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Electric-field noise near surfaces is a common problem in diverse areas of physics and a limiting
factor for many precision measurements. There are multiple mechanisms by which such noise is
generated, many of which are poorly understood. Laser-cooled, trapped ions provide one of the
most sensitive systems to probe electric-field noise at MHz frequencies and over a distance range
30−3000 μm from a surface. Over recent years numerous experiments have reported spectral
densities of electric-field noise inferred from ion heating-rate measurements and several different
theoretical explanations for the observed noise characteristics have been proposed. This paper
provides an extensive summary and critical review of electric-field noise measurements in ion traps
and compares these experimental findings with known and conjectured mechanisms for the origin of
this noise. This reveals that the presence of multiple noise sources, as well as the different scalings
added by geometrical considerations, complicates the interpretation of these results. It is thus the
purpose of this review to assess which conclusions can be reasonably drawn from the existing data,
and which important questions are still open. In so doing it provides a framework for future
investigations of surface-noise processes.
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I. INTRODUCTION

Electric-field noise above surfaces provides a significant
challenge to many disparate areas of physics. Drift-tube
experiments attempting to measure the effects of gravity on
charged particles are affected by stray fields from metallic
shielding which can be several centimeters away (Darling
et al., 1992). The presence of static patch potentials also
limits the measurement of Casimir forces at distances around
0.1 − 1 μm (Speake and Trenkel, 2003; Sushkov et al., 2011;

Garcia-Sanchez et al., 2012). In space-based gravitational-
wave experiments, variations in the electrostatic surface
potential are expected to be one of the largest contributors
of noise at frequencies around 1 mHz, over distances of 1 mm
(Pollack, Schlamminger, and Gundlach, 2008). Motion of
nanocantilevers around 1 kHz is damped by field noise in the
form of noncontact friction, acting over 10 nm (Stipe et al.,
2001). Operating at around 1 MHz and at distances around
10 − 1000 μm from metallic electrodes, cold trapped ions are
heated by electric-field noise.
Moving from the ubiquity of electric-field noise in general

to the specific mechanism giving rise to it in each instance,
however, is complicated for two reasons. First, seemingly
disparate effects in different systems may have a common
root. For example, considering the scaling with the distance d
to the electrodes, finite spatial correlation of noise can mean
that the same underlying physical mechanism may present
itself with a scaling between d0 and d−6 at different distances
(Dubessy, Coudreau, and Guidoni, 2009; Low, Herskind, and
Chuang, 2011). Second, within a single system multiple
effects may be significant and the measurement of electric-
field noise over a small distance range or frequency range is
often not sufficient to distinguish different sources of noise.
Given such a complex and interrelated picture, knowing what
the cause of noise is, or is not, in one particular system can
inform how that system, and the relevant noise sources, relate
to other areas.
Cold, trapped atomic ions can act as immensely sensitive

probes of electric-field noise at frequencies around 1 MHz and
for distances of a few tens to a few hundreds of μm from a
surface. Ions, which are initially laser cooled to close to the
quantum ground state of their motion, are heated by fluctuat-
ing electric fields. The spectral density of electric-field noise at
the ions’ motional frequencies can be inferred by measuring
the heating rate. Such heating represents a severe limitation for
many trapped-ion applications, where the ion should stay near
the quantum ground state. For example, trapped-ion quantum
computers require ions to be near the motional ground state;
even “thermal” gate operations require motional quantum
numbers of n̄≲ 20 (Kirchmair et al., 2009). In practical terms,
with typical gate speeds, this necessitates ion-heating rates of
_̄n≲ 100 s−1. As another example, the effects of ion heating in
optical clocks can contribute fractional uncertainties at the
10−17 level due to second-order Doppler shifts (Rosenband
et al., 2008). While ions in such experiments can be
sympathetically cooled, the effects of external heating sig-
nificantly complicate the process (Wübbena et al., 2012).
Consequently, in addition to investigating the effects of
electric-field noise for their own sake, there is significant
interest within the trapped-ion community in understanding
the sources of electric-field noise so that they can be mitigated.
The first systematic studies of trapped-ion heating found

that the observed heating rates (and by implication the levels
of electric-field noise) were very much greater than would be
expected from a simple consideration of blackbody radiation
or Johnson noise (Turchette et al., 2000). Dubbed “anomalous
heating” (Monroe et al., 1995) there has subsequently been an
increasing interest in identifying and eliminating the noise
source underlying this effect. Questions have also been raised
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as to whether and how this heating could be related to the
effects seen in other systems, such as noncontact friction in
nanocantilever systems (Stipe et al., 2001; Volokitin and
Persson, 2007), the ubiquitous 1=f noise encountered in many
solid-state devices (Dutta and Horn, 1981; Paladino et al.,
2014), or diffusion-induced noise observed in emission
currents (Timm and Van der Ziel, 1966). Moreover, it has
been suggested that understanding the heating observed in
ions could shed light on crystalline structure (Dubessy,
Coudreau, and Guidoni, 2009; Low, Herskind, and Chuang,
2011), fluctuating patch potentials (Daniilidis et al., 2011), or
surface adsorbates (Safavi-Naini et al., 2011).
To this end, much has been done to investigate the heating

observed in ion traps. In most studies it is assumed that the
spectral density of electric-field noise SE, experienced by
the trapped ion, varies—at least within a certain parameter
range—as a power law with respect to the frequency ω, the
distance of the ion from the surface d, and the trap temperature
T, such that

SE ∝ ω−αd−βTþγ: ð1Þ

Such power-law behavior is also predicted, within certain
parameter ranges, by many theoretical models. Models for
different noise mechanisms give particular predictions for
the frequency-scaling exponent α, the distance-scaling expo-
nent β, and the temperature-scaling exponent γ. Experimental
measurements of these exponents can therefore provide
information about likely noise sources.
It should be stressed at the outset that this review article

does not set out to claim that the issues surrounding heating of
trapped ions have all been resolved. Despite an increasing
amount of experimental data, ongoing theoretical work, and
strengthened engagement with insight from disciplines
beyond ion trapping, the dominant sources of noise and the
physical mechanisms responsible for them are still not fully
understood. A review of the topic should not be taken to
indicate that the subject is closed, quite the opposite.
Investigation of electric-field noise with trapped ions is a
vibrant and active research area, with numerous new avenues
of investigation opening up. The aim of this article is therefore
to take stock of the extensive literature which exists already,
setting out what is known, what is conjectured, and what is
unknown. Rather than being the conclusion of the matter, this
review should therefore be seen as the starting point for future
investigations.
This article is structured as follows. Section II briefly

summarizes the basics of ion trapping. It describes how
trapped ions are affected by electric-field noise, and how
they can thus be used to measure such noise. Section III gives
an overview of the experiments carried out to characterize
electric-field noise in ion traps, particularly noting what can be
deduced regarding the values of the scaling exponents α, β,
and γ. In this section the experimental results are presented
without reference to possible heating mechanisms which may
underlie the observations. Sections IV and V review a variety
of fundamental, technical, and surface-related sources of
noise which can contribute to motional heating in ion traps.
For each case the expected scaling laws and the magnitude of
electric-field noise expected for typical ion-trapping

conditions are highlighted. By considering what has been
observed experimentally in the light of theoretical consider-
ations, Sec. VI then outlines a number of specific experiments
in which particular heating mechanisms can be inferred. This
demonstrates that there are multiple effects to be considered
which can contribute noise at similar levels. Section VII then
highlights some experiments in which the noise is well
characterized but for which the noise source cannot yet be
unambiguously identified. Finally, Sec. VIII considers the
implications of noise for ion traps and proposes ways in which
the field might move forward.

II. FIELD NOISE AND ION HEATING

The development of ion traps more than 50 years ago
opened up unique possibilities for experimenting with indi-
vidual atomic and molecular ions (Paul, Osberghaus, and
Fischer, 1958; Fischer, 1959; Dehmelt, 1990; Paul, 1990).
Today it is a routine procedure to trap single or multiple ions
and laser cool one or more of their motional modes to the
quantum ground state. Quantum manipulations and detection
schemes for internal (electronic) and external (motional)
degrees of freedom can be implemented with high precision
(Blatt and Wineland, 2008; Blatt and Roos, 2012). In the
context of quantum information processing the goal of
building scalable ion-trap architectures has recently led to a
rapid progress in the design of microtraps, where planar
electrodes are fabricated on a chip to allow smaller and more
complex structures (Chiaverini et al., 2005; Wesenberg, 2008;
Amini et al., 2010). As traps get smaller the ions are located
closer to the surfaces and become more susceptible to small
voltage fluctuations on the electrodes. This leads to an
increase in the rate at which ions are heated. While this is
a hindrance for many experiments, it also makes trapped ions
an exquisite probe to study such noise processes.
This section provides a brief summary of the general

principles of ion traps which are relevant for describing
noise-induced heating processes in these systems. The dis-
cussion focuses on the operation of Paul traps, rather than
Penning traps. While temperature measurements have been
carried out in Penning traps (Djekic et al., 2004), as well as
heating-rate measurements for large crystals (Jensen,
Hasegawa, and Bollinger, 2004) and recently for single ions
(Goodwin et al., 2014), it remains the case that the majority of
noise investigations have been carried out in Paul traps. Much
of this review remains relevant to Penning traps, although
certain aspects of heating in Penning traps will be distinct
from that in Paul traps. These differences may be fundamental
(arising, for example, from the different trapping methods) or
more technical in nature (for example, because the ion-
electrode separation in Penning traps is often larger than is
typical for Paul traps). For more details about the design
and operation of Paul and Penning traps see work of Werth,
Gheorghe, and Major (2009).

A. Introduction to ion traps

In most experiments used for the measurement of electric-
field-noise-induced heating rates, individual atomic ions are
confined using a Paul trap (Paul, Osberghaus, and Fischer,
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1958; Paul, 1990). The basic principle of such traps is to use a
combination of static and radio-frequency (rf) quadrupole
potentials which, on time average, lead to the confinement of
charged particles in all three spatial directions.
Ideally, the field null of the static and rf potentials should

coincide. In this case, and restricting consideration to the
motion along the x axis and near the center of the trap, where
the applied potentials are to a good approximation harmonic,
the dynamics of a singly charged ion of mass mI are described
by the equation of motion

ẍðtÞ þ jej
mI

½Φ00
dc þ Φ00

rf cosðΩrftÞ�xðtÞ ¼ 0: ð2Þ

Here Φ00
dc and Φ00

rf denote the second-order derivatives of the
static electric potential and the rf potential oscillating at Ωrf ,
respectively. By introducing the dimensionless parameters
ax ¼ 4jejΦ00

dc=mIΩ2
rf and qx ¼ 2jejΦ00

rf=mIΩ2
rf , and a rescaled

time ~t ¼ tΩrf=2, Eq. (2) maps onto the well-known Mathieu
equation (Leibfried et al., 2003). In the limit of interest,
ax; qx ≪ 1, this exhibits bound solutions of the form

xðtÞ ¼ X0 cosðωttþ φ0Þ
h
1þ qx

2
cosðΩrf tÞ þ � � �

i
; ð3Þ

where φ0 is a phase set by the initial conditions. The
ion undergoes large-amplitude oscillations at a frequency
ωt which, for ax; qx ≪ 1, is given by ωt ≈ ðΩrf=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ q2x=2

p
. This is variously (and equivalently) termed

the motional, secular, or trap frequency. Superimposed on
this is a smaller motion (called “micromotion”) which has
an amplitude qx=2 of the secular motion and oscillates at the
trap-drive frequency Ωrf. Considering some typical numbers,
for an rf voltage, VðtÞ ¼ Vrf cosðΩrftÞ, applied to a trap with
an ion-electrode spacing of d ¼ 500 μm, values of Vrf ∼
500 V and Ωrf ∼ 2π × 20 MHz result in trap frequencies
around ωt ≈ 2π × 2 MHz.
Corrections due to micromotion become important for

large-amplitude secular oscillations, for external perturbations
at frequencies close to the trap-drive frequency Ωrf (Blakestad
et al., 2009, 2011), for static offset fields that displace the ion
from the rf null (Blümel et al., 1988, 1989), and for phase
differences between the rf driving fields on different electro-
des (Berkeland et al., 1998; Herskind et al., 2009). For some
experiments such regimes are unavoidable. For example, in
experiments with large three-dimensional ion crystals
(Herskind et al., 2009) or clouds of ions (Hornekær and
Drewsen, 2002), some ions are necessarily situated away from
the rf null. Nonetheless, by careful minimization of micro-
motion (Berkeland et al., 1998) many experiments can be
operated in a regime where micromotion can be neglected.
Under such circumstances, a single trapped ion can be treated,
to a good approximation, as a simple harmonic oscillator.
Consideration of only the effective harmonic potential is
termed the pseudopotential approximation.
In analogy to the classical case, a full quantum

description of a trapped ion can be obtained under the
assumption that near the trap center the potential is purely
quadratic. The problem can then be separated into the motion
along each of the three principal axes of the trap. The

dynamics of the ion along a single direction are described
by the Hamiltonian

ĤtðtÞ ¼
p̂2

2mI
þ jej

2
½Φ00

dc þ Φ00
rf cosðΩrftÞ�x̂2; ð4Þ

where x̂ and p̂ are the quantized position and momentum
operators. It follows that the equation of motion for the
position operator x̂ðtÞ in the Heisenberg picture is equivalent
to its classical counterpart given in Eq. (2). The resulting
expression for x̂ðtÞ and p̂ðtÞ can be written as

x̂ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mIωt

s
½â†uðtÞ þ âu�ðtÞ�; ð5Þ

p̂ðtÞ ¼
ffiffiffiffiffiffiffiffi
ℏmI

2ωt

s
½â† _uðtÞ þ â _u�ðtÞ�; ð6Þ

where the dimensionless function uðtÞ is a solution of Eq. (2)
satisfying uð0Þ ¼ 1 and _uð0Þ ¼ iωt. The operator â ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mI=ð2ℏωtÞ

p ½uðtÞ _̂xðtÞ − _uðtÞx̂ðtÞ� is constant in time
(Leibfried et al., 2003) and for t ¼ 0 it can be identified
with the usual harmonic-oscillator annihilation operator
â ¼ ½mIωtx̂ð0Þ þ ip̂ð0Þ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ℏmIωt
p

. The annihilation operator
â and its adjoint creation operator â† satisfy ½â; â†� ¼ 1 and,
as in the case of a standard harmonic oscillator, a complete
set of phonon number states can be constructed by
jni ¼ ðâ†Þn= ffiffiffi

n
p j0i, where j0i is the vibrational ground state

of the ion defined by âj0i ¼ 0. The general expression for uðtÞ
is given by an infinite series

uðtÞ ¼ eibΩrf t=2
X∞
j¼−∞

C2jeijΩrf t; ð7Þ

but under stable conditions and qx ≪ 1 only a few terms are

relevant. In this limit, the Floquet exponent b≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax þ q2x=2

p
,

and C�2 ≃ qx=4. Equations (5) and (6) therefore resemble the
dynamics of a quantum harmonic oscillator of frequency ωt,
with the main corrections arising from additional sidebands at
frequenciesΩrf � ωt. It should be emphasized that the number
states jni defined at a specific time t ¼ 0 are in general not
eigenstates of ĤtðtÞ and their corresponding wave functions
and energies are periodically modulated in time. This does not
by itself, however, constitute a source of heating since—
assuming a stable rf source, and in the absence of other
perturbations at the micromotion-sideband frequency—the
system returns to its original state after each period
t ¼ 2π=Ωrf .
While the analysis here has been one dimensional, the

single-ion case is readily generalized to three dimensions,
where the motional modes are orthogonal (Leibfried et al.,
2003). The motion of multiple ions in harmonic traps is more
complicated (Steane, 1997; James, 1998). With each addi-
tional ion, there are three additional modes of oscillation. The
center of mass (c.m.) motion is the lowest-frequency mode
axially and the highest-frequency mode radially. In strings of
multiple trapped ions the vibrational modes are in general not
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strictly harmonic and are weakly coupled to each other via
higher-order terms in the expansion of the Coulomb potential.
Still, for sufficiently cold strings of ions a description in terms
of orthogonal harmonic modes holds to a good approximation.
In practice, usually a single mode is selected for a particular
operation and all other “spectator” modes are neglected. The
effects of multiple ion species and anharmonic potentials add
still more complexity and have been treated by Morigi and
Walther (2001) and Home (2013).

B. Typical trap geometries

Having outlined the essential features of the potential used
for trapping ions, we turn to a few common trap geometries
used to create such a potential. A quadrupole field in two
dimensions can be created by a set of hyperbolic electrodes,
as depicted in Fig. 1(a). An oscillating quadrupole field can
be created by applying an rf voltage ðVrf=2Þ cosðΩrftÞ to one
pair of electrodes and an rf voltage of opposite sign
−ðVrf=2Þ cosðΩrftÞ to the other pair. To create a three-
dimensional trap one may create either a rotationally
symmetric geometry to form a ring trap [Fig. 1(b)] or a
translationally symmetric geometry to form the basis of a
linear trap [Fig. 1(c)]. In the latter case the axial confinement
of the ion is provided by additional direct current (dc)
electrodes at either end of the trap, held at a positive potential
[as shown in Fig. 1(f)].
Rather than applying rf voltages of opposite phases, it is

often technically simpler to apply an rf voltage of amplitude
Vrf to one set of electrodes and have the other set grounded. In
a linear trap where the axial electrodes are long compared to

their radial separation, and in a ring trap where all other
grounds are well shielded, this adds only a space-independent
oscillating potential, which is of no consequence to the
confining pseudopotential. If, however, the axial electrodes
of a linear trap are sufficiently short that the end caps cannot
be neglected, this adds an axial component to the pseudopo-
tential and lifts the degeneracy of the radial secular motions.
Perfectly hyperbolic electrodes are difficult to machine and

leave relatively little optical access. Fortunately, close to the rf
null, the potential remains essentially harmonic even if the
electrodes are deformed significantly from the ideal hyper-
bolic geometry. In this situation the basic physics of trapping
remains unchanged, except that the voltage required to
produce a given electric field at the trap center is increased
by a geometry-dependent factor of typically around 1–3
(Madsen et al., 2004).
It is common to form the electrodes of a ring trap from a

simple wire loop with a pair of wires for the end caps (Raab
et al., 2000) [Fig. 1(d)]. The design can be deformed further so
that the ring electrode is essentially bisected andmoved to form
a collar around each of the end caps (Schrama et al., 1993)
[Fig. 1(e)]. Similarly, the electrodes of a linear trap are often
made of simple rods (Nägerl et al., 1998) [Fig. 1(f)] or blades
(Schmidt-Kaler et al., 2003). Such ring traps and linear traps
are typical designs for ion traps with electrode spacings of
∼1 mm. The goal of building scalable quantum-information-
processing architectures with trapped ions has triggered sub-
stantial efforts in the development of chip-based traps. The trap
electrodes can be placed in a single plane (Chiaverini
et al., 2005; Seidelin et al., 2006) [Fig. 1(g)]. This creates
a pseudopotential minimum above the surface. Such

(a) (b) (c)

(e) (f) (g)

(d)

(h)

FIG. 1 (color online). Various possible trap geometries. (a) The most basic geometry, of which all others are a variation, comprises
perfectly hyperbolic electrodes, capable of creating a perfectly quadrupolar field. (b) In generating a three-dimensional structure, a
rotationally symmetric geometry can create a pseudopotential which is confining in three dimensions. This is the basic design of a ring
trap. (c) Alternatively, a translationally symmetric geometry can create a pseudopotential which is confining in two dimensions. This is
the basis of the design for a linear trap, where confinement in the third dimension is provided by the addition of electrodes held at a
positive dc voltage. These basic designs can be deformed to depart significantly from the idealized hyperbolae, where (d), (e) are
topologically ring traps and (f), (g) are topologically linear traps. (h) The axial electrodes of linear traps can also be segmented to form
multiple trapping positions in a single device. See main text for further discussion.

M. Brownnutt et al.: Ion-trap measurements of electric-field noise … 1423

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



microfabricated planar traps prove useful for creating smaller
and more complex structures (Amini et al., 2010; Wright et al.,
2013), and the ions are typically held at distances of ∼100 μm
from the nearest electrode.
The electrodes of a linear trap (either a three-dimensional or

a planar trap) can also be segmented (Rowe et al., 2002) as
shown in Fig. 1(h). This allows a single trap structure to have
multiple potential minima. By application of appropriate
(quasi)static voltages ions can be moved between different
trapping sites. This allows much greater flexibility to control
the ions, although brings with it more degrees of freedom
which must be controlled when considering heating.
Finally, consideration must be given to electrode structures

not directly required for trapping. In order to have the lowest
possible micromotion the ions should be positioned on the rf
null. With a ring trap in which all electrodes are held at dc
ground this would occur automatically. Fields from stray
charges may, however, displace the ion from the rf null and
thereby cause excess micromotion (Berkeland et al., 1998). In
a linear-trap configuration the issue is compounded by the
necessity of applying nonzero dc voltages: any residual field at
the rf null—due to applying incorrect dc voltages—or
imperfections in fabrication, can displace the ions and cause
excess micromotion. This can be minimized by use of addi-
tional compensation electrodes which, for most practical
purposes, can be subsequently ignored in analyzing trap
behavior. They should not, however, be neglected in the noise
analysis of the system.

C. Electric-field-noise-induced heating of ions

Apart from the large electric fields which confine the ion,
residual fluctuating electric fields from the environment
couple to the motion of the ion and induce transitions between
vibrational states. Even when cooled close to the quantum
ground state, the corresponding electric transition dipole
moment is dI≈ea0, where a0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mIωtÞ

p
≈10−50 nm

is the extent of the ground-state wave function. This dipole
moment makes trapped ions susceptible to very small electric-
field fluctuations. Adopting a one-dimensional description
of the ion motion along a specific trap axis et, the total
Hamiltonian for the ion in the presence of an additional
fluctuating potential Φðt; xÞ is

ĤðtÞ ¼ ĤtðtÞ þ jejΦðt; rI þ etx̂Þ
¼ ĤtðtÞ þ jejΦðt; rIÞ − jejEtx̂þ � � � ; ð8Þ

where Et ¼ −et · ∇Φðt; rIÞ is the electric-field component at
the position of the ion rI and along the direction et. The global
potential offset Φðt; rIÞ does not affect the motion of the ion.
Higher-order terms in the expansion of Φ scale with
additional powers of a0=d ≪ 1 and can be neglected. By
changing into the interaction picture with respect to the bare
trapping Hamiltonian ĤtðtÞ and using the representation of the
position operator given in Eq. (5), the resulting ion-field
coupling is

Ĥion-fieldðtÞ ¼ −dI½uðtÞâ† þ u�ðtÞâ�δEtðtÞ: ð9Þ

In general the fluctuating part of the electric field
δEtðtÞ ¼ EtðtÞ − hEti. It is assumed in Eq. (9) that the average
stray field has been compensated, so that hEti ¼ 0.

1. Heating rate

The quantity generally measured when considering noise in
ion traps is the heating rate _̄n, where n̄ ¼ hâ†âi is the average
phonon number. We begin here by considering the special
case Γh, which is defined as the rate at which an ion in the
motional ground state j0i is excited into the first vibrational
state j1i. Using Eq. (9) and Fermi’s golden rule this rate is
given by (Wineland, Monroe, Itano, King et al., 1998)

Γh ¼
e2

4mIℏωt

X∞
j¼−∞

jC2jj2SE½ðb=2þ jÞΩrf �; ð10Þ

where

SEðωÞ ¼ 2

Z
∞

−∞
dτhδEtðτÞδEtð0Þie−iωτ ð11Þ

is the single-sided spectral density of the electric-field noise.1

The derivation of this result is detailed in Appendix A.
The heating rate in Eq. (10) contains contributions from

all orders of the micromotion sidebands. However, the
coefficients jC2jj ∼ qjx ∼ ðωt=ΩrfÞj are usually small. In addi-
tion, most (although not all) known noise processes predict a
spectrum which decreases at larger frequencies. In the limiting
case where micromotion can be neglected, and noting that
bΩrf=2≃ ωt, the ion’s heating rate then reduces to

Γh ≃ e2

4mIℏωt
SEðωtÞ: ð12Þ

This result is most commonly cited in the literature and, unless
otherwise stated, Eq. (12) is used to relate the measured
heating rate and the electric-field noise throughout this review.
If a static offset field Estat displaces the trap minimum from

the rf null by an amount Δx ¼ jejEstat=mIω
2
t , the assumption

of negligible micromotion required for the validity of
Eq. (12) may no longer hold. The ions displaced position
is Δxþ xemmðtÞ þ x̂ðtÞ, where xemmðtÞ≃ Δxqx=2 cosðΩrftÞ
for small qx. As a coherent and periodic modulation of the
mean ion position, excess micromotion does not represent a
source of heating per se. However, away from the rf null the
electric field from the rf trapping electrodes is nonvanishing,
and any noise component δVðtÞ of the trap-drive voltage
directly couples to the ion. For example, the voltage VðtÞ ¼
Vrf cosðΩrftÞ þ δVðtÞ applied to opposing rf electrodes pro-
duces a fluctuating electric field δEðtÞ ¼ ΔxΦ00

rfδVðtÞ=Vrf in
addition to the usual trapping potential. Since δVðtÞ passes
through the same filter electronics as the coherent driving

1Throughout we use this convention for the definition of the
spectral density of the electric-field noise, which is generally used for
reporting electric-field noise densities in ion traps. Most theoretical
works use the double-sided spectral density which includes negative
frequencies and is defined without the factor of 2.
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field, its noise spectrum SVðωÞ has a dominant contribution at
ω ≈Ωrf . This noise can directly affect the ion via the higher-
order C�2 ≃ qx=4 terms in Eq. (10). In addition, the nonzero
gradient of δEðtÞ induces a mixing between xemmðtÞ and x̂ðtÞ,
which demodulates the rf noise components. As detailed in
Appendix B, for a quadrupole field both mechanisms con-
tribute equally and in phase to the effective fluctuating force
seen by the ion and give rise to two additional heating-rate
contributions (Blakestad et al., 2009):

Γrf;�
h ≃ 4

e2

4mIℏωt

�
qx
4

�
2 ðΦ00

rfÞ2SVðΩrf � ωtÞðΔxÞ2
V2
rf

: ð13Þ

For a quadrupole field, Φ00
rf can be expressed in terms of the

characteristic quadrupole distance Dq:

Φ00
rf ¼

Vrf

D2
q
: ð14Þ

2. Master equation

While the initial heating rate Γh is most commonly used to
measure electric-field noise, a more general description of the
ion motion in the presence of fluctuating electric fields is
given in terms of the full master equation for the reduced ion
density operator ρI. The master equation can be derived under
the same conditions as has been assumed for the derivation of
the heating rate (see also Appendix A) and can be written in
the form (Henkel, Pötting, and Wilkens, 1999)

_ρI ¼ − iðωt þ δÞ½â†â; ρI�

þ Γ
2
ðN̄ þ 1Þð2âρIâ† − â†âρI − ρIâ†âÞ

þ Γ
2
N̄ð2â†ρIâ − ââ†ρI − ρIââ†Þ: ð15Þ

This equation describes the evolution of a damped harmonic
oscillator coupled to an effective bath with mean occupation
number N̄. The frequency shift δ and the damping rate Γ, are
given by

δ ¼ e2

2mIℏωt
Im

Z
∞

0

dτh½δÊtðτÞ; δÊtð0Þ�ieiωtτ; ð16Þ

Γ ¼ e2

mIℏωt
Re

Z
∞

0

dτh½δÊtðτÞ; δÊtð0Þ�ieiωtτ: ð17Þ

The total rate,

ΓN̄ ¼ e2

2mIℏωt

Z
∞

−∞
dτhδÊtðτÞδÊtð0Þie−iωtτ; ð18Þ

can be identified with the heating rate Γh. However, in contrast
to the result presented in Eq. (12), the ion-field interaction
used for the derivation of Eqs. (16)–(18) has been generalized
to include quantized electric fields δÊtðtÞ, which do not
necessarily commute at different times. The resulting equation
of motion for the average vibrational occupation number
n̄ðtÞ ¼ ha†aiðtÞ is given by

_̄nðtÞ ¼ −Γn̄ðtÞ þ ΓN̄ ð19Þ

and shows that close to the ground state _̄nðtÞ ¼ ΓN̄ ¼ Γh,
while for long times n̄ðtÞ approaches N̄. For an equilibrium
noise process one obtains N̄ ≡ Nth, where Nth ¼
1=ðeℏωt=kBT − 1Þ is the thermal equilibrium occupation num-
ber for a given bath temperature T.
Typical trapping conditions of ωt ¼ 2π × 1 MHz and

T¼4−300K correspond to Nth ≈ 105 − 107. Consequently,
only the combined rate ΓN̄ ≡ Γh is usually accessible in
experiments. However, should traps be operated at millikelvin
temperatures it may be possible to measure Γ and N̄
independently.

