros and Iragavarapu-Charyulu, 2015; Ma et al., 2015; 

Schmidt et al., 2006; Shao et al., 2011; Wan et al., 2017). Moreover, in breast cancer, elevated 

serum levels of YKL-40 were used as a prognostic biomarker (Shao et al., 2011). The 

adhesive and invasive abilities of U87MG glioblastoma cells were significantly inhibited 

when endogenous expression of YKL-40 was blocked (Ku et al., 2011). YKL-40 was also 

induced during pulmonary melanoma metastasis and this induction was mediated by the 

semaphorin 7a (Ma et al., 2015). Overexpression of YKL-40 and YM1/2 was observed in the 

pre-neoplastic phase of latent membrane protein 1 (LMP1) viral oncogene-expressing 

transgenic mouse model, which is associated with carcinogenic progression (Qureshi et al., 

2011). Targeting of YKL-40 as a potential therapeutic approach has been evaluated in 

melanoma and glioblastoma mouse models. Application of anti-YKL-40 antibody in the U87 

glioblastoma mouse models resulted in the suppression of the xenograft tumor growth as well 

as angiogenesis (Faibish et al., 2011). However, an opposite result was seen in BALB/c-scid 

mice injected with human melanoma cells; the tumor growth was enhanced after anti-YKL-40 

antibody treatment (Salamon et al., 2014). The contradictory results between glioblastoma 

and melanoma mouse models can be explained by the different mouse strains and antibodies 

used in the studies. SI-CLP was shown to induce the secretion of IL-1β, IL-6, IL-12, and 

IL-13 in PMA-treated THP-1 cells suggesting it may serve as a regulator of inflammation and 

in the tumor microenvironment (Xiao et al., 2014). The regulatory effect of SI-CLP is not 

clear yet since the cytokines induced by SI-CLP can either promote (IL-1β, IL-6, IL-13) or 

suppress (IL-12) tumor progression (Xiao et al., 2014) 

The information about the potential role of YKL-39 in cancer is very limited. Serial Analysis 

of Gene Expression (SAGE) revealed that YKL-39 expression is elevated in II–IV grades of 

glial tumors (Kavsan et al., 2004). The expression of YKL-39 was detected in the majority of 

glioblastomas (19 of 27 samples analyzed) by Northern blot analysis and demonstrated on the 

protein level by Western blotting (Kavsan et al., 2008). However, the cell types 

overexpressing YKL-39 in glioblastoma remain to be identified.  
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1.3.2 Chitinase-like proteins in chronic inflammation and neurodegeneration 

The elevated plasma levels of YKL-40 were detected in number of chronic inflammatory 

diseases, such as rheumatoid arthritis (RA), osteoarthritis (OA), systemic lupus erythematosus, 

inflammatory bowel disease, sarcoidosis and chronic obstructive lung disease (Johansen et al., 

2005; Kawada et al., 2008; Létuvé et al., 2008; Vind et al., 2003; Vos et al., 2000). The 

elevated levels of circulating YKL-40 correlated with the degree of liver fibrosis (Kumagai et 

al., 2016; Nøjgaard et al., 2003). Elevated serum level of YKL-40 is considered as a potential 

biomarker of inflammation in patients with psoriasis (Baran et al., 2017) and with Kawasaki 

disease (Kim et al., 2017). Also, it was described that elevated circulating levels of YKL-40 

are associated with Alzheimer's disease and multiple sclerosis (Baldacci et al., 2017a; 

Baldacci et al., 2017b; Comabella et al., 2010; Craig-Schapiro et al., 2010; Muszyński et al., 

2017). A relationship between serum level of YKL-40 and carotid atherosclerosis has also 

been reported (Bakırcı et al., 2015; Michelsen et al., 2010). 

The role of SI-CLP in the regulation of inflammation is still controversial. SI-CLP is the only 

known member of CLPs family induced by IL-4 and glucocorticoids in macrophages 

(Kzhyshkowska et al., 2006b). The expression of SI-CLP was detected in the peripheral blood 

leukocytes (PBLs) of patients with chronic inflammatory disorders of the respiratory tract 

(Kzhyshkowska et al., 2006b). Moreover, Xiao et al. found that knockout of SI-CLP resulted 

in the decrease of IL-1β, IL-6, IL-12, and IL-13 expression and lower susceptibility of mice to 

collagen-induced arthritis (CIA) (Xiao et al., 2014). 

YKL-39 is expressed by synoviocytes and chondrocytes and it is considered as a biomarker 

for osteoarthritis (Hu et al., 1996; Knorr et al., 2003; Steck et al., 2002). Moreover, increased 

YKL-39 mRNA levels were also detected in microglia of Alzheimer patients (Colton et al., 

2006). The detection of YKL-39 in cerebrospinal fluid was suggested to be a potential 

prognostic biomarker in the early stage of multiple sclerosis (Hinsinger et al., 2015; 

Møllgaard et al., 2016). Also, YKL-39 mRNA levels were significantly increased in the 

hippocampus of simian immunodeficiency virus encephalitis (SIVE) and HIV encephalitis 

(HIVE) (Sanfilippo et al., 2017). These data suggested the role of YKL-39 in both 

neurodegeneration and chronic inflammatory diseases of the brain. 
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1.4 Macrophages 

1.4.1 General overview 

Macrophages are versatile cells of the immune system present in almost all tissues (Ginhoux 

and Jung, 2014). Tissue macrophages can originate from three different sources: embryonic 

yolk sac macrophages, fetal liver monocytes, and adult bone marrow derived monocytes (van 

de Laar et al., 2016). There is experimental evidence suggesting that sac macrophages are 

main precursors for brain microglia (Ginhoux et al., 2010), fetal liver monocytes for Kuffer 

cells and lung alveolar macrophages (Hoeffel et al., 2012; Schneider et al., 2014), and adult 

bone marrow-derived monocytes for intestinal, dermal and cardiac macrophages (Bain and 

Mowat, 2012; Epelman et al., 2014a; Tamoutounour et al., 2013). Depending on their origin 

and localization, macrophages display high structural and functional heterogeneity (Ginhoux 

and Jung, 2014; Varol et al., 2015). Circulating blood monocytes migrate into tissue sites and 

differentiate into tissue-specific macrophages in response to the composition of tissue 

microenvironment (Epelman et al., 2014b). The tissue-specific environmental cues and 

ontogeny-related signals directly affect macrophage activation (Ginhoux et al., 2016). It is 

widely accepted that macrophages are involved in various physiological and pathological 

processes. Macrophages play a crucial role in acute and chronic inflammatory responses by 

producing enzymes, enzyme inhibitors, cytokines, plasma proteins (coagulation factors, 

complement components, and apolipoprotein E) and low molecular weight substances 

(reactive oxygen and derivatives of arachidonic acids) (Duque and Descoteaux, 2015). 

Pathological programming of macrophages is crucial for the developed of major 

life-threatening disorders including cancer and cardiovascular disorders (Dehne et al., 2017; 

Gisterå and Hansson, 2017; Goswami et al., 2017; Kzhyshkowska et al., 2012). Macrophages 

regulate intratumoral immune responses and progression of atherosclerosis not only by the 

secretion of cytokines, growth factors, enzymes and extracellular matrix proteins but also by 

selective scavenging of these mediators (Kzhyshkowska et al., 2012; Rhee, 2016; Riabov et 

al., 2014). 

Major stimuli responsible for macrophage phenotype formation include cytokines, hormones, 

immune complexes and pathogen-derived products. The molecular factors that characterize 

specific type of macrophage activation include transcription factors, surface-expressed 

receptors, secreted cytokines, enzymes and components of extracellular matrix (Murray et al., 

2014) (Figure 2).  



Introduction 

20 

Classical activation of macrophages (M1) is induced by pro-inflammatory stimuli such as 

Interferon-γ (IFN-γ), lipopolysaccharides (LPS), tumor necrosis factor (TNF-α) and CpG 

DNA (Gordon, 2003; Martinez and Gordon, 2014). M1 macrophages polarization is 

characterized by the production of high levels of pro-inflammatory cytokines (such as IL-1β, 

TNF-α, IL-6, and IL-12), strong microbicidal properties, high production of reactive nitrogen 

and oxygen intermediates, and promotion of Th1 responses (Mantovani et al., 2004; Martinez 

and Gordon, 2014). Switching of the tolerogenic phenotype of TAM to the M1 phenotype has 

been proposed as a promising key of anti-cancer immunotherapeutic treatment strategy (Mills 

et al., 2016). 

Alternative activation of macrophages (M2) is induced by Th2 cytokines, hormones, immune 

complexes and tumor-derived growth factors. According to the most recent classification 

(Murray et al., 2014), the subtypes of M2 macrophages were described in response to the 

specific stimuli or their combinations, such as M(IL-4), M(Ic), M(IL-10), M(GC+TGF-beta) 

and M(GC) (Figure 2B). M2 macrophages are involved in response to parasite invasion, 

tissue remodeling, wound healing and tumor promotion (Duque and Descoteaux, 2015; 

Mantovani et al., 2004; Martinez and Gordon, 2014). The M2 polarization of macrophages 

leads to the secretion of numerous chemokines and cytokines, such as TGF-beta, IL-10, and 

CCL17 (Rőszer, 2015). In addition, M2 express high levels of scavenger receptors 

(Kzhyshkowska et al., 2016a). The molecules secreted by alternatively activated macrophages 

have the primary function to resolve inflammation and promote tissue repair (Gordon, 2003; 

Mantovani et al., 2013; Pellicoro et al., 2014). 
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Figure 2. The activation of macrophage and related stimulations. A. Examples of widely used 
macrophage preparations. B. Marker systems for activated macrophages. C. Use of genetics to aid in 
macrophage activation studies. Reproduced with permission from (Murray et al., 2014), Copyright © 
Elsevier. 
 

Additionally, macrophages are not terminally differentiated and have been demonstrated to be 

highly plastic cells (Stout and Suttles, 2004). It has been demonstrated in our laboratory that 

polarized M1, and M2 macrophages can be re-polarized by Th2 or Th1 cytokines and revert 



Introduction 

22 

to their functional state (Gratchev et al., 2006; Kzhyshkowska et al., 2016a). Recently, 

transcriptional profiling revealed a spectrum of macrophage activation that extends beyond 

traditional M1 versus M2-polarization model (Xue et al., 2014). The new concept of a 

spectrum of macrophage activation presenting the commonly observed activation states is 

illustrated in Figure 2 (Murray et al., 2014). 

1.4.2 Macrophages as source of chitinase-like proteins 

Macrophages as important regulatory cells serve as major source of all murine and human 

chitinase-like proteins. (Table 2). In human, the expression of YKL-40 was found in 

microglia from Alzheimer’s disease patients (Colton et al., 2006); macrophages in pulmonary 

sarcoid granulomas (Johansen et al., 2005); and tumor-associated macrophages (TAMs) in 

human small cell lung cancer (Junker et al., 2005). The expression of SI-CLP was detected in 

peripheral blood mononuclear cells from rheumatoid arthritis (RA) patients (Xiao et al., 2014). 

Elevated levels of YKL-39 gene expression were detected in microglia of Alzheimer’s 

patients (Colton et al., 2006). In in vitro experimental models, expression of CLPs depends on 

the activation state of macrophages (M1 or M2). YKL-40 expression is elevated during the 

differentiation process of human macrophages, and macrophage differentiation factors 

GM-CSF or M-CSF were shown to induce YKL-40 expression (Kunz et al., 2015; Rehli et al., 

1997; Rehli et al., 2003). It was identified that in human monocyte-derived macrophages 

IFN-γ and LPS are strong inducers of YKL-40 gene expression (Di Rosa et al., 2013; 

Kzhyshkowska et al., 2006b). It was demonstrated in our laboratory that expression of 

SI-CLP is induced by IL-4 and dexamethasone both on the mRNA and protein levels in 

human monocyte-derived macrophages (Kzhyshkowska et al., 2006b). Further, it was found 

that the combination of IL-4+TGF-beta but not IL-4 alone induces expression of YKL-39 

gene in monocyte-derived macrophages (Gratchev et al., 2008b). However, expression of 

YKL-39 on the protein level both in vitro and in vivo remained to be identified and has not 

been analyzed up to date due to the lack of antibodies. The information about the expression 

of CLPs in various types of macrophages is summarized in Table 2. 
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Table 2. Expression of chitinase-like proteins in macrophages. 
CLP Macrophage type Method of analysis  References 
YKL-40 Human primary 

monocyte-derived 
macrophages stimulated by 
IFN-γ 

RT-PCR (Kzhyshkowska et al., 
2006b) 

Microglia in Alzheimer’s 
disease patients 

RT-PCR (Colton et al., 2006) 

Human peritumoral 
macrophages and murine lung 
macrophages 

RT-PCR (Junker et al., 2005) 

Human macrophages in 
pulmonary sarcoid granulomas 

Immunohistochemical 
staining 

(Johansen et al., 2005) 

Peritumoral macrophages in 
human small cell lung cancer 

Immunohistochemical 
staining 

(Junker et al., 2005) 

Human primary 
monocyte-derived 
macrophages stimulated by 
GM-CSF or M-CSF 

RT-PCR/ELISA/ 
Immunofluorescence 
staining 

(Kunz et al., 2015) 

Murine pulmonary 
macrophages 

RT-PCR/ELISA (Sohn et al., 2010) 

Human M1 polarized 
macrophages stimulated by 
LPS and IFN-γ 

RT-PCR (Di Rosa et al., 2013) 

SI-CLP Human primary 
monocyte-derived 
macrophages stimulated by 
IL-4+dexamethasone 

RT-PCR/Western 
blotting/Immunofluorescence 
staining 

(Kzhyshkowska et al., 
2006b) 

Murine bone marrow–derived 
macrophages 

RT-PCR/Western blotting (Xiao et al., 2014) 

PMA-treated THP-1 
macrophages 

RT-PCR/Western blotting (Xiao et al., 2014) 

THP-1, Mono-Mac-6 cells RT-PCR/Western blotting (Kzhyshkowska et al., 
2006b) 

YKL-39 Human primary 
monocyte-derived 
macrophages stimulated by 
TGF-beta and IL-4 

RT-PCR (Gratchev et al., 
2008b) 

Alternatively activated 
microglia in Alzheimer’s 
disease patients 

RT-PCR (Colton et al., 2006) 
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1.4.3 Secretory pathways in macrophages 

There are three major secretory pathways in macrophages responsible for the release of 

endogenously synthesised proteins to the extracellular space: 1) constitutive secretory 

pathway which continuously releases vesicles loaded with proteins to the cell surface; 2) 

regulatory secretory pathway which releases secretory vesicles in response to a specific 

stimulus; 3) lysosomal secretory pathway which releases vesicles fused with lysosomes (Blott 

and Griffiths, 2002; Kienzle and von Blume, 2014; Luzio et al., 2014; Ponpuak et al., 2015). 