3. Heating of multiple ions

The analysis given in Secs. II.C.1 and II.C.2 for a single
trapped ion can be generalized to multi-ion Coulomb crystals,
assuming that the ions are sufficiently cold and can be
modeled as a set of coupled harmonic modes (Morigi and
Walther, 2001; Home, 2013). In this case the coupling of NI
ions to the electric field is

Ĥion fieldðtÞ ¼ −jej
XNI

i¼1

δEðt; rI;iÞ · x̂iðtÞ; ð20Þ

where x̂i is the position operator for an ion localized around its
equilibrium position rI;i. Using a normal-mode decomposition

x̂iðtÞ ¼
X3NI−1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mIωk

s
ckðiÞðâke−iωkt þ â†ke

þiωktÞ; ð21Þ

where âk (â
†
k) is the annihilation (creation) operator for the kth

phonon mode with frequency ωk and mode function ckðiÞ,
normalized to

PNI
i¼1 ckðiÞ · ck0 ðiÞ ¼ δk;k0 . As a result the mode

expansion of the electric-field coupling in the interaction
picture is

Ĥion-fieldðtÞ ¼ −
X3NI−1

k¼0

dkðâke−iωkt þ â†ke
iωktÞδEkðtÞ; ð22Þ

where dk ¼ jej ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mIωkÞ

p
is the dipole moment of the kth

motional mode. δEkðtÞ ¼
P

iδE
i
kðtÞ is the projection of the

electric-field noise onto the kth motional mode, where
δEi

kðtÞ ¼ δEðt; rI;iÞ · ckðiÞ. In analogy to the single-mode case

one can define a heating rate ΓðkÞ
h for each mode,

ΓðkÞ
h ¼ e2

4mIℏωk
SðkÞE ðωkÞ; ð23Þ

where

SðkÞE ðωÞ ¼ 2
X
i;j

Z
∞

−∞
dτhδEi

kðτÞδEj
kð0Þie−iωτ: ð24Þ

The heating rate of the individual modes depends on the
correlation of the field noise at positions rI;i and rI;j. In the
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limit of perfectly spatially correlated noise the c.m. mode
of a linear ion string with frequency ωc.m. ¼ ωt and cc.m. ¼
et=

ffiffiffiffiffi
NI

p
the heating rate is Γðc.m.Þ

h ¼ NIΓh, while ΓðkÞ
h ≈ 0 for

all the other modes. In the opposite limit of completely

uncorrelated noise, the heating rates ΓðkÞ
h ≃ ðωt=ωkÞΓh depend

only on the mode frequency.

4. Heating rates and decoherence

In applications of trapped ions for quantum information
processing the vibrational state jni of a single vibrational
mode can be used as a quantum bus to communicate between
qubits encoded in the internal states of two ions in a one-
dimensional crystal (Cirac and Zoller, 1995; Sørensen and
Mølmer, 1999). For such applications it is not only the heating
of the ions which is important, but also the loss of coherence
of a motional superposition state. To identify the relationship
between heating and decoherence, one can study the evolution
of a motional state initially prepared in a superposition
ρIðt ¼ 0Þ ¼ ρ0 ¼ jψ0ihψ0j, where jψ0i ¼ ðjn0i þ jm0iÞ=

ffiffiffi
2

p
andm0 ≠ n0. In the presence of electric-field noise, i.e., under
the evolution of the master equation (15), the coherence of this
superposition ρcohðtÞ ¼ jhn0jρIðtÞjm0ij degrades (for short
times) as

_ρcohðtÞ≃ −
Γ
2
½ð2N̄ þ 1Þðn0 þm0Þ þ 2N̄�ρcohð0Þ: ð25Þ

That the overall scale of the motional decoherence rate is
therefore set by Γh but, as usually observed in quantum
mechanics, large superposition states (here meaning
n0; m0 ≫ 1) decohere faster.

D. Noise sensing with heating-rate measurements

The direct relation between the ion-heating rate Γh and the
spectral density of electric-field noise SE established in
Eq. (12) allows SE to be inferred by measuring the heating
rate of a laser-cooled ion. In general this is done by measuring
the phonon number of the ion at different times and calculat-
ing from this the rate of change of the phonon number _̄n. As
detailed in Sec. III, this has been used to infer values of the
electric-field noise ranging over 9 orders of magnitude, from
10−15 to 10−6 V2=m2 Hz. These were measured at frequencies
in the range 0.1 MHz≲ ωt=2π ≲ 20 MHz, and at distances
from the electrodes of 30 μm < d < 3500 μm. Measurements
have also been made with the electrodes held at temperatures
in the range 4 K≲ T ≲ 400 K. There are various techniques
for measuring heating rates which differ in experimental
complexity and their suitability for measuring in particular
heating-rate regimes.

1. Sideband spectroscopy

One set of methods for measuring the heating rate relies
on sideband-resolved cooling and manipulation techniques in
the Lamb-Dicke regime (Leibfried et al., 2003). Sideband-
resolved methods require the ion’s motional frequency to be
greater than the linewidth of the transition between two
internal atomic states, jgi and jei, being probed. Given

∼MHz trap frequencies, this is not generally possible on
dipole-allowed transitions [although cf. Jefferts et al. (1995)].
Instead, either quadrupole (Diedrich et al., 1989) or Raman
(Monroe et al., 1995) transitions are generally used.
In the Lamb-Dicke regime the atomic wave packet is

confined to a region much smaller than the wavelength of
the transition being addressed. The Lamb-Dicke parameter η
is defined equivalently as

η ¼ kxa0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏk2x

2mIωt

s
¼

ffiffiffiffiffiffiffiffi
ωrec

ωt

r
; ð26Þ

where kx is the projection of the incident light’s wave vector
into the x direction and ωrec is the recoil frequency of the ion.
In the Lamb-Dicke regime, defined as η2ð2n̄þ 1Þ ≪ 1, the
coupling between internal and vibrational states of the ion is
weak and the dominant contributions are phonon-assisted
transitions jgijni↔jeijn� 1i, which either add or subtract a
single vibrational quantum. As illustrated in Fig. 2(a) the ion
can be driven on either the red- or blue-detuned sidebands by
appropriately choosing the laser frequency. From the excited
state the ion predominantly decays on the carrier transition
(i.e., without changing the motional state). The Rabi frequen-
cies for these transitions depend explicitly on the vibrational
state jni. For the red and blue sidebands they are, respectively,
given by Ωn;n−1 ¼ η

ffiffiffi
n

p
ΩL and Ωn;nþ1 ¼ η

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ΩL, where

ΩL denotes the bare Rabi frequency of the atomic transition
driven by the incident light, neglecting the effect of the
motion.
When driving Rabi flops on these transitions the excitation

probability after driving red or blue sidebands for a time t is
(Leibfried et al., 2003)

pRSB
jei ðtÞ ¼ 1

2

�
1 −

X∞
n¼0

Pn cosðΩn;n−1tÞ
�
; ð27Þ

pBSB
jei ðtÞ ¼ 1

2

�
1 −

X∞
n¼0

Pn cosðΩn;nþ1tÞ
�
; ð28Þ

where Pn is the population of the motional state jni at time
t ¼ 0. Example data are given in Fig. 2(b). From this signal
the Pn can be extracted from a Fourier transform of pjeiðtÞ
(Meekhof et al., 1996) as illustrated in Fig. 2(c). The Fourier
analysis additionally provides frequency information.
However, since the frequencies of the Jaynes-Cummings
ladder are generally known, this information can be used to
infer the populations by simply fitting a sum of the known
frequency components. Both of these methods (Fourier trans-
form and fitting of known frequencies) are able to infer the
values of Pn and consequently do not need to assume that
the states are thermal. By repeating the measurement of Pn for
different waiting times tw after ground-state cooling, the
heating rates Γh and _̄n can be found. This method works
well for n̄≲ 2 and low heating rates of up to about
_̄n ∼ 100 s−1.
If it is sufficient to measure only n̄, rather than Pn, and

assuming that the distribution of n is approximately thermal, a
similar method, which requires less data taking, uses the
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asymmetry between red and blue sidebands (Monroe et al.,
1995). This is illustrated in Fig. 2(d). Taking the ratio of the
excitation probabilities on the red and blue sidebands
[Eqs. (27) and (28)], the mean phonon number is given by
pRSB
jei =pBSB

jei ¼ n̄=ð1þ n̄Þ. This ratio (and so the inferred

phonon number) is independent of the exciting pulse length
and of the Rabi frequency. The greatest signal to noise,
however, is achieved for pulse lengths which correspond to the
first maximum of the Rabi oscillations on the blue-sideband
transition. By repeating this measurement for different values
of tw the heating rate _̄n can be inferred. Again, this method
works well for n̄≲ 2 and low heating rates of up to
about _̄n ∼ 100 s−1.
Because it assumes a thermal distribution of n, this side-

band comparison method can give incorrect results when the
ions are not, or not always, in thermal states. Such nonthermal
states can occur if the ion is coherently excited, such as occurs
with update noise from digital-to-analog converter (DAC)

cards (Blakestad, 2010). Alternatively, the ions may some-
times be excited to nonthermal states by collisions with
background-gas atoms. When a collision occurs the ion gains
a significant amount of kinetic energy, so that the red and blue
sidebands are approximately the same heights. Such events
may not be immediately obvious as they are averaged with
many collision-free events. However, for collision rates of a
few per second or greater, this can nonetheless lead to a
significantly higher apparent heating rate than would be
measured without the collisions (Chiaverini and Sage, 2014).
For higher phonon numbers and higher heating rates

higher-order sidebands can be compared. Generalizing to
the kth-order red and blue sidebands, the ratio of the
corresponding excitation probabilities pRSBk

jei and pBSBk
jei is

pRSBk
jei

pBSBk
jei

¼
�

n̄
1þ n̄

�
k
: ð29Þ

This method is most sensitive for the sideband order k nearest
to the value of n̄ (Turchette et al., 2000).
As the sidebands of the different motional modes are

generally well resolved from each other, all of these
sideband-spectroscopic methods allow independent measure-
ment of the heating rates on different modes. The methods
have the drawback, however, that they require access to the
resolved-sideband and Lamb-Dicke regimes. This requires a
narrow-linewidth laser and ground-state cooling.
A related method can be used in a regime with larger Lamb-

Dicke parameters or higher phonon numbers η2n̄ > 1. In this
situation, increasing numbers of phonon sidebands contribute
to the ion-laser interaction, leading to a corresponding
suppression of the oscillator strength for the carrier transition.
The reduced Rabi frequency for the carrier is

Ωc ¼ ΩL

X∞
n¼0

Pnhnjeiηðâþâ†Þjni ¼ ΩLe−η
2ðn̄þ1=2Þ; ð30Þ

where for the second equality a thermal phonon distribution
has been assumed. This can then be used to infer a value of n̄
and thereby _̄n (Rowe et al., 2002).

2. Doppler recooling

Another method for heating-rate measurements uses
Doppler recooling in the weak-binding regime (i.e., in a
regime where the motional sidebands are not resolved)
(Epstein et al., 2007; Wesenberg et al., 2007). In the first
step the ion is cooled. It is not, however, necessary that the ion
be cooled to the motional ground state or even to the Doppler-
cooling limit. The cooling laser is turned off and, after a
waiting period of duration tw during which the ion can heat up,
the ion is Doppler cooled again using a near-resonant beam.
Evaluation of the heating rate is based on the fact that hot ions,
being Doppler shifted farther from resonance with the cooling
laser, scatter less light than cold ions. At the end of the waiting
time, the hot ion initially scatters fewer cooling photons, but
scatters progressively more as it is cooled, until the Doppler-
limited temperature is reached. During this recooling process
the time-resolved fluorescence of the ion is recorded. From
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FIG. 2 (color online). Heating-rate measurements by sideband-
resolved methods. (a) Excitations of the ion to states with
different phonon numbers have phonon-number-dependent cou-
pling strengths. In the Lamb-Dicke limit, transitions of jΔnj > 1
can be neglected. (b) Rabi flops driven on the red sideband (open
circles) and blue sideband (filled circles). The solid lines are fits
to the data from Eqs. (27) and (28). (c) From these fits the
populations Pn can be calculated. (d) Rather than driving Rabi
flops, the mean phonon number n̄ can be calculated from the
relative heights of the red and blue sidebands. (b), (c) Adapted
from Harlander, 2012. (d) Adapted from Brownnutt, 2007.
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this, the mean phonon number of the ion before recooling
n̄ðtwÞ can be inferred. By repeating the measurement for
different waiting times tw, the heating rate _̄n can be found.
This method has several distinct advantages over sideband-

resolved methods: it works well at much larger phonon
numbers, around n̄ ∼ 104; it does not require ground-state
cooling; and it does not require narrow-linewidth lasers.
However, it also suffers a number of limitations: The waiting
times required to measure low heating rates can become very
long. It cannot provide information about the populations,
only about the average phonon number, although this is
normally not a problem as, to a good approximation, the
states are thermal. More significantly, as the method is unable
to resolve the separate motional sidebands, it is difficult to
obtain information regarding the heating rates of different
motional modes. For a single ion, information about the
individual motional modes can be gained by aligning the
cooling laser along the relevant principal motional axis, so that
only that mode scatters photons. Failing this, the heating rate
for a particular mode must be estimated by making certain
assumptions about the way different modes might be heated.
One option is to assume that one mode is heated predomi-
nantly and that only that one mode contributes to the change in
fluorescence. In many experiments using linear ion traps the
axial mode has a much lower frequency than the radial modes,
and usually the noise spectrum is such that low-frequency
modes are heated faster than high-frequency modes (see
Sec. III.A). Under these conditions, neglecting heating of
radial modes is a reasonable starting point, although it
would be expected to slightly overestimate the heating rate
(Wesenberg et al., 2007). At the opposite extreme, one may
assume that all modes are heated equally. Simulations using
some typical trap parameters have seen that this can give a
result smaller by about a factor of 2 (Wesenberg et al., 2007).
While there is not a consistent usage of a particular set of
assumptions across the literature [cf., e.g., Daniilidis et al.
(2011) and Allcock et al. (2012)], those using this method
generally state what assumption they have made regarding
this issue.

3. Other methods

Sideband spectroscopy and Doppler recooling are the
most common methods for measuring heating rates,
although not the only ones. Tamm, Engelke, and Bühner
(2000) compared the linewidth broadening of the secular-
motional sidebands relative to the carrier resonance. In their
case, however, the heating rate was below the sensitivity of
the method and thus only an upper bound to the heating
could be inferred. Similar problems are encountered with
simple ion-loss measurements (Splatt et al., 2009), where
the heating rate is estimated from the ion-loss rate in a
shallow trap. This method works for high temperatures and
large heating rates. However, away from the trap center the
harmonic-potential approximation, as well as the neglected
influence of micromotion assumed in Eq. (12), is no longer
justified. Consequently the relationship between the heating
rate and SE can be difficult to determine.
Using a phase Fresnel lens with a working distance of only

3 mm, Norton et al. (2011) were able to image a trapped ion

with a resolution of ∼400 nm. They could then use the spatial
extent of the ion’s position to estimate its temperature over the
range 20≲ n̄≲ 105. A similar scheme was used by Knünz
et al. (2012) using standard optics. This provided lower spatial
resolution, but was still effective for low trap frequencies (tens
of kHz). Such spatial thermometry has not yet been used to
measure heating rates, although it may be a useful technique in
certain regimes.
Interference effects from light scattered by trapped ions

can also be used to infer the ion temperature. This was first
demonstrated by Eichmann et al. (1993), using the fringe
patterns of light emitted from a two-ion crystal to infer a
temperature of 2.5 mK, equivalent to n̄ ∼ 50. Using a single
ion, it is possible to create an interferometer by retrore-
flecting light scattered by the ion so that the reflected light
interferes with directly scattered light from the ion. As the
length of the interferometer arm is varied any motion of the
ion will reduce the visibility of the fringes. Slodićka et al.
(2012) used this effect to measure ion phonon numbers in
the range 1 < n̄ < 40. Such methods are, however, rather
involved and have not yet been used to measure heat-
ing rates.

E. Limits to measurement sensitivity

Given enough experimental time, measuring the heating
rate of a trapped ion provides a sensitive way to measure the
absolute electric-field noise strength at the location of the
ion. For typical parameters, a heating rate of Γh ¼ 1 s−1
corresponds to an electric-field noise sensitivity of
SE ≈ 10−14 V2=m2 Hz, and the detection of lower heating
rates leads to a correspondingly greater sensitivity. In
practice, a limit on the sensitivity can arise from other
sources of heating, which are discussed in detail by
Wineland, Monroe, Itano, Leibfried et al. (1998) and out-
lined briefly here.
The ion can be heated by collisions with background-gas

atoms. At the typical pressures used in ion-trap experiments
(∼10−11 mbar) and for single ions these can be expected to
occur every few minutes, sufficiently infrequently that they can
be neglected as a heating mechanism at the levels of heating
currently observed. The effects of such collisions are even less
concerning in cryogenic experiments which are typically
carried out at ∼4 K: while the heating rates from fluctuating
fields are generally lower in such systems, the expected
background pressures of ∼10−17 mbar (Antohi et al., 2009)
rule out any significant effect from background collisions. One
caveat to this is that the local pressure near the trap may be
significantly higher than the measured background pressure in
the chamber (Chiaverini and Sage, 2014). This is because the
trap itself is a source of particles. These may desorb naturally
from the trap surface or be emitted when photoelectrons,
initially ejected by scattered laser light, are accelerated by
the rf fields and impact on the trap electrodes.
The motional mode of interest can be heated by spectator

modes. In an ideal harmonic potential the three modes of
motion for a single ion are decoupled. However, in any real
trap, higher-order terms in the trapping potential can couple
these motions. If the spectator modes are not initially cold,

1428 M. Brownnutt et al.: Ion-trap measurements of electric-field noise …

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



they can heat the mode of interest. In most experiments,
however, close to the motional ground state the traps can be
considered harmonic to a good approximation, and ωx, ωy,
and ωz are generally chosen to be separated so that parametric
interconversion is negligible (Wineland, Monroe, Itano,
Leibfried et al., 1998).
A further issue arises with multiple ions in a single trap. The

number of spectator modes increases with the number of ions
in the crystal NI, scaling as 3NI − 1. This increases the
possibility that one of the modes is not perfectly cooled and
can couple to the mode of interest. This is all the more
significant as radial modes in a chain can couple to the axial
motion even in a perfectly harmonic trap. Nonetheless, most
experiments select mode spacings such that this is not a
problem. Most importantly for the purposes of this paper,
almost all heating-rate measurements discussed here were
taken with single ions.
Finally, when dealing with multiple ions in the presence of

an rf confining potential, effective collisions between the
trapped ions are not conservative (as they would be for a static
trap), but rather take energy from the rf field. This leads to rf
heating (Ryjkov, Zhao, and Schuessler, 2005). The effect of
such micromotion-interruption heating is most pronounced
when the ions form a cloud, rather than a crystal. However,
even for 14 ions in a linear crystal, under normal conditions, it
is estimated that this mechanism could lead to sufficient
heating to melt the crystal after ∼15 minutes without cooling
(Chen et al., 2013).
In summary, the measurement of electric-field fluctuations

in ion traps is usually based on a number of assumptions.
First, it is assumed that the additional heating mechanisms
listed in this section can be neglected. Second, it is assumed
that heating from coupling to the micromotion sidebands can
be neglected. Finally, it is assumed that the ion is initially
sufficiently cold, implying that _̄n ≈ Γh and also that anhar-
monic terms in the trapping potential or the Coulomb
interaction can be ignored. Given these conditions, it is
straightforward to convert between the heating rate _̄n and
the spectral density of electric-field noise SE, using the rela-
tionship in Eq. (12). Note that the ωt term in the denominator
of Eq. (12) means that the frequency exponents of _̄n and of SE
differ by 1.
Being able to measure noise in this way, the main limitation

for ions as electric-field sensors comes simply from the fact that
the ion measures only the total field noise (at the trap frequency)
and cannot directly distinguish between noise from different
sources. The interpretive step consists of measuring how the
noise scales under different conditions, how it varies from day
to day, or how it can be suppressed or exacerbated. Various
models of possible heating mechanisms can then be compared
to the observations and an attempt made to unpick which noise
sources are likely to have been observed in any given experi-
ment. This review follows such a line: It considers in Sec. III the
total levels of noise observed and how they change under
various conditions. Sections IVand Voutline various models of
heating mechanisms and what noise characteristics they predict.
Section VI then attempts to interpret the experimental results by
seeing which, if any, of the models considered describe the
observed behavior.

III. EXPERIMENTAL OVERVIEW

The electric-field noise varies with a range of physical
parameters. Some of these lend themselves relatively easily to
quantitative consideration. A systematic investigation of the
observed variations of the noise over a large range of these
parameters could provide a promisingmethod for identifying the
dominantor limitingnoisesources intrapped-ionsystems.Tothis
end, experimental data are often analyzed using the ansatz2

SE ∝ ω−αd−βTþγ: ð31Þ

While helpful, there is no a priori reason for this ansatz to hold.
Moreover, even in systems exhibiting such power-law behavior,
it isnotnecessarily that thebehavior shouldbeconsistentover the
entire accessible parameter space. Indeed, severalmodels predict
non-power-law behaviors and, in general, α, β, and γ must be
interpreted as“local” scaling coefficients,whichmay themselves
dependon the frequency, distance, and temperature regimeunder
consideration. Given the variety of behaviors which may be
expected, the characterization of the noise scalingwith respect to
these basic parameters can already provide significant informa-
tionabout thesourceof thenoise.Thatbeingnoted, suchdiversity
has the potential to make the picture rather complicated. The
various scaling predictions of different theories are given in
Secs. IVand V. At this point, however, we consider the scalings
observed in experiments, unencumbered by theoretical models.

A. Frequency scaling

Many sources of noise are expected to follow a power-law
scaling and give rise to 1=f noise. Strictly speaking, this
would mean that SE ∝ ω−α, where α ¼ 1. However, “1=f
noise” is something of a flexible term and is often used for any
scalings in the range 0.9≲ α≲ 1.4 (Dutta and Horn, 1981).
Even allowing for flexible terminology, there are several
possible noise sources which exhibit scalings significantly
different to 1=f, and still others for which the spectrum does
not even follow a power law. By measuring the ion-heating
rate for different motional frequencies it is possible to see
whether, for a particular experiment and over a particular
frequency range, the noise does indeed follow a power law
and, if so, what the scaling exponent α is in that particular
instance. Given the fact that different noise mechanisms can
give rise to various values of α (as discussed in Secs. IVand V)
such measurements are of interest because the determination
of α provides information about the possible mechanisms
underlying the noise. During these discussions it should be
kept in mind that α is the frequency-scaling exponent of SE;
the ωt term in the denominator of Eq. (12) means that the
heating rate then scales as _̄n ∝ ω−ðαþ1Þ.

2While α, β, and γ are standardly used to denote the scaling
exponents, there is currently no standardized convention in the
literature regarding which of these letters represents the exponent
for which variable. For clarity, the convention stated here will be used
throughout this review, and results from publications using different
conventions will be “translated” without further comment.
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1. Frequency scaling at room temperature

Many experiments have deduced a value of α for the
electric-field noise they observe at room temperature, and
these are shown in Fig. 3. It is clear from Fig. 3 that there is not
an overall frequency-scaling law which holds for all systems.
We now consider several specific cases for which power-law
scaling behavior has been observed, and for which the
measurements provide a relatively tightly constrained value
of α for a particular experiment.
Data points [39] (Allcock et al., 2011) and [40] (Allcock

et al., 2012) shown in Fig. 3 were measured in a single trap at
Oxford University.3 The Doppler recooling method used for
the heating-rate measurement (Allcock et al., 2010) cannot

distinguish between signals arising from heating of different
modes. However, as ωax ≪ ωr (by at least a factor of 3.5) it
was assumed that any heating of the radial modes could be
neglected. The trap was a linear SiO2-on-Si surface trap with
aluminum electrodes, in which the ion was 84 μm above the
plane of the trap surface (98 μm from the nearest electrode).
The electrodes were 2.4 μm thick, with a 2–3 nm native oxide
and 8 nm rms (root-mean-square) roughness. Any exposed
surfaces on the silicon substrate were coated with 114 nm of
gold. Any bare surfaces of the silica supporting the electrodes
were recessed well below the electrode plane. Points [40] and
[39] were measured before and after laser cleaning, respec-
tively. Prior to cleaning the noise scaling was consistent with a
1=f source [α ¼ 0.93ð6Þ]. Following laser cleaning the
scaling had changed to α ¼ 0.57ð3Þ. These results are dis-
cussed further in Sec. VI.F.
Data points [7]g and [46]a,b were measured in different

traps at the National Institute of Standards and Technology
(NIST). Point [7]g (Turchette et al., 2000) shows the scaling
for the axial component of the electric-field noise in a linear,
three-dimensional, gold-on-alumina trap. The ion was 365 μm
from the nearest electrodes, which were made of 0.75 μm of
evaporated gold. The value of α ¼ 1.43ð1Þ is significantly
different from 1, although consistent with 1.5.
Points [46]a,b (Hite et al., 2012) show the scaling for the

axial component of the electric-field noise in a surface trap
made of gold on crystalline quartz. The ion was 40 μm above
the electrodes, which were made of 10 μm of electroplated
gold. Point [46]a was measured in a trap for which the surface
of the gold electrodes had been exposed to air. Point [46]b was
measured in the same trap after it had been cleaned in vacuo by
an argon-ion beam. The freshly revealed surface of the electro-
des had therefore never been exposed to air. While the absolute
value of the heating rate subsequent to cleaning was lower by
2 orders of magnitude, the frequency scaling of the electric-field
noise did not change significantly between these two experi-
ments; both exhibit α ≈ 1.5. This scaling is consistent with that
seen in the other NIST trap considered above (point [7]g).
These results are discussed further in Sec. VI.G.
Data points [57]a,b were measured in a single trap at the

University of California, Berkeley (Daniilidis et al., 2014).
They show the scaling for the axial component of the electric-
field noise in a linear surface trap. The ion was 100 μm above
the electrodes, which were made of copper and aluminum on a
fused-quartz substrate. Point [57]a was measured in a trap for
which the copper surface of the electrodes had been exposed
to air. The measured frequency scaling was α ¼ 1.27ð23Þ.
Point [57]b was measured in the same trap after it had been
cleaned in vacuo by an argon-ion beam. The freshly revealed
surface of the electrodes had therefore never been exposed
to air. Similar to the work of Hite et al. (2012), the absolute
value of the heating rate was reduced by about 2 orders of
magnitude. The frequency scaling was measured to be
α ¼ 0.95ð28Þ, not significantly different from the precleaning
value. This work additionally indicates the presence of a broad
resonance peak centered at around 800 kHz, which was visible
following cleaning. These results are discussed further in
Sec. VI.G.
Data points [42]a,b were measured in a single trap at the

University of Innsbruck (Harlander, 2012) and show the
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FIG. 3 (color online). Frequency exponent α as a function of the
ion motional frequency ωt in room-temperature traps. The lateral
extent of the bars gives the frequency range over which the noise
was measured. The vertical extent of the bars indicates the
uncertainty in α. Data are taken from the relevant references in
Table I. For points marked with †, the uncertainty in α was not
stated in the original paper and has been estimated from the
published data. For points marked with �, neither the value of α
nor its uncertainty were stated in the original paper, and they have
been estimated from the published data. For experiments in which
resonance peaks were observed [points [47] Poulsen, Miroshny-
chenko, and Drewsen (2012) and [57]b Daniilidis et al. (2014)]
the regions over which the resonances occurred are indicated by a
dotted line. Selected data are discussed in detail in the text and are
highlighted here.

3The references from which all experimental data points in this
review were taken are summarized in Table I.