For the constitutive secretion pathway, proteins are packed into vesicles in the Golgi 

apparatus, and these secretory vesicles are transported to the cell surface and fused with the 

plasma membrane, followed by the release of the content to the extracellular space (Alberts et 

al., 2002; Kienzle and von Blume, 2014). For the regulated secretion, proteins are stored in 

secretory vesicles, which later fuse with the plasma membrane in response to specific 

secretion signals, such as reactive oxygen species (ROS) (Blott and Griffiths, 2002; Kurz et 

al., 2008; Luzio et al., 2014). Macrophages utilize lysosomal pathway for the secretion of 

lysosomal enzymes (Aggarwal and Sloane, 2014; Kzhyshkowska and Krusell, 2009; Liu et al., 

2004). Mannose 6-phosphate receptors (MPRs), are known as classical intracellular sorting 

receptors, which mediate the transport of newly synthesized lysosomal hydrolases or proteins 

from Golgi to the lysosomal secretory pathway (Hasanagic et al., 2015). The sorting process 

requires the generation of phosphor-mannosyl residues on the lysosomal protein which act as 

high-affinity ligands for the recognition by MPRs and binding of these molecules to MPRs in 

Golgi (Braulke and Bonifacino, 2009; Hasanagic et al., 2015). The mannose 6-phosphate tags 

are recognized in the trans-Golgi network (TGN) by a cation-independent mannose 

6-phosphate receptor (CI-MPR) or a cation-dependent mannose receptor (CD-MPR), which 

both mediate the recruitment of lysosomal proteins to clathrin-coated vesicles in TGN. Later, 

the MPR-protein complex is delivered to late endosomes by these carrier vesicles. The release 

of proteins from MPRs are induced by the acidic pH of endosomes; subsequently, proteins are 

transported to lysosomes, while MPRs return to the TGN for other rounds of sorting (Braulke 

and Bonifacino, 2009). GGAs (Golgi-localizing, gamma-adaptin ear homology domain, 

ARF-binding proteins) were also reported to mediate the sorting of mannose 6-phosphate 

receptors (Ghosh et al., 2003b; Stahlschmidt et al., 2014). The acidic-cluster-dileucine signals 

on the cytosolic tails of CI-MPR and CD-MPR bind to the VHS domain of the GGAs, which 

direct the proteins from TGN to the endosomal-lysosomal system (Guo et al., 2014). 

Moreover, GGAs comprise clathrin adaptor properties which recruit clathrin for MPR sorting 
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in the TGN (Stahlschmidt et al., 2014). In addition, it was reported that the binding capability 

of GGAs and ubiquitination are necessary for the delivery of both biosynthetic and endosomal 

ubiquitinated cargo to the lysosome (Babst, 2004). 

Several studies suggested that Glyco_18 domain containing proteins are sorted via the 

endosomal/lysosomal system and secreted by macrophages (Kzhyshkowska et al., 2007; 

Renkema et al., 1997). By immunoelectron microscopy, chitotriosidase was detected in 

lysosomal vesicles comparably to cathepsin D (Renkema et al., 1997). It was demonstrated in 

our laboratory that stabilin-1 interacts with GGA adaptors in endosomes and the trans-Golgi 

network. Stabilin-1 is further involved in sorting and lysosomal delivery of SI-CLP in 

alternatively activated macrophages (Kzhyshkowska et al., 2004; Kzhyshkowska et al., 

2006b). More information about stabilin-1 and its interaction with SI-CLP is provided in the 

next chapter. 

1.4.4 Stabilin-1 as sorting receptor for SI-CLP 

Stabilin-1 was originally identified as the MS-1 antigen (Goerdt et al., 1991), which is 

primarily expressed on tissue macrophages and sinusoidal endothelial cells (Kzhyshkowska, 

2010; Politz et al., 2002). It was also demonstrated that the expression of stabilin-1 on 

alternatively activated macrophages is induced by IL-4 and dexamethasone in vitro (Goerdt et 

al., 1993; Politz et al., 2002). In addition, several studies reported stabilin-1 was found on 

tumor-associated macrophages (TAMs) in mouse and human cancers including breast cancer, 

melanoma, and glioblastoma (David et al., 2012; Riabov et al., 2016; Schledzewski et al., 

2006). 
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Figure 3. Schematic presentation of stabilin-1 binding sites for the ligands and domain 
organization. The extracellular domain of stabilin-1 contains 7 fasciclin domains (F1-F7, shown in 
blue cylinders) and EGF-like domains (shown in yellow ovals). The X-link domain is shown in pink. 
SI-CLP and PL bind to F7; SPARC binds to the EGF-like domain located between F4 and F5. The 
cytoplasmic tail comprises a DDSLL motif and a novel acidic cluster EDDADDD which interacting 
with intracellular sorting adaptors: GGA1, GGA2, and GGA3L; the NPVF site interacting with sorting 
nexin 17 (SNX17). Reproduced with permission from (Kzhyshkowska, 2010), Copyright © 2010 Julia 
Kzhyshkowska. 

Stabilin-1 is a type-1 transmembrane protein containing a transmembrane domain, a 

cytoplasmic tail and an extracellular fragment which contains 7 fasciclin domains, 18 

epidermal growth factor (EGF)-like domains, and an X-link domain (Figure 3) 

(Kzhyshkowska, 2010). The extracellular domain interacts with different ligands, such as 

SI-CLP, SPARC, acLDL and PL (Kzhyshkowska, 2010; Kzhyshkowska et al., 2006b) (Figure 

3). The functions of stabilin-1 include the mediation of the endocytic and phagocytic 

clearance of “unwanted-self” components, such as SPARC (Kzhyshkowska et al., 2006c); 

transcytosis of growth hormone family member placental lactogen (PL) (Kzhyshkowska et al., 

2008); the intracellular sorting and lysosomal delivery of endogenously synthesized SI-CLP 

(Kzhyshkowska et al., 2006b) (Figure 4). It was also demonstrated in our laboratory that 

stabilin-1 is a specific marker for TAMs in breast cancer patients and supports tumor growth 
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in a mammary adenocarcinoma mouse model (Riabov et al., 2016). However, whether 

stabilin-1 can interact with other chitinase-like protein is not known. Therefore, the 

intracellular sorting mechanism of stabilin-1 needs to be further investigated. 

 
 

Figure 4. Schematic presentation of stabilin-1 trafficking pathways in macrophages. Stabilin-1 
shuttles between endosomes and biosynthetic compartment via TGN. Newly synthesized SI-CLP is 
recognized by stabilin-1 in TGN and delivered to early and late endosomes, which targeting to 
lysosomes. Reproduced with permission from (Kzhyshkowska, 2010), Copyright © 2010 Julia 
Kzhyshkowska. 
 

Stabilin-1 is shuttling between endosomal and biosynthetic compartments (Kzhyshkowska et 

al., 2006a), and its interaction with GGA adaptors indicates its functional homology with 

CI-MPR, a sorting receptor for lysosomal hydrolases (Ghosh et al., 2003a; Robinson and 

Neuhaus, 2016). Thus, the function of stabilin-1 in lysosomal secretion was further studied. 

The interaction of stabilin-1 and SI-CLP as a ligand-receptor couple was demonstrated in our 

laboratory, which is the only known example of protein-protein interaction between a 

transmembrane receptor and mammalian chitinase-like protein (Kzhyshkowska et al., 2006b). 

Intracellular localization studies by confocal microscopy suggested that SI-CLP is sorted into 

late endosomes, LAMP-1 positive lysosomes, and CD63 positive secretion lysosomes. A 
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co-localization of stabilin-1 and SI-CLP was found in TGN of macrophages, which were 

stimulated with IL-4 and dexamethasone; this process was impaired by the knockdown of 

stabilin-1 by siRNA (Kzhyshkowska et al., 2006b). In addition, it was observed that stabilin-1 

mediates re-localization of recombinant SI-CLP-FLAG in H1299 cells, which lack the 

endogenous lysosomal sorting machinery for this protein. The interaction with SI-CLP is 

mediated by the extracellular fasciclin domain 7 (F7) of stabilin-1 that has been demonstrated 

in an in vitro binding assay (Kzhyshkowska et al., 2006b). However, whether stabilin-1 can 

mediate intracellular sorting of other chitinase-like proteins is not known yet.   
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1.5 The aim and objectives of the thesis 

The major aims of this thesis project include the identification of YKL-39 production in 

primary human macrophages, the analysis of its intracellular sorting mechanisms, and the 

identification of its biological activities towards monocytes, endothelial cells and tumor cells. 

The main objectives of this project were: 

1) To analyze the expression of YKL-39 in human primary macrophages; 

2) To analyze the intracellular localization of YKL-39 in human primary macrophages; 

3) To analyze the role of stabilin-1 in the interaction and intracellular sorting of YKL-39; 

4) To analyze the effect of YKL-39 on monocyte migration and activation in vitro; 

5) To analyze the effect of YKL-39 on angiogenesis in vitro; 

6) To analyze the effects of YKL-39 tumor cell proliferation and apoptosis.
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2. Materials & Methods 

2.1 Chemicals, materials and reagents 

Product Company 
0.05% Trypsin/EDTA solution Biochrom 
10x Earle’s Balanced Salt Solution (EBSS) Sigma Aldrich 
10x Incomplete PCR buffer BIORON 
30% Acrylamide/Bis Solution Bio-rad 
4'.6-diamidino-2-phenylindole (DAPI) Roche Diagnostics 
50x Tris-Acetate EDTA (TAE) buffer Eppendorf 
Acetic acid Merck 
Agarose Bioron 
Amersham Hyperfilm ECL GE Healthcare 
Ammonium persulfate (APS) Merck Millipore 
Ampicillin Sigma Aldrich 
BL21-(DE3)-RIL-Codon-Plus E.coli Stratagene 
Bovine Serum Albumin (BSA) Sigma Aldrich 
BSA loading controls Bio Rad 
CD14 MicroBeads Miltenyi Biotec 
Dako Pen Dako 
Dako Fluorescent Mounting Medium Dako 
Deoxyribonucleotides (dNTPs) 10M Fermentas 
DEPC Water Thermo Fisher Scientific 
Dexamethasone Sigma Aldrich 
Dimethylsulfoxide (DMSO) Sigma Aldrich 
DMEM medium+Gluta MAX Thermo Fisher Scientific 
DMSO Sigma Aldrich 
DNA ladder Thermo Fisher Scientific 
DNA Loading Dye (6x) Thermo Fisher Scientific 
DNase Buffer (10x) Thermo Fisher Scientific 
DNase I RNase free 1U/µl solution Fermentas 
DRAQ5  Biostatus Ltd. 
EDTA Invitrogen 
EDTA-free Protease Inhibitor Cocktail Tablets Roche 
Ethanol Roth 
Expand High Fidelity PCR Kit Roche 
Fetal calf serum (FCS) Biochrom 
FuGENE HD transfection reagent Promega 
Gel Blue stain reagent Pierce 
Gel Red Biotium 
Glycerol Sigma Aldrich 
Isopropanol Merck Millipore 
Laemmli sample buffer Bio Rad 
LB broth with agar Sigma Aldrich 
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Matrigel (growth factor reduced) Corning 
MAX Efficiency DH5α Competent E. coli Thermo Fisher Scientific 
Methanol Merck 
Nitrocellulose blotting membrane GE Healthcare 
Non-Fat Dry Milk Bio Rad 
Oligo(dt) primer Thermo Fisher Scientific 
OptiMEM  Thermo Fisher Scientific 
Page Ruler Plus Prestained Protein Ladder (10-250 kD) Fermentas 
Paraformaldehyde (PFA)  Sigma Aldrich 
Phosphate buffered saline (D-PBS), sterile 1x Invitrogen 
PCR primers Eurofins MWG Operon 
PCR probes Eurofins MWG Operon 
Penicillin/Streptomycin Biochrom 
Percoll GE Healthcare Life Sciences 
Phenylmethylsulfonyl fluoride (PMSF) Sigma Aldrich 
Plasmid DNA- Mini/Midi/Maxiprep Kit Qiagen 
Ponceau S solution Sigma Aldrich 
Protein Assay Reagent Bio-Rad 
Protein G Sepharose GE Healthcare 
Rapid DNA ligation kit Fermentas 
Recombinant human MCP-1 (CCL2) R&D 
Recombinant human YKL-39 protein Sinobio 
Recombinant Human IL-4 Peprotech 
Recombinant human M-CSF Peprotech 
RPMI medium Life Technologies 
Staurosporine Sigma Aldrich 
Sepharose 4B GE Healthcare 
Sensimix II Probe Kit Bioline 
SOC medium Invitrogen 
Sodium Chloride Sigma Aldrich 
Sodium dodecyl sulfate (SDS) 10% Bio-Rad 
Sodium pyruvate (100mM) Sigma Aldrich 
TEMED Sigma Aldrich 
TGS (Tris/Glycine/SDS) buffer 10x Bio-Rad 
Tris-HCl buffer 0.5M, pH 8.8 Bio-Rad 
Tris-HCl buffer 1.5M, pH 6.8 Bio-Rad 
Triton X-100 Sigma Aldrich 
Trypan blue solution Sigma Aldrich 
Tween 20 Sigma Aldrich 
β-mercaptoethanol Sigma Aldrich 
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2.2 Consumables 

Product Company 
0.22 µm filter  Fisherbrand 
22x22 mm coverslips Marienfeld 
3MM blotting papers GE Healthcare 
CASY cups Omni Life Sciences 
Cryovials Nunc 
Elisa plate sealers R&D systems 
Elisa Plates R&D systems 
GeneChip® Human Gene 2.0 ST Array Affymetrix 
Glass slides Servoprax 
LS columns Miltenyi Biotec 
Parafilm American National Can 
PCR tubes Star Labs 
Petri dishes Nunc 
Pipettes tips Eppendorf 
Pipettes Eppendorf 
Plastic wrap Toppits 
Western film GE Healthcare 
Safe-Lock Eppendorf Tubes, 1.5ml Eppendorf 
Scalpel Feather 
Sterile pipette tips Star Labs, Nerbeplus 
Tubes Falcon 
Trans-well 5 μm Corning 

2.3 Equipment 

Product Company 
Agarose electrophoresis unit VWR 
Autoclave VX-95 Systec 
Balance Kern 
CASY Cell Counter Schärfe System 
Cell culture hood Thermo Fisher Scientific 
Cell culture incubator Heraeus Instruments 
Centrifuge 5415 D Eppendorf 
Centrifuge 5804 R Eppendorf 
Confocal laser scanning microscope SP8 Leica Microsystems 
Electrophoresis comb Peqlab 
Electrophoresis power supply Peqlab 
FACS Canto II BD Biosciences 
Freezer (-20°C) Liebherr 
Freezer (-80°C) Sanyo 
Fridge (4°C) Liebherr 
Ice machine AF100 Scotsman 
Inverted microscope Leica Microsystems 
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2.4 Kits 

Product Company 
E.Z.N.A. Total RNA Kit I Omega Biotech 
Plasmid Isolation Kit Qiagen 
QIAquick PCR Purification Kit Qiagen 
RevertAid H Minus First Strand Synthesis Kit Thermo Fisher Scientific 
RNAeasy Mini Kit  Qiagen 
Human YKL-39/CHI3L2 ELISA Kit (Sandwich 
ELISA) 

Lifespan BioSciences 

 

LightCycler 480 Instrument Roche Diagnostics 
MACS manual cell separator Miltenyi Biotec 
Gel dryer model 583 Bio-Rad 
Magnetic stirrer MR3000 Heidolph 
Microwave oven Sharp 
Neubauer haemocytometer Assistent 
Pipette Controller  Accu Jet Pro, Brand 
Roller Ortho Diagnostic Systems 
Rotator Neolab 
SDS-PAGE chamber Peqlab 
SDS-PAGE gel comb Peqlab 
SDS-PAGE power unit Power-Pac 200 Bio-Rad 
SDS-PAGE unit Biometra 
Shaker KS 260 basic IKA 
Sorvall RC5C Plus ultracentrifuge Thermo Fisher Scientific 
Staining Dish Neolab 
Staining rack Neolab 
Tecan Infinite 200 Tecan 
Thermomixer 5436 Eppendorf 
Thermomixer comfort Eppendorf 
Tweezers Neolab 
Ultracentrifuge tubes 50ml Thermo Fisher Scientific 
UV fluorescent light Peqlab 
Vortex Genie 2 Scientific Industries 
Water bath Memmert 
Water bath VWB12 VWR 
X-ray cassette Kodak 
X-ray film processor CAWOMEN 2000 IR CAWO Solutions 
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2.5 Buffers and solutions 

Fixation solution (4% PFA) 40 g of paraformaldehyde (PFA) powder were weighed 

under the fume hood and dissolved in 700 ml PBS in a 

large beaker. The solution was stirred at room 

temperature, and pH value was adjusted to 11.4 with 1 

N NaOH buffer. Then the pH value was adjusted to 7.4 

with 1 N HCl buffer with stirring. The volume was 

adjusted to 1 L with PBS. Afterward, the PFA solution 

was filtered with a 0.22 μm filter, aliquoted into 50 ml 

Falcon tubes, and stored in -20 °C. 

Permeabilization solution 

(0.5% Triton X-100 in PBS) 

2.5 ml of Triton X-100 was pipetted into 500 ml PBS; 

the pipette was left in the beaker for 30 min. The 

solution was stirred for 1h and stored at RT. 

1 x TAE buffer 20 ml of 50 x TAE buffer was added into 900 ml 

ddH2O. The volume was adjusted to 1 L with ddH2O. 

Blocking solution (3% BSA) 1.5 g BSA powder was dissolved in 50 ml of PBS in a 

falcon tube. The falcon tube was left on a tube roller 

mixer overnight. 

Washing buffer for ELISA 

(0.05% Tween 20 in PBS) 

500µl of Tween 20 was pipetted into 1L of PBS. The 

beaker was stirred on a magnetic stirrer for 30 min, and 

the solution was stored at RT. 

LB medium 20 g of LB broth powder was dissolved in 1 L ddH2O. 

The mixture was autoclaved for 15 min at 121°C for 

sterilization. The solution was cooled, and antibiotics 

were added. 

LB agar 35 g of LB broth with agar powder was dissolved in 1 L 

of ddH2O. The mixture was autoclaved for 15 min at 

121°C to sterilize. The solution was cooled, and 

antibiotics were added. The solution was poured into 

Petri dishes and left to solidify under a laminar flow 

hood. After the agar had solidified, the plates were 

sealed with Parafilm and stored at 4°C. 
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10% APS 10g of ammonia persulfate was dissolved in 100 ml of 

ddH2O and stored in -20°C. 

Running buffer for 

SDS-PAGE  

100 ml of 10x TGS was adjusted to 1 L with ddH2O. 

Towbin buffer  200 ml of 100% methanol, 100 ml of 10 x TGS were 

adjusted to 1 L with ddH2O. 

Loading/lysis buffer for 

SDS-PAGE 

0.5 ml of β-mercaptoethanol was mixed with 9.5 ml of 

2x Laemmli Sample Buffer. 

Gel drying solution 70 ml of 100% methanol, 70 ml of 100% acetic acid, 

and 10 ml of glycerol were mixed and adjusted to 1 L 

with ddH2O. 

Protease inhibitor cocktail 

mini solution (50x)  

1 tablet of protease inhibitor cocktail was dissolved in 1 

ml of sterile PBS. 

Protease inhibitor cocktail 

solution  

1 ml of protease inhibitor cocktail mini was added into 

24 ml of PBS. 

Sepharose washing buffer  5 M NaCl and 1 % Triton X-100 were prepared and in 1 

L PBS. 

Sepharose storage buffer  500 µl glycerol, 200 µl protease inhibitor cocktail mini 

were adjusted to 10 ml with PBS. 

MACS-buffer 2.5 g BSA, 2 ml 0.5 M EDTA were dissolved in 500 ml 

PBS. The mixture was filtered through 0.22 µm filter to 

a sterile flask. 

ELB complete buffer 125 mM NaCl, 50 mM HEPES-buffered saline (pH 7.0), 

0.1% NP-40, 0.5 mM EDTA and 0.5 mM DTT were 

prepared and dissolved in 1L ddH2O. 
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2.6 Molecular biology techniques 

2.6.1 Plasmids 

Table 3. List of plasmids. 
Name Internal number Company 
pGEX4T1 p36 GE Healthcare 
pLP-IRESneo Acceptor Vector p64 Clontech 
pLP-IRESneo-hSt1 p295 constructed 
pGEX4T1-hSt1-Fas7 p395 constructed 
pGEX4T1-hSt1-P9 p396 constructed 
pSNAP-tag p789 BioLabs 
pGEX4T1-hSt1-C p818 constructed 
pSNAP-tag-YKL-39-FLAG p825 constructed 

 

 

 

 

Figure 5. The vector plasmid of pSNAP-tag. Plasmid map of vector pSNAP-tag was painted using 
Vector NTI Advance Version 11.5 from Life Technologies. 
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Figure 6. The plasmid pSNAP-tag-YKL-39-FLAG. Plasmid map of pSNAP-tag-YKL-39-FLAG 
was painted using Vector NTI Advance Version 11.5 from Life Technologies. 
 

2.6.2 Transformation of the chemically competent cells 

Competent E.coli DH5α cells from Thermo Fisher Scientific were utilized in this step. 

1) The cells were thawed on ice.  

2) 50 μl of competent cells were mixed with 3 μl of pSNAP-tag or 

pSNAP-tag-YKL-39-FLAG plasmid in a pre-chilled Eppendorf tube by pipetting, and 

the samples were incubated on ice for 30 min. 

3) The samples were subjected to heat shock for 42 s in 42°C water bath. 

4) The samples were incubated for 5 min on ice. 

5) 250 μl of SOC-medium was added to each sample. 

6) The samples were incubated on a thermomixer for 1 h at 37°C on a shaker at 400 

rpm. 

7) The samples were centrifuged at 6000 rpm for 3 min.  

8) 200 μl of the supernatant was removed, and the pellet was re-suspended. 

9) The samples were streaked onto LB-agar plates and were incubated at 37°C overnight 

upside down. 
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2.6.3 Bacteria culture 

1) Mini culture: One single colony was selected from the LB-agar plate with a pipette 

tip, the pipette was placed in 15 ml Falcon tube with 3 ml of LB-medium and 3 μl of 

ampicillin solution (100 µg/ml). The mixture was incubated at 37°C in a shaking 

incubator at 200 rpm overnight. 

2) Enlarge culture: 100 μl of mini-preparation culture was added into an Erlenmeyer 

flask with 200ml of LB-medium and 200 μl of ampicillin (100 µg/ml). The mixture 

was incubated overnight at 37°C in a shaking incubator at 150 rpm overnight. 

 

2.6.4 Isolation of plasmid DNA 

Plasmid DNA preparations were performed using the Plasmid Midi Kit from Qiagen. 

1) The cultures were pelleted in 2 x 50 ml Falcon tubes by centrifuging at 6000 g for 15 

min at 4°C. 

2) The pellets were re-suspended in 2 ml of P1 solution, and the mixture was vortexed 

for 1 min. 

3) 4 ml of P2 was added to the tube, and the tube was vigorously inverted for 5 times. 

The mixture was incubated for 5 min at RT. 

4) 4 ml of pre-chilled P3 was added to the mixture, and the tube was vigorously 

inverted 5 times. The sample was incubated for 15 min on ice. 

5) The tube was centrifuged at 4°C for 30 min at 20,000 g. The supernatant was 

removed to a new tube, and the sample was centrifuged for 15 min at 20,000 g. 

6) 100-tip column was equilibrated by running through 5 ml of buffer QBT. 

7) The supernatant was applied to the column. 

8) The column was washed twice with 10 ml of buffer QC. 

9) DNA was eluted into a new 50 ml Falcon tube with 5 ml of Buffer QN. 

10) 3.5 ml isopropanol was added to the sample. 

11) The sample was mixed and centrifuged at 4°C for 30 min at 15,000 g. 

12) The pellet was washed with 2 ml of 70% ethanol, and the sample was centrifuged for 

10 min at 15000 g. 

13) The pellet was air dried for 10 min and dissolved with 100 μl ddH2O. 

2.6.5 Agarose gel electrophoresis 

1) 1% agarose gel was prepared by dissolving 0.5 g agarose in 50 ml 1x TAE buffer. 

The mixture was microwaved to melt gel. 
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2) The mixture was cooled down, and 5 μl of Gel Red was added. 

3) The mixture was poured into the gel tray equipped with a comb for 30 min. Then the 

gel was placed into the electrophoresis unit filled with 1x TAE buffer. 

4) 2 μl of loading dye was added to 2μl of each sample. The mixture was loaded onto 

the gel. 5 μl of DNA ladder was added to the first line of the gel to verify the size of 

testing plasmids. 

5) Electrophoresis was carried out at 100 V for 40 min. 

6) The results were visualized by UV illumination. 

2.6.6 Total RNA isolation 

For RNA Isolation, E.Z.N.A. Total RNA kit I from Omega was used.  

1) The lysis buffer was prepared by adding 20 µl of -mercaptoethanol to 1 ml of TRK 

buffer. 

2) 350 µl of lysis buffer was added to each 3-5x106 cells. 

3) The cells were disrupted by passing through a Nr.19 needle with a 10 ml syringe for 

10 times. 

4) 350 µl of 70 % ethanol was added to the lysate. The sample was mixed and applied 

to HiBind RNA spin columns.  