1430 M. Brownnutt et al.: Ion-trap measurements of electric-field noise …

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



scaling for the axial component of the electric-field noise in a
linear, three-dimensional, gold-on-alumina trap. The ion
was 257 μm from the nearest electrodes, which were made
of 10 − 15 μm of electroplated gold. Data point [42]a was
measured when the dc lines to the trap were low-pass filtered
using an RC filter with a cutoff frequency of 1 MHz, and the
noise exhibited a frequency-scaling exponent of α ¼ 2.3ð2Þ.
For point [42]b, an RC filter with a lower cutoff frequency of
370 kHz was used. In this configuration the frequency-scaling
exponent was measured to be α ¼ 2.7ð3Þ. The frequency
scaling of the noise in both configurations implies that the
mechanisms for the dominant sources of heating in these
instances do not display a 1=f spectrum. These results are
discussed further in Sec. VI.D.
Data point [47] was measured at Aarhus University

(Poulsen, Miroshnychenko, and Drewsen, 2012) and shows
the axial component of the electric-field noise in a linear trap.
The trap was made of stainless-steel rods which were at a
distance of 3500 μm from the ion and plated with 5 μm
of gold. The heating rate was observed to be independent
of the trap frequency, except for a narrow resonance at
ω ¼ 295 kHz. The resonance was found to be caused by a
switch-mode power supply in a neighboring experiment. The
remaining noise would require a source for which SE ∝ f,
which is significantly different from the oft-assumed 1=f
spectrum. These results are discussed further in Sec. VII.C.
Data points [7]c,h were measured in a single trap at NIST

(Turchette et al., 2000). They show the scaling for the radial
component of the electric-field noise in a molybdenum ring
trap. The ion was 125 μm away from the nearest electrode,
which was a fork-shaped end cap. The trap initially had a
frequency scaling of α ¼ 0ð2Þ, shown as point [7]c. The trap
was removed from vacuum and cleaned with HCl to remove
the Be coating deposited by the atomic source. It was then

electropolished in phosphoric acid and rinsed in distilled water
followed by methanol. Following cleaning, the electric-field
noise was significantly reduced (over the frequency range
measured) and the frequency scaling had changed to α ¼
6.0ð2Þ (point [7]h). This is significantly different from 1=f.
These results are discussed further in Sec. VII.D.
Finally, data point [7]i was measured in a ring trap at

NIST (Turchette et al., 2000) in which the ion was 280 μm
away from the nearest electrode, which was a fork-shaped
end cap. The trap was made in the same piece of metal as
trap [7]h and separated from it by 1.7 mm. The traps had
therefore undergone exactly the same treatment and han-
dling. Point [7]i in Fig. 3 shows the scaling for the radial
component of the electric-field noise after the trap had been
cleaned. The trap initially had a heating rate that was
relatively “typical” (see point [7]d in Fig. 8), although
the frequency scaling was not measured. Following the same
cleaning procedure already described for trap [7]h, the
electric-field noise was significantly reduced (over the
frequency range measured). The measured frequency-
scaling exponent after cleaning was α ¼ 4.0ð8Þ. This is
significantly different from 1=f. These results are discussed
further in Sec. VII.D.
While each of these cases is discussed in more detail in

Secs. VI and VII it suffices at this point to note that it is simply
not possible to assume a single universal scaling behavior
which holds for all traps. Some experimental results tightly
constrain α and support a value of α ¼ 1; other experiments
have scalings markedly different from α ¼ 1. Heating-rate
reductions following cleaning are accompanied in some
experiments by a change in α, while in others they are not.
This lack of a universal frequency-scaling behavior implies
that the higher-than-expected level of heating observed in ion-
trap experiments does not necessarily come from one single,

TABLE I. List of references for trapped-ion heating-rate measurements. The figures and text of this paper denote the traps using the reference
numbers here. Where a single publication reports heating rates for several traps, or for one trap under markedly different conditions, these
different results are labeled with a letter following the reference number.

[1] Diedrich et al. (1989) [23] Britton (2008) [45] Wilpers et al. (2012)
[2] Monroe et al. (1995) [24] Poschinger et al. (2009) [46] Hite et al. (2012)
[3] King et al. (1998) [25] Blakestad et al. (2009) [47] Poulsen, Miroshnychenko, and Drewsen (2012)
[4] Roos et al. (1999) [26] Britton et al. (2009) [48] Brama et al. (2012)
[5] Myatt et al. (2000) [27] Leibrandt et al. (2009) [49] Steiner et al. (2013)
[6] Tamm, Engelke, and Bühner (2000) [28] Amini et al. (2010) [50] Allcock et al. (2013)
[7] Turchette et al. (2000) [29] Allcock et al. (2010) [51] Warring et al. (2013)
[8] Schmidt-Kaler et al. (2000) [30] Wang, Labaziewicz et al. (2010) [52] Vittorini et al. (2013)
[9] Rohde et al. (2001) [31] Wang, Ge et al. (2010) [53] Arrington et al. (2013)
[10] Rowe et al. (2002) [32] McLoughlin et al. (2011) [54] Mount et al. (2013)
[11] DeVoe and Kurtsiefer (2002) [33] Daniilidis et al. (2011) [55] Hite et al. (2013)
[12] Deslauriers et al. (2004) [34] Brown, Ospelkaus et al. (2011) [56] Chiaverini and Sage (2014)
[13] Home (2006) [35] Harlander et al. (2011) [57] Daniilidis et al. (2014)
[14] Stick et al. (2006) [36] Ospelkaus et al. (2011) [58] Niedermayr et al. (2014)
[15] Seidelin et al. (2006) [37] Herskind et al. (2011) [59] Kumph et al. (2014)
[16] Deslauriers, Olmschenk et al. (2006) [38] Blakestad et al. (2011) [60] McKay et al. (2014)
[17] Letchumanan et al. (2007) [39] Allcock et al. (2011) [61] Mehta et al. (2014)
[18] Epstein et al. (2007) [40] Allcock et al. (2012) [62] Goodwin et al. (2014)
[19] Labaziewicz, Ge, Antohi et al. (2008) [41] Akerman et al. (2012) [63] Guise et al. (2015)
[20] Schulz et al. (2008) [42] Harlander (2012) [64] Bruzewicz, Sage, and Chiaverini (2015)
[21] Benhelm et al. (2008) [43] Wang (2012) [65] Weidt et al. (2015)
[22] Labaziewicz, Ge, Leibrandt et al. (2008) [44] Doret et al. (2012) [66] McConnell et al. (2015)

M. Brownnutt et al.: Ion-trap measurements of electric-field noise … 1431

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



universal effect, but rather has multiple sources, which may be
different for different experiments.

2. Frequency scaling at cryogenic temperatures

It has been suggested (Labaziewicz, Ge, Leibrandt et al.,
2008) that, in cases where the source of electric-field noise for
ion traps is due to thermally activated processes, one could
expect such sources to freeze out at low temperatures, leading
to a temperature-dependent value of α. Labaziewicz et al.
measured the value of α as a function of trap temperature for
the lowest-frequency motional mode in a linear surface trap
(trap [22]c-i). The ion was 75 μm above the electrodes, which
were made of gold on a crystal-quartz substrate. The results are
shown in Fig. 4. These results suggest that in this experiment
there may be some variation of the frequency scaling with
temperature. The theory underlying possible temperature-
dependent changes in α is outlined in Sec. V.B.5, and the
experiment is discussed further in Sec. VII.A.
Recently, Bruzewicz, Sage, and Chiaverini (2015) mea-

sured α as a function of temperature in niobium traps over a
frequency range 0.6 MHz < ω=2π < 1.5 MHz, and a temper-
ature range 4 K < T < 295 K. In these experiments the
frequency-scaling exponent of α ¼ 0.6ð1Þ was found to be
independent of ω and T over the entire parameter range
measured.

B. Distance scaling

It is intuitively reasonable that the closer an ion is held to a
source of electric-field noise, the more perturbed it would be
by that source. By measuring the ion-heating rate for different
trap sizes it should be possible to see how the heating rate
scales with the distance from the electrodes and, potentially, to
infer a scaling exponent β. As different noise mechanisms can
give rise to various values of β (as discussed in Secs. IVand V)
such measurements are of interest because the determination
of β provides information about the possible mechanisms
underlying the noise. This may at first seem similar to the
procedure used in Sec. III.A to measure α. However, while it is

relatively simple to vary the trap frequency and leave all else
unchanged, varying the trap size in a controlled way is more
difficult. This section reviews some experiments which have
varied the trap size while minimizing other uncontrolled
differences in the setup. It also reviews what can and cannot
be learned from a compilation of heating-rate data from many
different experiments.
The distance scaling of noise in ion traps was first discussed

by Turchette et al. (2000). They considered nine traps in total
(six ring traps and three linear traps) ranging in size from
d ¼ 170 to 600 μm. For a controlled investigation of distance
scaling they fabricated a pair of ring traps for which the rf
electrodes of both traps were fabricated in a single piece
molybdenum material. The traps’ end caps were made using a
second, shared, piece of molybdenum. The two traps could be
operated simultaneously, driven by the same electronics, and
held in a single vacuum apparatus. They had ion-electrode
separations of 125 and 280 μm, respectively. (The initial
results from these traps are referred to as points [7]c,d in this
review.) The heating-rate results obtained by Turchette et al.
for 9Beþ ions in these two traps are shown in Fig. 5. The traps
were not operated at the same frequency but, assuming α ¼ 0,
Turchette et al. extrapolated the heating rate to deduce a
distance scaling of β ¼ 3.8ð6Þ. The value of α ¼ 0 was taken
from measurements made in trap [7]c, and it seems reasonable
that trap [7]d—being fabricated in the same piece of metal and
run by the same electronics—might display similar behavior.
While the uncertainty on the measurement of α is rather large,
the general conclusion of Turchette et al. does not sensitively
depend on assumptions about the frequency scaling: a value of
α ¼ 1.5, as observed for trap [7]g, would imply a distance
scaling (for the data shown in Fig. 5) of β ≈ 5. Considering the
magnitude of the heating rates and the results of the size-
scaling measurements they concluded that the observed
heating was inconsistent with a thermal electronic noise
source.
Deslauriers et al. (2004) measured the heating rates of

111Cdþ ions in a ring (quadrupole) trap and a linear
trap. Compared to the noise they expected from a thermal
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FIG. 4 (color online). Frequency exponent α as a function of
temperature for a gold-on-quartz surface trap. The values for the
data points and error bars are taken from Fig. 4 of Labaziewicz,
Ge, Leibrandt et al. (2008). The dotted line shows the
theoretically expected dependence from the model proposed
[Labaziewicz, Ge, Leibrandt et al., 2008, drawing on Dutta
and Horn (1981)] with the dashed line showing temperature-
independent 1=f scaling.

FIG. 5. Heating rate _̄n as a function of trap secular frequency
ωm (≡ωt), for ring traps of two different sizes. The small trap
(called 3a by Turchette et al., and [7]c in this review) had
d ¼ 125 μm. The large trap (called 3b, or [7]d) had d ¼ 280 μm.
The dashed lines show scaling of _̄n ∝ ω−1 (i.e., α ¼ 0). Assum-
ing this frequency scaling, the data imply a distance scaling of
β ¼ 3.8ð6Þ. From Turchette et al., 2000.
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(blackbody or Johnson) source, the absolute heating rates
observed were higher than expected by several orders of
magnitude for the ring trap, and by a factor of 20 for the linear
trap. Because of this higher-than-expected absolute value they
concluded that the heating they saw was due to a source other
than thermal noise. In order to compare their results to other
published heating rates they plotted their results along with
those from 13 other traps (seven ring traps and six linear traps)
ranging from d ¼ 80 to 600 μm in size,4 as reproduced here in
Fig. 6. The inclusion of the d−4 scaling line on the plot was
unrelated to any scaling trend exhibited by the experimental
data, but rather predicated on the assumption that the non-
thermal heating they observed was caused by fluctuating patch
potentials. Despite the impression given in parts of the
secondary literature (Brownnutt et al., 2006; Labaziewicz,
Ge, Antohi et al., 2008; Allcock et al., 2011), Deslauriers
et al. did not at any point demonstrate, nor did they claim to
demonstrate, that the combined data could be used to support
a distance scaling of d−4. The conclusion they drew from the
data shown in Fig. 6 was that the absolute heating rates
measured using trapped 111Cdþ ions were significantly lower
than those measured in other traps of similar dimension and
trap frequency.
To make a highly controlled investigation of distance

scaling, Deslauriers, Olmschenk et al. (2006) used a trap
which consisted of two needlelike, tungsten rf electrodes with
grounded sleeves. These were attached to axial translation

stages, allowing the tip-to-tip separation (and consequently
the ion-electrode separation) to be controllably varied over a
wide range with micrometer resolution. They measured the
heating rate for seven different ion-electrode spacings in
the range 38 μm < d < 216 μm. As they were able to vary
the position of the trap electrodes in situ, this provides the only
controlled measurement to date of heating as a function of
electrode proximity which did not require a comparison across
different trap structures, electrode materials, or surface qual-
ities. Their plot is reproduced here in Fig. 7. The measure-
ments fit well to a scaling of heating rate with ion-electrode
separation of _̄n ∼ d−3.5�0.1. This corresponds to a scaling
exponent of β ¼ 3.5ð1Þ. The distance scalings expected with a
needle geometry for various noise sources are considered in
Secs. IV.D.2 and V.D.3. Possible types of noise sources are
discussed in Sec. VI.A.
Following these investigations, several papers (Epstein

et al., 2007; Daniilidis et al., 2011; Hughes et al., 2011)
compiled the results of multiple experiments into a single plot
and indicated where a d−4 scaling would lie. On the
assumption that the theoretical scaling indicated was related
to the experimental data plotted, such plots have been widely
invoked to claim that the experimental data show a d−4 scaling
(Dubessy, Coudreau, and Guidoni, 2009; Herskind et al.,
2011; Safavi-Naini et al., 2011; Herschbach et al., 2012;
Poulsen, Miroshnychenko, and Drewsen, 2012; Pyka et al.,
2014). The remainder of this section constructs comprehen-
sive plots for all of the ion-trap heating-rate data currently
available, highlighting the uses and the limitations of such
plots. In particular, regarding the limitations of the plots, we
observe that the full data set cannot be used to draw general
conclusions about distance-scaling laws in ion traps. As a
specific corollary to this, the full data set cannot be used to
support the claim that, in general, heating in trapped-ion
systems follows a d−4 scaling.
Despite their limitations, such plots can be useful in that

they provide a map by which to orient discussions and give a
visual representation to aid comparisons of where different

FIG. 6. Spectral density of electric-field noise SE for different
species of trapped ions. Data are from Deslauriers et al. (2004)
(111Cdþ), Turchette et al. (2000) (9Beþ I and III), Rowe et al.
(2002) (9Beþ II), Diedrich et al. (1989) (198Hgþ), Roos et al.
(1999) (40Caþ), and DeVoe and Kurtsiefer (2002) (137Baþ). The
dashed line shows the 1=d4 scaling predicted by a simple patch-
potential model. From Deslauriers et al., 2004.

FIG. 7. Scaling of heating rates in a needle trap. Axial heating
rate _̄n as a function of the ion-electrode separation z0 (≡d). The
dashed line, to which the measured data fit well, has a gradient of
−3.5, corresponding to β ¼ 3.5. From Deslauriers, Olmschenk
et al., 2006.

4The ring-trap result taken from DeVoe and Kurtsiefer (2002) had
an ion-electrode separation of 80 μm. The measurement provides
only an upper limit on the heating rate.
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experiments lie relative to one another. To this end, Fig. 8
shows the inferred spectral density of electric-field noise SE as
a function of ion-electrode separation d in traps nominally
operated at room temperature, for all available published data
to date. To make it clear what is being displayed here, what the
plot can be used to show, and what it cannot be used to show,
we now discuss various aspects of the data compilation.
In order to best compare like with like, when measurements

were made of several modes of motion in a single trap, the
axial c.m. heating rate is plotted in Fig. 8. When heating rates
were taken over a range of frequencies, with all else being
constant, the result for ωt ¼ 2π × 1 MHz is plotted if the
frequency range included this value or, if it did not, the
measured result for the frequency closest to 1 MHz is plotted.
To keep the presentation as clear as possible, for the

instances in which repeated measurements were reported,
where the measurements were taken in a single trap under
essentially similar conditions, only a single data point (the
median) is included in Fig. 8. Similarly, if multiple publica-
tions include heating rates from the same trap under broadly
similar conditions, only one result is included.
If heating rates were measured in a single trap under

markedly different conditions, a data point is shown for each
of the various sets of conditions. For instance, Turchette et al.
(2000) measured heating rates in two molybdenum ring traps
which initially gave results which are plotted in Fig. 8 as
points [7]c and [7]d. (The original data are also reproduced

here in Fig. 5.) Following venting of the chamber and
recleaning of the traps the behavior of both traps changed
dramatically. The frequency scaling in trap [7]c changed from
α ≈ 0 to α ¼ 6.0ð2Þ. The heating rate over the frequency range
measured also dropped, by around 2 orders of magnitude at
10 MHz. This is plotted as point [7]h in Fig. 8. (The values of
the electric-field noise plotted for points [7]c and
[7]h in Fig. 8 are similar due to the difference in α between
the two traps and the different frequencies at which the
measurements were taken.) Trap [7]d also underwent a
significant reduction in heating rate, by around 3 orders of
magnitude at 3 MHz. The electric-field noise is plotted as
point [7]i in Fig. 8. After the change it was measured to have a
frequency scaling of α ¼ 4.0ð8Þ. Given such unusual behav-
ior, even without any clear understanding of exactly what it
was which caused the behavior to change, two points have
been plotted for each trap: before and after the change in
behavior, respectively. Despite plotting these points on a
single graph, we note and stress the caveat, stated initially
by Turchette et al., that it is difficult to draw general
conclusions from the data for this particular trap. These data
points are discussed in more detail in Sec. VII.D.
Data points [20] and [24] were taken for heating rates in the

same trap, with the difference being attributed to an improved
voltage supply (Poschinger et al., 2009). These two measure-
ments are discussed in detail in Sec. VI.C. Data points [47]a,b
were also measured in a single trap, with point [47]b being
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measured on resonance with interference from other lab
equipment, while point [47]a was measured away from any
such resonances (Poulsen, Miroshnychenko, and Drewsen,
2012). Similarly, data points [32] and [65] were measured in
the same trap, with the latter being better isolated from
ambient and technical noise (McLoughlin et al., 2011;
Weidt et al., 2015). This is discussed in Sec. VI.C. Surface
treatment can make heating rates in a single trap higher
(point [33]a,b) or lower (points [39] and [40]). These are
discussed in detail in Secs. VI.E and VI.F, respectively.
Finally, Hite et al. (2012), Daniilidis et al. (2014), and

McKay et al. (2014) showed that removal of surface con-
tamination by ion-beam cleaning of the electrodes can greatly
reduce the heating rate. Where this has been done in a single
trap, Fig. 8 displays points for both the precleaning measure-
ments (points [46]a and [57]a) and postcleaning measure-
ments (points [46]b and [57]b). It may be considered that
ion-beam cleaning is a sufficiently distinctive procedure that
the heating rates from such traps should be analyzed sepa-
rately. All points measured after some form of ion-beam
cleaning are colored gray in Fig. 8. These measurements are
discussed in detail in Sec. VI.G.
It is worth additionally highlighting data point [62]

(Goodwin et al., 2014). As well as being notable for the
large trap size, the result is interesting as it is the only heating
rate to date of a single ion in a Penning trap. This complicates
any comparison with the other data shown here: while
considerations for some heating mechanisms (such as
Johnson noise and adatom diffusion) are essentially the same
in both Penning and Paul traps, other mechanisms (such as
issues concerning coupling to micromotion) become moot for
Penning traps. Additionally there may be effects [such as
coupling between magnetron and cyclotron motions (Djekic
et al., 2004)] which are not considered in this review, but
which become important for Penning traps.
A final comment should be made regarding data points

which have not been plotted. Measurements by Tamm,
Engelke, and Bühner (2000), DeVoe and Kurtsiefer (2002),
and Amini et al. (2010) are often included in compilations of
heating rates. However, these results provide only an upper
limit to the observed heating rate, not the heating rate itself.
These are shown in Fig. 8 as points [6], [11], and [28]b,
respectively, but are plotted as crosses. Any heating rates for
which the trap electrodes were at temperatures significantly
below 300 K have been excluded from this plot. (Results for
cryogenic heating-rate measurements are shown in Fig. 12 and
discussed in Sec. III.C.)
Having accounted for the selection of the data displayed,

it is worth discussing how the data should most clearly be
presented. The data have been measured in many different
experiments, under many different sets of conditions. We now
discuss how the data might be standardized to best facilitate
clear presentation and to allow, as far as possible, a mean-
ingful comparison of like with like.
Given the expected dependences of the noise [Eq. (31)],

rather than plotting SEðdÞ it might be considered more
appropriate to plot ωþαT−γSEðDÞ. We therefore consider
how the data might best be standardized and displayed to
properly account for frequency scaling (Sec. III.B.1), for

temperature scaling (Sec. III.B.2), and for the geometry
dependence of distance scaling (Sec. III.B.3). We then consider
(Sec. III.B.4) a number of systematic effects which are not
taken into account in a simple consideration of scalings. These
may introduce apparent correlations where none exist.
Alternatively they may mask or skew genuine correlations.

1. Normalizing for frequency

Given that traps are operated at different frequencies, and
given that SE is frequency dependent, it may be desirable to
take this dependence into account. This was first done by
Epstein et al. (2007) who noted that there were several cases
where the values of ωSE for a given trap were bunched
together and concluded that SE ∝ 1=ω was a better
assumption than SE being independent of ω. From the
frequency dependences shown in Fig. 3, it can be seen that
this is not unreasonable.
For this review, however, we note that a significant number

of data sets exist for which α ≠ 1. Additionally, for the
majority of experiments, α has not been measured and is
essentially unknown. In order to plot what is known, the
figures throughout this paper show SEðdÞ, for the measured
value closest to 1 MHz, but without any further normalization
for frequency. There is no strong correlation between a trap’s
size and the motional frequency at which it is operated, so the
different operating frequencies would not systematically
change any global trends in the data.

2. Normalizing for temperature

There are two broad temperature regimes in which ion-trap
experiments operate: “room temperature” and cryogenic
temperature. “Room-temperature” traps are not deliberately
temperature controlled. However, the presence of high-voltage
rf applied to the electrodes can deposit large amounts of
energy into the trap, potentially raising their temperature.
Exactly how much energy is deposited will vary as a function
of the applied voltage, the construction of the trap, and the
attendant electronics. In vacuum this energy cannot be
convected away. The degree to which it can be conducted
away depends strongly on the way the trap is mounted. The
efficiency of radiative transport will vary with, for example,
the geometry and the surface finish of the electrodes.
Given the differences in such factors between different

experiments, the exact operating temperatures might be
expected to vary significantly. For most nominally room-
temperature experiments there are no data regarding the trap
temperature under normal operation. However, a number of
experiments in which the electrode temperature has been
measured can inform considerations. In a macroscopic trap
(d ¼ 800 μm) with stainless-steel electrodes held in a Macor
mount, a temperature rise of ΔT ∼ 100 K was observed for
typical operating conditions (Chwalla, 2009). In a trap of
nominally identical geometry, but made using titanium
electrodes held in a sapphire mount, a temperature rise of
ΔT ∼ 2 K was observed for typical operating conditions.5 In a

5P. Schmidt, 2012, Physikalisch-Technische Bundesanstalt (PTB)
(personal communication).
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gold-coated, SiO2-on-Si, microfabricated trap (d ¼ 240 μm) a
temperature rise of ΔT ∼ 3 K was observed for typical
operating conditions (Wilpers et al., 2012). Considering these
three data points, there is not a particular correlation between a
trap’s size and its operating temperature. For the sake of
discussion, one may nonetheless wish to consider to what
extent the data may be skewed if—the above results notwith-
standing—there really were a strong correlation such that
large traps (requiring high rf voltages) were systematically
hot, and small traps (with lower rf voltages and better thermal
contact) were systematically closer to room temperature.
Assuming a temperature scaling of γ ¼ 2 (see Sec. III.C)
even a temperature rise of ∼140 K would lead only to a factor
of 2 increase in the heating rate. This is comparable with the
trap-to-trap variation seen between nominally identical traps
and can be neglected for the purposes of most comparisons.
For all intents and purposes traps which are nominally at room
temperature can therefore be reasonably considered to be at
around 300 K.
Cryogenic traps are typically held at around liquid-helium

temperatures. Exceptions to this are the first ever cryogenic
experiment, for which the electrodes were estimated to be at
150 K (Deslauriers, Olmschenk et al., 2006), and experiments
which deliberately raise the trap temperature above 6 K
(Labaziewicz, Ge, Leibrandt et al., 2008; Chiaverini and
Sage, 2014; Bruzewicz, Sage, and Chiaverini, 2015). The
effect of changing the temperature by around 2 orders of
magnitude is significant (see Sec. III.C). Heating-rate mea-
surements for which the electrodes are actively cooled below
300 K are therefore treated entirely separately from room-
temperature measurements and are not included in Fig. 8.

3. Normalizing for geometry

In the first paper considering a comparison of heating rates
in multiple traps, Turchette et al. (2000) correctly stated that
the resistances R in the trap electrodes and connecting circuits
give rise to a spectral density of electric-field noise
SEðωÞ ¼ 4kBTRðωÞ=D2, where D is the characteristic dis-
tance from the trap electrodes to the ion. They went on to
consider an idealized trap geometry in which the electrodes
form a spherical conducting shell of radius d around the ion.
Making the association that, for the particular geometry under
consideration, D ∼ d, they showed that a thermal electronic
noise model gives a scaling _̄n ∝ D−2 while a patch-potential
model gives _̄n ∝ D−4.
The associationD ∝ d is reasonable for a spherical ion trap.

However, as discussed in detail in Sec. IV.D.2, it cannot be
assumed for an arbitrary trap geometry. Indeed, in some
situations, such as for the electric-field noise at the rf null due
to correlated voltage noise on the rf electrodes, the character-
istic distance can tend to infinity. Nonetheless, in the sub-
sequent literature it has often been claimed that thermal
electronic noise models predict a scaling _̄n ∝ d−2, while
the patch-potential model predicts _̄n ∝ d−4, where d is the
distance between the ion and the closest trap electrode. The
change from considering the characteristic distance D
between the ion and the trap electrodes to considering the
distance d between the ion and the closest trap electrode is a
significant one and unwarranted in the general case. While it

happens to be true for a spherical trap that D ∝ d, such a
relationship does not generally hold for an arbitrary geometry.
One may wonder, given the importance of the characteristic

distance for scaling considerations, why SEðdÞ is predomi-
nantly discussed in the literature, rather than SEðDÞ. One
reason for considering the ion-electrode separation is that it
can be easily measured or calculated. By contrast, a trap’s
characteristic distance cannot generally be analytically calcu-
lated but must be simulated; moreover it can depend sensi-
tively on the exact details of the geometry such as the
curvature of the electrode edges which are, in practice,
difficult to know accurately.
As discussed in detail in Sec. IV.D.2, the characteristic

distance Di;j is obtained by solving for the electric-field
component along the i principal axis at the equilibrium ion
position rI due to a voltage Vj on the jth trap electrode and

using EðjÞ
i ðrIÞ ¼ Vj=Di;j (Leibrandt, Yurke, and Slusher,

2007). It is clear that if the heating originates from a particular
feature in the trap (for example, the rf electrodes or the dc end
caps) then the important figure is the characteristic distance of
that particular electrode. Thus, for example, if the dominant
noise source is a thin layer of thermally driven adsorbates
evenly distributed across a surface trap then the jth electrode
can be considered to be a uniform, infinite plane; the exact
layout of the individual electrodes is irrelevant. This is in
contrast to a situation in which the dominant heating is due to
technical noise from voltage supplies for a segmented trap.
Under such circumstances, at the position of the ion, the noise
contributions originating from different places on a single
electrode will be correlated, while the noise originating from
different electrodes will be uncorrelated. In this instance the
characteristic distance will therefore not only depend on the
electrode geometry, but will even be different for different
positions in the same trap (Leibrandt, Yurke, and Slusher,
2007). Even at a particular position, for a given geometry, and
specified noise model, the characteristic distance may still not
be uniquely constrained: in the case of fluctuating patches of
finite size, for example, the characteristic distance is depen-
dent on the patch size (Low, Herskind, and Chuang, 2011). It
can thus be seen that the value of the characteristic distance D
for any given trap depends on both the type and details of the
noise model considered. Consequently, any attempt to infer a
noise model from the scaling of SEðDÞ is, to a certain extent,
circular: a particular noise model is necessarily already
implicit in the calculation of D.
Some papers include a trap’s characteristic distances

(assuming a certain noise model) or sufficient information
to calculate them. However, the vast majority give only the
ion-electrode separation. For comparisons aimed at elucidat-
ing heating mechanisms, simply stating the ion-electrode
separation has significant limitations. In an ideal world, the
characteristic distance of all historic traps would be calculated
for a number of noise models and plotted. In practice this is
not feasible, although the contribution of future work to the
discussion would be greatly enhanced by including the
characteristic distances of each new trap for a selection of
likely noise models.
Aside from the practical and fundamental difficulties with

plotting SEðDÞ, there are pragmatic reasons in favor of
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plotting SEðdÞ. When considering such issues as which
fabrication techniques might be suitable for making a trap,
how tightly a laser beam must be focused to avoid being
clipped by electrodes, or what additional apparatus can be
integrated near the trap structure, the ion-electrode separation
provides a useful measure of the trap size. If one wishes to
compare the usefulness of various traps for a particular
application, and neglecting any attempt to understand the
physics underlying the noise, then the ion-electrode separation
is, pragmatically speaking, a sensible parameter to consider.
For these reasons, and accepting the necessary limitations

attendant with such a decision, the plots in this review
show SEðdÞ.