5) The column was centrifuged at 10,000 g for 1 min. The flow-through was discarded, 

and the column was washed with 500 µl of RNA wash buffer I and then washed 

twice with 500 µl of RNA wash buffer II (each wash was followed by a 

centrifugation step at 10,000g). 

6) The column was placed in a fresh RNase-free centrifuge tube, and 40 µl of 

DEPC-treated water which pre-heated to 70°C was added to the column for eluting. 

7) The sample was incubated for 5 min and centrifuged at maximum speed for 1min. 

8) The concentration of isolated RNA was determined by TECAN Infinite 200 PRO. 

The quality of the RNA sample was analyzed with 1 % agarose gel.  

9) The isolated RNA samples were stored at -80 °C. 

2.6.7 cDNA synthesis 

For cDNA synthesis, RevertAid H Minus First Strand Synthesis Kit from Fermentas was 

used. 
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Before cDNA synthesis, all RNA samples were digested with DNase I to remove 

contamination of genomic DNA. 

For DNA digestions, following components were mixed: 

 

Total RNA 5 µl (1 µg) 
10x DNAseI buffer with 
MgCl2 (Fermentas) 

1 µl 

RNAse free DNAse I 
(Fermentas)  

1 µl 

Distilled water (RNase-free) 3 µl 
 

1) Digestion was done at 37°C for 40 min in Thermoblock followed by enzyme 

inactivation at 70°C for 10 min. 

2) 1 µl of Oligo dTs primer was added to each sample. 

3) The volume of the reaction was adjusted to 12 µl with ddH2O and incubation at 70°C 

for 5 min. 

4) The samples were placed on ice for 1 min. Then the following components were 

added to each sample and mixed: 

 

5x reaction buffer  4 µl 
Ribolock RNase inhibitor 1 µl 
10 mM dNTP mix 2 µl 
RevertAid H minus reverse 
transcriptase 

1 µl 

 

5) The samples were incubated at 42°C for 1 h in a Thermo block, and then the 

enzymatic activity was stopped by incubation at 70°C for 10 min. 

6) The cDNA samples were diluted 10 times with ddH2O and stored at -80 °C. 

  



Materials & Methods 

41 

2.6.8 Real-time qPCR with Taqman probe 

Table 4. List of primers for Real-Time PCR. All ready-made mixes were ordered from Life 
Technologies. 

Name of genes Primer sequence(5’-3’) or assay code 

Human GAPDH 
(Eurofins MWG 
Operon.) 

Forward: TCCATGACAACTTTGGTATCGT 

Reversed: CAGTCTTCTGGGTGGCAGTGA 

Probe: AAGGACTCATGACCACAGTCCATGCC 

YKL-39 Hs00970220_m1 
TNFAIP6 Hs00200178_m1 
HSD11B1 Hs00194153_m1 
ABCA1 Hs01059111_m1 
CD274 Hs01125301_m1 
CD82 Hs01017982_m1 
SGPP2 Hs00544786_m1 
CRIM1 Hs00212750_m1 
ARRDC4 Hs00411771_m1 

 

Each reaction mixture for real-time qPCR was prepared in a 1.5ml Eppendorf tube by mixing: 

 

TaqMan Gene 
Expression Master Mix 

5 µl 

20 x TaqMan Assay 0.5 µl 
diluted cDNA sample 1 µl 
ddH2O 3.5 µl 

 

Each cDNA sample was analyzed in triplicates. Amplification was performed using 

LightCycler 480 from Roche. The following program was used: 

 

1) Denaturation: 95°C for 10 min                1 cycle. 

2) Annealing and elongation: 1 min at 60°C,  

followed by denaturation at 95°C for 15 s;      50 cycles. 

3) Cooling: 37°C; 10 min. 

 

In all experiments, GAPDH was used as the reference gene. The probe for GAPDH contained 

JOE on 5’ end and BHQ1 quencher at 3’ end of the sequence. 

2.6.9 RNA preparation for Affymetrix chip assay 

Total RNA was prepared using E.Z.N.A. Total RNA Kit I as described above. 

1) The volume of RNA sample was adjusted to 100 µl with DEPC-treated water. 
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2) 12 µl of 10 x DNase I buffer with MgCl2 and 10 µl of RNase-free DNase I was 

added to sample and mixed by pipetting. 

3) DNA digestion was done at 37°C for 40 min in a Thermo block followed. 

 

For RNA cleans up procedure, Rneasy kit from Qiagen was used. 

1) 350 µl of RLT buffer and 250 µl of 100% ethanol were added to each sample, and 

the mixture was mixed by pipetting. 

2) The sample was applied to the RNeasy mini column, which placed in a 2ml 

collection tube and centrifuged at 10,000 g for 1 min.  

3) After centrifugation, the flow-through was discarded, and the column was washed 

twice with 500 µl of RPE buffer (each wash was followed by a centrifugation step at 

10,000g). 

4) After the last centrifugation step, the column was placed in RNAse free tube. RNA 

was eluted with 40µl of DEPC-treated water, and the samples were incubated for 5 

min. 

5) Samples were centrifuged at maximum speed for 1 min. The RNA concentration was 

determined by measuring the absorption peak at a 260nm wavelength with Tecan 

Infinite 200 PRO. 

2.6.10 Hybridization of gene chip microarray data 

RNA was tested by capillary electrophoresis by Agilent 2100 Bioanalyzer (Agilent) to 

confirm the quality of RNA. Hybridization of probes was done using arrays of human 

HuGene-2.0-st-type from Affymetrix. Biotinylated antisense cRNA was prepared according 

to the Affymetrix standard labeling protocol with the GeneChip WT Plus Reagent Kit and 

the GeneChip Hybridization, Wash and Stain Kit (both from Affymetrix, Santa Clara, USA).  

The hybridization on the chip was performed in a GeneChip Hybridization Oven 640, and 

then dyed in the GeneChip Fluidics Station 450 and scanned with a GeneChip Scanner 3000. 

All of the equipment used was from the Affymetrix-Company (Affymetrix, High Wycombe, 

UK). All the necessary procedures needed for hybridization and scanning of chips were 

performed by technical assistants Ms. Maria Muciek and Ms. Carolina De La Torre in the 

Affymetrix Core Facility of Medical Research Center, Medical Faculty Mannheim. 
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2.7 Protein related techniques 

2.7.1 SDS-PAGE 

1) The gel casting unit was assembled. 12 % separation gel was prepared according to 

the Table 5 and poured between the two glass plates to cover 80 % of the unit. 500 µl 

of 100 % methanol was added on top of the separation gel. The separation gel was 

left to polymerize until it was solid. 

2) Stacking gel was prepared according to the Table 5 and poured on top of the 

separation gel. A comb was inserted into the stacking gel to form loading wells. The 

gel was left to polymerize until it was solid. 

3) The gel casting unit was transferred to the electrophoresis unit and filled with 1x 

TGS running buffer. 

4) Protein samples were mixed with 2x Laemmli buffer supplemented with 

β-mercaptoethanol and heated at 95°C for 3 min. 

5) 20-25 l prepared samples were added to the wells with Hamilton glass syringe. 5 µl 

of protein ladder was pipetted into the first well. 

6) Electrophoresis was performed at a constant current of 20 mA for 1 gel and 40 mA 

for 2 gels. 

7) The program was run until the target protein reach to the middle of the gel. 

2.7.2 Western blotting 

1) The gel was placed in a plastic container filled with blotting buffer. Filter papers and 

a nitrocellulose membrane were cut to the gel size. 

2) The Western Blot cassette was arranged in the following order: Spongy pad/ 2x Filter 

papers/ gel/ Nitrocellulose membrane/ 2x Filter papers/ Spongy pad. The cassette 

was placed in the blotting device, which filled with blotting buffer. 

3) The blotting process was run at a constant current of 150 mA overnight. 

4) The membrane was washed in a plastic container with PBS and then stained with 

Ponceau S solution for 10 min to visualize the protein bands. 

5) The membrane was washed and replaced into blocking buffer (6% non-fat milk in 

PBS) and then incubated for 1 h. 

6) The membrane was further incubated with primary antibody diluted in 1% non-fat 

milk/PBS on a shaker for 2 h at RT. 
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7) The membrane was washed 4 times with 0.1% Tween 20/PBS on a shaker (each time 

5 min). The membrane was then incubated with the secondary antibody diluted in 1% 

milk/PBS for 45min at RT on a shaker. 

8) The membrane was washed 4 times with 0.1% Tween 20/PBS on a shaker (each time 

10 min). 

9) 4 ml Western HRP substrate from Luminata Forte was added to cover the membrane, 

and the membrane was incubated for 3 min.  

10) The membrane was packed in a plastic film and exposed with Kodak Bio-Max light 

film in dark room for different time points, ranging from 30 sec to overnight. 

Afterward, the film was developed in an X-ray film instrument. 

 

Table 5. The composition of SDS-PAGE gels. 

2.7.3 Blue gel staining 

1) After SDS-PAGE, the gel was removed from the glass plate, placed in a plastic 

container, and then washed twice with ddH2O on a shaker (each time 15 min). 

2) 50 ml Gel Blue Stain Reagent was added to the container. 

3) The container was placed on a shaker for 40 min.  

4) The gel was washed twice with ddH2O on a shaker (each time 15 min). 

5) The gel was stored in ddH2O and kept at 4°C overnight.  

6) Stained gels were incubated in gel drying solution at 4°C overnight. 

7) The gel was dried in a gel dryer with a vacuum at 80°C for 2 h. 

2.7.4 Enzyme-linked Immunosorbent Assay (ELISA) 

Protocol for ELISA kit is from Lifespan BioSciences Company. 

1) The Capture Antibody was diluted to working concentration according to 

manufacturer instruction in PBS without carrier protein. 96-well plates were coated 

with 100µl per well of capture antibody and incubated overnight. 

Ingredients 12% Separating gel/25ml Stacking gel/5 ml 
ddH2O 5.7 ml 2.7 ml 
30% Acrylamide mix 12.5ml 0.83 ml 
Tris 6.3 ml (1.5 M, pH-8.8) 1.26 ml (1,0 M, pH 6.8) 
10 % SDS 250 µl 50 µl 
10 % APS 250 µl 50 µl 
TEMED 10 µl 5 µl 



Materials & Methods 

45 

2) The plate was washed with HydroFlex ELISA microplate washer (350 µl wash 

buffer 4 times) and blocked with 100µl 1% BSA/PBS for 1 h.  

3) 50 µl of sample or 100µl of standards diluted in Reagent Diluent was added per well. 

The plate was covered with an adhesive strip, and the sample was incubated for 2 h. 

The plate was washed with HydroFlex ELISA microplate washer (350µl wash buffer 

4 times). 

4) The Detection Antibody was diluted to working concentration according to 

manufacturer instruction. 100 µl of Detection Antibodies were added to each well, 

and the plate was incubated for 2 h. 

5) The plate was washed with HydroFlex ELISA microplate washer (350µl wash buffer 

4 times). 

6) Streptavidin-HRP was diluted to working concentration according to manufacturer 

instruction. 100 µl of Streptavidin-HRP was added to each well, and the plate was 

incubated for 20 min in the dark. 

7) The plate was washed with HydroFlex ELISA microplate washer (350µl wash buffer 

4 times). 

8) The Substrate Solution was prepared by mixing 5ml of Reagent A with 5ml of 

Reagent B. 100µl of Substrate Solution was added to each well, and the plate was 

incubated for 20 minutes in the dark. 

9) 50µl of Stop solution was added to each well to stop the reaction. 

10) The absorbance at 450nm was read on a Tecan Infinite 200 PRO reader. 

2.7.5 Purification of GST-fused proteins 

Transformation of DNA into BL21-(DE3)-RIL-Codon-Plus E.coli 

1) The Cells were thawed on ice. 

2) 50 µl aliquot of cells was mixed with 1 µl of the plasmid in a pre-chilled Eppendorf 

tube. 

3) The sample was incubated for 15 min on ice and then heat shocked at 42°C for 30 s. 

4) Afterward, the sample was incubated on ice for 5 min. 

5) 400 µl of SOC-medium was added to the cells and mixed by pipetting. 

6) The sample was incubated at 37°C for 30 min. 

7) The cells were streaked out on LB-agar plates.  

8) Incubation was done at 37°C overnight.  
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Mini expression test 

Mini cultures were made to exam the protein expression in different clones. 

1) Colonies of each construct and 1 GST control clone were placed in a 15 ml Falcon 

tube using a pipette tip. 3 ml of LB-medium with 3 µl of ampicillin (100 µg/ml) was 

added to each tube. 

2) The samples were incubated at 37°C, 220 rpm on a shaker overnight.  

3) 7 ml of LB-medium with 100 µg/ml ampicillin was added to a Falcon tube for each 

sample, and 120 µl of overnight culture was added. 

4) The OD600 of culture was measured until it reached a value of 0.6. 2 µl of IPTG (1 

M) was added to each sample. 

5) The samples were incubated at 37°C, 200 rpm for 3 h on a shaker. 

6) 500 µl of stimulated culture was added to a new Eppendorf tube. The samples were 

centrifuged for 5 min at 5,000 rpm. The supernatant was aspirated. 

7) 500 µl of Laemmli sample buffer with 2% β-mercaptoethanol was added to each 

pellet and mixed.  

8) The mixture was run on a 12% SDS-PAGE gel and stained blue as described in this 

study. 

Large-scale protein purification: Day 1 

1) 100 ml of LB medium supplemented with 100 µg/ml ampicillin was added to a large 

Erlenmeyer flask and mixed with 200 µl of the BL21-(DE3)-RIL-Condon-Plus E.coli 

culture chosen from the last step. 