4. Other systematic effects

In the considerations outlined previously, the additional
variables for which one is attempting to control can be stated
as some parameter. There exist, however, a number of other
considerations which are not so simple to quantify. These are
discussed in turn here.

• Systematic differences by group: Some groups, for a
variety of reasons, build systematically smaller traps than
others. Different groups also see different sources of
noise (as noted in Sec. III.A and elaborated upon in
Sec. VI). If the absolute levels of heating from the
various sources are different (even taking all other
scalings into account) then a systematic connection
between the size of trap that a group uses and the type
of noise they observe could give rise to, or alter, apparent
trends in the scaling. Without knowing in advance what
the different absolute levels are, it is difficult to even
estimate the magnitude of the effect that this may have.

• Material differences: It is possible, even likely, that
different materials have different noise properties. This
may be because the dominant noise mechanism varies
between different materials, or because a single noise
mechanism presents differently in different materials. For
example, considering noise sources related to crystal grain
boundaries in the electrodes, the grain structure in gold
electrodes will be different from the grain structure in
stainless-steel electrodes. Gold is commonly used as an
electrode material for traps of d ∼ 100 μm, while stainless
steel is commonly used for traps of d ∼ 1000 μm. A
systematic connection between the trap size and trap
material, coupled with a connection between trap material
and noise, would potentially cause systematic shifts in the
observed relationship between trap size and noise level.
Without knowing in advance what the sources of noise for
each material are, it is difficult to even estimate the
magnitude of the effect that this may have.

• Different reporting conventions: There are many issues
which could cause an increase in trap heating rates. In
order to compare what is ultimately limiting the experi-
ment, it can therefore be argued that one should compare
the lowest heating rate from each experiment (Wang,
2012). Alternatively, it can be argued that given some
distribution of results one should quote the average value
(Britton, 2008). Given that some experiments observe a
variation of several orders of magnitude from day to day

in a single trap (Wang, 2012), this difference in reporting
methods is not necessarily insignificant. Without know-
ing the exact reporting method used for each experiment
it is difficult to predict how this might affect the overall
result, if at all. It would be helpful if future contributions
to the literature would state which reporting convention
was used or give both the lowest and the average
(arguably the median) results.

• The importance of the absolute heating rate: While it
may be interesting to say that one trap is better or worse
than another “scaled for size,” in most applications it is
the absolute heating rate that is important. For example,
the implementation of a Mølmer-Sørensen gate made by
Kirchmair et al. (2009) requires a heating rate below
∼100 s−1 in order to obtain a gate infidelity of less than
10−3. This requirement is independent of the size of the
trap in which the gate is implemented. Groups using
small traps may therefore be motivated to achieve
heating rates which are as low as possible, while groups
using larger traps may have little need to improve over
rates which are low enough. This may skew the reported
heating rates to make any apparent scaling with distance
exhibited by the full data set smaller than the actual
scaling of the physical mechanisms involved.

• Selection bias: It is often reported that a trap’s heating
rate is “typical for traps of this size.” It is reasonable that
a group whose central interest is not heating-rate studies
will work to improve a trap’s operation until it is
“typical,” and then stop working so hard to improve
it. However, such data may then be indicative of what
was expected, rather than normative for what is possible.
This does not rule out the eventuality that various groups
may have reached fundamental limits; however, it is a
reminder that not all reported results are necessarily at
such a limit, nor do they all claim to be. A selection bias
would skew the reported data toward whatever scaling
trend is expected.

5. Summary

Two experiments have been performed which attempted
controlled comparisons of heating rates as a function of trap
size: Turchette et al. (2000) compared the heating rates of two
similar traps which had different ion-electrode separations.
These two traps exhibited heating rates which suggested
β ¼ 3.8ð6Þ. Deslauriers, Olmschenk et al. (2006) measured
heating rates in a single trap for which the ion-electrode
separation d could be varied, while leaving the driving
electronics, the electrodes’ material, surface finish, etc.,
unchanged. This experiment had a distance-scaling exponent
of β ¼ 3.5ð1Þ.
Compilations of heating rates from other experiments

provide a useful visual overview of the topic. However, they
have a number of practical and fundamental limitations
regarding their possible use to infer any scaling laws that
would shed light on the mechanisms underlying the observed
heating. As different experiments may be limited by different
sources of noise, it is not necessarily expected, and has not
been experimentally demonstrated, that there is a generally
applicable distance-scaling law for heating in ion traps.
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C. Temperature scaling

Assuming that trapped ions are heated by thermal or
thermally activated effects in the trap, it seems reasonable
that reducing the temperature in the trap would reduce the ion-
heating rate. This is of interest for two reasons. First, because
the change of the observed level of noise with temperature
could shed light on the underlying mechanism. Second,
because a reduction in the heating rate, without having to
increase the trap frequency or the trap dimensions, would be
useful in itself. This section considers experiments which
measured the ion-heating rate over a range of temperatures
and thereby determined values of the temperature-scaling
exponent γ for particular traps. It then considers the difference
in the heating rate observed between typical traps operated at
room temperature and typical cryogenic traps.
The first experiment to cool down the trap electrodes

(Deslauriers, Olmschenk et al., 2006) showed that reduced
electrode temperatures did indeed lead to reduced ion-heating
rates. The trap consisted of two needlelike rf electrodes with
grounded sleeves. The needles were cooled to approximately
150 K through contact with a liquid-nitrogen reservoir. This
reduced the heating rate of a single 111Cdþ ion by around an
order of magnitude compared to room temperature. This
suggests a temperature scaling of γ ∼ 3 in this instance.
Since then, numerous experiments have been carried out at
several institutions with traps operated at around 6 K. The
traps are held in liquid 4He cryostats, and the power dissipated
by the trap typically raises the temperature of the trap itself a
few degrees above 4 K.
Labaziewicz, Ge, Leibrandt et al. (2008) studied four

traps in detail. All four traps were made of gold electrodes
on crystal-quartz substrates and had an ion-electrode separation
of 75 μm. For one of the traps they also repeated measurements
following various cleaning and handling procedures.
In each case they measured both the temperature-scaling
exponent γ and the absolute heating rate as a function of
temperature over the range 7–100 K. They found that the
electric-field noise was not simply proportional to some
exponential increase of the form SE ∝ Tþγ as assumed in the
naive ansatz proposed in Eq. (31). Rather, it (usually) took the
form SE ∝ S0½1þ ðT=T0Þþγ�. The eight different measured
values of γ are plotted in Fig. 9. The five fit curves for trap [22]c
are plotted in Fig. 10. The four traps, prepared and operated in
nominally identical fashion, initially had temperature exponents
in the range 3≲ γ ≲ 4. These are similar to the results obtained
by Deslauriers, Olmschenk et al. (2006). Beyond this, there are
several points worth noting.
First, γ varied as a function of processing. Not only did γ

change following different processing steps for trap [22]c, but
initially measured values γ for the four traps were different at a
level significantly greater than the uncertainty on each
individual point. This suggests that some, as yet unidentified,
factors in trap preparation play a role.
Second, rather than a simple exponential decrease with

decreasing temperature, the noise level plateaued below
around 30 K, at a value of ∼0.1 × 10−12 V2=m2 Hz. All
of the traps (with the exception of trap [22]c-v) reached
this floor at similar temperatures. They also all (with the
exception of trap [22]d) exhibited similar absolute

noise levels having reached this floor [in the range
0.02 × 10−12 < SE=ðV2=m2 HzÞ < 0.2 × 10−12]. It can thus
be seen, at least in the instance of these traps, that the variation
of several orders of magnitude in the heating rate at room
temperature is less strongly reflected in the cold-temperature
behavior. Possible causes of such a noise floor are discussed in
Sec. VII.A.
A third, related point is that traps which started with higher

heating rates also had higher values of γ. Whatever effect
caused the reduction in heating rate at room temperature, there
was a concomitant reduction in the strength with which
heating rates scaled as a function of temperature. This means
that one cannot necessarily expect to independently combine
the expected improvements of cleaning with that of cryogenic
temperatures. Consequently, while traps with very high
heating rates at room temperature (see, e.g., points [19]a,b
in Fig. 8) exhibit a large reduction in heating rates when
cooled to cryogenic temperatures (see points [19]e,f in
Fig. 12), claims of improvement by 7 (Labaziewicz, Ge,
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Antohi et al., 2008) or even 8 (Antohi et al., 2009) orders of
magnitude are not likely to be the rule for most traps.
Chiaverini and Sage (2014) studied three traps over the

even larger temperature range of 4 K < T < 295 K. They
measured the axial component of the electric-field noise acting
on single 88Srþ ions. All three traps had ion-electrode
separations of 50 μm and sapphire substrates. The electrodes
of two traps were made of 2 μm of sputtered niobium, while
those of the third were made of 500 nm of thermally
evaporated gold. Their results are reproduced in Fig. 11.
Similar to Labaziewicz, Ge, Leibrandt et al. (2008) they
observed a reduction of around 2 orders of magnitude in the
noise between room temperature and cryogenic temperatures.
It is possible that the temperature-scaling behavior they
observed was qualitatively different from that seen by
Labaziewicz, Ge, Leibrandt et al. (2008), in that the low-
temperature behavior did not reach a plateaux, but rather
scaled with an exponent of γ ¼ 0.54ð4Þ below 70 K. Recent
results, however, provide more data for the behavior of the
niobium on sapphire traps (Bruzewicz, Sage, and Chiaverini,
2015). These indicate that in at least some cases the behavior
may be similar to that observed by Labaziewicz, Ge, Leibrandt
et al. (2008). Specifically, comparing the results of Bruzewicz,
Sage, and Chiaverini (2015) with the cleaned and temperature
cycled trap of Labaziewicz, Ge, Leibrandt et al. (2008)
(point [22]c-v) the traps exhibited high-temperature scaling
exponents of γ ¼ 1.59ð3Þ and γ ¼ 1.8ð1Þ, respectively.
Moreover they exhibited a characteristic “turn-on temper-
ature” T0 at which the high-temperature behavior starts to play
a significant role, of 18(2) and 17(3) K, respectively. Given
both the similarities and differences between the temperature-
scaling results, it is not currently clear whether the various
experiments described share a dominant source of heating or
not, in either the high- or low-temperature regimes. Possible

mechanisms which may give rise to behavior qualitatively
similar to that observed are discussed in Sec. VII.A.
Moving beyond measurements of scaling in specific experi-

ments, it would be interesting to know, even without neces-
sarily identifying the cause of heating in each instance, what
degree of heating-rate reduction might be expected by
operating a trap at cryogenic temperatures. Pragmatically
speaking, such a number is particularly interesting when
setting up an experiment: without knowing in advance what
source of noise might limit the experiment at any given stage
of development, it would be useful to estimate what improve-
ment one might expect to gain by investing in a cryostat.
The observed levels of noise for cryogenic traps as a

function of ion-surface distance are shown in Fig. 12. The
data were selected using similar criteria to the room-
temperature data selection shown in Fig. 8, as described in
Sec. III.B. If a publication reports repeated measurements
taken in a single trap under essentially similar conditions, only
a single data point (the median) has been plotted here.
Similarly, if multiple publications include heating rates from
the same trap under broadly similar conditions, only one result

FIG. 11 (color online). Spectral density of electric-field noise SE
as a function of temperature T for traps made of different
materials. The levels of heating are similar in the three traps,
despite the different trap-electrode materials. The dotted lines are
fits to power laws in temperature to all data. Above 70 K the
scaling exponent is γ ¼ 2.13ð5Þ. Below 70 K it is 0.54(4). From
Chiaverini and Sage, 2014.
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FIG. 12. Spectral density of electric-field noise SE as a function
of the distance d from the ion to the nearest electrode, for traps at
cryogenic temperatures (all nominally around 6 K). Data points
are taken from the relevant references in Table I. The gray points
are the same room-temperature data as shown in Fig. 8, for
comparison. On the right, the ordinate scale is the equivalent
heating rate of a 40Caþ ion with a motional frequency of
ωt ¼ 2π × 1 MHz. The white area (40 μm ≤ d ≤ 230 μm)
shows the size range over which cryogenic measurements have
been made. The solid black line marks ~SE for the cryogenic traps.
The solid gray line marks ~SE for the room-temperature traps over
the same size range.
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is included. If measurements were taken at different frequen-
cies, the measurement result taken closest to 1 MHz has been
shown. If measurements were taken at different temperatures,
the measurement taken closest to 6 K has been shown. All of
the caveats laid out in Sec. III.B regarding Fig. 8 also hold
here for Fig. 12.
The possibility of different physical mechanisms under-

lying the noise in the different traps, so that each experiment
might be expected to exhibit a scaling which is essentially
unknown, means that any fit to the data is broadly mean-
ingless. In order to obtain a quantitative comparison between
the data sets for the two different temperatures, a heuristic way
of identifying the typical level of noise seen in a cryogenic
experiment must be used. To this end the median spectral
density of the electric-field noise ~SE is considered. Given the
traps are relatively evenly distributed across the size range,
this is not an unreasonable measure. Considering all mea-
surements to date, ~SEðT ¼ 6 KÞ ¼ 0.2 × 10−12 V2=m2 Hz,
and is indicated in Fig. 12 by a solid black horizontal
line. To compare this to a typical level of noise for room-
temperature traps of a similar size to cryogenic traps, the
median spectral density of electric-field noise for all room-
temperature measurements made on traps in the range
40 μm≤d≤230 μm is ~SEðT¼300KÞ¼20×10−12 V2=m2Hz.
This change in noise level is in line with the estimate of

2 orders of magnitude for good traps which was made
previously by considering the data of Labaziewicz, Ge,
Leibrandt et al. (2008), Chiaverini and Sage (2014), and
Bruzewicz, Sage, and Chiaverini (2015). There are, however,
numerous possible noise sources which may limit experiments
and different sources may scale differently with temperature.
It is therefore not necessarily the case that the same reduction
will be seen in all experiments. Very early work on cryogenic
traps (Labaziewicz, Ge, Antohi et al., 2008) saw that, in two
traps with very high heating rates at room temperature, noise
was suppressed by 7 orders of magnitude by cooling the traps
to 6 K. The absolute heating rates were then 2 orders of
magnitude lower than the heating rates reported for typical
traps of similar size operated at room temperature. This initial
result is shown by subsequent data to be reasonably typical:
bad traps may be improved dramatically, although good traps
might only be expected to have an improvement of around
2 orders of magnitude. Certain specific noise sources may,
however, behave differently.

IV. SELECTED SOURCES OF ELECTRIC-FIELD NOISE

Having presented in Sec. III an overview of the main results
and trends observed experimentally, Secs. IV and V consider
various sources of electric-field noise which may contribute to
the heating of trapped ions.
The current section considers several common sources of

electric-field noise which are related to the electromagnetic
(EM) environment and the trapping circuitry. Starting with
arguably the most fundamental source of noise, Sec. IV.A
addresses the effect of blackbody radiation; first in free space
and then above surfaces. The level of noise actually observed
in free space is generally very much higher than this black-
body value, due to electromagnetic interference (EMI) from

both man-made and natural sources. Direct coupling of the ion
to such fields is considered in Sec. IV.B. Background EM
radiation can also couple to parts of the experimental
apparatus and from there perturb the ion. This can potentially
couple noise into the system much more efficiently than by
simple free-space coupling directly to the ion. This effect is
termed EM pickup and is discussed in Sec. IV.C. Moving on
to noise originating in the experimental components them-
selves, Sec. IV.D considers Johnson-Nyquist noise. In the
simplest case, this is the thermal noise of the electrons
in resistive elements in the experiment, and this section
considers a number of often-overlooked resistive elements.
Additionally, Sec. IV.D.7 considers the effects of technical
noise, taken here to mean noise from equipment such as power
supplies, and coupled to the experiment through the wiring.
While this is often not considered to be strictly Johnson noise,
it is included here due to the similar distance scaling that it
shares with Johnson noise. Finally, Sec. IV.E considers the
noise that can arise when the vacuum is no longer neutral.
Specifically, it considers the effect of surface-emitted elec-
trons which perturb the ion as they move through free space
toward an anode.
Inspired by the observations of Turchette et al. (2000) much

recent work has been carried out on a class of models in which
such electric-field noise arises from variations of the electrode
potential on a microscopic scale. These are considered in
Sec. V, together with a discussion of several microscopic
mechanisms which have been suggested in the literature to
explain the physical origin of this noise.
The major results of Secs. IV and V are summarized in

Appendix C. This is intended to help maintain an overview
and shows indicative values only. The reader should always
refer back to the discussions provided in the main paper.

A. Blackbody radiation

A charged particle in a trap is subject to heating by
fluctuating EM fields. Even in the absence of nearby electrodes
or noisy circuits, the ion is affected by freely propagating EM
radiation. A fundamental source of such an EM background is
blackbody radiation. While the level of this noise is far too low
to play a significant role in ion-trap experiments, it is important
to calculate as it provides the baseline used for calculating and
discussing the level of noise due to other sources of EMI. This
section first considers blackbody radiation in free space and
then considers how this noise is modified in the vicinity of
conducting surfaces such as trap electrodes.

1. Blackbody radiation in free space

If the frequency of the EM radiation ω ≪ kBT=ℏ then the
single-sided spectral energy density of blackbody radiation in
vacuum is uemðωÞ ¼ 2kBTω2=πc3 (Landau and Lifshitz,
1980), where kB is Boltzmann’s constant, T is the temperature,
and c is the speed of light. The total energy of the field is
shared equally between the electric and magnetic energy
densities ϵ0hE2i=2 and hB2i=ð2μ0Þ, where ϵ0 and μ0 are the
electric permittivity and magnetic permeability of free space,
respectively. For an isotropic system, each spatial component
of the electric field provides one-third of the total power, so
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the (single-sided) spectral density of electric-field noise along
a specific trap axis is (Henkel, Pötting, and Wilkens, 1999)

SðBBÞE ¼ 2kBTω2

3ϵ0πc3
: ð32Þ

At room temperature and frequencies of ω ¼ 2π × 1 MHz,

this gives a spectral density of electric-field noise of SðBBÞE ≃
10−22 V2=m2 Hz. This is far below the observed level of noise
in ion-trap experiments (cf. Fig. 8). It is nonetheless important
to know this level, as blackbody radiation at room temperature
is the reference point for EMI, as explained in Sec. IV.B.

2. Blackbody radiation above surfaces

Compared to blackbody radiation in free space, the pres-
ence of a nearby surface can substantially enhance the electric-
field background, due to EM losses in dielectrics or metals.
According to the dissipation-fluctuation theorem these losses
are associated with a spectral density of electric-field noise

SðBBSÞE , which, in thermal equilibrium and for the conventions
used in this review, can be expressed as (Agarwal, 1975;
Henkel and Wilkens, 1999)

SðBBSÞE ¼ 4ℏ

eℏω=kBT − 1
ImGEðrI; rI;−ωÞ: ð33Þ

In this expression GEðr; r0;ωÞ ¼
P

ijet;iet;jG
ij
Eðr; r0;ωÞ, where

the electric Green’s function Gij
Eðr; r0;ωÞ determines the

electric-field components Eiðr;ωÞ emitted from an oscillating
dipole μj located at r0, i.e., Eiðr;ωÞ ¼ Gij

Eðr; r0;ωÞμjðr0;ωÞ.
For simple geometries the Green’s function can be evalu-

ated analytically (Agarwal, 1975). For an ion trapped a
distance d above an infinite plane having relative permittivity
ϵðωÞ and in the quasistatic limit, the imaginary part of the
Green’s function (neglecting the free space contribution) is
given by (Henkel and Wilkens, 1999)

ImGEð−ωÞ≃ sη
16πϵ0d3

Im
ϵðωÞ − 1

ϵðωÞ þ 1
; ð34Þ

for the field fluctuations perpendicular (s⊥ ¼ 1) and parallel
(s∥ ¼ 1=2) to the surface. For a metallic surface the relative
permittivity at frequencies below the electronic damping rate
(which is the relevant regime for all ion-trap applications) can
be approximated by ϵðωÞ≃ 2ic2=ðω2δ2s Þ, where δsðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ0c2ρe=ω

p
is the skin depth for a metal with resistivity

ρe. Under such conditions

Im
ϵðωÞ − 1

ϵðωÞ þ 1
≃ 2ωρeϵ0;

and the second term in Eq. (34) can be interpreted as the
damping of the ion’s image dipole. The quasistatic limit given
in Eq. (34) is valid only for distances d < δsðωÞ which, for
gold at ω ¼ 2π × 1 MHz, corresponds to about 75 μm.
An approximate result for the spectral density of electric-

field noise which applies also for larger distances is given by
(Henkel, Pötting, and Wilkens, 1999)

SðBBSÞE ¼ kBTρe
2πd3

�
sη þ

d
δs

�
; ð35Þ

where the high-temperature limit kBT ≫ ℏω has been
assumed. At a distance d¼100 μm, temperature T¼300K,
and electrode resistivity ρe ¼ 2.21 × 10−8 Ωm, the level of

electric-field noise is SðBBSÞE ≈ 10−17 V2=m2 Hz, scaling as
d−2 for larger distances and as d−3 for smaller distances.
Although the presence of a surface significantly enhances
blackbody radiation, the overall noise level is still significantly
lower than the observed heating rates (cf. Fig. 8).

B. Electromagnetic interference

Radio-frequency engineers have long known that at low-
(30–300 kHz), medium- (0.3–3 MHz), and high-frequency
(3–30 MHz) bands, the level of blackbody radiation is too low
to be responsible for the noise observed on antennas. The ion’s
motional frequency for most ion-trap experiments is in the
medium-frequency (MF) band, and such radiation is perva-
sive: sources as diverse as lightning strikes in the tropics
(Parrot et al., 2009), the solar wind hitting the ionosphere
(Bunch and LaBelle, 2009), and data being sent along power
transmission lines (Hansen, 2003) cause noise which is near
the secular frequency of many ion-trap experiments.
Moreover, MF radiation is hardly attenuated by the atmos-
phere, natural materials, or buildings, and not efficiently
radiated into space as it is reflected by the ionosphere.
The standard measure of this EMI is the external noise

factor Fa: a dimensionless factor defined as the extra noise
that a perfect antenna receives above the blackbody radiation
noise at a temperature of T ¼ 300 K. The spectral density of

the EMI is then SðEMIÞ
E ¼ Fa × SðBBÞE . The external noise

factor varies greatly, both spatially and temporally. In the MF
band, outdoors, away from man-made structures, Fa is about
60 dB (ITU, 2009), and in cities it is approximately 80 dB,
decreasing with frequency as ω−3. At 1 MHz, natural sources
have an Fa range of 0–100 dB, 99.5% of the time. i.e., 0.5%
of the time natural sources exceed 100 dB. The electric-
field noise levels for Fa ¼ 80 dB at 1 MHz are then

SðEMIÞ
E ∼ 10−14 V2=m2 Hz, falling off with ω−1.
Inside commercial buildings, where most laboratory experi-

ments are carried out, the level of electric-field noise at these
frequencies is even higher than outdoors (Fernández et al.,
2010). The external noise factor in commercial buildings has
been measured to be approximately 120 dB at 1 MHz and falls
off with ω−5 (Landa et al., 2011). An unshielded ion trap
exposed to typical levels of indoor noise would therefore see

SðEMIÞ
E ∼ 10−10 V2=m2 Hz falling off with ω−3. This absolute

level of noise is seen in some ion-trap experiments (cf. Fig. 8).
Of course, trapped ions are surrounded by electrodes, in a
vacuum vessel made of metal, which shields them to some
extent. Nonetheless, EMI from ambient noise in buildings
cannot be ruled out as a source of direct ion heating and care
must be taken to shield the ion trap so that EMI does not affect
the experiment.
Fa is measured relative to the blackbody background,

which scales as ω2 [see Eq. (32)]. This means that the

M. Brownnutt et al.: Ion-trap measurements of electric-field noise … 1441

Rev. Mod. Phys., Vol. 87, No. 4, October–December 2015



frequency-scaling exponents of Fa and SðEMIÞ
E differ by 2. For

an indoor experiment, where the external noise factor Fa falls
as ω−5, one might expect the spectral density of electric-field

noise SðEMIÞ
E to scale in free space as ω−3. However, the ion is

partly shielded by the electrodes and also shielded by the
vacuum chamber and other conductors, such as heat shields in
cryogenic systems (Brown, Wilson et al., 2011). Electric-field
shielding via conductors works best at lower frequencies (the
opposite being true for magnetic-field shielding) and so, while
shielding can provide substantial reductions in the expected
heating rate, it would also change the expected frequency
scaling of the electric-field noise. The effect of this EMI
shielding should be taken into account (Miller and Bridges,
1966; Bridges, 1988; Rajawat, Kalghatgi, and Ron, 1995).
Furthermore, strong sources at specific frequencies in the
noise spectrum have not been included in this analysis: radio
stations and electronic devices can emit strong signals which
would be even further above the levels mentioned here. These
would manifest themselves as peaks in the power spectrum
and may be ephemeral or geography dependent.
The heating due to direct EMI is expected to be independent

of the trap size provided the shielding does not change as a
function of trap geometry. In practice, however, changing the
geometry of the electrodes generally changes the shielding at
the ion, unless care is taken to shield the entire experiment
from EMI. Some nonzero value of the distance-scaling
exponent β may therefore be expected, but this would have
to be calculated for each specific apparatus.
The background blackbody radiation level scales linearly

with temperature [see Eq. (32)]. However, the level of
environmental EMI impinging on an experiment would not
be expected to vary with temperature. That said, if the ion
trap has metallic shielding which is cooled, the shielding’s
effectiveness will change significantly as its conductance
increases with decreasing temperature. At low temperatures
this will eventually reach a plateau when the conductance no
longer changes.

C. Electromagnetic pickup

As explained in Sec. IV.B, electric fields from EMI can
directly interact with a trapped ion. As well as interacting with
the ion directly, it is possible that EMI causes voltage noise on
the wires and electronics of the experiment, which transmit
this noise to the trap. Voltage fluctuations caused by EMI
coupling to wires are referred to as electromagnetic pickup.
The electric component of EMI can be well shielded by

metallic conductors. However, the magnetic-field noise from
EMI is not as easily shielded and can be picked up by any
conductive loops in the trap wiring. An example of where such
loops may occur in ion traps is the wiring leading to the rf
electrodes: in a linear-trap configuration a single rf source is
usually split to drive two trap electrodes, with the capacitance
between the two rf electrodes completing the loop. Any
changing magnetic flux perpendicular to the surface formed
by a loop induces an electromotive force (EMF) around the
loop. Since the small capacitance between the two trap
electrodes has a large impedance, this is where the full voltage
drop of the induced EMF will present itself.

The frequency scaling α of noise due to EM pickup would
be dependent upon the scaling of the underlying EMI
radiation. Beyond this, it must be taken into account that
the voltage VL at frequency ω induced in a loop of wire by an
incident magnetic field B, normal to the loop, also at
frequency ω, is given by (Kanda, 1993)

VL ¼ ωBAL; ð36Þ

where AL is the loop area. The spectral densities of magnetic-
and electric-field noise are related by SB ¼ ϵ0μ0SE. Using
the results discussed previously, the spectral density of the

EM-pickup voltage noise SðPUÞV on the electrode is

SðPUÞV ¼ Fa
2μ0kBTA2

Lω
4

3πc3
: ð37Þ

Consequently, for the same free-field noise, α for EM pickup
would be smaller by 2 than for direct coupling of the free
fields to the ion [cf. Eq. (32)]. Thus, if the EMI scaled with
α ¼ 3 (as is expected for noise indoors, see Sec. IV.B) then the
EM pickup would scale with α ¼ 1.
From Eq. (37) it would initially seem that γ ¼ 1. In addition

to this basic dependence, the effectiveness of any shielding
in the experiment will likely be temperature dependent.
Typically, as temperature is lowered, the resistance is lowered
and the shield becomes more effective at damping magnetic
fluctuations, so that for a typical experiment it would be
expected that γ > 1.
The discussion of EM pickup outlines what voltage noise

can be expected on a trap electrode. This is related to the
electric-field noise at the position of the ion as

SE ¼ SV
D2

; ð38Þ

where D is the characteristic distance from the ion to the trap
electrode being considered on which there is voltage noise. At
a given frequency and temperature, it is indistinguishable
(from the ion’s point of view) from Johnson noise. This D−2

distance scaling is therefore discussed more fully under
Johnson noise in Sec. IV.D.
To estimate the absolute noise level that might be expected

from EM pickup, consider an environment (typical office
building) with Fa ¼ 120 dB. The voltage noise due to pickup
at 1 MHz on an unshielded 10 cm diameter loop of wire will

be SðPUÞV ∼ 4 × 10−18 V2=Hz. This is equivalent to the Johnson
noise of a 200 Ω resistor at room temperature. If this voltage
noise were on a trap electrode with a characteristic distance of
D ¼ 1000 μm, then the electric-field noise would be

SðPUÞE ∼ 10−12 V2=m2 Hz. This level of noise is comparable
to that seen in some ion-trap experiments (cf. Fig. 8). This
level will scale in proportion to the square of the area enclosed
by the loop.

D. Johnson-Nyquist noise

Johnson-Nyquist noise (or Johnson noise) is the electrical
noise generated by the thermal motion of charge carriers in a
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conductor. The spectral density of such voltage noise is given
by (Johnson, 1928; Nyquist, 1928)

SðJNÞV ¼ 4kBTRðω; TÞ; ð39Þ

where Rðω; TÞ is the effective real resistance, at frequency ω,
of the whole circuit from the two terminals across which the
voltage noise is observed.What constitutes the whole circuit is
broadly a matter of convention. Some analyses consider only
the trap electrodes, others consider the associated passive
electronics, and still others the full system up to and including
active components such as power supplies. The Johnson noise
due to the bulk resistance of the trap electrodes themselves is
almost always negligibly low. However, as shown in
Sec. IV.D.1, Johnson noise can arise due to losses in other
elements in the experiment that are often overlooked. Here we
consider Johnson noise only from electrical elements on the
circuit which leads to the trap electrodes.
For the purpose of analysis, some lump several noise

sources together, modeling both technical noise
(Sec. IV.D.7) and EM pickup (Sec. IV.C) as Johnson noise.
This can be done by considering Eq. (39) and replacing
the resistance R by a much larger effective resistance
(Lamoreaux, 1997), or alternatively, by a resistance at a
much higher effective temperature (Wineland, Monroe,
Itano, Leibfried et al., 1998).
The spectral density of the electric-field noise due to

Johnson-Nyquist noise is

SðJNÞE ¼ SðJNÞV

D2
¼ 4kBTRðω; TÞ

D2
; ð40Þ

where D is the characteristic distance to a particular trap
electrode. A simplistic interpretation of Johnson noise may
assume that it exhibits an essentially flat noise spectrum
(α ¼ 0) and that the D2 term in the denominator of Eq. (40)
would imply β ¼ 2. Given that many metals have R ∝ T, one
might also anticipate γ ¼ 2. Finally, assuming that trap
electrodes have a resistance of ∼0.1 Ω, and that D≃ d,
one might expect the electric-field noise due to Johnson
noise at 300 K, in a trap of d ¼ 100 μm to be around

SðJNÞE ∼ 10−13 V2=m2 Hz. Such an analysis is, however, rather
too simplistic to describe the situation in realistic ion-trap
experiments.
In what follows we consider a number of physical effects

which cause the Johnson-noise analysis to be more complex
than the simple picture just presented. First, the frequency
dependence of Johnson noise is considered (Sec. IV.D.1). We
then consider the distance scaling (Sec. IV.D.2)—specifically,
how the characteristic distance D relates to the ion-electrode
separation d for various geometries. This is followed by
discussions of the temperature scaling (Sec. IV.D.3) and
absolute levels (Sec. IV.D.4) of Johnson noise. To root these
ideas in experimental practice, two worked examples are
given. These consider the effects of Johnson noise in a simple
RC low-pass filter circuit (Sec. IV.D.5) and in an rf resonator
circuit (Sec. IV.D.6). The latter example explicitly includes
the effects of nonideal (lossy) components. Finally, a brief

discussion is provided to consider technical noise
(Sec. IV.D.7).

1. Frequency-dependent resistance

It can be seen from Eq. (40) that the frequency scaling α of
Johnson noise depends on the frequency scaling of RðωÞ,
which is flat for standard ideal resistors, i.e., α ¼ 0. However,
electrical circuits connected to the trap almost always contain
frequency-dependent impedance elements such as filters.
Such frequency dependences must be considered carefully
as it is possible, in principle, to achieve any value of α.
In considering ion heating due to the electric-field noise

at the ion’s secular frequency, the Johnson-noise-induced
heating would be dependent upon the real part of the
impedance seen from the trap electrodes at that frequency
(Leibrandt, Yurke, and Slusher, 2007). This resistance is
nearly always much higher than the dc resistance of the
circuit because frequency-dependent elements are always
lossy; even superconductors have alternating current (ac)
resistance (Zar, 1963).
Idealized capacitors, inductors, and transmission lines

(wires) have, as their main characteristics, only reactances
(imaginary impedances). However, the materials which make
up these devices are, in practice, not ideal and have losses. The
impedance of a wire-wound inductor is an obvious example: a
wire-wound inductor typically has a very low dc resistance,
but if the (ac) current is kept constant while the frequency of
the current is increased, the inductor will heat up.
Real dielectrics are also lossy, characterized by a loss

tangent tan θ. Any capacitance incorporating a dielectric has
an equivalent parallel resistance (EPR) given by (Vandamme
et al., 2010)

EPR ¼ 1

ωC tan θ
; ð41Þ

where ω is the angular frequency and C is the capacitance. A
large EPR is characteristic of a high-quality capacitor and has
little associated noise. Calculation of the equivalent series
resistance (ESR) requires analysis of the rest of the circuit in
which the component is situated. (Worked examples calculat-
ing the ESR of an rf filter circuit and an LC resonator circuit
are provided in Secs. IV.D.5 and IV.D.6, respectively.) The
ESR is then easily understood as the resistance which goes
into Eq. (40) to determine the Johnson noise. We now consider
the ESR that might reasonably be expected from a number of
discrete components.
Capacitors used in the trap’s electronics may provide the

most obvious instance of loss in dielectrics. However, the
dielectrics which hold the trap must also be considered.
Macroscopic traps often have their electrodes mounted on
Macor (Rohde et al., 2001; Sinclair, Wilson, and Gill, 2001),
which has relatively high dielectric losses. This may be a
cause of the significant dissipation observed in some ion-trap
systems (Chwalla, 2009). Surface traps usually consist of thin
(∼1 μm) metallic electrodes on dielectric substrates such as
quartz (Seidelin et al., 2006), silica (Allcock et al., 2011), or
sapphire (Daniilidis et al., 2011). Excellent low-loss dielectric
materials have loss tangents of ∼10−5. Typically the ion-trap
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electrodes have a capacitance of just a few picofarads, which
means that at trap frequencies of 1 MHz, even in the best case,
EPR≲10 GΩ. If such a trap electrode were to be isolated
from its voltage source at the trap frequency, this would give
rise to an ESR≳1 Ω. To keep Johnson noise below such a
level requires careful attention to the drive electronics and
filters so that they absorb this noise from the electrodes, while
filtering out the noise invariably coming from the power
supplies.
Losses from magnetic components can be treated in a

similar manner (again, characterized by a loss tangent). For
example, being magnetic, a layer of nickel, which can be used
as a barrier layer between gold and copper, can cause
substantial losses at microwave frequencies (Shlepnev and
McMorrow, 2011). This is unlikely to be a significant issue for
ion traps as magnetic materials are generally avoided due to
concerns over magnetic-field instability affecting the ion’s
electronic states. More commonly, magnetic components in
ion-trap systems include wire-wound inductors inside
filters or resonators which lead to the trap electrodes. The
quality factor Q relates an inductor’s real and imaginary
impedances as

Q ¼ ωL
RL

; ð42Þ

where L is the inductance of the inductor and RL is the
effective series resistance of the inductor. If a filter inductor
L ¼ 100 μH is intended to work at ω ¼ 2π × 1 MHz, and has
a quality factor ofQ ¼ 20, then it has an ESR of ∼30 Ω at this
frequency. This resistance would then need to be correctly
accounted for in any Johnson-noise analysis. To illustrate how
such resistances are included in a full circuit analysis, two
worked example calculations are given in Secs. IV.D.5
and IV.D.6.
Eddy-current losses in conductors near a wire carrying an

alternating current can also cause the effective resistance
of the wire to increase substantially above that expected from
the bulk dc resistance (Poritsky and Jerrard, 1954). As an
example, at 1 MHz, and at a distance ≃100 μm away from a
nonmagnetic stainless-steel conductor, this effect would give
an ESR of order 10 mΩ per cm of wire. This effective
resistance could be enhanced by several factors. It increases
with the magnetic permeability of the nearby conductor, with
a saturation of about 20 mΩ=cm at 1 MHz. Multiple turns of
the current-carrying wire would increase the effect with the
square of the number of turns. Additionally, as the frequency
is increased, the effective resistance due to eddy-current losses
scales roughly proportionally. Details are given by Poritsky
and Jerrard (1954). One situation in which this effect is of
particular relevance to ion-trap experiments is when a shield is
placed over a helical resonator or wire-wound inductor. The
resulting drop in the inductor’s Q is due to these eddy-current
losses.

2. Characteristic distances

The characteristic distance of a system D, as given in
Eq. (38), determines the conversion of voltage fluctuations on
the electrode to electric-field fluctuations at the position of the

trapped ion. Electric-field-noise measurements in ion traps
usually report the minimum ion-electrode distance d. While
this is often much simpler to determine, it is generally quite
different from the characteristic distance D. Indeed, for some
noise sources and geometrical symmetries the characteristic
distance can tend to infinity. This would, for instance, occur
due to common-mode rejection in the case of perfectly
correlated noise on the rf electrodes, provided the ion was
perfectly localized on the rf null.
In general, there can be several characteristic length scales,

corresponding to the particular components of the electric
field and to the particular trap electrode under consideration. If
a voltage is applied to the jth electrode, and the ith component

of the resulting electric field EðjÞ
i is considered, then the

corresponding characteristic distance is (Leibrandt, Yurke,
and Slusher, 2007)

Di;j ¼ Vj=E
ðjÞ
i : ð43Þ

Closely related to the characteristic distance is a dimensionless
quantity called the dipole geometrical efficiency factor κi;j.
This relates the ion-electrode separation to the characteristic
distance as

κi;j ¼
2dj
Di;j

¼ 2djE
ðjÞ
i

Vj
; ð44Þ

where dj is the distance of the ion from the jth electrode, and
the factor of 2 ensures that the efficiency is equal to 1 for an
ion held halfway between a pair of parallel plates.
The term geometrical efficiency factor is often used in the

literature to refer to either the dipole efficiency factor
(Deslauriers, Olmschenk et al., 2006) or the quadrupole
efficiency factor (Madsen et al., 2004; Hughes et al.,
2011). For clarity, we highlight the fact that the present
discussion of κi;j concerns the dipole geometrical efficiency
factor. For the simple geometries considered in this
section (IV.D.2), symmetry dictates that there is only one
direction in which the ion can be heated. The heating is also
entirely due to just one voltage (or voltage difference) of
interest. For simplicity, the subscripts for κ, d,D, V, and Ewill
therefore be omitted for the remainder of this section. The
results, however, can be readily generalized to more compli-
cated structures.
If the geometry of a trap is uniformly scaled then κ is

constant, D ∝ d, and β ¼ 2. If, however, some dimensions of
a trap are changed while others remain constant, then one must
solve for the electric field as a function of the changing
geometry to calculate κ, D, and β. There exist a limited
number of geometries for which the characteristic distances
can be analytically calculated; in general it must be found
numerically. Three geometries are considered here: planar,
spherical, and needle geometries. In the first instance they are
all calculated analytically. A more complicated, and realistic,
needle geometry is then calculated numerically.

• Planar geometry: An often-used idealization for deter-
mining the effects of voltage noise on the electrodes is to
approximate the trap by two parallel and infinitely
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extended plates (Lamoreaux, 1997; James, 1998;
Wineland, Monroe, Itano, King et al., 1998; Wineland,
Monroe, Itano, Leibfried et al., 1998; Henkel, Pötting,
andWilkens, 1999). This configuration approximates the
situation for an ion trapped above a planar microtrap,
provided the spatial distribution of the noise on the
surface is uncorrelated to the electrode geometry, and no
other length scale enters the situation. It also describes
the limit in which the ion-surface distance is much
smaller than any features on the trap such as the extent or
curvature of the electrodes. The electric field normal to
two plates separated by a distance s, and due to a voltage
difference V, is simply V=s. In any real geometry
consisting of large but finite planes there exists some
far-field ground, such as the vacuum chamber. As the
theoretical model at hand considers infinite planes there
is no quadrupole term and no pseudopotential minimum
in which an ion might be trapped. The position of the ion
between the plates is thus arbitrary. However, when
considering the distance scaling of noise for the system
the only distance scale present is the separation of the
plates s. It follows thatD ∝ s, and it might reasonably be
assumed that d ∝ s. The distance-scaling exponent of the
electric-field noise is then β ¼ 2.

• Spherical geometry: Another idealized geometry con-
sists of two spherical electrodes of equal radius Rel, held
a distance s apart, and a far-field ground. In this
geometry, given the application of an appropriate rf
voltage to both spheres, the ion would be trapped
halfway between the two spheres. This configuration
is sometimes used to approximate a needle trap or the
end caps of a linear Paul trap. Provided s ≫ Rel, the
charge distribution on the surface of the spheres gives
the same electric field halfway between the two spheres
as that of two point charges located at the spheres’
centers. Under such circumstances, and considering
voltage noise for which there is a voltage difference V
between the two spheres, the electric field at the center of
the ion trap is

E ¼ CV
4πϵ0d2

; ð45Þ

where C is the capacitance of the two conducting spheres
and d ¼ s=2. The capacitance of one sphere in such a
two-sphere system C≃ 2πϵ0ðRel þ R2

el=sÞ (Lekner,
2012) allows for an analytical solution of the field to
be found in the limit s ≫ Rel. With reference to Eq. (43),
the characteristic length scale is then D ¼ 2d2=Rel. The
dipole geometrical efficiency factor is κ ¼ Rel=d and the
distance-scaling exponent is β ¼ 4.

• Needle geometry: Another geometry which has been
studied in ion-trap experiments is that of two needle
electrodes (Deslauriers, Olmschenk et al., 2006). In the
experimental realization, an ion is trapped halfway
between the two needle tips. The distance d between
the ion and the needle tip can be varied. The expected
electric-field noise due to voltage noise on the electrodes
can be calculated by solving the Laplace equation

∇2Φ ¼ 0, where Φ represents the potential everywhere
in space, and the voltages on the electrodes represent the
boundary conditions for solving this differential equa-
tion. The electric field is then E ¼ −∇Φ.

If the needle electrodes are approximated by hyper-
bolic surfaces of revolution [see Fig. 13(a)], then the
Laplace equation for the electric field can be solved in
prolate spheroidal coordinates (Chen and Davies, 1996).
This approximation has the advantage that it can be
solved analytically, although it suffers from the limita-
tion that the radius of curvature of the needle tips cannot
be independently specified of the taper angle of the
needle tips. As with the planar geometry, the absence
of a far-field ground in the mathematical model means
that no trap is formed with the application of an rf
voltage to the electrodes. However, for the purpose of
calculating the heating rate due to voltage noise on the
needle tips, the model does provide some insight.

Consider two hyperbolic needle tips with radius of
curvature Rel and separated by a distance 2d. The electric
field halfway between them is given by

E ¼ V
d

v0
ln ½ð1þ v0Þ=ð1 − v0Þ�

; ð46Þ

FIG. 13 (color online). Distance scaling of Johnson noise for a
needle trap. (a) Electrode geometry considered for the analytic
result given in Eq. (46). (b) Electrode geometry used for the
numerical calculation of the electric field at the center of a needle
trap. The taper angle is 4° and a conducting ground sleeve, 3 mm
inside diameter, is recessed 2.3 mm from the tips. This geometry
was chosen to approximate the experiment of Deslauriers,
Olmschenk et al. (2006). (c) The dipole efficiency factor κ
defined in Eq. (44) plotted as a function of the tip separation.
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where v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þ Rel=dÞ

p
and V is the potential

difference between the two tips. With reference to
Eq. (43), this simplified needle geometry has a character-
istic distance

D ¼ d ln

�
1þ v0
1 − v0

�
=v0;

which can be fitted by a power law in order to estimate
the distance-scaling exponent β for a particular trap
geometry. Taking Rel ¼ 3 μm and approximating
Eq. (46) over the range 30 μm < d < 200 μm with a
power law of the form d−β gives β ≅ 2.4. This is
sensitively dependent on parameters such as tip radius
of curvature Rel and the exact range of distances d. For
this example, if d has an uncertainty of �5 μm and Rel
has an uncertainty of �1 μm, then β ¼ 2.4ð2Þ.

For more realistic electrode geometries the electric
field due to a voltage difference between the two tips
must be calculated numerically. Figure 13(b) shows a
geometry similar to that described by Deslauriers,
Olmschenk et al. (2006). The needle electrodes have a
tip radius of curvature Rel ¼ 3 μm and a taper angle of
4°. Also included are ground sleeves of 3 mm inside
diameter, recessed 2.3 mm from the needle tips and
electrically isolated from the needles with an alumina
tube. Considering the dipole efficiency factor κ, Fig. 13
(c) compares the numerically evaluated results6 to those
obtained analytically from Eq. (46). This numerical
example confirms the overall trend of κ for a realistic
electrode configuration and, at least for this specific
geometry, the absolute value deviates by no more than a
factor of 2 from the analytic prediction. By fitting the
numerically calculated characteristic distance D to a
power law and assuming that the measured ion-electrode
separation has an uncertainty of �5 μm [which is the
uncertainty claimed by Deslauriers, Olmschenk et al.
(2006)] then the predicted value of β is 2.5(2). Com-
parison of these simulation results with experimental
results is discussed in detail in Sec. VI.A.

• Rough surfaces: An issue related to the distance scaling
of Johnson noise concerns the effect of the electrode
surface not being geometrically smooth. Small features
on the electrode could give rise to a local enhancement of
Johnson noise. For instance, if there is a small cylindrical
cone with a spherical end tip protruding above the
surface, then, assuming its tip radius rcc is much smaller
than its height, its resistance is given by (Deslauriers,
Olmschenk et al., 2006)

R ¼ ρe
πrcc tan θcc

; ð47Þ

where ρe is the bulk resistivity and θcc is the angle of the
cone. Therefore, a small crystal of gold with a radius of a

few nanometers at the tip, growing from the surface of an
ion trap, could be equivalent to a nanometer-sized
electrode having a resistance of several ohms. If the
surface is populated with patches of a poor conductor,
such as an oxide (Harlander et al., 2010; Steinhauer
et al., 2011; Wang et al., 2011), then small patches with
orders-of-magnitude higher resistances could be ex-
pected. The noise due to such patch potentials, while
having its origin in Johnson noise, would have a different
distance scaling. The distance scaling of patch potentials
is discussed in Sec. V.

3. Temperature scaling of Johnson noise

From Eq. (40) it should be expected that the level of
Johnson noise varies with temperature. The exact relationship
is complicated by the temperature dependence of the various
resistances involved. Many metals’ resistance varies as R ∝ T.
This would suggest, in the simplest case, that γ ¼ 2. That
being said, at low temperatures, materials can depart signifi-
cantly from such simple behavior (Ekin, 2007). This applies
both to the simple materials such as the trap electrodes and to
any electronic components which may be held at cryogenic
temperatures. Finally, note that even if the trap itself is cooled,
it may be that not all of the attendant electronics is at the same
low temperature. This will further complicate the picture of
any temperature scaling. Ultimately, each individual experi-
ment must be modeled properly to check what value of γ
would be expected and how that value might change in
different temperature regimes.

4. Absolute values of Johnson noise

The expected noise above a surface due to Johnson noise in
electrical circuits has been extensively modeled by Leibrandt,
Yurke, and Slusher (2007). (Their main results for two specific
examples are plotted in Fig. 23 as points [A] and [B].)
Point [A]a, at ∼10 × 10−12 V2=m2 Hz, corresponds to the

expected axial electric-field noise 60 μm above a surface-
electrode segmented linear ion trap, due to the Johnson noise
of the electrode material and attendant filter electronics. [A
schematic of the kind of trap envisioned is shown in Fig. 1(h).]
The calculation was made for an ion situated directly above
the gap between two electrode segments, such that it is
sensitive to the uncorrelated nature of the noise between
the two electrodes. The calculated level of noise in this
instance is comparable to the level of noise observed in a
number of traps of similar size. Point [A]b, at
∼1 × 10−12 V2=m2 Hz, corresponds to the expected axial
electric-field noise in the same trap as before, but at a position
above the center of a segment. As the ion is above the center of
an electrode, and Johnson noise on the electrode is correlated,
the axial heating rate is lower.
Point [B] in Fig. 23, at ∼2 × 10−14 V2=m2 Hz, indicates the

expected level of axial electric-field noise due to the Johnson
noise of the electrode material and filter electronics in a two-
layer segmented linear ion trap. The geometry considered is
similar to a segmented version of the trap shown in Fig. 1(f),
with an ion-electrode separation of ∼300 μm. The calculation
was modeled after the geometry and electronics used by Rowe
et al. (2002). The noise is around a factor of 20 below the level6Using COMSOL Multiphysics v3.4.
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measured experimentally by Rowe et al. (2002) (point [10]a
in Fig. 23).

5. Johnson noise in a filter network

In the preceding sections the Johnson noise due to various
individual electronic elements was discussed. In any given
experiment, each such element forms part of a larger circuit,
and it is the effect of the entire circuit on the ion which is
important. By way of illustration, this section provides a
worked example of how to calculate the expected Johnson
noise from an RC filter network, shown in Fig. 14.
The circuit considered consists of a dc voltage source Vdc,

which has its technical noise filtered by around 60 dB at
1 MHz using an RC filter network composed of resistors and
capacitors. This is the same circuit as is used by Harlander
(2012) to drive and filter dc electrodes in a segmented
microscopic ion trap. The first capacitor C1 is simply a filter
capacitor. For this analysis, the second capacitor C2 lumps
together a second stage of filter capacitors with the capaci-
tance of the trap and the wiring. It is assumed that all
capacitors are ideal and lossless. The resistors in this model
correspond to resistive components in the RC circuit.
Neglecting any technical noise from the voltage source, under
the assumption that the filter network is able to sufficiently
attenuate it, we consider the Johnson noise from the compo-
nents in the filter network itself. This is calculated by
considering the effective real resistance of the circuit from
the perspective of the ion. This is the effective real resistance
across terminals 1 and 2 in Fig. 14.
The impedance of the circuit across terminals 1 and 2, Z12,

at frequency ω is calculated using the usual rules for parallel
and series lumped circuit elements:

Z12 ¼
−i
ωC2

∥
�
R2 þ

�
R1∥

−i
ωC1

��
; ð48Þ

where the notation a∥b denotes the impedance of two
elements in parallel which have impedance a and b, respec-
tively; i.e., a∥b ¼ ab=ðaþ bÞ.
The effective real resistance R12 is then

R12¼
C2
1R

2
1ω

2R2þR2þR1

ω2fC2
2½C2

1R
2
1ω

2R2
2þ2R2R1þR2

2�þ½R1ðC2þC1Þ�2gþ1
:

ð49Þ

Considering a circuit in which the frequency of interest is well
above the cutoff of the first filter stage (ωR1C1 ≫ 1), and also
in which R1 ≪ R2 and C1 ≫ C2, Eq. (49) can be approxi-
mated by

R12 ≃ R2

ðωR2C2Þ2 þ 1
: ð50Þ

This demonstrates that above the cutoff frequency of the RC
filter, i.e., ωR2C2 > 1, the effective real resistance that the ion
sees decreases as the second-stage filter resistance R2 is
increased. Physically this can be understood by noting that,
as the filter resistance is increased, the increase in noise from
the resistors themselves is outweighed by the increased
attenuation of thermal noise by the low-pass filter network.
By way of an example, we consider the expected level of

noise for the components used in the experiment of
Harlander (2012). With resistances of R1 ¼ 160 Ω, R2 ¼
2.85 kΩ, and capacitances C1 ¼ 1 μF, C2 ¼ 55 pF, the level
of Johnson noise at 1 MHz corresponds to that of a resistor of
R12 ≃ 1.4 kΩ. From Eq. (39), the expected spectral density of
the voltage noise is SV≃2×10−17 V2=Hz. Considering elec-
trodes with a characteristic distance of D ¼ 2000 μm, by
Eq. (40) this voltage noise corresponds to an electric-field
noise at the position of the ion of SE ≃ 6 × 10−12 V2=m2 Hz
per electrode. Assuming the noise is uncorrelated between
the electrodes (as is the case if they are individually filtered),
and assuming that the ion is predominantly heated by the
nearest four electrodes, the total expected field noise is
SE ≃ 24 × 10−12 V2=m2 Hz. Increasing the second-stage
resistor to R2 ¼ 7.95 kΩ would reduce the electric-field noise
at the ion to SE ≃ 14 × 10−12 V2=m2 Hz. These results are
discussed further in Sec. VI.D.
By way of caution, we stress the illustrative nature of this

calculation. The details of the analysis, and particularly the
approximations made for particular regimes of operation, are
specific to this example. Consequently, Eq. (50) is not to be
considered as a generally applicable solution for RC filter
circuits; the ESR of a circuit must be calculated for each
specific case.

6. Johnson noise in an rf resonator

This section provides a second worked example, calculating
the Johnson noise expected from a resonator. Unlike
Sec. IV.D.5, this example explicitly considers losses in
inductive and capacitive elements. The resonator design,
shown in Fig. 15(a), is typical of the kind of circuit used
to provide rf voltages to an ion trap. The trap-drive signal at
frequency Ωrf is provided by an rf source Vrf with a source
resistance of RS. The source is impedance matched to an LC
resonator using a lossless transformer. The resistance RL ¼
ωL=Qþ Rwires lumps together the losses from the inductor at
frequency ω [see Eq. (42)] with any resistance of the trap
electrodes or wires Rwires. The lumped capacitance of the
trap’s electrodes and wires is represented by a single capacitor
with capacitance C. The dielectric loss associated with this
capacitance is represented by an EPR of RC ¼ 1=ðωC tan θÞ
[see Eq. (41)], where tan θ is the effective loss tangent of the
capacitor C.
To analyze the circuit in Fig. 15(a) a significant simplifi-

cation can be made, as shown in Fig. 15(b). The voltage
source Vrf , its source resistance RS, and the matching
transformer can be replaced with an equivalent matched
voltage source VMrf , that has a source resistance RMS. This

Vdc

R1 R2

C1 C2

1

2

FIG. 14. Schematic representation of a second-order RC low-
pass filter. Capacitor C2 lumps together the capacitance of the trap
with that of the filter capacitors.
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can be understood by noting that on resonance, by definition,
the inductance and capacitance of a resonator cancel, so that
the resonator’s equivalent circuit impedance is purely real. The
purpose of the matching transformer is to ensure that, on
resonance, the matched source impedance is equal to the
equivalent series impedance of the LC network.
Consequently, the matched source impedance must be purely
real.
The equivalent series impedance of the LC network

(including all losses) can be calculated using the usual rules
for parallel and series lumped circuit elements:

ZESRðωÞ ¼ RLðωÞ þ iωLþ
�
RCðωÞ∥

−i
ωC

�
: ð51Þ

On resonance the imaginary part of the impedance goes to
zero and the inductance is

L ¼ 1

Ω2
rfCð1þ tan2θÞ : ð52Þ

If tan θ ≪ 1, then Ωrf ≈ 1=
ffiffiffiffiffiffiffi
LC

p
. The matched source resis-

tance RMS is equal to the ESR on resonance ZESRðΩrfÞ:

RMS ¼ RLðΩrfÞ þ
RCtan2θ
1þ tan2θ

: ð53Þ

For small loss angle θ, this gives

RMS ¼ ΩrfL
Q

þ Rwires þ
θ

ΩrfC
: ð54Þ

The first term in Eq. (54) is due to losses in the inductor. The
second term corresponds to losses in the resistive elements in
the circuit. The third term gives the dielectric losses. The
impedance of the circuit across terminals 1 and 2 at frequency
ω is then

Z12ðωÞ ¼ RCðωÞ∥
−i
ωC

∥ðRLðωÞ þ iωLþ RMSÞ: ð55Þ

Assuming, as before, that θ ≪ 1, the real part of this
impedance is

R12 ¼
CθL2ω3 þ CθωðRL þ RMSÞ2 þ RL þ RMS

C2ω2ð1þ θ2Þ½L2ω2 þ ðRL þ RMSÞ2� þ 2Cω½θðRL þ RMSÞ − Lω� þ 1
: ð56Þ

To make physical sense of Eq. (56), two frequency regimes
are now considered.
The first regime considers noise at a much lower frequency

than the drive circuit’s resonant frequency ω ≪ Ωrf. This
regime is important because ions can be heated by noise at
their secular frequency ωt ≪ Ωrf. Assuming that the capacitor
does not low-pass filter the noise coming from the voltage
source (i.e., ωRMSC;ωRLC ≪ 1), and that the resistance of
the wires is much less than the effective resistance of the
inductor (Rwires ≪ ΩrfL=Q), the total effective resistance
across terminals 1 and 2 is simply equal to the matched
source resistance:

R12 ≈ RMS ¼ ΩrfL
Q

þ Rwires þ
θ

ΩrfC
: ð57Þ

Consider some reasonable experimental parameters for a
resonator circuit: Ωrf ¼ 2π × 29 MHz, Q ¼ 200, θ ¼ 0.01,
C ¼ 5 pF, and L ¼ 6 μH. For frequencies ω ≪ Ωrf , the

matched source resistance dominates over the resistances in
the LC resonator itself, i.e., RMS ≫ RL; θ=ΩrfC. With a value
of RMS ∼ 17 Ω this gives rise to a voltage noise
of SV ≈ 3 × 10−19 V2=Hz.
A second frequency regime of interest is when the frequency

of the noise ω is close to the ion’s motional sideband
frequencies Ωrf � ωt, where ωt=Ωrf ≪ 1. In this case, the
presence of the resonator can considerably enhance the
effective resistance across terminals 1 and 2. Using Eq. (56)
and assuming, as before, that ΩrfRMSC;ΩrfRLC ≪ 1 and
Rwires ≪ ΩrfL=Q, the resistance across terminals 1 and 2 is

R12ðΔωÞ ≈
2ΩrfL=Qþ θ=ΩrfCþ θΩrfL

4Δω2=Ω2
rf þ 2ð2=Qþ θÞð1=Qþ θÞ ; ð58Þ

where Δω is the difference between the frequency of the noise
ω and the trap-drive frequency Ωrf. Continuing with the
experimental parameters listed, the effective resistance at each

RS RL

CVrf

1

2

L

RC

(a)

RMS RL

C

1

2

L

RC

(b)

MrfV

FIG. 15. Resonator circuit. (a) Schematic representation of a
tank resonator which uses a perfect transformer to match the
resonator’s resistance on resonance RL to that of the source
impedance RS of the voltage source Vrf . (b) To simplify the
analysis, the voltage source and matching transformer can
equivalently be considered a perfectly impedance matched
voltage source.
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of the sidebands R12ðωtÞ is around 1.6 kΩ, with an associated
voltage noise of SV ≃ 2 × 10−17 V2=Hz.
The relationship between voltage noise on the electrodes

near the trap-drive frequency and the level of heating in the
presence of excess micromotion is given by Eq. (13), which is
derived in Appendix B. Considering some indicative numbers,
in a trap with a characteristic quadrupole distance of
Dq ¼ 100 μm, where the ion is displaced by Δx ¼ 3 μm
from the rf null, the stated level of voltage noise would
contribute a heating rate of several phonons per second. This
heating rate increases with the square of the ion’s displace-
ment from the rf null. The ðΦ00

rfÞ2 term in Eq. (13) means that,
all other things being equal, excess-micromotion-induced
heating scales with Γrf

h ∝ D−4
q .