2) The mixture was incubated at 37°C, 200 rpm overnight on a shaker. 

3) Two flasks filled with 500 ml of LB medium (100 µg/ml ampicillin) were warmed 

up to 37°C in a water bath. 10 ml of overnight culture was pipetted into each flask. 

4) The cultures were incubated at 37°C on a shaker at 250 rpm for 1 h. 

5) The OD values of cultures were measured until they reached 0.5. 

6) Negative control samples were taken: 500 µl of culture was added to an Eppendorf 

tube and centrifuged for 5 min at 5000 rpm, and the pellet was lysed in 500 µl of 

Laemmli sample buffer with 2% β-mercaptoethanol. 

7) The cultures were stimulated with 250 µl of IPTG (1 M) per 500 ml of culture. 

8) The cultures were incubated at 37°C, 250 rpm for 2.5 h on a shaker. 
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9) Positive control samples were taken: 500 µl of culture was added to an Eppendorf 

tube and centrifuged for 5 min at 5000 rpm, and the pellet was lysed in 500 µl of 

Laemmli sample buffer with 2% β-mercaptoethanol. 

10) The stimulated culture was poured into 50 ml tubes. The cultures were centrifuged 

for 15 min at 6000 g and 4°C. 

11) The pellets were re-suspended in 10 ml of the Protease inhibitor cocktail solution and 

froze at -80°C. 

 

Large-scale protein purification: Day 2 

1) Large scale samples were thawed on ice. 

2) The following reagents were added to a 10 ml total sample volume: 

Protease inhibitor cocktail (mini) 100 µl 

PMSF 100 µl 
DNase (1mg/ml) 100 µl 
MgCl2 (1 M) 130 µl 
MnCl2 (1 M) 13 µl 

 

3) The samples were incubated 15 min on ice. 

4) The samples were vortexed and sonified with the following program: 

 

Amplitude Time 
10% 5x 15 s 
20% 5x 15 s 
50% 1x 15 s 

*The samples were kept on ice at all times. 

5) The following reagents were added to a 10 ml total sample volume: 

 

NaCl (5 M) 1 ml 

20% Triton X-100 in PBS  500 µl 

Protease inhibitor cocktail (mini) 100 µl 

 

6) The samples were incubated for 10 min on ice. 

7) Test samples were collected (P1): 40 µl of the suspension was mixed with 250 µl 

Laemmli sample buffer with 2% β-mercaptoethanol. 

8) The suspensions were added to 50 ml ultracentrifuge tubes. 

9) The samples were centrifuged for 30 min at 16,000 rpm at 4°C. 
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10) The Sepharose 4B was washed and equilibrated as following: 300 µl of Sepharose 

4B was added to an Eppendorf tube; 1 ml of PBS was added; The sample was 

centrifuged for 3 min at 6,000 rpm at 4°C; The supernatant was removed; The 

sample was washed twice with PBS; then washed twice with Sepharose washing 

buffer; then the supernatant was removed. 

11) Test samples were collected (P2): 40 µl of the suspension was mixed with 250 µl of 

Laemmli sample buffer with 2% β-mercaptoethanol. 

12) The supernatant was pipetted into 15 ml Falcon tubes, and 100 µl of Protease 

inhibitor cocktail (mini) was added. 

13) Test samples were collected (P3): A small sample of the pellet was mixed with 1 ml 

of Laemmli sample buffer with 2% β-mercaptoethanol. 

14) The Sepharose 4B was dissolved in 1 ml of the supernatant. 

15) The samples were rotated for 1.5 h at 4°C. Then the samples were centrifuged at 4°C 

for 10 min at 1,200 rpm. 

16) The lysates were transferred into fresh 15 ml Falcon tubes and frozen at -80°C. 

17) Test samples were collected (P4): 40 µl of lysate was mixed with 250 µl of Laemmli 

sample buffer with 2% β-mercaptoethanol. 

18) The sepharose beads were washed 3 times with wash buffer, and the mixtures were 

centrifuged at 4°C for 15 min at 1,200 rpm. 

19) The sepharose beads were transferred to an Eppendorf tube with 1ml of wash buffer, 

and the mixtures were centrifuged at 6,000 g for 3 min. 

20) 1 ml of Sepharose storage buffer was added. 

21) Test samples were collected (P5): 30 µl of Sepharose suspension was mixed with 30 

µl of Laemmli sample buffer with 2% β-mercaptoethanol. 

22) The Sepharose suspension was aliquoted into 100 µl aliquots and froze at -80°C. 

23) 25 µl of samples P1-P5 were run on a 12% SDS-PAGE gel and stained as described 

to determine if stimulation was successful and purification. 
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Pull-down assay 

Bait protein was purified using the protein purification protocol and immobilized on 

Sepharose 4B. Commercial YKL-39 protein was used as prey proteins to determine possible 

binding partners and fragments. 

 

1) Proteins (the protein being studied and GST as a negative control) bound to 

Sepharose 4B were thawed on ice. 

2) The samples were washed 3 times with 1 ml ELB complete buffer, each time the 

samples were centrifuged at 4°C, 6,000 rpm for 5 min. 

3) Beads were resuspended in 100 µl of ELB complete buffer per reaction and 

aliquoted. 

4) 1 µg commercial YKL-39 protein was added to each aliquot to have the same 

amount of protein in each sample. 

5) ELB complete buffer was added to a total volume of 400 µl. 

6) The samples were incubated at 4°C with rotation for 3 h. 

7) The samples were washed 5 times with 1 ml of ELB complete buffer by centrifuging 

at 4°C for 5 min at 6,000 rpm. 

8) After the final wash, the ELB complete buffer was removed, and 50 µl of Laemmli 

sample buffer supplemented with 2% β-mercaptoethanol was added. 

9) The samples were stored at -20°C. 
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2.8 Cell culture techniques 

2.8.1 Cultivation of cell lines and primary cells 

Table 6. Cultivation conditions of cell lines and primary cells. 
Cell line / primary cell Growth medium Growth conditions Cell type 

HEK 293T/17 DMEM complete 
and 1mM sodium 
pyruvate 

37°C, 5% CO2 Human embryonic 
kidney cells 

MCF-7 DMEM complete 37°C, 5% CO2 Human breast 
adenocarcinoma  

Human CD14+ monocytes X-VIVO10 
(supplemented with 
1ng/ml M-CSF and 
10-8 M 
dexamethasone) 

37°C, 7,5% CO2 Human monocyte 

*Complete medium contained 10% FCS and 100 µg/ml penicillin/streptomycin. 

2.8.2 Cell thawing 

1) A T-75 flask was prepared with 10 ml medium. 

2) The vial with frozen cells was put into 37°C water bath to thaw the cells. 

3) The melted cells were added to 5 ml warm culture medium in a 15ml Falcon tube. 

4) The Falcon tube was centrifuged for 8 min at 1200 rpm.  

5) The supernatant was discarded, and the pellet was re-suspended with 1 ml of medium 

and added into the flask.  

6) The flask was put into the 37°C incubator with 5% CO2 and 95% humidity. 

2.8.3 Splitting of adherent cells  

Cells were cultivated in T-75 flasks and were split when their confluence reached 80-90%.  

1) A 15 ml Falcon tube was used for each flask of cells.  

2) The medium was aspirated from the flasks. The cells were washed with 10 ml of 

PBS. 2 ml of Trypsin/EDTA solution was added to each flask, and the flasks were 

incubated at 37°C for 3 min. 

3) 2 ml of medium was added to the flask to stop the T/E reaction. 

4) The contents of each flask were added to the corresponding Falcon tube, and the 

tubes were centrifuged at 1200 rpm for 8 min. 

5) T-75 flasks were prepared with 10 ml medium. 
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6) The supernatant was aspirated from the pellets. The pellets were re-suspended in 1 

ml of medium, and the cells were counted. 

7) New T-75 flasks were prepared and filled with 10 ml medium.  

8) The cell suspension was added to each new T75 flask. The flasks were put into the 

37°C incubator with 5% CO2 and 95% humidity. 

2.8.4 Cell cryopreservation 

1) T/E solution and freezing medium (FCS with 10% DMSO) were warmed in 37°C 

water bath. 

2) The medium was aspirated, and the cells were washed with 10 ml of PBS. 

3) 2 ml of T/E was added to each flask. The flasks were incubated at 37°C for 3 min. 

4) 2 ml of medium was added to stop the T/E reaction. 

5) 10ml of PBS was added to each flask to wash and detach the cells. 

6) The cell suspension was added to a new 15 ml Falcon tube.  

7) The samples were centrifuged at 1200 rpm for 8 min. 

8) The supernatant was aspirated. The cell pellet was re-suspended with 1.5 ml of 

freezing medium (FCS+ 10% DMSO). 

9) The suspension was put into the cryovials, and the vials were transferred into the 

Cryo Freezing Container with 250 ml of isopropanol. The container was placed into 

the -80°C freezer.  

10) The samples were transferred to liquid nitrogen tanks on the next day. 

2.8.5 Cell counting 

HEK293 cells were counted using a Neubauer hemocytometer. 

1) The supernatant was aspirated.  

2) The cell pellet was re-suspended in 1 ml of medium.  

3) 10 μl of cells were mixed with 10 μl of Trypan blue solution in an Eppendorf tube.  

4) 10 μl of the mixture was pipetted into the hemocytometer chamber via capillary 

action.  

5) Using a microscope, cells without trypan blue staining in the four large corner 

squares were counted. Cells overlapping on the top and left boundaries were counted 

while cells overlapping the bottom and right boundaries were not. 

6) The number of cells per ml was calculated using the following equation:  

(Number of cells in the 4 corner squares/4) x 104 x 2 
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2.8.6 Transfection methodology for HEK 293 cells 

Transient transfection 

1) A new 6-well plate was prepared (each well was filled with 3ml DMEM complete 

medium), 2x105 healthy HEK293 cells were seeded in each well. The cells were 

cultured in 37°C incubator with 5% CO2 and 95% humidity until the cell confluence 

reach 80%. 

2) The old medium was exchanged with 3ml new warm medium before the experiment. 

3) Three sterile Eppendorf tubes were prepared: 

a): 96 μl Optimem+3 μl Fugene HD+1 ug plasmid- pSNAP-tag (p789); 

b): 96 μl Optimem+3 μl Fugene HD+1 ug plasmid-YKL-39-FLAG (p825); 

c): 92 μl Optimem+6 μl Fugene HD+2 ug plasmid-YKL-39-FLAG (p825). 

4) The mixtures were incubated for 15min at RT. 

5) The reaction mixture was added into corresponding well, and the plate was put into 

the cell incubator. 

6) The cells were cultured for 48 h. 

 

Stable transfection 

1) A new 6-well plate was prepared (each well was filled with 3ml DMEM complete 

medium), 2x105 healthy HEK293 cells were seeded in each well. The cells were 

cultured in 37°C incubator with 5% CO2 and 95% humidity until the cell confluence 

reach 80%. 

2) The old medium was exchanged with 3ml new warm medium before the experiment. 

3) Three sterile Eppendorf tubes were prepared: 

a): 96 μl Optimem+3 μl Fugene HD+1 ug plasmid- pSNAP-tag (p789); 

b): 96 μl Optimem+3 μl Fugene HD+1 ug plasmid-YKL-39-FLAG (p825); 

c): 92 μl Optimem+6 μl Fugene HD+2 ug plasmid-YKL-39-FLAG (p825). 

4) The mixtures were incubated for 15min at RT. 

5) The reaction mixture was added into corresponding well, and the plate was put into 

the cell incubator. The cells were cultured for 48 h in DMEM complete medium. 

6) The medium was exchanged to selection medium (DMEM complete medium 

supplemented with 800 ng/ml G418). The selection medium was exchanged every 

2-3 days. 
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7) Cells were grown for 7 days in selection medium until all the control non-transfected 

HEK293 cells were dying. 

8) Survived transfected cells from 6 well plate was harvested. The cell suspension was 

prepared to contain 60-90 cells in 10 ml medium, and 100 µl of the suspension was 

added to each well in a 96-well plate. 96-well plates were incubated at 37°C, 5% 

CO2. 

9) Cells were grown for 4-5 days, and the single resistant colonies from 96-well plate 

were split to 12-well plate. Cells were grown for 2 days and passage into 6-well 

plates with cover glasses for further analysis of recombinant protein expression using 

IF and were transferred into T-25 flasks for the propagation of positive clones and 

analysis of recombinant protein expression using Western Blot. 

10) The positive clones were cultured in T-75 flasks. The early passages were frozen and 

stored in liquid nitrogen. 

2.8.7 Isolation of CD14+ monocytes from human blood (buffy coats) 

20-50 ml fresh buffy coats in protective bags were obtained from German Red Cross Blood 

Donor Service Baden-Württemberg–Hessen. 

1) Blood was transferred from plastic bag to a T-75 flask and diluted 1:1 with PBS 

(without Ca2+ and Mg2+). 

2) 30ml of diluted blood was layered on top of 15 ml Biocoll solution. The tubes were 

centrifuged at 420 rcf, for 30 min without breaks. 

3) The upper layer (serum) was discarded and second layer (enriched PBMC fraction) 

was transferred to a new 50 ml falcon tube. The mixture was filled up to 50 ml with 

PBS and centrifuged at 420 rcf for 10 min with breaks. 

4) The supernatant was discarded and the cell pellet was re-suspended in 3 ml of PBS 

and then filled up to 50 ml with PBS. The Falcon tubes were centrifuged at 420 rcf 

for 10 min. 