7. Technical noise

Technical noise is defined for this review as noise coming
from power supplies and other voltage sources such as DAC
cards. Technical noise can be modeled as a resistor which is
very hot (Wineland, Monroe, Itano, Leibfried et al., 1998) or
very large (Lamoreaux, 1997).
Considering the likely range of absolute values for the

noise, many dc power supplies and DACs used for experi-
ments have specifications which allow an upper limit to be put
on the level of any such technical noise. A typical power
supply might have 5 mV of noise spread across 20 MHz
(1 μV=Hz1=2) which, using Eq. (39), is equivalent to the
Johnson noise on a 75 MΩ resistor at 300 K. This would
require 80 dB of filtering at the trap frequency to reduce this
technical noise to a level comparable with the Johnson noise
expected from the bulk resistance of the trap electrodes
(∼1 Ω). With such filtering and a characteristic distance
D ¼ 1000 μm, the expected spectral density of electric-field
noise at the position of the ion would be of
SE ∼ 10−14 V2=m2Hz. Such aggressive filtering is possible,
but not trivial. Moreover, it is easy for such filter electronics to
have low-Q inductors [cf. Eq. (42)] or loops of wire subject to
EM pickup (see Sec. IV.C) which can themselves become a
more significant source of noise than the filtered techni-
cal noise.
The frequency-scaling exponent α of technical noise could

take any value as the device could exhibit resonances.
Distance scaling of technical electric-field noise would go
as 1=D2, since it is proportional to the voltage noise on the
electrodes [cf. Eq. (38)]. It might be expected that the
technical noise would not change with temperature (i.e.,
γ ¼ 0). That being said, if the filters change their response
as the temperature changes, a nonzero value of γ would be
expected.

E. Space charge

Most models of ion-trap experiments assume that the
vacuum is neutral. However, if some mechanism produces
moving charges within the vacuum, this would cause electric-
field noise at the position of the trapped ion. A common
source of charge in vacuum, which has been documented in
ion traps (Wineland, Monroe, Itano, Leibfried et al., 1998), is
electron emission from electrode surfaces.

The mechanism of electron emission in any instance
depends on the details of the experiments: Field emission
is made more likely by sharp points, rough electrode surfaces,
or high voltages (Murphy and Good, 1956). Thermal emission
is made more likely by high voltages or locally hot electrodes
(Murphy and Good, 1956). Photoelectric emission is made
more likely by use of short-wavelength laser light (Linford,
1933). Regardless of the emission mechanism, the effect on
the trapped ion is similar. Electrons escaping the surface of a
cathode follow the field lines created by the high-voltage trap
drive and terminate at an anode. These moving charges create
electric-field noise at the position of the ion, leading to
heating. Effects due to secondary charges which might be
ejected by electron bombardment of the anode are not
considered here.
Under typical ion-trap conditions it takes ≲100 ps for an

emitted electron to traverse the trapping region. The rf trap
drive is therefore essentially static during the process. As the
emitted electron follows the arc of the electric-field line from
the cathodic to the anodic electrode its distance from the
trapped ion varies. Even without solving for the exact
electrostatic field of a particular trap geometry, a quantitative
analysis of a single electron passing through an ion trap is
instructive.
The Coulomb force between an emitted electron and a

trapped ion can be modeled as a Gaussian pulse of temporal
width τe with an amplitude of e2=4πϵ0d2. Here d is the
average distance from the ion to the emitted electron as the
electron travels from the cathode to the anode and is assumed
to be equal to the distance from the ion to the nearest
electrode. Fourier analysis shows that, below νe ¼ 1 GHz,
the single-sided energy spectral density of the electric-field

noise SðSCÞEE during the electron emission is frequency inde-
pendent and given by

SðSCÞEE ¼ 2π

�
eτe

4πϵ0d2

�
2

: ð59Þ

The spectral density of the electric-field noise SðSCÞE for an
electron-emission rate of Γe is then

SðSCÞE ¼ 2πΓe

�
eτe

4πϵ0d2

�
2

: ð60Þ

Assuming τe ¼ 100 ps and d ¼ 100 μm, an average emission

current of 1 nA leads to noise of order SðSCÞE ∼10−11 V2=m2Hz.
This level of noise is comparable to that seen in some ion-trap
experiments (cf. Fig. 8). Note that there are several factors
which may enhance electron emission and increase the field
noise in the vicinity of the ion (Murphy and Good, 1956),
including coating the electrodes with low work-function
materials (e.g., Ba, Sr, Yb, and Ca). As can be seen from
Eq. (60), the point charges emanating from the surface of the
electrodes would generate noise which exhibited a distance
scaling of β ¼ 4, provided all other operating parameters
remain constant. An electron-emission current of the magni-
tude considered here, and the associated field noise, could be
detected and engineered away (Wineland, Monroe, Itano,
Leibfried et al., 1998). Nonetheless, the possibility of such
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noise levels demonstrates the importance of checking for, and,
where necessary, eliminating electron emission in ion traps.
While this estimate assumes electron-emission events to be

temporally uncorrelated, many electron-emission experiments
have seen that electron-emission noise follows a periodic or
oscillatory nature, which is not white noise in character
(Tringides and Gomer, 1986; Dharmadhikari, Khairnar, and
Joag, 1991). It is additionally possible that the time-dependent
voltage of the trap drive at frequency Ωrf could give rise to
periodic field-induced electron-emission currents at that
frequency. The electron-emission current would then resemble
a regular series of pulses, each of width τe, with an average
temporal spacing at the period of the trap drive 2π=Ωrf . The
noise estimate arising from Eq. (60) would hold at frequencies
ω ≪ Ωrf , since the shot noise characteristics would dominate.
However, the correlation of the electron-emission current at
the trap-drive frequency would enhance the field noise at
harmonics of the trap-drive frequency.

V. MICROSCOPIC MODELS FOR NOISE ABOVE
NONIDEAL SURFACES

In the analysis of Sec. IV it was usually assumed that, in the
relevant frequency range of ωt=2π ∼MHz, the whole trap
electrode can be described as an ideal equipotential. This
assumption is not in general true for real metallic surfaces,
where regions of different crystal orientation, surface rough-
ness, or adsorbed atoms and compounds lead to local
variations of the potential (Herring and Nichols, 1949).
These patch potentials play an important role in many areas
of physics and represent, for example, an experimental
limitation for precision measurements of the Casimir-Polder
force between closely spaced metallic plates (Sandoghdar
et al., 1992; Harber et al., 2005) or gravity tests with charged
elementary particles (Camp, Darling, and Brown, 1991;
Darling et al., 1992). It was first conjectured by Turchette
et al. (2000) that fluctuating patch potentials on the electrodes
could also be the source of the unexpectedly high heating rates
observed in ion traps. Turchette et al. (2000) showed that, for a
simplified spherical trap geometry, local rather than extended
voltage fluctuations lead to a d−4 scaling and therefore a
strong enhancement of heating rates for small trap dimen-
sions. Subsequent studies have investigated in more detail
how the distance scaling is affected by finite patch sizes and
by the electrode geometry.
The general theoretical framework and the main theoretical

predictions for patch-potential heating are summarized in
Sec. V.A. A class of models which may also be invoked in
consideration of the noise seen in ion traps involves two-level
fluctuators (TLFs), in which a particle can occupy, and
fluctuate between, one of two states. The instance in which
TLFs are distributed in a thin layer on the electrode surface
provides a special case of patch potentials which is considered
in Sec. V.B. These models provide valuable predictions for
distinguishing between, for example, noise sources which lead
to global fluctuations of the electrode voltage and noise
sources related to microscopic processes on the electrode
surface which lead to local fluctuations. However, the patch-
potential model itself does not make any predictions regarding
the origin of these fluctuations. Sections V.C and V.D of this

review describe different microscopic processes, namely,
fluctuating adatomic dipoles and adatom diffusion, which
have been suggested as potential underlying mechanisms for
localized field fluctuations. The analysis of these processes
provides additional predictions for the frequency and temper-
ature scaling of the noise.

A. Patch-potential models

1. Origin of patch potentials

The term “patch potential” refers quite generally to a local
variation of the potential on an otherwise homogeneous,
biased electrode surface. Different mechanisms are predicted
to produce such microscopic potential variations. Most
commonly patch potentials are attributed to regions of differ-
ent crystal orientations and surface adsorbates (Antoniewicz,
1974; Gomer, 1990; Nonnenmacher, O’Boyle, and
Wickramasinghe, 1992; Rossi and Opat, 1992; Speake and
Trenkel, 2003).
For a clean and regular surface the otherwise homogeneous

density of the electrons inside the metal is distorted at the
surface, which creates an effective dipole layer at the metal-air
interface. This dipole layer changes the work function W of
the electrode by ΔW ¼ eΦp. Here e is the charge of the
electron and Φp is the patch potential, which is related to the
dipole moment per unit area P by (Jackson, 1999)

Φp ¼ P=ϵ0: ð61Þ

The value of P depends on the material’s surface properties, in
particular, on the relative orientation of the crystal lattice and
the surface. Consequently, small regions of different crystal
orientation can lead to variations of Φp over microscopic
distances. A similar effect arises from adsorbed atoms and
molecules, which are polarized when approaching the surface
and form additional dipole layers.
The static potentials of metallic surfaces have been mea-

sured using various methods. From thermionic-emission-
current experiments, it is known that the work function of
metal surfaces can vary by several tens of millivolts, depend-
ing on the crystal orientation (Herring and Nichols, 1949). On
gold surfaces patch potentials with sizes ranging from 10 nm
to 10 μm and Φp ∼meV have been measured using Kelvin
probes (Camp, Darling, and Brown, 1992; Rossi and Opat,
1992). The surface dipoles created by adsorbates can be
directly observed on the level of single atoms in precision
experiments with cold trapped atoms. For example, Obrecht,
Wild, and Cornell (2007) utilized a magnetically trapped
Bose-Einstein condensate to measure the electric-field dis-
tribution emanating from a cluster of Rb atoms adsorbed on
various surfaces. The measured induced dipole moment of
μ ∼ 5 D (debye) per atom is consistent with theoretical
predictions for alkaline atoms absorbed on metallic surfaces.
(1 D ≈ 3.33 × 10−30 Cm.) Finally, trapped ions have been
used to investigate laser-induced surface dipoles (Harlander
et al., 2010) and the long-term variations of stray electric
fields over several months (Härter et al., 2014).
While static patch fields on metal surfaces are relatively

well understood, little is known about their fluctuations, in
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particular, in the MHz frequency regime of interest.
Sections V.C and V.D describe several mechanisms which
have been suggested in the literature to explain the observed
heating rates in ion traps in terms of microscopic atomic
processes on the surface.

2. Electric-field noise from fluctuating patches

Figure 16 illustrates the general setting of an ion which is
trapped a distance d above an electrode with a radius of
curvature Rel. The electrode is considered in general to be an
equipotential at Φ0, while surface imperfections cause the
electrode potential within different areas on the surface
(“patches”) to be enhanced or reduced by an amount Φpðr; tÞ.
For the following discussion the physical origin of these

voltage variations is left unspecified, but it is assumed that
potential fluctuations are correlated only over a length scale
rc ≈ Rp, which corresponds to the characteristic patch radius
Rp. In the absence of additional free charges

7 and by assuming
that the potential difference Φpðr; tÞ occurs within a layer that
is thin compared to the ion distance d; the electrostatic
potential at the position of the ion ΦðrI; tÞ is the solution
of the Laplace equation with boundary conditions given by
Φ0 þ Φpðr; tÞ on the electrode surface S. By setting Φ0 ¼ 0

for simplicity, the potential can in general be expressed as
(Jackson, 1999)

ΦðrI; tÞ ¼ −
Z
S
d2r

∂GEðrI; rÞ
∂ns Φpðr; tÞ: ð62Þ

Here GEðrI; rÞ is the electrostatic Green’s function satisfying
the Dirichlet boundary conditions, GEðrI; rÞ ¼ 0 for r ∈ S,
and ns is a unit vector normal to the surface. The electric field
projected along the trap axis is then given by EtðtÞ ¼ −et ·∇ΦðrI; tÞ and the resulting electric-field spectrum can be
written as

SðPPÞE ¼
Z
S
d2r1

Z
S
d2r2GðrI; r1ÞGðrI; r2ÞCVðr1; r2;ωÞ:

ð63Þ

In Eq. (63)

GðrI; rÞ ¼ et · ∇
�∂GEðrI; rÞ

∂ns
�
r∈S

ð64Þ

is a geometric factor describing the electric field produced at
the position of the ion from a small patch located at r on the
electrode. The correlation function

CVðr1; r2;ωÞ ¼ 2

Z
∞

−∞
dτhδΦpðr1; τÞδΦpðr2; 0Þie−iωτ; ð65Þ

where δΦpðr; τÞ ¼ Φpðr; τÞ − hΦpðr; τÞi contains all of the
information about temporal and spatial correlations of the
fluctuating patch fields at positions r1 and r2.
While the exact dependence of CVðr1; r2;ωÞ on frequency

and distance requires detailed knowledge about the micro-
scopic origin of the patch potentials, a reasonable approxi-
mation to a real surface potential can be obtained by assuming
that the electrode is covered by Np separate patches (Low,
Herskind, and Chuang, 2011):

Φpðr; tÞ ¼
XNp

i¼1

ViðtÞχiðrÞ: ð66Þ

Here the step function χiðrÞ ¼ 0; 1 has a nonvanishing support
only for values of r within the area Ai of the ith patch, and
ViðtÞ denotes the fluctuating potential of this patch. By
assuming that the voltage fluctuations between different
patches are uncorrelated and described by the spectral density
SiV , this model leads to a correlation function

CVðr1; r2;ωÞ ¼
XNp

i¼1

SiVχiðr1Þχiðr2Þ: ð67Þ

This can be further simplified by assuming SiV ≈ SV . The
voltage correlations described by Eq. (67) are nonzero only
over the extent of individual patches which, for a sufficiently
homogeneous distribution, implies a correlation length
rc ≈

ffiffiffiffiffi
Ap

p
, where Ap is the average patch area.

3. Distance scaling for a planar trap

The influence of a finite patch size on the distance scaling
of electric-field noise experienced by the ion is most apparent
by considering the idealized case where the ion is trapped
above an infinitely extended planar electrode. In this case the
electrode dimension Rel → ∞ is eliminated from the problem
and the remaining length scales are the correlation length rc
and the ion-surface distance d. For a single, perfectly
conducting plane specified by r ¼ ðx; y; z ¼ 0Þ the Green’s
function is simply that of a charge plus its image charge inside
the metal:

FIG. 16 (color online). Length scales considered in the patch-
potential model. The ion is trapped at a distance d above an
electrode of characteristic dimension Rel. Patch fields on the
electrode produce local potential fluctuations Φpðr; tÞ, which are
correlated over a length scale rc ≈ Rp set by the typical radius of
the patches Rp.

7This is typically the case for metallic electrodes. Here surface
charges are compensated by their image charges and form effective
dipoles. However, this is in general not the case for charges located
on insulating parts of the trap, where a different field distribution can
arise.
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GEðrI; rÞ ¼
1

4π

�
1

jrI − rj −
1

jrI − r − 2zezj
�
: ð68Þ

Therefore, the resulting potential defined in Eq. (62) is
equivalent to a potential being produced by a layer of surface
dipoles covering the electrode, with a local dipole moment
dμðr; tÞ ¼ 2ϵ0Φpðr; tÞdS per surface element dS. Note that
since this dipole layer is located symmetrically around z ¼ 0,
there is a factor of 2 compared to a layer of dipoles on top of
the surface. For an ion located at rI ¼ ð0; 0; z ¼ dÞ the
geometric factor given in Eq. (64) is explicitly given by
GðrI; rÞ ¼ gDðx; yÞ=ð2πÞ, where

gDðx; yÞ ¼
2d2 − x2 − y2

jd2 þ x2 þ y2j5=2 ; et ¼ ez; ð69Þ

gDðx; yÞ ¼
−3dx

jd2 þ x2 þ y2j5=2 ; et ¼ ex ð70Þ

describes electric-field fluctuations perpendicular and parallel
to the electrode surface, respectively. In the limit of small
patches, rc ≪ d, and with a surface coverage fraction of σp the
integrals in Eq. (63) can be evaluated in a straightforward
manner. As a result one finds

SðPPÞE;η¼⊥;∥ ≃ sη
3σpAp

16πd4
SV ð71Þ

for the field fluctuations perpendicular (s⊥ ¼ 1) and parallel
ðs∥ ¼ 1=2Þ to the surface. Equation (71) shows that the
microscopic structure of the electrode surface can substan-
tially modify the distance scaling of the noise, and would lead,
at least for this simple geometry, to the often-cited d−4 scaling
of trapped-ion heating rates.
On gold surfaces static patch potentials with sizes ranging

from 10 nm to 10 μm have been experimentally measured
using Kelvin probes (Camp, Darling, and Brown, 1992; Rossi
and Opat, 1992). The sizes of patches which could fluctuate at
radio frequencies are unknown. From the theory presented
here, in the limit rc ≪ d, the predicted scaling of the electric-
field noise given in Eq. (71) is insensitive to the exact details
of the patch correlation function. This is not the case for
moderate or large patch sizes d≲ rc. For example, an
exponential correlation CVðr1; r2;ωÞ ∼ e−jr1−r2j=rc leads to a
divergent spectrum SE ∼ d−1 for rc ≫ d (Dubessy, Coudreau,
and Guidoni, 2009). In contrast, a sharp cutoff
CVðr1; r2;ωÞ ∼ Θðrc − jr1 − r2jÞ, where ΘðrÞ is the unit step
function, results in SE ∼ dþ1, and thus a vanishing spectrum
for large patch sizes (Low, Herskind, and Chuang, 2011).
The prediction of such qualitatively and unexpectedly differ-

ent behavior for essentially minor changes to CV is a conse-
quence of the rather unphysical configuration of an infinite
plane without additional ground electrodes. As a more appro-
priate approximation to a real trap, an ion confined between two
planar electrodes separated by 2d can be considered. The
Green’s function for this configuration can be evaluated
analytically, by taking into account the additional image dipoles
at the planes z ¼ �4jd, where j ¼ 1; 2;…. Therefore, the
analysis of a single plane can be repeated by replacing

gDðx; yÞ →
X∞
j¼0

2d2ð2jþ 1Þ2 − x2 − y2

jd2ð2jþ 1Þ2 þ x2 þ y2j5=2 ; ð72Þ

and the summation can be carried out after changing to a
Fourier representation (Dubessy, Coudreau, and Guidoni,
2009). The resulting electric-field spectrum is plotted in
Fig. 17(a) for the two types of correlation function CV given
previously. Consistent with the discussion of Johnson-like noise
in a parallel-plate configuration, SE exhibits a d−2 scaling at
larger patch sizes or small electrode separations, where the ion
essentially sees the constant homogeneous field of a plate
capacitor. At rc ≈ d, this crosses over to the d−4 scaling derived
in Eq. (71), with effective patch areas Ap ¼ 2πr2c and πr2c for
the exponential and steplike cutoff, respectively. Therefore, the
configuration of two parallel plates can be used as a minimal
toy model to describe the crossover from Johnson noise to
patch-potential noise in ion traps.

4. Influence of the electrode geometry

As discussed in Sec. IV.D.2 for the case of Johnson noise,
the expected distance scaling of the electric-field noise in
realistic traps can considerably differ from that of an infinite
planar geometry when the shape and finite electrode size is
taken into account. For patch-potential noise, this dependence

(a)

(b)

FIG. 17 (color online). Electric-field noise from patch potentials.
(a) Distance dependence of the electric-field noise SE for an ion
trapped between two infinite parallel plates (inset) assuming an
exponential (solid line) and steplike (dashed line) cutoff for the
spatial voltage correlation function CVðr1; r2;ωÞ. (b) The local
distance-scaling coefficient βðdÞ defined in Eq. (73) for an ion
trapped above a sphere of radius Rel (inset). The solid lines
represent the limits for pointlike patches (PP) for which rc → 0,
and infinite patches (IP) for which rc → ∞. The dotted lines show
the results for intermediate values of rc=Rel as indicated in the
plot. Adapted from Low, Herskind, and Chuang, 2011.
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is further complicated by the existence of a second length
scale given by the patch size rc. Low, Herskind, and Chuang
(2011) carried out a detailed analysis predicting the electric-
field noise scaling for various planar, spherical, and spheroidal
electrode geometries. They introduced a “local” scaling
coefficient, such that SE ∝ d−βðdÞ. On a double logarithmic
plot of SE against d, the local scaling coefficient βðdÞ is then
(minus) the local slope:

βðdÞ ¼ −
∂ lnðSEÞ
∂ ln d : ð73Þ

They then studied the dependence of βðdÞ on the electrode
distance d, the electrode geometry, and the characteristic
patch size rc ≈ Rp. An example of this analysis is shown in
Fig. 17(b), where βðdÞ is plotted for an ion at a distance d
above a spherical electrode of radius Rel. A similar plot for a
needlelike electrode (Fig. 24) is discussed in more detail in
Sec. VI.A. Figure 17(b) shows that, for d ≫ Rel, Johnson
noise and patch-potential models lead to a similar scaling. In
the case of heating in a direction normal to the sphere’s surface
this gives β ¼ 4. Only for distances d≲ Rel, do the predictions
from the two types of noise start to deviate significantly.
A note of caution must be added to the interpretation of this

plot for distances d < rc. As shown previously for the
example of a planar geometry, the scaling in this regime of
an ion above a single electrode can significantly differ from
that of an ion located symmetrically between two electrodes.
Similarly, it is expected that the scaling of a more realistic trap
configuration modeled by two spheres will differ from the
values shown in Fig. 17(b). However, this does not signifi-
cantly affect the scaling for d ≥ rc.

B. Two-level fluctuator models

The assumption of homogeneous lattices and surfaces is
only a crude approximation for real solids, where surface
corrugations or lattice dislocations create local minima in the
otherwise periodic potential landscape. In highly disordered
systems or amorphous solids, this can lead to the formation of
TLFs (Phillips, 1987), where electrons, atoms, or groups of
atoms become localized in one of two nearby potential
minima. The scenario considered here is depicted in
Fig. 18. The localization of charge means that TLFs on a
surface can be considered as a specific class of patch
potentials.
Quantum tunneling through the barrier or thermally acti-

vated transitions over the barrier induce random jumps
between the minima, causing fluctuations of the local dipole
moment associated with the two distinct configurations.
Phenomenological models based on the existence of a large
ensemble of TLFs have been successfully used to explain the
unusual low-temperature properties of glasses (Anderson,
Halperin, and Varma, 1972; Phillips, 1972) or the appearance
of current and voltage fluctuations with a 1=f frequency
scaling (Dutta and Horn, 1981; Paladino et al., 2014). More
direct measurements of two-level systems have recently been
performed with superconducting qubits, where TLFs in the
insulating layer of a Josephson junction have been spectro-
scopically resolved (Martinis et al., 2005) and the coherent

manipulation of individual two-level defects has been dem-
onstrated (Neeley et al., 2008; Lisenfeld et al., 2010).
In ion traps TLFs can potentially form in a disordered

insulating layer on top of the metal electrode and the noise
they generate leads to heating of the ion. Even though the
precise microscopic origin or the number of defects is
unknown, general predictions for the temperature and fre-
quency scaling of this noise process already follow from a few
reasonable assumptions regarding the distribution of energy
scales and relaxation times of the TLFs. The following section
first discusses the electric-field noise spectra expected from a
random distribution of fluctuating dipoles (Sec. V.B.1), and
more specifically that from two-state systems (Sec. V.B.2),
located in the vicinity of the electrode surface. Sections V.B.3
and V.B.4 then review two basic physical processes: thermal
activation and quantum tunneling. These are most commonly
considered in the solid-state literature for the modeling of
noise with a 1=f spectrum. A less-frequently discussed fact is
that nonuniform distributions of barrier heights in these
models can lead to nontrivial temperature dependences and
deviations from a strict 1=f scaling of the noise. These effects
could play a role in observed temperature variations of α
(Labaziewicz, Ge, Leibrandt et al., 2008) and are briefly
described in Sec. V.B.5.

1. Electric-field noise from fluctuating dipoles

For an ion which is trapped above a metallic electrode,
charge fluctuations within the electrode are efficiently
shielded and net charges on the surface are compensated
by their respective image charges in the metal. It can therefore
be assumed that the relevant microscopic noise processes on
the electrode are well described by a distribution of pointlike
dipoles μðri; tÞ located at position ri within a thin surface layer
of thickness h ≪ d [see Fig. 18(a)]. At the position of the ion
the component along the trap axis of the total field EtðtÞ ¼
et · EðrI; tÞ is then given by

(a)

(b)

FIG. 18 (color online). (a) General setup considered in
Secs. V.B–V.D for the analysis of the electric-field noise
generated from microscopic processes above a planar electrode.
The noise processes are modeled by a distribution of pointlike
dipoles μðri; tÞ located within a small layer above the metal
surface. (b) Double-well potential representing the energy of an
atomic or electronic two-state system. Δ is the “classical” energy
difference between the two wells and Δ0 is the tunnel coupling.
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EtðtÞ ¼
1

4πϵ0

X
i

½3ðet · niÞni − et� · μðri; tÞ
jri − rIj3

; ð74Þ

where ni ¼ ðrI − riÞ=jrI − rij is the unit vector pointing from
the ion to dipole i. For a planar electrode, and assuming a
sufficiently homogeneous distribution of dipoles with surface
density σd, the electric-field fluctuations parallel and

perpendicular to the surface are given by SðTLFÞE;∥ ¼ SðTLFÞE;⊥ =2
and

SðTLFÞE;⊥ ¼ 3π

2

σd
ð4πϵ0Þ2d4

S̄μ: ð75Þ

Here

S̄μ ¼
1

NA

XNA

i¼1

Siμ ð76Þ

denotes the averaged dipole-fluctuation spectrum of a large
number NA ≫ 1 of fluctuators located within an area
A ≪ πd2, where Siμ ¼

R∞
−∞ dτhδμiðτÞδμið0Þie−iωτ is the spec-

trum of a single dipole with fluctuating dipole moment δμiðtÞ
perpendicular to the surface. Note that Eq. (75) corresponds to
the zero-correlation-length limit of the patch-potential model
and therefore leads to the same d−4 distance scaling in the
limit of a flat trap geometry considered here.

2. Two-level fluctuators

A single TLF can be formed either by a particle trapped in
two proximal potential minima or by an extended atomic
complex or lattice dislocation which can switch between two
energetically favorable configurations. Both cases can be
modeled by an effective particle moving in a double-well
potential, as shown in Fig. 18(b). For the temperature regime
of interest the dynamics of the TLF can be restricted to the
two states jψLi and jψRi, with the corresponding wave
functions being localized in the left or right minimum,
respectively. If the two stable configurations are associated
with different dipole moments, the dipole operator for a single
TLF is μ̂ðtÞ ¼ ðμ=2ÞσzðtÞ, where σz ¼ jψRihψRj − jψLihψLj
is the Pauli operator for the population difference between the
two states. For a charged particle the dipole moment is
μ ¼ jejzw, where zw ∼ Å is the separation between the
wells.
In general, μ must be evaluated from the charge density

of the full atomic complex in the two stable configurations. If
the TLF is in contact with a thermal reservoir, the mean value
of the population imbalance relaxes to a stationary value
according to

d
dt
hσzðtÞi ¼ −

ðhσzðtÞi − hσzieqÞ
T1

: ð77Þ

Here hσzieq ¼ − tanh ðETLF=2kBTÞ is the equilibrium value
for a two-level system with energy difference ETLF, and T1 is
the characteristic relaxation time. With reference to Fig. 18,
ETLF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Δ2

0

p
which is equal to Δ in the classical limit

where the tunneling Δ0 can be neglected. According to the
quantum regression theorem (Gardiner and Zoller, 2004), the
population fluctuations hδσzðtÞδσzð0Þi obey an exponential
decay which, for a single TLF, results in a simple Lorentzian
shape for the dipole-fluctuation spectrum:

Sμ ¼
μ2

2cosh2ðETLF=2kBTÞ
T1

1þ ω2T2
1

: ð78Þ

For a large ensemble of fluctuators this spectrum must be
averaged over a distribution of parameters and

S̄μ ¼
μ2

2

Z
dEdT1

PðE; T1Þ
cosh2ðE=ð2kBTÞÞ

T1

1þ ω2T2
1

: ð79Þ

Here PðETLF; T1Þ is the probability density (per energy and
time interval) of finding a TLF with energy difference ETLF
and relaxation time T1, assuming approximately the same
dipole moment μ for all TLFs.

3. Thermally activated fluctuators

For high temperatures or large barrier widths, quantum
tunneling events can be neglected and the switching of the
TLF is mainly induced by thermally activated transitions over
the potential barrier of height Vb. For ETLF ≪ kBT < Vb the
switching rates between the two minima are approximately the
same and the relaxation time is given by the Arrhenius law
(Arrhenius, 1889; Hänggi, Talkner, and Borkovec, 1990):

T1ðVbÞ≃ τ0eVb=kBT: ð80Þ

The time scale τ0 is approximately given by the oscillation
period of the particle in a single well and typically assumes
values in the range of τ0 ≈ 10−12 − 10−14 s (Gomer, 1990;
Ovesson et al., 2001). The height of the potential barrier is
determined by electronic energy scales in the range of Vb ∼
0.1 − 1 eV (Gomer, 1990). The exponential dependence of
the relaxation rate on Vb results in a large range of possible
switching times which, particularly at room temperature or
below, lie within the relevant range of the trapped-ion
oscillation time. With no further knowledge regarding the
physical origin of the TLF it is reasonable to consider, as a first
approximation, TLFs with a uniform distribution of energies
ETLF up to a maximum energy Emax < kBT. It is also
reasonable to assume (at least initially) that they take a
uniform distribution of activation energies PðVbÞ ¼ const,
within an interval ΔV between Vmin and Vmax. The corre-
sponding distribution of relaxation times is (Phillips, 1987)

PðETLF; T1Þ ¼
1

Emax

kBT
ΔV

1

T1

: ð81Þ

Within the frequency range expð−Vmax=kBTÞ < ωτ0 <
expð−Vmin=kBTÞ this distribution results in an averaged
spectrum

S̄μ ≃ 1

ΔV
πkBT
4ω

μ2; ð82Þ
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which exhibits an ω−1 dependence on the frequency and a
linear scaling with temperature. Note that Eq. (82) has been
derived under the assumption that ETLF ≪ kBT and that the
number of TLFs is independent of temperature. Deviations
from these assumptions or nonuniform distributions PðVbÞ for
the activation energies can lead to a different temperature-
scaling behavior, as discussed in Sec. V.B.5.
To estimate some typical values, in amorphous solids the

density of TLFs is found to be ∼1046 J−1 m−1 (Phillips, 1987).
We consider a system at T ¼ 300 K with a contamination
layer of height h ¼ 10 nm (Daniilidis et al., 2014), which
corresponds to a few tens of monolayers of adsorbates on
top of the metal electrode. Assuming only TLFs of energy
Emax ≲ kBT are active one expects an areal TLF density of
σd ¼ 4 × 1017 m−2. By assuming potential barriers of about
Vb ∼ ΔV ∼ 1 eV and a characteristic dipole moment of
μ ∼ 5 D (Martinis et al., 2005), the resulting spectral density
of electric-field noise at ωt ¼ 2π × 1 MHz and at a distance
d ¼ 100 μm above the trap is SE ≈ 1 × 10−12 V2=m2 Hz. This
value is around the level seen experimentally in good (low-
noise) traps (cf. Fig. 8).

4. Tunneling states

At lower temperatures, thermally activated switching
events are strongly suppressed and, particularly for a small
barrier width or low effective particle mass mTLF, quantum-
mechanical tunneling through the barrier becomes important.
In this case the TLF must be described by a quantum-
mechanical two-level system with Hamiltonian (Phillips,
1987)

ĤTLF ¼ Δ
2
σz −

Δ0

2
σx; ð83Þ

where σz and σx are the usual Pauli operators in the subspace
of the localized states jψLi and jψRi. For a separation zw
between the wells, the tunnel amplitude depends exponen-
tially on the barrier height Vb and can be estimated as
(Phillips, 1987)

Δ0 ≈
ℏ
τ0
e−λ; ð84Þ

where τ−10 is the attempt frequency and λ is the tunneling
parameter, given by

λ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTLFz2wVb=ℏ2

q
: ð85Þ

The Hamiltonian given in Eq. (83) can be diagonalized and
written as

ĤTLF ¼ ETLF

2
~σz; ETLF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Δ2

0

q
: ð86Þ

Here ~σz denotes the Pauli operator in the rotated
eigenbasis j~0i¼ cosðϕ=2ÞjψLiþsinðϕ=2ÞjψRi and j~1i ¼
cosðϕ=2ÞjψRi − sinðϕ=2ÞjψLi, where tanðϕÞ ¼ Δ0=Δ.
The TLF is coupled to phonons via deformation-potential

interactions, which induce transitions between the energy

eigenstates j~0i and j~1i. The resulting relaxation rate of the
TLF can be written as

T−1
1 ¼

�
Δ0

ETLF

�
2

T−1
minðETLFÞ; ð87Þ

where TminðETLFÞ is the minimum relaxation time in the case
of a symmetric double well Δ ¼ 0. This rate is given by
(Phillips, 1987)

T−1
minðETLFÞ ¼

E3
TLF

2πρℏ4

�
Ξ2
1

v5l
þ 2Ξ2

t

v5t

�
coth

�
ETLF

2kBT

�
; ð88Þ

where ρ is the density of the electrode material, Ξ1 (Ξt) and vl
(vt) are the deformation-potential constants (∼1 eV) and the
sound velocity for longitudinal (transverse) phonon modes,
respectively. For ETLF ¼ Δ0 Eq. (88) shows a quadratic
dependence of the relaxation rate on the tunneling coupling
Δ0, which in turn depends exponentially on the tunneling
parameter λ, i.e., on the barrier height Vb and the well
separation zw. Consequently, the phonon-assisted tunneling
mechanism leads to a broad distribution of relaxation times T1

similar to the case of thermally activated TLFs. By assuming a
flat distribution for the parameter λ and the double-well
asymmetry Δ ∈ f−Δmax;Δmaxg, the resulting distribution of
energies and relaxation rates for tunneling states is (Phillips,
1987)

PðETLF; T1Þ ¼
P0

2T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − TminðETLFÞ=T1

p : ð89Þ

Here P0 ¼ 1=Δmax logðΔ0;max=Δ0;minÞ is a normalization
constant, where Δ0;min and Δ0;max are the minimum
and maximum values of Δ0. Note that in the rotated
eigenbasis the dipole operator is μ̂ðtÞ ¼ ðμ=2Þ cosðϕÞ ~σzðtÞ
and when integrating over the distribution PðETLF; T1Þ
in Eq. (79) an additional factor cos2ðϕÞ ¼ ðΔ=ETLFÞ2 ¼
1 − TminðETLFÞ=T1 appears.
For low temperatures it can be assumed that the maximum

TLF energy Emax ≫ kBT. The evaluation of the resulting
integrals over ETLF and T1 then leads to an averaged dipole-
fluctuation spectrum of the form

S̄μ ≈ P0

πkBT
4ω

μ2: ð90Þ

By assuming a similar range for the distributions of energy
offsets Δmax and barrier heights ΔV, this result is similar to
that in Eq. (82), which was derived for thermally activated
TLFs. Note that for the same temperature similar noise levels
for tunneling states and thermally activated TLFs are
expected. However, it should be emphasized that the common
linear scaling with T in Eqs. (82) and (90) is coincidental. In
the low-temperature regime the factor T accounts for the
number of TLFs that are thermally occupied and contribute to
the spectrum. In the high-temperature limit the scaling with T
is related to the thermally activated switching rate.
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5. Nonuniform distributions of activation energies

In Eq. (82) the ω−1 scaling of the noise spectrum with
frequency and its linear scaling with temperature follow from
the assumption of a uniform distribution of activation energies
PðVbÞ. To explain the deviations from this behavior which are
observed in current- and voltage-noise spectra in metals, TLF
models with nonuniform distributions of Vb have been
proposed (Dutta and Horn, 1981). By rewriting Eq. (79) as
an integral over PðVbÞ it can be shown that the dominant
contribution to the averaged spectrum comes from TLFs with
a barrier height Vb ≈ −kBT logðωτ0Þ and for a nonuniform
PðVbÞ the modified spectrum is of the form

S̄μ ≈ μ2
�
πkBT
4ω

�
P(Vb ¼ −kBT logðωτ0Þ): ð91Þ

This result shows that any PðVbÞ ≠ const leads to a non-
linear temperature scaling of the TLF noise combined with
corrections to the strict ω−1 frequency dependence. By
defining a local frequency-scaling exponent αðω; TÞ ¼
−∂ ln S̄μ=∂ lnω, Eq. (91) predicts a general relation between
frequency and temperature dependence of the noise (Dutta and
Horn, 1981):

αðω; TÞ ¼ 1 −
1

lnðωτ0Þ
�∂ ln S̄μ
∂ lnT − 1

�
: ð92Þ

For example, a power-law distribution PðVbÞ ∼ Vγ−1
b of

activation energies results in Tγ scaling of the noise
(Labaziewicz, Ge, Leibrandt et al., 2008), and

αðωÞ ¼ 1 −
γ − 1

lnðωτ0Þ
: ð93Þ

For the frequency range of interest logðωτ0Þ ≈ −10 and for
γ > 1 a small increase in the scaling exponent α is expected.
A more natural scenario involves a peaked distribution of
barrier heights. Considering, for example, a Lorentzian dis-
tribution of barrier heights centered at V0 and with a widthΔV
(Dutta and Horn, 1981),

PðVbÞ ¼
1

π

ΔV
ΔV2 þ ðVb − V0Þ2

: ð94Þ

For this distribution, and a particular choice of some
physically reasonable parameters (V0 ¼ 0.3 eV, ΔV ¼
0.15 eV, and ωτ0 ≈ 10−6), the temperature dependence of
S̄μ is plotted in Fig. 19 together with the local scaling exponent
αðω; TÞ. This example illustrates that an ensemble of TLFs
with a peaked distribution of activation energies can exhibit a
maximum as a function of temperature with a corresponding
change of the scaling exponent from α > 1 to α < 1. For
the present example the maximum value of S̄μ occurs at
T ≈ 300 K. Noise measurements in other systems at much
lower frequencies are consistent with V0 ≈ 1 eV (Dutta and
Horn, 1981). For ion-trap experiments where ω=2π ∼MHz,
the corresponding maximum would in this case occur at much
higher temperatures of T ≈ 850 K.

In the case of tunneling states, a nonuniform distribution
PðλÞ for the tunneling parameter can lead to modifications of
the spectrum given in Eq. (90). In analogy to Eq. (91) one
obtains a scaling S̄μ ∼ Pðλ ¼ λ0Þ, where λ0 determines the
dominant contribution to the average in Eq. (79) and depends
logarithmically on ω. However, since the tunneling amplitude
Δ0 does not depend on temperature, the modifications are less
pronounced than in the case of thermally activated TLFs and
do not lead to a significant change in the temperature scaling.

C. Adatom dipoles

Even on a very regular surface and at low background
pressures, atoms or molecules in the atmosphere will stick to
the metal electrodes and create extended layers, small patches,
or individual defects. The induced dipole moments of
adsorbed atoms locally lower the work function of the metal
and provide one of the mechanisms that can lead to the
formation of patch potentials described in Sec. V.A. For alkali
atoms adsorbed on a gold surface the induced dipole moments
are typically a few debye and individual adatomic dipoles
can be measured and visualized using field-emission micros-
copy (Gomer, 1961). This method also allows the observation
of adatom diffusion, a process which is further analyzed
in Sec. V.D.
Surface contamination has been observed to have an

influence on trapped-ion heating rates in several experiments
(Turchette et al., 2000; Letchumanan et al., 2007; Hite et al.,
2012; Daniilidis et al., 2014). This suggests that adatoms
may play an important role in the electric-field noise generated
at small distances. The direct effect that a large, artificially
created surface dipole has on trapped ions been observed by
Harlander et al. (2010). Recently Safavi-Naini et al. (2011,
and 2013) analyzed the electric-field noise spectrum which is
expected from a random distribution of adatomic dipoles on a
planar electrode. This model, which is briefly summarized

(a)

(b)

FIG. 19 (color online). Temperature-dependent behavior of
nonuniformly distributed TLFs. (a) Temperature dependence of
the averaged dipole-fluctuation spectrum S̄μ (in arbitrary units)
produced by an ensemble of TLFs with a Lorentzian distribution
of activation energies centered around V0 ¼ 0.3 eV and with a
width ΔV ¼ 0.15 eV. (b) The temperature dependence for the
same parameters of the local scaling exponent αðω; TÞ.
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here, is predicated on the idea that random fluctuations of
surface dipoles can arise from phonon-induced transitions
between different bound vibrational states of the adatom-
surface potential.

1. Adatoms

Atoms or molecules are attracted toward a nearby surface
by the van der Waals potential UvdWðzÞ ∼ −C3=z3, where z is
the distance to the surface and C3 is a function of the dynamic
polarizability αpðωÞ of the particle. At short distances the
electronic wave functions of the adatom and the surface
constituents start to overlap and lead to a sharply repulsive
potential wall. The resulting shape of the full adatom-surface
potential UðzÞ is sketched in Fig. 20 and can be calculated for
specific adatoms using ab initio numerical methods. For many
studies of adatom-surface interactions it is sufficient to replace
the actual potential by an approximate analytic model, for
example, of the form (Hoinkes, 1980)

UðzÞ ¼ ~w
~w − 3

U0

�
3

~w
e ~wð1−z=z0Þ −

�
z0
z

�
3
�
; ð95Þ

which is parametrized by the equilibrium adatom position z0,
the depth of the potential U0, and the dimensionless parameter
~w ∼ 5 − 10 characterizing the width of the potential well. The
potential depth U0 depends strongly on the surface and
adatom species and can range from a few eV for strongly
bound (chemisorbed) atoms like H to values of ∼10 meV for
weakly bound (physisorbed) atoms like He or Ne (Safavi-
Naini et al., 2013). The potential minimum at z0 occurs at
atomic distances of a few Å from the surface. The character-
istic frequency is set by the frequency difference between the
two lowest levels ν10 ¼ ν1 − ν0. Using a harmonic approxi-
mation of the potential well this can be estimated to be

ν10 ≈ ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
U0

madz20

s
; ð96Þ

where ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð ~w2 − 4 ~wÞ=ð ~w − 3Þ

p
is a numerical factor and

mad is the mass of the adatom.
The attractive adatom-surface potential arises from a

rearrangement of the electronic wave functions of the adatom
and the electrons in the metal. This creates an induced dipole
moment μðzÞ perpendicular to the surface, which depends on
the adatom-surface distance z. At distances which are large
compared to the extent of the adatom wave function a scaling
μðzÞ ∼ 1=z4 is expected (Antoniewicz, 1974) and μðz ≈ z0Þ
can reach several debye when the adatom touches the surface.

2. Phonon-induced dipole fluctuations

The potentialUðzÞ supports several bound vibrational states
jni with vibrational frequencies νn as indicated in Fig. 20.
Because of the dependence of μðzÞ on the adatom-surface
distance, each vibrational state acquires a different average
dipole moment μn ¼ hnjμðzÞjni. Safavi-Naini et al. (2011)
suggested that at nonzero temperatures, phonon-induced
transitions between different vibrational states jni lead to a
fluctuating adatom dipole moment μðtÞ.

Phonon-induced transitions between two vibrational states
jni and jmi arise from fluctuations of the closest surface
atoms, which thereby modulate the potential UðzÞ. For n > m
and a transition frequency νnm ¼ νn − νm > 0 the resulting
transition rates are given by (Safavi-Naini et al., 2011)

Γn→m ¼ πḡðνnmÞ
3ℏMνnm

jhnjU0ðzÞjmij2½nBðνnmÞ þ 1�; ð97Þ

Γm→n ¼
πḡðνnmÞ
3ℏMνnm

jhnjU0ðzÞjmij2nBðνnmÞ; ð98Þ

where M is the surface-atom mass and nBðωÞ ¼
1=ðeℏω=ðkBTÞ − 1Þ is the Bose-Einstein distribution for a
particular temperature T. In Eqs. (97) and (98) ḡðωÞ denotes
the partial (projected) phonon density of states (PDOS) of a
surface atom (which takes into account the fact that different
phonon modes can couple more efficiently or less efficiently
to surface atoms than to bulk atoms). The decay rate from the
first excited vibrational state to the ground state at zero
temperature Γ0 ≡ Γ1→0ðT ¼ 0Þ defines a characteristic tran-
sition rate which, by using the bulk PDOS gðωÞ ¼
3a3Lω

2=ð2π2v3Þ as a reference, can be estimated as

Γ0 ≈
1

4π

ν410mad

v3ρ
: ð99Þ

Here ρ is the density of the bulk material, v is the velocity of
sound in the material, and aL is the lattice constant.
Considering typical numbers, for a gold surface

(ρ ¼ 19.3 g=cm3 and v ¼ 3240 m=s) with an adsorbate cover-
ing of atomic mass mad ¼ 100 amu, and given a typical
vibrational frequency ν10=2π ¼ 1 THz, Eq. (99) predicts val-
ues around Γ0 ≈ 3 × 1010 s−1. Much lower values in the MHz
regime are expected for very heavy or weakly bound adatoms,
where vibrational frequencies are reduced. Furthermore, due to
a mass mismatch, the presence of an additional monolayer of
contaminants on the metallic electrode can considerably modify
the surface PDOS (Safavi-Naini et al., 2013). This also
significantly reduces Γ0 compared to the estimate in
Eq. (99) and in general values of Γ0 ranging from a few
107 s−1 to a few 1010 s−1 can be expected.

0

FIG. 20 (color online). Sketch of the typical shape of the adatom-
surface potential UðzÞ approximated by the model potential given
in Eq. (95) for w ¼ 5.8. The dashed lines indicate the energies
ℏνn of the bound vibrational states with wave functions indicated
by the thin solid lines. From Safavi-Naini et al., 2013.
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3. Noise spectrum

For a planar trap geometry the spectral density of electric-
field noise produced by a homogeneous distribution of
independent adatoms is given by Eq. (75), with S̄μ being
replaced by the dipole-fluctuation spectrum Sμ of a single
adatom. The fluctuating dipole moment of a single adatom is
given by μðtÞ ¼ P

nμnPnðtÞ, where the occupancies of the
vibrational levels PnðtÞ evolve according to the rate equation

_PnðtÞ ¼ −
X
m≠n

Γn→mPnðtÞ þ
X
m≠n

Γm→nPmðtÞ: ð100Þ

From Eq. (100) the steady-state populations hPnðtÞi and
correlation functions hPnðtÞPmð0Þi can be obtained numeri-
cally and used to calculate hδμðtÞδμð0Þi.
Figure 21 shows the resulting noise spectrum as a function

of frequency for different temperatures. For this specific
example an intermediate binding energy of U0 ¼ 0.25 eV
(≈3000 K), an adatom height of z0 ¼ 2 Å, and a mass of
mad ¼ 100 amu has been assumed, where ν10=2π ≈ 1.3 THz.
Note that hydrocarbon chains of similar mass have been
identified as electrode contaminates in a recent experiment by
Daniilidis et al. (2014). At low temperatures only the lowest
two vibrational levels are occupied and Sμ can be approxi-
mated by a Lorentzian TLF spectrum [see Eq. (78)]:

Sμ ≃ ðμn¼0 − μn¼1Þ2
2Γ0

ω2 þ Γ2
0

e−ℏν10=kBT: ð101Þ

The spectrum is flat for ω ≪ Γ0 and decays as ω−2 in the
opposite limit of large frequencies. The fluctuations are
thermally activated with a characteristic temperature T� ¼
ℏν10=kB defined by vibrational frequencies. In the example
shown in Fig. 21 this corresponds to a temperature of
T� ≈ 60 K. Because of the multilevel structure of the bound
adatom the full spectrum does not saturate at higher temper-
atures, but instead increases as Tγ , where γ ≈ 2.5.
Considering typical numbers, assume a surface density of

σd ¼ 1018 m−2 which, for an Au(111) surface, corresponds to
a coverage fraction of approximately 10%. Assume also an
induced dipole moment of μn¼0 ¼ 5 D and characteristic
transition rate of Γ0 ¼ 108 s−1. The predicted electric-field
noise level at a distance d ¼ 100 μm above the trap is then

around SðADFÞE ≈ 10−13 V2=m2 Hz for temperatures T > T�.
Taking into account the distance scaling of β ¼ 4 [see
Eq. (75)] this is comparable to the absolute level of heating
seen in some small traps (see Fig. 8).
The mechanism described by Safavi-Naini et al. (2011)

shows that phonon-induced fluctuations of individual ada-
tomic dipoles can contribute to the electric-field noise
observed in good ion traps. It should be emphasized, however,
that the predicted noise levels depend sensitively on the
microscopic parameters of the adatom-surface interaction.
For many atoms or more complicated molecules these are not
known. Equation (78) shows that to realize a noise level which
can be seen in experiments and exhibits a finite frequency
variation at ω=2π ∼MHz requires low values for ν10 and Γ0.
This is expected for weakly bound or heavy adatoms and

molecules. Most numerical studies in the literature focus on
extreme cases of alkaline atoms or noble gases absorbed on
metals, which either lead to strongly bound atoms or, in the
latter case, lead to very shallow potentials which do not
support binding at room temperatures. Therefore, the rel-
evance of this noise mechanism for specific surface conditions
found in ion-trap experiments remains a subject of future
experimental and theoretical investigations.

D. Adatom diffusion

Apart from fluctuations in the magnitude of their induced
dipole moment μðtÞ, adsorbed atoms and molecules can
contribute to the electric-field noise by diffusing on the
surface, thereby changing the spatial distribution of dipoles
over time. Adatom-diffusion-induced noise processes have
been studied, for example, in the context of field-emission
microscopy (Gomer, 1961; Kleint, 1963; Timm and Van der
Ziel, 1966), where the field-emission current depends sensi-
tively on the total number of adatoms within a small area at the
end of a sharp tip. Adatoms which diffuse in and out of that
area change the average work function and lead to fluctuations
of the emission current. The observed plateau of this noise at
low frequencies and the scaling ∼ω−3=2 (Timm and Van der
Ziel, 1966) for large frequencies agree well with predictions
from simple diffusion models (Burgess, 1953; Van Vliet and
Chenette, 1965; Gesley and Swanson, 1985). A related model
for noise above metallic surfaces with diffusive carrier trans-
port has been investigated by Henkel and Horowitz (2008).
The diffusion of adatomic dipoles has been suggested as a
potential mechanism for heating of trapped ions (Wineland,
Monroe, Itano, Leibfried et al., 1998). This hypothesis is
supported by the ∼ω−3=2 scaling of heating rates observed in
experiments at NIST (Turchette et al., 2000; Hite et al., 2012).
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FIG. 21 (color online). Dipole-fluctuation spectrum Sμ of a
single adatom. (a) Dependence of the full spectrum on the
rescaled frequency ω=Γ0 for three different temperatures. The
dashed lines show the corresponding spectrum under a two-level
approximation. (b) Temperature dependence of Sμðω → 0Þ for
the full multilevel model (solid line) and a two-level system
(dashed line).
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1. Adatom diffusion on surfaces

The motion of individual adatoms on a planar surface is
well described by a two-dimensional diffusion process with
diffusion constant D ¼ a2LΓhop=l (Gomer, 1961). Here aL is
the lattice constant, Γhop is the hopping rate between neigh-
boring adsorption sites which are separated by an energy
barrier Vb, and l is the coordination number which depends
on the lattice geometry, e.g., l ¼ 4 for a square lattice. The
hopping of adatoms between adjacent minima of the surface
potential can be thermally activated (Γhop ≈ τ−10 e−Vb=kBT) or be
due to quantum tunneling. The resulting diffusion constant
can be approximated by

D≃Dt þD0e−Vb=kBT; ð102Þ
where the first term describes the diffusion due to quantum
tunneling and the second term describes the thermally
activated diffusion.
For most surface diffusion processes one finds D0 ≈

10−7 m2 s−1 (Gomer, 1961; Ždanov, 1991), which is consis-
tent with an attempt frequency of τ−10 ≈ 1012 − 1013 s−1 and a
lattice spacing of a few Å. In the temperature range T ¼
100 − 400 K and assuming a typical energy barrier of Vb ∼
150 meV (∼1750 K) (Gomer, 1961; Ždanov, 1991) the
resulting diffusion constants are D ≈ 10−15 − 10−9 m2 s−1.
At very low temperatures thermally activated processes are
strongly suppressed and the diffusion constant saturates at a
value Dt, which is set by a finite probability to tunnel through
the energy barrier. While a precise evaluation of Dt is rather
involved and beyond the scope of this review, an estimate
for the saturation temperature can be obtained by comparing
the thermally activated rate Γhop with the coherent tunneling
amplitude Δ0=ℏ, given in Eq. (84). Apart from hydrogen
adatoms, for which quantum effects are important even at
room temperature, the saturation of the hopping rate typically
occurs at a few tens of kelvins.

2. Adatom-diffusion-induced noise

The diffusing adatoms can be modeled by a surface
polarization density Pðr; tÞ ¼ μσdðr; tÞ, where σdðr; tÞ is the
areal density of adatoms with a fixed dipole moment μ. For
an ion located at a distance d above a planar electrode [see
Fig. 22(a)], the resulting electric-field noise spectrum is

SðADÞE ¼ μ2

8π2ϵ20

Z
S
d2r1

Z
S
d2r2gDðr1ÞgDðr2ÞCσðr1; r2;ωÞ:

ð103Þ

Here the geometrical factors gDðrÞ describe the dipole pattern
and are given in Eqs. (69) and (70) for trap axes perpendicular
and parallel to the electrode surface, respectively, and

Cσðr1; r2;ωÞ ¼ 2Re
Z

∞

0

dτhδσdðr1; τÞδσdðr2; 0Þie−iωτ

ð104Þ
is the correlation spectrum of the density fluctuations
δσdðr; tÞ ¼ σdðr; tÞ − hσdðr; tÞi. At low adsorbate densities

the diffusion of the individual dipoles is independent and
the mean value of the density σdðr; tÞ obeys the two-
dimensional diffusion equation

ð∂ t −D ~∇2Þhσdðr; tÞi ¼ 0: ð105Þ

For a sufficiently homogeneous surface the adatom distribu-
tion relaxes to the stationary value σ̄d. For t1 > t2 fluctuations
around this value are given by (Gesley and Swanson, 1985)

hδσdðr1; t1Þδσdðr2; t2Þi ¼
σ̄d

4πDðt1 − t2Þ
e−jr1−r2j2=4Dðt1−t2Þ:

ð106Þ

Under these idealized conditions the correlation function
[Eq. (104)] can be evaluated analytically and the general
expression for the electric-field fluctuation spectrum is

SðADÞE ¼ μ2σ̄d
8π3ϵ20D

Z
S
d2r1

Z
S
d2r2

× gDðr1ÞgDðr2ÞKer0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr1 − r2j2ω=D
q �

: ð107Þ

Here Ker0ðxÞ is the zeroth-order Kelvin function (Abramowitz
and Stegun, 1972). In contrast to the patch-potential model
or the fixed dipoles considered, the correlation function
Cσðr1; r2;ωÞ is not separable into spatial and temporal corre-
lations. The mean diffusion length of an adatom depends on the
available time, which is inversely proportional to the frequency
of the noise component considered. Consequently, the distance

and frequency scaling of SðADÞE are tightly connected.