5) The percoll gradient was prepared by mixing 13.5 ml percoll, 15 ml MEM medium, 

1.5 ml 10 x Earle’s Balanced Salt solution. 

6) The cell pellet was re-suspended in 4 ml PBS and layered on top of the Percoll 

gradient. Cells were centrifuged at 420 rcf for 30 min without breaks. 

7) The upper layer (PBS) and second layer (cells enriched for monocytes) were 

collected and transferred to new 50 ml falcon tube and filled up to 50 ml with PBS 

and then centrifuged at 420 rcf for 10 min with breaks. 
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8) The supernatant was discarded. The cell pellet was re-suspended in 2 ml PBS and 

transferred into a new 15 ml falcon tube. The volume was filled to 10 ml. Cells were 

counted, and the rest of them were centrifuged at 420g, for 10 min with breaks. Cell 

counting was performed on CASY Cell Counter. 

9) The supernatant was discarded. The cell pellet was re-suspended CD14+ microbeads 

and MACS buffer according to the formula: (95 µl of MACS buffer + 5 µl CD14 

microbeads) per 1x107 cells. 

10) The cells were incubated for 25 min on a rotator at 4°C. The tubes were filled up to 

10 ml with MACS buffer and centrifuged at 420 rcf for 10 min. The cell pellet was 

re-suspended in 1 ml of MACS buffer.  

11) The separation column was placed in the magnetic separation unit and washed with 3 

ml MACS buffer. A new collecting tube has been put under the columns, and the cell 

suspension was applied onto the column. 

12) The column was washed 3 times, each time 3 ml MACS buffer. The column was 

removed from magnetic separation unit and placed on a new 15 ml falcon tube. 

13) CD14+ monocytes were eluted from the column with 10 ml MACS buffer. Cells 

were centrifuged at 420 rcf for 10 min.  

14) The cell pellet was resuspended in X-VIVO 10 medium at a concentration of 1x106 

cells/ml. 

2.8.8 Primary human macrophages culture  

1) Isolated monocytes were cultured in 6-well plate with X-VIVO 10 medium 

supplemented by M-CSF 1ng/ml and Dexamethasone 10-8 M. 3-5 ml of cell 

suspensions were applied to each well (1x106 cells/ml). 

2) Cytokine stimulations were performed immediately after monocyte plating. 

Following stimulations were used: IL-4 (10 ng/ml) or IL-4 (10 ng/ml) +TGF-beta 

(10ng/ml). 

3) Cells were differentiated for 6, 12, 18 and 24 days at 37°C and 7,5% CO2 without 

changing medium. 
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2.9 Immunological methods 

2.9.1 Antibodies 

Primary antibodies 

Table 7. Primary antibodies. N/A: not applied 
Name of antigen  

and isotype 

controls 

Species Company/Lab Catalog 

number 

IF dilution WB 

dilution 

CD63 Mouse BD 556019 1:100 N/A 

EEA1 Mouse Santa Cruz sc-53939 1:25 N/A 

FLAG Rabbit Sigma F7425 1:10 1:800 

IgG2a 

(isotype control) 

Rat eBioscience 14-4321 1:160 N/A 

IgG1κ 

(isotype control) 

Mouse BD 557273 1:200 N/A 

LAMP-1 Mouse Santa Cruz sc-18821 1:50 N/A 

p62lck Mouse BD 610833 1:25 N/A 

Stabilin-1 Rabbit Our laboratory RS-1 1:800 N/A 

TGN46 Mouse BD AHP500G 1:500 N/A 

YKL-39  

 

Mouse Our lab and Institute for 

Molecular Immunology, 

Helmholtz Center 

Munich 

Clone 3E4 N/A 1:10 

YKL-39  Rat Our lab and Institute for 

Molecular Immunology, 

Helmholtz Center 

Munich 

Clone 

18H10 

1:1-1:5 1:10 
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Secondary antibodies and labeling agents 

Table 8. Secondary antibodies and labeling agents. N/A: not applied 
Antibody/labeling 

agent 

Species Company Catalog 

number 

IF 

dilution 

WB 

dilution 

α-goat-IgG (H+L) 

Cy5 

donkey Dianova 705-175-147 1:400 N/A 

α-mouse-IgG (H+L) 

Alexa 488 

donkey Dianova 715-545-151 1:400 N/A 

α-rabbit-IgG (H+L) 

Cy3 

N/A Dianova 711-165-152 1:400 N/A 

α-rabbit-IgG (H+L) 

Alexa 488 

donkey Dianova 711-486-152 1:400 N/A 

α-rat-IgG (H+L) 

Alexa 488 

N/A Molecular Probes 

 

a-21208 1:400 N/A 

α-rat-IgG (H+L) 

Cy3 

donkey Dianova 712-165-153 1:400 N/A 

DRAQ5 N/A Cell Signaling 4084s 1:1000 N/A 

HRP labeled 

anti-mouse  

goat Dianova 115-035-133 N/A 1:5000 

HRP labeled  

anti-rabbit 

donkey Amersham NA934 N/A 1:5000 

HRP labeled  

anti-rat 

goat Santa Cruz Sc-2303 N/A 1:5000 

 

2.9.2 Immunofluorescence staining 

Preparation of cells on coverslips 

The stably transfected cells were seeded in 6-well plate (3x105 cells per well) with coverslips 

for culture. Then the cells were PFA fixed and subjected to immunofluorescence staining. 

1) The supernatants were removed, and the cells were washed twice with 2 ml PBS. 

2) The cells on coverslips were fixed with 1 ml 2 % PFA for 10 min. 

3) The PFA was removed. 1 ml 0.5% TritonX-100/PBS was added to each well. The 

samples were incubated for 15 min. 

4) The Triton-X 100 solution was aspirated away. The cells were fixed with 1 ml 4% 

PFA for 10 min. 
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5) The cells were washed 5 times with 2 ml PBS on a shaker (each time 10 min). 

 

Cytospin preparation 

1) The chambers with filter, metal clips and slides were put into the centrifuge. 

2) The cell suspensions were pipetted into each chamber, and the samples were 

centrifuged at 700 rpm for 4 min. 

3) The slides with cells were air-dried on a filter paper. 

4) The cells on slides were fixed with 2 % PFA for 10 min. 

5) The slides were incubated in 0.5% TritonX-100/PBS for 15 min. 

6) Then the cells on slides were fixed with 4% PFA for 10 min.  

7) The slides were washed 5 times with PBS on a shaker (each time 10 min). 

 

Immunofluorescence staining 

1) A circle was drawn with dako pen around the cells on the slides. 

2) The slides were washed twice with 2 ml PBS on a shaker (each time 5 min). 

3) The slides were washed with 2 ml 0.1% Tween20/PBS for 30 s. 

4) The slides were blocked with 1 ml 3% BSA/PBS for 1 h in a humid chamber. 

5) The slides were washed with 2 ml 0.1% Tween 20/PBS for 30 s. 

6) Primary antibody was diluted with 1% BSA/PBS, and 100 µl dilution was added on 

to the cells of each slide, and the samples were incubated for 1.5 h in a humid 

chamber. 

7) The slides were washed for three times with 2 ml PBS (each time 5 min). 

8) The secondary antibody was diluted with 1% BSA/PBS, 100 µl dilution was added 

on to the cells of each slide, and the samples were incubated for 45 min in a humid 

chamber. 

9) The slides were washed for four times with 2 ml PBS (each time 5 min). 

10) One drop of aqueous fluorescent mounting media was pipetted on the cells. The 

coverslips were added on the top of the slides. 

 

Confocal laser scanning microscope 

Confocal microscopy analysis was performed using Leica TCS SP8 laser scanning spectral 

confocal microscope, equipped with a 63×1.32 objective. As a source of excitation an argon 

laser emitting at 488 nm, a krypton laser emitting at 568 nm and a helium/neon laser 
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emitting at 633 nm were used. Data were acquired and analyzed with Leica Confocal 

Software. All two- or three-color images were acquired using sequential scan mode. 

2.10 Functional assays 

2.10.1 Migration assay 

1) Freshly isolated human CD14+ monocytes were resuspended in X-VIVO 10 medium 

at a concentration of 1x107 cells/ml. 

2) 600 µl control medium or 600 µl chemoattractant medium (supplied with 100 ng/ml 

MCP-1 or 100 ng/ml human recombinant YKL-39) were added in the lower chamber 

of transwell. 

3) 100 µl cell suspension (1x106 cells) was added to the upper insert and transferred to 

the plate. 

4) The plate was incubated at 37°C for 1 h or 3 h. 

5) The insert was removed from the plate, and the cells were fixed with 4% PFA for 10 

min. 

6) The insert was washed twice with PBS. 

7) Cells on the insert were fixed with 100% pre-chilled methanol for 5 min. 

8) Non-migrated cells were scraped with a moist cotton swab. 

9) The insert was washed twice with PBS. 

10) The cells on the membrane were stained with hemalum solution for 30 s. 

11) The insert was washed twice with PBS. 

12) The insert was air-dried. Pictures of the membrane in 10 random fields were taken 

using 40x magnification. 

13) Migrated cells on the membrane were counted with Image J Software. 

14) At the same time, cell numbers in the lower chamber were counted by Casy Model 

TT cell counter, using the following equation: number of cells obtained/100. 

2.10.2 Tube formation assay 

1) Matrigel was thawed one day before experiment at 4°C. 

2) The 96-well plate and the pipet tips were pre-chilled at -20°C for 2 h. 

3) 50 μl Matrigel were added to each well of the pre-chilled 96-well plate on ice. The 

polymerization of Matrigel was done in 37°C incubator for 1 h.  
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4) 100 μl HUVEC cells suspension (1.7 x 104 cells ) were added to each well; cells 

were suspended in endothelial cell growth medium (EGM) containing VEGF, 

endothelial basal medium (EBM), 100ng/ml or 1 µg/ml YKL-39 protein. The plate 

was incubated at 37 °C, 5% CO2 overnight. 

5) The tube visualizations were analyzed using a light microscope. 10 pictures were 

taken from each well. The tube numbers and lengths were counted using the 

AxioVision Image software. 

2.10.3 Apoptosis and Proliferation 

DNA fragmentation assay 

1) MCF-7 cells (2x104 per well) were seeded in 24 well plates. 

2) The cells were stimulated with 0.5µM Staurosporine, 100ng/ml YKL-39 or serum 

free medium for 6, 12, 24 and 48h. 

3) DNA from treated cells were isolated and analyzed by 1% agarose gel with the 

participation of gel red. 

4) The results were visualized by Multi Doc-It Imagine system (UVP). 

Proliferation assay 

The Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit was used. All procedures 

were performed according to the manufacturer’s instructions. 

1) 3 x 105 cells/per well were seeded in 6 well plate with the corresponding medium for 

24 or 48 h. 

2) 10 μM/ml EdU was added to each well, and the 6 wells plates were incubated at 

37°C, 5% CO2 for 1 h. 

3) The cells were harvested in FACS tubes, and then cells were washed with 2 ml of 

FACS buffer. 

4) 100 μl of fixative solution (Click-iT component D) was added to each FACS tube 

and mixed with the cells.  

5) The cells were incubated for 15 min, RT. 

6) 1ml of 1% BSA/PBS was added to each FACS tube. 

7) Centrifugation at 1,200 rpm for 8 min and discard the supernatants. 

8) 100 µl of saponin-based permeabilization and wash reagent (Click-iT component E) 

was added to each FACS tube. Vortexed and incubated at room temperature for 15 

min. 
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9) 500 µl of Click-iT reaction cocktail was added to each FACS tube and incubated at 

room temperature for 30 min without light. 

10) The cells were washed by 3 ml of saponin-based permeabilization and wash reagent. 

11) Centrifugation at 1,200 rpm for 8 min and discard the supernatants. 

12) Re-suspend the cells in 200 µl of saponin-based permeabilization and wash reagent. 

13) The cell suspension was analyzed by a BD FACS Canto II. 

2.11 Statistical analysis 

The significance of the difference between groups of experimental data in RT-qPCR analysis 

and ELISA, migration assay and tube formation assay was determined using Student’s paired 

t-test. A p-value less than 0.05 were considered statistically significant. All statistical analysis 

was performed in GraphPad Prism 6. 

Statistical analysis of microarray data was done by Dr. Carsten Sticht from the Affymetrix 

Core Facility of Medical Research Center, Medical Faculty Mannheim. A Custom CDF 

Version 19 with ENTREZ based gene definitions was used to annotate the arrays. The Raw 

fluorescence intensity values were normalized applying quantile normalization and RMA 

background correction. One-way-ANOVA was performed to identify differential expressed 

genes using a commercial software package SAS JMP10 Genomics, version 6, from SAS 

(SAS Institute, Cary, NC, USA). A false positive rate of a=0.05 with FDR correction was 

taken as the level of significance. Plots (3D Scatterplots and Venn diagrams) were made with 

JMP. Heat maps were generated in Morpheus application from Broad Institute. 
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Figure 9. Relative expression of YKL-39 mRNA in human macrophages. Human CD14+ 
monocytes were cultured for 6, 12, 18 and 24 days (non-stimulated macrophages were used as a 
control). The graph represents mean values from six individual donors with standard deviations. The 
expression levels of YKL-39 were normalized to GAPDH mRNA expression. For statistical analysis 
Student’s t-test was used (* p < 0.05). 

Figure 9 illustrates the expression of YKL-39 by macrophages in response to IL-4 and 

IL-4+TGF-beta. YKL-39 was significantly up-regulated by IL-4+TGF-beta in macrophages 

compared to IL-4 stimulated macrophages (5.87 times on day 6, 9.77 times on day 12, 3.49 

times on day 18), while no significant difference was found on day 24. In summary, the 

RT-qPCR demonstrated that IL-4 and TGF-beta induce expression of YKL-39 on the mRNA 

levels in long-term macrophage cultures suggesting that YKL-39 can be expressed on the 

long-living tissue macrophages also in vivo. 

3.1.3 YKL-39 protein expression 

The next aim was to detect the expression of YKL-39 on the protein level. YKL-39 

monoclonal antibodies were generated in cooperation with Dr. Elisabeth Kremmer, Institute 

of Molecular Immunology, Helmholtz Zentrum München, Germany. Reactivity of 

monoclonal antibodies for immunofluorescence was evaluated by indirect 

immunofluorescence using YKL-39 transient transfection TS/A cells from previous studies in 

our laboratory (Bin Song, unpublished data). In this study, the expression of the YKL-39 

protein in macrophages was detected by rat mAb 18H10. 
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The rare event of co-localization was observed for YKL-39 with early endosomal marker 

EEA1 or late endosomal marker p62lck suggesting that YKL-39 is targeted to the 

endosomal/lysosomal system; however, only transiently present in the endosomes (Figure 

11A and B). Strong co-localization was identified for YKL-39 and major lysosomal marker 

LAMP-1, indicating that YKL-39 is accumulated in the lysosomes (Figure 11C). To identify 

whether YKL-39 is targeted for the secretion, co-localization of YKL-39 with CD63, used as 

a specific marker for secretory lysosomes in macrophages, was examined. YKL-39 was 

indeed present in CD63 positive lysosomes of primary macrophages (Figure 11D). The 

pattern of intracellular YKL-39 distribution was similar to the pattern previously 

demonstrated for SI-CLP (Kzhyshkowska et al., 2006b), suggesting that YKL-39, at least 

partially, can be secreted by the lysosomal secretory pathway. 
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3.2.3 The effect of overexpression of stabilin-1 on YKL-39 trafficking  

In order to find further confirmation for the role of stabilin-1 in the intracellular sorting of 

YKL-39; the model HEK293 cell lines stably expressing recombinant YKL-39 were 

generated and used to analyze the effect of stabilin-1 on the intracellular distribution of 

YKL-39. HEK293 cells were transfected with pSNP-YKL-39-FLAG or control empty vector. 

Stable single-cell-derived clones expressing YKL-39 were identified using a-FLAG 

immunofluorescent staining and confocal microscopy (data not shown). The list of positive 

clones is provided in Table 9. 

 

Table 9. Stable transfected HEK293 cells. 
Expression construct Clone 

names 
Percentage of positive cells Expressio

n level 
pSNAPtag-YKL-39-FLAG (P825) P1B2 60% strong 
 P1C12 60% strong 
 P1F7 80% strong 
 P1F10 50% strong 
 P2E6 30% strong 
pSNAP-tag (P789) VectorE4   

 

Effect of stabilin-1 over-expression on YKL-39 trafficking in HEK293 cell line 

To analyze whether stabilin-1 is directly involved in sorting process of YKL-39, 

HEK293-YKL-39-FLAG stable transfected cells (clone P1B2) were seeded on coverslips and 

transiently transfected with stabilin-1 expressing construct pLP-IRESneo-hSt1 or empty 

vector pLP-IRESneo. After 48 h transfection, cells were examined by 

immunofluorescence/confocal microscopy. It was found that recombinant YKL-39 was 

localized as nuclear globular structures in HEK293 cells, which indicated that YKL-39 is 

miss-sorted in these cell lines; the transient overexpression of stabilin-1 resulted in the 

relocalization of YKL-39-FLAG into stabilin-1 positive cytoplasmic structures (Figure 13). 
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These data supported the hypothesis that YKL-39 can stimulate angiogenic responses in 

endothelial cells, suggesting YKL-39 expression can induce angiogenesis in tumor 

microenvironment. 

3.6 Gene expression profile of monocytes stimulated with YKL-39 

3.6.1 Affymetrix microarray analysis of monocytes stimulated with YKL-39  

After the identification of chemotactic effects of YKL-39 on monocytes, the next question 

was raised whether YKL-39 can affect the transcriptional program of human monocytes. 

Therefore, Affymetrix microarray analysis was performed to identify the effects of YKL-39 

on the gene expression profile of human primary CD14+ monocytes. 

Freshly isolated monocytes out of five individual donors were stimulated with YKL-39 at the 

concentration of 100 ng/ml or 1 µg/ml for 24 h. For each donor, three different groups were 

analyzed: blank control, YKL-39 100 ng/ml, YKL-39 1 µg /ml (Figure 19). The comparison 

was made between non-stimulated monocytes, and monocytes stimulated with YKL-39 100 

ng/ml (comparison 1), and between non-stimulated monocytes and monocytes stimulated with 

YKL-39 1 µg /ml (comparison 2). For each stimulation, additionally, to the statistical 

threshold (p<0.05), an arbitrary cut-off was introduced. Thus, only the genes in which the 

difference of the signal intensity between the control group and the YKL-39-stimulated group 

higher than 0.5 were taken from the profile. In the comparison 1, there were no genes 

correspond to these criteria. Therefore, eight up-regulated genes from comparison 2 have been 

selected for further analysis (Figure 19). 
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YKL-39 had an only slight stimulatory effect on the expression of the selected genes, 

however statistically significant difference was identified in case of stimulation with 1 µg/ml 

compared to the non-stimulated cells. The fold changes of these tested genes were 

summarized in Table.12. After 6 h of stimulation with YKL-39, minor but statistically 

significant changes in expression of TNFAIP6, HSD11B1, SGPP2, CD274, and CRIM1 were 

observed (Figure 20 A, B, C, D, G, and H). The highest stimulatory effect was found for 

TNFAIP6 (fold change 1.33). After 24 h of the stimulation with YKL-39, the statistically 

significant changes were found on TNFAIP6, HSD11B1, SGPP2, CRIM1, CD274, and CD82 

(Figure 20 A, B, C, D, G, and H). The highest effect of YKL-39 after 24 h of stimulation was 

found on TNFAIP6 (fold change 2.56). The tendency of YKL-39 to stimulate expression of 

ABCA1 and ARRDC4 was also observed after 24 h (Figure 20 E and F). 

Table 10. Fold change of selected YKL-39 induced genes by RT-qPCR validation. 
 Fold change (6 h) Fold change (24 h) 
HSD11B1 1.22  1.46  
TNFAIP6 1.33  2.56  
SGPP2 1.29  1.81  
ABCA1 0.99  1.35  
ARRDC4 1.02  1.24  
CD82 0.93  1.27  
CD274 1.30  1.50  
CRIM1 1.30  1.34  

 

These data indicate that YKL-39 has only slight effect on the change in the transcriptional 

program of monocytes. However, the profile of the induced genes was unique, suggesting a 

specific role of YKL-39 in the activation of monocytes recruited from the circulation. 

3.7 YKL-39 effect on MCF-7 cells proliferation and apoptosis 

Since expression of YKL-39 in macrophages was found to be induced by TGF-beta, a 

multifunctional cytokine expressed in various types of cancer, including breast cancer, next 

question that we asked was whether YKL-39 affects the proliferation or apoptosis of tumor 

cells. The proliferation of human breast adenocarcinoma cells MCF-7 in response to YKL-39 

was analyzed using EdU proliferation assay. 



Results 

80 

    
0

20

40

60

80

       24 h        48 h

 YKL-39       -              +             -              +

%
 o

f 
p

ro
lif

er
at

in
g

 c
el

ls

 

Figure 21. Proliferation assay for YKL-39 stimulated MCF-7 cells. MCF-7 breast cancer cell lines 
were incubated with 100 ng/ml YKL-39 for 24 h or 48 h. The percentage of proliferating cells was 
quantified with Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit. 

MCF-7 cells were cultured in presence or absence of YKL-39 for 24 or 48 h. No difference in 

proliferative activity between non-stimulated and YKL-39-stimulated groups was observed at 

both time points (Figure 21). 

To investigate the effects of YKL-39 on the apoptosis of MCF-7 cells, DNA fragmentation 

assay was performed. As a positive control for the induction of apoptosis, MCF-7 cells were 

stimulated with staurosporine. YKL-39 was used at the concentration of 100 ng/ml. Induction 

of apoptosis was tested after 6 h, 12 h, 24 h and 48 h of stimulation (Figure 22).  
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4. Discussion 

4.1 Expression of YKL-39 in macrophages 

In this study, we analyzed the expression and secretion pattern of YKL-39 in long-term 

cultured macrophages in vitro. For the first time, it was demonstrated that in macrophages 

cultivated up to 24 days, the expression of YKL-39 is induced by TGF-beta in combination 

with IL-4, but not by IL-4 alone. These data suggest that YKL-39 acts as a marker for 

late-stage differentiation of macrophages in pathological conditions. During tumor growth 

and progression, a significant amount of TGF-beta is produced by cancer and stromal cells 

and secreted in the tumor microenvironment (Pickup et al., 2013). An increased expression of 

TGF-beta was shown to correlate with the malignancy of different cancers (Derynck et al., 

2001; Katsuno et al., 2013). Therefore, TGF-beta is considered to play a major role in the 

initiation and progression of cancer by affecting proliferation, apoptosis, and differentiation of 

cancer cells in the tumor microenvironment (Cantelli et al., 2017). 

Moreover, TGF-beta also involves in the development of atherosclerotic disease which is 

induced by the accumulation of macrophages (Loeffler and Wolf, 2014; Ramji et al., 2006). 

In this process, gene expression of mature human macrophages was up-regulated by 

TGF-beta. It was first demonstrated that the combination of IL-4 and TGF-beta induces the 

expression of IL-17 receptor B in macrophages (Gratchev et al., 2004). Next, using 

Affymetrix gene expression profiling assay, it was found in our laboratory that TGF-beta 

induce expressions of a wide array of genes in mature human macrophages, including 

transcriptional regulators, immune modulators, and genes associated with lipid processing 

which contributes to atherosclerotic plaque vulnerability (Gratchev et al., 2008a; Nurgazieva 

et al., 2015). However, less is known about the effect of TGF-beta on human macrophages in 

the tumor microenvironment. In the present work, it was demonstrated that TGF-beta induces 

the production of chitinase-like protein YKL-39 in human primary macrophages. Therefore, 

investigation of the secretion mode and biological functions of YKL-39 was the further focus 

of this project. 

4.2 Localization, sorting and secretory mechanisms of YKL-39 

SI-CLP was found to be sorted by stabilin-1 and secreted via lysosomes in alternatively 

activated macrophages (Kzhyshkowska et al., 2006b). In the present study, the question was 

raised whether YKL-39 is sorted via a similar pathway in macrophages in this study. 
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It was found that YKL-39 is sorted into LAMP-1 positive and secretion-committed CD63 

positive lysosomes in IL-4+TGF-beta stimulated macrophages. A similar pattern of 

intracellular distribution was discovered for SI-CLP in our previous study (Kzhyshkowska et 

al., 2006b). In HEK293-YKL-39-FLAG cell line, YKL-39 is miss-sorted into the globular 

structures and localized in the nuclear area. Transient overexpression of recombinant 

stabilin-1 in this model cell line resulted in the re-distribution of YKL-39 into the cytoplasm, 

and this effect was similar to our previously published data demonstrating the role of 

stabilin-1 in the intracellular sorting of SI-CLP in H1299 cell model (Kzhyshkowska et al., 

2006b). Using a pull-down assay fasciclin domain 7 of stabilin-1 was found to mediate the 

interaction with YKL-39, which is also consistent with our previous results demonstrating the 

interaction of stabilin-1 and SI-CLP (Kzhyshkowska et al., 2006b). Therefore, YKL-39, 

similarly to the SI-CLP, can be targeted by stabilin-1 into the lysosomal secretory pathway in 

human alternatively activated macrophages. 

Lysosomes are organelles with complex functions involved in cell death, immunity, signaling, 

and stress responses (Holtzman, 2013; Piao and Amaravadi, 2015), which not only participate 

in digesting extracellular material internalized by endocytosis and intracellular components 

sequestered by autophagy, but also secrete their contents by fusing with the plasma membrane 

(Piao and Amaravadi, 2015). Two types of lysosomes contained proteins are necessary for 

their functions: soluble hydrolases and integral lysosomal membrane proteins. More than 60 

hydrolases have been identified and characterized, some of which play an important 

implication on tumor progress (Piao and Amaravadi, 2016; Schröder et al., 2010). The best 

investigated lysosomal hydrolases are the cathepsin proteases, which are subdivided into three 

groups based on the active site of the amino acids and the catalytic activity: serine cathepsins 

(cathepsins A and G), cysteine cathepsins (cathepsins B, C, F and H) and aspartic cathepsins 

(cathepsins D and E) (Krikorian et al., 2015). It was suggested that cathepsins could either 

promote or suppress the tumor growth; the cytosolic cathepsins inhibit tumor growth by 

activating the apoptotic pathway (Olson and Joyce, 2015). In contrast, the extracellular 

cathepsins promote tumor growth through degradation of basement membrane and activation 

of other pro-tumorigenic proteins (Repnik et al., 2012). Cathepsins B and E were proved 

involved in cancer progression and metastasis in different types of cancer, such as breast 

cancer and pancreatic cancer (Bengsch et al., 2014; Keliher et al., 2013). Glyco_18 domain 

containing proteins were also found by us and others to be sorted via the 

endosomal/lysosomal system and secreted by activated macrophages (Kzhyshkowska et al., 

2007; Kzhyshkowska et al., 2006b; Renkema et al., 1997). Chitotriosidase was seen 
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comparable to cathepsin D in lysosomal vesicles in macrophages (Renkema et al., 1997). 

SI-CLP was demonstrated to be sorted by stabilin-1 via a lysosomal pathway in alternatively 

activated macrophages (Kzhyshkowska et al., 2006b). In this study, it was demonstrated that 

YKL-39, similar to SI-CLP, is sorted into the lysosomal secretory pathway. Considering the 

fact that YKL-39 expression is strongly induced by TGF-beta, an essential regulatory 

cytokine of the tumor microenvironment, it was important to identify biological activities of 

YKL-39, which can implicate in the cancer progression. 

4.3 Functional analysis of YKL-39 

4.3.1 YKL-39 promotes monocyte migration 

Monocytes are intensively recruited into growing tumors by chemotactic factors secreted by 

tumor cells and stromal cells in the tumor microenvironment (Quail and Joyce, 2013; Riabov 

et al., 2014). TAMs serve as a source of chemotactic factors, such as CCL2, CCL17, CCL18, 

and CCL22, which attract circulating monocytes (Bingle et al., 2002; Sierra-Filardi et al., 

2014; Young and Singh, 2016). For example, CCL2 is a key chemokine which is responsible 

for the recruitment of circulating monocytes to the site of the tumor or inflamed tissue 

(Deshmane et al., 2009; Partridge and Siddiqui, 2017). Chitinase-like proteins also belong to 

the macrophage-secreted factors that have chemotactic activity towards different cell types. 

(Kawada et al., 2012; Owhashi et al., 2000). YM1 was described as a chemotactic factor 

towards eosinophils, T lymphocytes and polymorph nuclear leukocytes (Owhashi et al., 2000). 

YKL-40 has a chemotactic activity towards macrophages in colorectal cancer; also, it was 

reported that YKL-40 is highly up-regulated in the atherosclerotic plaque which is 

characterized by the infiltration of monocytes (Boot et al., 1999). 

Therefore, it was hypothesized that YKL-39 could also have chemotactic activity. Effect of 

YKL-39 on the induction of migration of freshly isolated human CD14+ monocytes was 

analyzed in the trans-well system and compared to the effects of CCL2. The concentration of 

YKL-39 (100 ng/ml) was used according to biologically active concentrations of YKL-40 

90.3±8.2 ng/ml in patients with hip OA (Conrozier et al., 2000). It was found that YKL-39 

significantly promotes migration of monocytes after 1 and 3 h. After 1 h, the effect of 

YKL-39 had approximately 10 % of CCL2 in mediating monocytes recruitment. After 3 h, 

the effect of YKL-39 was even more pronounced and constituted 65% of the chemotactic 

activity of CCL2, which indicated the biological significance of YKL-39 mediated 

recruitment of monocytes. 
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Monocytes recruited to the tumor site by YKL-39 or other chemoattractants differentiate into 

tumor-associated macrophages under the influence of the local microenvironment, where 

TGF-beta can induce secretion of YKL-39 in macrophages. The next question was raised 

whether in addition to the recruitment of monocytes; YKL-39 can have a direct effect on the 

transcriptional program of newly infiltrated monocytes. Therefore, the effects of YKL-39 on 

the gene expression profile in monocytes were analyzed in this study. 

4.3.2 Gene expression profile of monocytes stimulated with YKL-39 

To model the effects of YKL-39 on the programming of monocytes recruited from the 

circulation, freshly isolated human CD14+ monocytes were stimulated for 6 and 24 h with 

YKL-39, gene expression was analyzed by Affymetrix microarray (24 h) and validated by 

RT-qPCR (6 h and 24 h). It was found that 8 genes were up-regulated by YKL-39. However, 

only modest differences in the gene expression (from 1.24 up to 2.56 fold at 24 h time point) 

were identified. For 6 genes, the differences confirmed by RT-qPCR had statistical 

significance, and these genes are discussed below. 

TNFAIP6 (also known as TSG-6) is a secreted protein with a hyaluronan-binding domain 

which is involved in extracellular matrix stability and cell migration (Lee et al., 1993). 

TNFAIP6 is known to interact with a variety of matrix associated molecules, such as versican, 

aggrecan, and fibronectin (Kuznetsova et al., 2008). Even though it was demonstrated in 

migration assay that YKL-39 showed a chemotactic effect after a short time, the up-regulation 

of TNFAIP6 could still improve the adhesion abilities of monocytes to other cell types, and 

indirectly promote the migratory ability of monocytes. 

HSD11B1, known as enzyme 11β-hydroxysteroid dehydrogenase type 1, plays an essential 

role in acute and chronic inflammation (Chapman et al., 2013). There is no HSD11B1 

expression in human monocytes, but it is induced during the differentiation process of 

monocytes toward resting or naive macrophages (Thieringer et al., 2001). The polarization of 

naive macrophages to M1 phenotype will further induce the expression of HSD11B1, whereas 

polarization to M2 phenotype has no effect (Chapman et al., 2013). The reason behind this is 

still unknown, but might be associated with the different energy metabolism between M1 and 

M2 macrophages (Rodríguez-Prados et al., 2010). It was demonstrated in this study that the 

expression of HSD11B1 is up-regulated in monocytes in response to YKL-39, that can be 

produced by IL-4+TGF-beta stimulate macrophages, and can be considered as an M2 marker. 

It can be hypothesized that YKL-39 stimulates very early step of monocytes to naive 

macrophage differentiation, and expression analysis of HSD11B1 in subtypes of 
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tumor-associated macrophages has to be performed in future. Additionally, recent studies 

revealed that glucose metabolism can directly alter the macrophages polarization (Haschemi 

et al., 2012). The influences of HSD11B1 expression on macrophage glucose metabolism was 

reported in several studies. Through the coupling of HSD11B1 oxo-reductase activity to 

hexose 6-phosphate activity in the endoplasmic reticulum, HSD11B1 may directly affect 

polarization or the extent of activation of macrophages (Haschemi et al., 2012). The dynamic 

regulation of HSD11B1 in macrophages can be essential to regulate the ongoing 

inflammatory response, through indirect diversion of glucose-6-phosphate. 

CRM1 (chromosomal maintenance 1) is known for the ability to promote HMGB1 expression 

(Tang et al., 2007). Immune cells such as monocytes, macrophages, and dendritic cells secrete 

HMGB1, which acts as a cytokine mediator of inflammation (Bonaldi et al., 2003; Xu et al., 

2016). Therefore, the induction effect of YKL-39 on CRM1 expression in monocytes can also 

contribute to the up-regulation of HMGB1, which may affect the inflammatory process in the 

tumor microenvironment. 

YKL-39 slightly up-regulates other genes expression such as SGPP2, CD274, and CD82, 

which are associated with various biological processes. SGPP2 (Sphingosine-1-Phosphate 

Phosphatase 2) is induced during inflammatory responses and contributes to the metabolism 

of sphingolipids (Kunkel et al., 2013; Mechtcheriakova et al., 2007). CD274 is also known as 

programmed death-ligand 1 (PD-L1), interacting with its receptor to inhibit T-cells activation 

and cytokine production, which contributes to immune escape of tumor cells through the 

cytotoxic T-cell inactivation in tumor microenvironment (Huang et al., 2017; Topalian et al., 

2015). CD82 is used as a differentiation marker of monocytes into macrophages (Lebel-Binay 

et al., 1995; Yang et al., 2016). The regulatory effects of YKL-39 on these genes suggest its 

role in sphingolipids metabolism, T-cell activation, and macrophages differentiation. 

4.3.3 Effect of YKL-39 on angiogenesis 

Tumor angiogenesis is a crucial process for supplying rapidly growing tumors with essential 

nutrients and oxygen (Riabov et al., 2014). Monocytes recruited to the tumor site and 

programmed by tumor cells are known as TAMs, which is the primary source of 

pro-angiogenic factors (Nishida et al., 2006; Riabov et al., 2014). TAMs produce a variety of 

pro-angiogenic factors under the hypoxic condition in tumor site, for example, VEGF, which 

promotes migration of endothelial cells and macrophages towards tumor areas (Casazza et al., 

2014; Corliss et al., 2016; Wang et al., 2011). 
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Chitinase-like protein YKL-40 has already been shown to be involved in tumor angiogenesis 

in several studies. It was reported that gp38k (porcine homolog protein of YKL-40) promotes 

the migration and spreading of vascular smooth muscle cells in vitro (Nishikawa and Millis, 

2003). The expression of YKL-40 in MDA-MB-231 breast cancer cells and HCT-116 colon 

cancer cells is also associated with tumor formation in an extensive angiogenic phenotype 

mice model (Shao et al., 2009). Recombinant YKL-40 protein was also found to induce 

angiogenesis of vascular endothelial cell in vitro (Shao, 2014). A correlation of blood vessel 

density and YKL-40 expression has also been observed in human breast cancer patients (Shao 

et al., 2011). Therefore, it was considered that YKL-40 acts as a pro-angiogenic factor in 

cancer. 

YKL-39 has a high structural similarity to YKL-40. To analyze whether YKL-39 exerts the 

same angiogenesis effect through direct activation of vascular endothelial cells, tube 

formation assay using HUVEC cells was performed. It was confirmed that 100 ng/ml and 1 

µg/ml of recombinant YKL-39 protein significantly induced tube formation in HUVEC cells 

in vitro. This data supports the hypothesis that YKL-39 can directly induce angiogenesis, and 

that YKL-39 expressing TAMs can serve as a source of angiogenic factors in the tumor 

microenvironment. 

4.3.4 Effect of YKL-39 on tumor cells 

The role of YKL-40 in tumor cell proliferation was described in several studies. Induced 

colony formation was observed in YKL-40 overexpressed U373-MG cells in vitro, while the 

deletion of YKL-40 in U87-MG cells inhibited the colony forming ability (Ku et al., 2011). 

However, another chitinase-like protein SI-CLP had not effect on the proliferation of murine 

breast adenocarcinoma cells TS/A (Wang, 2012). In our laboratory, the expression of YKL-39 

was found in TAMs in the primary tumor of breast cancer patients (unpublished data), which 

suggest that YKL-39 may also affect the biological function of tumor cells. The results of this 

study have shown that YKL-39 has no effect on the proliferation and apoptosis in MCF-7 

cells. 

In summary, the biological activities of YKL-39 have been identified in this study: 

chemotactic activity towards monocytes and pro-angiogenic effect. Considering that YKL-39 

is induced by TGF-beta, a multifunctional regulator of the tumor microenvironment, we can 

hypothesize that YKL-39 can be expressed by tumor-associated macrophages and can 

contribute to the programming of tumor microenvironment and tumor progression. Since 

YKL-39 is absent in rodents and present only in humans, analysis of the correlation of 
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YKL-39 levels with clinical parameters of tumor progression is a promising approach to 

identify the role of YKL-39 in cancer. 
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5. Summary 

YKL-39 contains a Glyco_18 domain and belongs to the family of mammalian chitinase-like 

proteins. Macrophages are the primary source of several chitinase-like proteins in cancer and 

chronic inflammatory conditions. Chitinase-like proteins YKL-40 and YM1/2 combine 

properties of growth factors and chemotactic factors for immune cells. Moreover, YKL-40 

was demonstrated to be a potent pro-angiogenic factor in tumors. However, the role of 

YKL-39 in immune cell recruitment and angiogenesis has not been studied to date. The aims 

of the thesis project included the analysis of the regulation of YKL-39 production in primary 

human macrophages, investigation of the intracellular sorting mechanism of YKL-39, and the 

identification of YKL-39 biological effects related to the tumor progression. Using RT-qPCR 

and immunofluorescence/confocal microscopy it was shown that YKL-39 gene expression 

and protein production are strongly up-regulated by multifunctional cytokine TGF-beta in 

combination with IL-4, but not by IL-4 alone. Confocal microscopy analysis demonstrated 

that endogenous YKL-39 is sorted into the lysosomal secretory pathway in primary human 

macrophages. Using in vitro pull-down assays and HEK293-cell based model system, it was 

shown that stabilin-1 directly interacts with YKL-39 via fasciclin domain 7 and mediates its 

intracellular sorting. Furthermore, YKL-39 was demonstrated to be secreted by human 

macrophages under IL-4+TGF-beta stimulation in long-term culture condition. YKL-39 

affected neither proliferation nor apoptosis of tumor cells. However, analysis of the biological 

activity of YKL-39 revealed that it has a strong inducing effect on the recruitment of primary 

human monocytes and on the tube formation by HUVEC cells in vitro. Affymetrix microarray 

analysis, validated by RT-qPCR, demonstrated that YKL-39 has only minor effect on the 

transcriptional program in primary human monocytes by slight induction of genes related to 

the regulation of migration and inflammation, suggesting that chemotactic effect of YKL-39 

on monocytes is not mediated by their transcriptional activation. In summary, it was 

demonstrated that master cytokine of tumor microenvironment TGF-beta is a key factor 

inducing YKL-39 production in macrophages. The biological activity of YKL-39 is related to 

the two essential processes in tumor microenvironment: monocytes recruitment and 

angiogenesis. In perspective, analysis of the expression of YKL-39 in tumor-associated 

macrophages and analysis of the correlation of YKL-39 with tumor growth and metastasis has 

to be performed to consider YKL-39 as a potential target for therapy. 
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