FIG. 22 (color online). Adatom diffusion model. (a) Setup
considered for the evaluation of electric-field noise generated
by diffusing dipoles on a planar electrode. Within this model a
needlelike electrode can be approximately described by consid-
ering only the electric field from dipoles within a small electrode
area Ael. (b) Dependence of the normalized spectral function
Iη

~R
ð ~ωÞ on the scaled frequency ~ω ¼ ω=ωd, where ωd ¼ D=d2.

The dashed lines indicate the analytic limits given in Eqs. (110),
(111), (113), (114), (116), and (117).
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3. Diffusion on smooth surfaces

In the limit where adatoms diffuse freely over an infinite
planar electrode the only relevant length scale is set by the ion-
surface distance d, which defines a characteristic frequency
scale ωd ¼ D=d2. For a finite-sized trap, the electrode size Rel
introduces a second length scale with a corresponding
frequency scale ωR ¼ D=R2

el. To obtain analytic estimates
for diffusion-induced noise for both large and small trapping
electrodes the full problem can be approximated by a scenario
shown in Fig. 22(a). Here adatoms diffuse on an infinite planar
surface but, to account for a finite electrode size, only adatoms
within an area Ael ¼ πR2

el contribute significantly to the noise
seen by the ion. Using the dimensionless parameters ~ω ¼
ω=ωd and ~R ¼ Rel=d, Eq. (107) can be rewritten as

SðADÞE;η¼⊥;∥ ¼
μ2σ̄d

8πϵ20d
2D

Iη
~R
ð ~ωÞ; ð108Þ

where Iη
~R
ð ~ωÞ is the dimensionless integral

Iη
~R
ð ~ωÞ ¼ 1

π2

Z
≤ ~R

d2r1d2r2

× ~gDðr1Þ~gDðr2ÞKer0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr1 − r2j2 ~ω
q �

; ð109Þ

for which ~gDðrÞ ¼ gDðrdÞ. The dependence of Iη
~R
ð ~ωÞ on ~ω is

plotted in Fig. 22(b) for the limiting cases ~R → ∞ and ~R ≪ 1.
We now consider two extremes of geometry: planar and

needle. In each instance the absolute value of SE is estimated
as are the expected scalings α, β, and γ for reasonable trapping
conditions.

• Infinite planar electrode: In the limit of the electrode
dimension Rel being large compared to the ion-surface
distance d, Eq. (109) can be evaluated for ~R → ∞. In this
case the parallel and perpendicular electric-field noise
spectra differ only by a factor of 2: I∥

∞ð ~ωÞ ¼ I⊥
∞ð ~ωÞ=2.

The respective low- and high-frequency limits are
given by

I⊥
∞ð ~ω → 0Þ≃ 1; ð110Þ

I⊥
∞ð ~ω ≫ 1Þ≃ 15

2 ~ω2
: ð111Þ

The crossover occurs at a frequency scale
ω ≈ ωd ¼ D=d2, which is set by the ion-electrode
separation d. For an ion-electrode distance d ¼
100 μm and a diffusion constant of D ¼ 10−10 m2 s−1,
the trap frequencies of ωt=2π ∼MHz are much larger
than the frequency scale ωd=2π ≈ 10 Hz. In this regime
the resulting diffusion-induced-noise spectrum is

SðADÞE;⊥ ≃ 15μ2σ̄dD
16πϵ20d

6ω2
; ð112Þ

and therefore β ¼ 6 and α ¼ 2. For adatom density of
σ̄d ¼ 1018 m−2 and an induced dipole moment of
μ ¼ 5 D, the overall noise level is around

SE ≈ 10−18 V2=m2 Hz. Since SE ∼D, diffusion-induced
noise is exponentially suppressed at lower temperatures.

• Needle trap: In the opposite limit of a sharp needle trap
the adatoms can still diffuse across the whole electrode,
but the relevant contributions to the noise arise from
adatoms within a small area Ael ¼ πR2

el at the end of the
tip. This situation is analogous to the diffusion processes
studied in the context of field-emission-current noise
(Van Vliet and Chenette, 1965; Gesley and Swanson,
1985) and is approximately captured by restricting the
integration area in Eq. (107) to a small disk of radius
Rel ≪ d. In this limit the normalized electric-field
fluctuations perpendicular to the surface scale as

I⊥
~R
ð ~ω → 0Þ ¼ −4 ~R4 logð

ffiffiffiffi
~ω

p
~RÞ; ð113Þ

I⊥
~R
ð ~ω ≫ 1Þ ¼

ffiffiffiffiffi
32

p
~R

~ω3=2 : ð114Þ

The crossover occurs at a frequency scale ω ≈ ωR ¼
D=R2

el, which is set by the tip size Rel rather than the ion-
electrode separation d. In the regime ω ≫ ωR, the overall
noise spectrum for the small-tip geometry is

SðADÞE;⊥ ≃ μ2σ̄dRel

ffiffiffiffi
D

p
ffiffiffi
2

p
πϵ20d

6ω3=2
: ð115Þ

For the field fluctuations parallel to the surface (which is
to say, perpendicular to the axis of the needle) the
respective limits are

I∥
~R
ð ~ω → 0Þ ¼ 3 ~R6

4
; ð116Þ

I∥
~R
ð ~ω ≫ 1Þ ¼ 9 ~R3ffiffiffi

2
p

~ω3=2
: ð117Þ

Equations (114) and (117) show that for different trap
geometries the frequency scaling of the diffusion-induced
noise can change from ω−2 to ω−3=2. The distance dependence
in this case is still SE ∼ d−6 for perpendicular fluctuations
and SE ∼ d−8 for parallel fluctuations. For the same parameters
and Rel=d ¼ 0.1 the resulting field noise is SE≈
5×10−15 V2=m2Hz.
In summary, analytical estimates show that adatom diffu-

sion on a small electrode can lead to a ω−3=2 scaling of the
field noise, but in these simple scenarios the expected overall
noise level is rather small and decays quickly with increasing
d. This is related to the fact that compared to a spatially fixed,
but fluctuating dipole, a dipole which is just displaced on the
surface by a small distance Δr changes the field at the position
of the ion only by a fraction Δr=d ≪ 1.

4. Diffusion on corrugated surfaces

The different analytic scalings for SðADÞE presented in
Secs. V.D.2 and V.D.3 have been derived under the idealized
assumptions that adatoms diffuse freely and independently
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from each other. Under more realistic conditions, surface
corrugations, potential steps between atomic layers, and also
the mutual influence of adatoms at high densities can modify
these results. In general, potential barriers as well as high
densities of adatoms tend to suppress diffusion and further
reduce the associated noise. However, diffusion-induced noise
can be considerably enhanced when taking into account other
microscopic mechanisms that change the magnitude of the
induced dipole moment μ.
Consider, for example, an adatom diffusing over a surface

covered by patches that have a different work function than
the rest of the electrode, such that the induced dipole moment
changes by Δμ when the adatom diffuses onto one of the
patches. The noise originating from diffusion over a single
patch is then similar to the small electrode limit discussed
previously, with Rel replaced by the patch radius Rp and μ
replaced by Δμ. The absolute level of noise, however,
would be enhanced by the number of patches Np ∼ d2=R2

p.
Overall, this generalized diffusion model predicts a
scaling

SðADÞE;⊥ ∼
ðΔμÞ2 ffiffiffiffi

D
p

d4Rpω
3=2 : ð118Þ

For Rp ∼ 1 − 10 μm, and assuming otherwise the same
parameters for the estimate made in Sec. V.D.3, noise
levels of about SE ∼ 10−12 − 10−14 V2=m2 Hz are expected.
This is similar to the level of noise expected from other
microscopic processes. Unless nonequilibrium processes are
considered, the diffusion-induced noise is still exponentially
suppressed with temperature and a strong reduction of this
noise contribution below a few tens of kelvin is in general
expected.

VI. HEATING MECHANISMS INFERRED IN
EXPERIMENTS

Section III considered the observed electric-field noise in
different trapped-ion experiments. It suggested that different
experiments may well be limited by different sources of noise.
It also underlined the problems of attempting to draw general
conclusions either from specific experiments or from the full
data set. Sections IV and V considered the theoretical expect-
ations arising from models of different heating mechanisms.
This section now considers a number of experiments in which
it is possible to identify a specific (probable) heating mecha-
nism. Each section heading gives a possible or even likely
cause of heating which has been identified for specific
experiments. The sources of heating in those cases where it
can be identified are seen to be diverse. Consequently, the
electric-field noise observed in ion traps should not be viewed
as a single homogeneous phenomenon, but as many separate
phenomena which can be different in different experiments.
Despite such diversity, the case studies in this section shed
light on a number of possible solutions to the heating seen in
some ion traps, which might be beneficially implemented in
other experiments.

A. Patch potentials

Deslauriers, Olmschenk et al. (2006) used a trap consisting
of a pair of tungsten needle electrodes for which the tip-to-tip
separation 2d could be controllably varied. Single trapped
111Cdþ ions were ground state cooled, and the axial heating
rate was measured. Heating-rate measurements were made
for seven different ion-electrode spacings in the range
38 μm < d < 216 μm. The results are reproduced in Fig. 7
and exhibited a distance-scaling exponent of β ¼ 3.5ð1Þ. An
analysis of the evidence for patch-potential heating mecha-
nisms, over against Johnson noise, is provided here. For
comparison with the other results discussed in this section, the
heating rates measured by Deslauriers et al. are plotted as
points [16]a–g in Fig. 23.
As first calculated by Turchette et al. (2000), and discussed

here in Sec. V.A, a patch-potential model that considers the
ion to be trapped inside a sphere of radius d, with patches of
radius Rp ≪ d, predicts a distance-scaling exponent for the
electric-field noise of β ¼ 4. Deslauriers, Olmschenk et al.
(2006) pointed out that the exact value of β could vary
depending on the details of the trap geometry. Low, Herskind,
and Chuang (2011) approximated the needle trap by a single
prolate spheroidal needle and showed the way in which, for
that geometry, β varied as a function of both the trap geometry
and the patch size. The approximation of a single prolate
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FIG. 23 (color online). Overview of traps for which the heating
mechanisms are known. For comparison, the heating rate for the
first use of “anomalous heating” in the literature is shown as
point [2] (Monroe et al., 1995). Experimental data points are
taken from the relevant references in Table I. Points [A] and [B]
are calculated values from Leibrandt, Yurke, and Slusher (2007).
The gray points (noise sources unknown) are the same as those in
Fig. 8. For orientation, the gray shaded regions and dotted lines
are the same as those shown in Fig. 8 and indicate slopes of −4
and −2, respectively. Despite the experiments being limited by
many different sources of noise, the reported values of SE in the
various experiments are broadly similar. Consequently, it is
difficult to directly infer a particular noise source simply from
the absolute level of noise.
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spheroid was chosen as it is analytically solvable. They
showed that the observed distance scaling of β ¼ 3.5 might
be explained by a patch-potential model, as illustrated
in Fig. 24.
When Deslauriers, Olmschenk et al. (2006) originally

considered the possibility of Johnson noise, they assumed
that Johnson noise would exhibit a distance-scaling exponent
of β ¼ 2. Taking the geometry into account, the distance
scaling for Johnson noise in their trap would be expected to
exhibit β ¼ 2.5ð2Þ (see Sec. IV.D.2). This scaling prediction
not only holds for Johnson noise specifically, but generally for
any source of noise which generates a spatially homogeneous
field at the position of the ion.
This analysis provides a good indication that, in the

experiment by Deslauriers, Olmschenk et al. (2006), the noise
arose from localized potential fluctuations on the electrode.
There remain numerous physical mechanisms, some of which
are detailed in Sec. V, that could underlie such localized
fluctuations and lead to the observed behavior. Investigations
to identify the physical mechanism responsible could include
a simultaneous measurement of distance and frequency
dependence of the noise in both the axial and radial directions.

B. Electromagnetic pickup

Britton (2008) fabricated a segmented surface trap based on
a silicon-on-insulator substrate, with the ion 41 μm above the
surface. The design had two separate trapping zones: one had
bare doped-silicon electrodes, 100 μm thick; the other had
doped-silicon electrodes on which a 1 μm layer of gold was
evaporated. The two different electrode surfaces were explic-
itly designed to demonstrate and characterize the effect of
surface material on the “anomalous” heating rate.
Heating-rate measurements were made in the gold and bare-

silicon experimental zones. In both zones the spectral density

of electric-field noise was measured to vary in the range
50 × 10−12 < SE=ðV2=m2 HzÞ < 500 × 10−12. The results for
the gold and silicon traps are shown as points [23]a,b in
Fig. 23. This level of noise is relatively unremarkable,
although it is around an order of magnitude higher than that
seen in NIST’s best traps (Epstein et al., 2007; Ospelkaus
et al., 2011). The significance of this higher absolute value is
unclear, as trap-to-trap variations at this level are not uncom-
mon, even for nearly identical traps being investigated at NIST
(Britton, 2008). What is significant, however, is that the
heating rate varied across the stated range from day to day.
While such fluctuations have been observed in other systems
(Wang, 2012) it is uncommon for experiments at NIST.
To identify the source of the heating, extensive investiga-

tions into a variety of possible sources were undertaken. The
results of these investigations are summarized in Table II. The
level of heating seen was consistent with that expected if
ambient field noise in the lab were coupled to the apparatus
and happened to be on resonance with the trap motional
frequency. (The theory of coupling to ambient field noise is
discussed in Sec. IV.C.) This mechanism could also explain
why the observed heating rate fluctuated from day to day, if
the injected noise had a resonance which only sometimes
overlapped with the trap frequency.
EM pickup has been positively identified as the dominant

source of heating in one other trap. The work of Poulsen,
Miroshnychenko, and Drewsen (2012) identified pickup as a
significant source of heating at a very specific frequency,
corresponding to a switched-mode power supply. This is
shown as point [47]b in Fig. 8. In this instance, having
identified the source of noise, it was a relatively simple source
to avoid, either by changing the power supply or by operating
the trap at a different secular frequency. It is, however,
interesting to note that minimizing pickup is not a concern
restricted to traps in one particular size regime. Trap [47]b is
the largest Paul trap for which heating rates have been
measured, while traps [23]a,b are among the smallest.

C. Technical noise

Schulz et al. (2008) fabricated a three-dimensional, gold-
on-alumina, segmented trap with the ion 257 μm from the

FIG. 24 (color online). Distance-scaling exponent β as a function
of dimensionless distance d=rprolate for both axial and radial
modes above a spheroidal needle of radius rprolate and half length
100 rprolate. The solid lines are for the limit of a single patch
covering the entire electrode. The dotted lines correspond to
intermediate patch sizes of angular extent 0.4 and 0.04. The bar
shows the approximate range of ion-electrode distances and the
possible values of β (1σ) measured in this experiment of
Deslauriers, Olmschenk et al. (2006). Adapted from Low,
Herskind, and Chuang, 2011.

TABLE II. Heating sources considered by Britton (2008). A
comparison is given of the calculated or measured level of noise
from different sources and the level of noise that would be required to
account for the ion-heating rates observed. Britton ultimately con-
cluded that pickup of environmental noise could cause considerable
heating if it were to overlap with the ion’s motional frequencies. The
relative magnitudes of the effects given here are specific to Britton’s
experiment and could be different for other apparatuses.

Source Magnitude

Imperfect micromotion compensation 10 times too low
Noise from the DAC cards (after filtering) 100 times too low
Noise from an improved battery source

(after filtering)
1000 times too low

Johnson noise from filters 100 times too low
Ambient laboratory fields coupled to trap

apparatus
∼ required
magnitude
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nearest electrode. The heating rate was measured for succes-
sive iterations of improving the drive electronics. The initial
setup was limited by noise from analog-output cards, which
were used to provide dc voltages to the segmented electrodes.
These cards caused heating rates high enough to preclude
sideband cooling. By way of improvement, the electronics
was changed such that the dc electrodes were controlled
using an op-amp circuit powered by lead-gel batteries.8 In
this configuration, heating rates were measured corresponding
to a spectral density of electric-field noise of SE ¼ 17ð3Þ ×
10−12 V2=m2 Hz for ω ¼ 2π × 1.18 MHz. This is a rather
unremarkable heating rate, given the trap size, as shown by
point [20] in Fig. 23. Subsequent to this measurement, the dc
voltage supply was further improved (Poschinger et al., 2009)
by adding a transistor push-pull stage at the output of the dc
voltage supply.9 This lowered the output impedance of the
circuit, which may have made the system less prone to noise
pickup in the wiring to the trap. The additional stage may also
have provided some degree of low-pass filtering. Following
this improvement, the heating rate was measured to be lower
by a factor of 6, with a corresponding inferred noise level of
SE ¼ 3ð1Þ × 10−12 at ω ¼ 2π × 1.35 MHz. The improved
result is plotted as point [24] in Fig. 23.
Technical noise has also been positively identified as the

dominant source of heating in another set of experiments.
McLoughlin et al. (2011) fabricated a three-dimensional trap
with stainless-steel electrodes, electroplated by 5 μm of gold.
The ion was trapped 310 μm from the nearest electrode. The
heating rate was measured and corresponded to a spectral
density of electric-field noise of SE ≈ 100 × 10−12 V2=m2 Hz
at ω ¼ 2π × 355 kHz. This level of noise is relatively high but
by no means exceptional and is plotted as point [32] in Fig. 23.
Following this measurement, sources of EM noise in
the vicinity of the experiment were identified and reduced
(Weidt et al., 2015). This included replacing noise-inducing
electronics and using a well-separated ground for the relevant
low-noise electronics. A low-noise multichannel voltage
supply was developed for the trap’s static voltages, which
were filtered with fourth-order low-pass RC filters having a
cutoff frequency of 32 Hz. In addition, a Faraday cage was
built around the entire vacuum system. Following these
efforts, the heating rate in the trap was measured again and
corresponded to a spectral density of electric-field noise of
SE ¼ 0.52ð7Þ × 10−12 V2=m2 Hz at ω ¼ 2π × 427 kHz. The
improved result is plotted as point [65] in Fig. 23. Even
accounting for the 20% increase in frequency at which the
second heating rate was measured (cf. point [32] in Fig. 3),
the care taken to reduce technical and environmental noise in
this set of experiments delivered a reduction in the
heating rate of more than 2 orders of magnitude. This
unambiguously implicates technical and environmental noise
as having been limiting sources of noise in the original
experiment.
It may initially seem surprising that such technical noise

could cause problems. Early in the discussions about heating
in ion traps, Wineland, Monroe, Itano, King et al. (1998)

highlighted the importance of static trap voltages being
heavily filtered at the trap frequency, saying that heating
due to power-supply noise and electrical pickup should be
negligible for filter factors of F < 10−4. Since these early
considerations, the introduction of ion shuttling in segmented
traps has given cause to revisit the practicability of 80 dB
filtering at the trap frequency. First proposed by Wineland,
Monroe, Itano, Leibfried et al. (1998), and implemented by
Rowe et al. (2002), ions are shuttled by applying time-varying
(quasistatic) voltages instead of static voltages. In the limit of
fast shuttling, these voltages may need to be varied at
frequencies close to the trap frequency (Bowler et al.,
2012; Walther et al., 2012). While nontrivial, this is possible
using more-involved filters (Blakestad, 2010) or novel switch-
ing methods (Alonso et al., 2013). Nonetheless, even in
instances not requiring fast shuttling, heating from technical
sources can be neglected only after great care has been taken
to make it negligible.

D. Johnson noise

Harlander (2012) used a three-dimensional, gold-on-
alumina, segmented trap with the ion 257 μm from the nearest
electrode; the trap had the same essential design as that used
by Schulz et al. (2008), described in Sec. VI.C. The initial
500 nm layer of evaporated gold was gold electroplated to a
thickness of 10 − 15 μm (Splatt, 2009). Ion-heating rates were
measured, initially for weak low-pass filtering with a high
cutoff frequency, and then for more aggressive filtering. In
both configurations the observed level of noise was consistent
with what would be expected from Johnson noise in the
filters’ resistors.
In the first configuration the trapping voltages were

generated by lead batteries, referenced with a 10 V precision
reference. These were filtered by out-of-vacuum RC filters
with a cutoff frequency of 1 kHz and in-vacuum RC filters
with a cutoff frequency of 1 MHz (shown in Fig. 25). As in the
work of Schulz et al. (2008), the high cutoff was chosen to
allow fast shuttling. The spectral density of electric-field noise
was measured to be SE ¼ 15ð1Þ × 10−12 V2=m2 Hz at 1 MHz
(plotted as point [42]a in Fig. 23). The Johnson noise in this
filter circuit is analyzed in Sec. IV.D.5. Neglecting any
additional filtering effects from the capacitance of the trap
itself, the electric-field noise at the position of the ion due to
Johnson noise in the filter network at 1 MHz is estimated to be
SE ¼ 24ð2Þ × 10−12 V2=m2 Hz. The stated uncertainty is due
to uncertainty in the value of the second-stage capacitor
(Splatt, 2009). The electric-field noise observed in the experi-
ment is at the same level as what would be expected from
Johnson noise in the filters.
A 5.1 kΩ resistor was added to the second filter stage,

outside the vacuum (shown in Fig. 25). The spectral density of
electric-field noise was then measured to be SE ¼ 11ð1Þ ×
10−12 V2=m2 Hz at 1 MHz (plotted as point [42]b in Fig. 23).
From the analysis in Sec. IV.D.5, the expected level of noise
from the filters in this second configuration is estimated to be
SE ¼ 15ð2Þ × 10−12 V2=m2 Hz at 1 MHz. The observed
heating rate can therefore be fully accounted for by
Johnson noise in the filters.

8U. Poschinger, 2012, Mainz (personal communication).
9U. Poschinger, 2012, Mainz (personal communication).
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E. Surface effects

Daniilidis et al. (2011) fabricated a gold-on-sapphire,
segmented surface trap with the ion 240 μm above the surface.
The electrodes were made of 5 μm of electroplated gold with
17 nm root-mean-square (rms) roughness. Initially, heating
rates were measured and used to infer a spectral density of
electric-field noise of SE ≈ 10 × 100−12 V2=m2 Hz for ω ¼
2π × 1 MHz at the trapping position where the ions were
loaded. This noise level remained constant for several months,
until the background pressure was briefly increased to
10−7 mbar. After this, the heating rates were measured along
the entire length of the trap. They were found to have
increased by around an order of magnitude in the region
where the ions had been loaded. The results before and after
the change are shown as points [33]a,b in Fig. 23. By contrast,
the heating rates away from the loading zone were comparable
to those originally measured in the “pristine” loading zone.
The uncooled ion lifetimes also decreased by roughly 1 order
of magnitude in the parts of the trap where increased heating
rates were observed. The new heating behavior of the trap
remained stable over more than six months.
Given the behavior changed only in the loading region, it

seems that the effects of noise sources such as technical noise
and rf pickup are excluded in this experiment at the noise
levels observed. It is also not considered likely that the change
was due to coating from the Ca oven, as the atomic beam was
directed along the axis of the trap and would be expected to
coat the trap evenly along its length. Daniilidis et al. con-
jectured several possible mechanisms, including bombard-
ment of the trap electrodes by electrons created during trap
loading or by 40Caþ ions which are created by photoionization
outside the trapping volume. These can impinge on the gold
surface with energies of up to 100 eV when accelerated by the
rf field. 40Caþ ions with energies of a few eV could get
physisorbed onto the trap electrodes and later form chemical
compounds, while ions at higher energies could sputter
material from the trap surface. In addition, they note that it
is possible that the laser light used for ion creation and
detection locally alters the electrodes’ chemical composition.

F. Contamination removed by laser cleaning

The first systematic investigation of in situ cleaning of a
trap (Allcock et al., 2011) used a SiO2-on-Si, segmented
surface trap with aluminum electrodes. The ion was 84 μm

above the plane of the trap surface and 98 μm from the nearest
electrode. The aluminum electrodes were 2.4 μm thick, with a
2–3 nm native oxide and 8 nm rms roughness. Any exposed
surfaces on the silicon substrate were coated with 114 nm of
gold. The heating of the trap was first characterized by
measuring the absolute value of the heating rate and the
frequency scaling α (Allcock et al., 2012). Part of the trap was
then cleaned using nanosecond pulses of laser light at 355 nm.
The heating rate was characterized again, measuring the
absolute value and the frequency scaling both in the cleaned
region and in an uncleaned region (Allcock et al., 2011).
The heating rate was reduced when laser energy densities

over 50 mJ=cm2 were used to clean the gold-covered side-
walls. The inferred spectral density of electric-field noise
was reduced by around a factor of 2 from 380 × 10−12 to
180 × 10−12 V2=m2 Hz at 1 MHz. The frequency scaling α,
before and after cleaning, also changed from 0.93(5) to
0.57(3). The heating rate and the frequency scaling in the
uncleaned region did not significantly change over the
measurement period. The results before and after cleaning
are shown in Fig. 23 as points [40] and [39], respectively.
Given the fact that the behavior changed only in the region

being cleaned, the effects of noise sources such as technical
noise and rf pickup are excluded in this experiment at the
noise levels observed. It seems instead that the reduction in
heating is directly linked to removal of material from the
electrode surfaces. The frequency scaling of heating due to
fluctuating dipoles adsorbed on the trap surface varies as a
function of the adsorbed atomic or molecular species (Safavi-
Naini et al., 2011, 2013); see Sec. V.C. Selective cleaning of a
particular subset of adsorbates could therefore account for the
change in α. Alternatively the heating rate may have been
reduced due to changes in the surface topography of the
electrode (Dubessy, Coudreau, and Guidoni, 2009; Low,
Herskind, and Chuang, 2011). Allcock et al. (2011) raised
both of these possibilities, and at present the data do not
provide a basis to favor one option over another.
The heating reduction described seemed to saturate at the

levels stated and further cleaning did not lead to continued
improvements. Allcock et al. suggested that this may impli-
cate additional heating mechanisms which are limiting at
this level.
Subsequent to these measurements, higher energy densities

of the cleaning laser were used. Energy densities of
180 mJ=cm2 removed parts of the gold coating over the
silicon substrate and densities of 255 mJ=cm2 caused damage
to the surface of the aluminum electrodes. This increased the
absolute heating rate (although did not return it to as high as
the precleaning values) and increased the frequency scaling
to α ¼ 0.88ð3Þ.

G. Contamination removed by ion-beam cleaning

A different method of in situ trap cleaning was pioneered
by Hite et al. (2012) using a gold-on-crystalline-quartz trap
with the ion 40 μm above the trap surface. The gold of the
electrodes was 10 μm thick. The trap surface was cleaned by
bombardment with a beam of argon ions, which is a well-
established cleaning technique in surface science. The rate at

Vdc

in vacuumout of vacuum

160 2.8 k

1 F 55 pF trap

5.1 k

FIG. 25. Filters used by Harlander (2012). The network initially
consisted of an RC filter outside vacuum (cutoff at 1 kHz) and a
second RC filter inside vacuum (cutoff at 1 MHz). A resistor was
subsequently added (shown in gray) to reduce the cutoff of the
second stage to 370 kHz.
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which a trapped ion was heated was characterized before and
after the trap surface was cleaned with argon-ion-beam
bombardment.
Initially, Auger-electron spectroscopy (AES) of a surface

trap revealed it to have 2–3 monolayers of carbon on the
surface. These were thought to be most likely from hydro-
carbon deposition from the gas phase, where the presence of
hydrogen is undetectable by AES. Following cleaning with an
argon-ion beam, AES of the trap showed the surface to be
contaminant-free gold. (The method is sensitive to a coverage
fraction of ∼1% and no impurities were seen at this level.)
A duplicate trap was used to measure axial heating rates
which, before cleaning, gave an inferred spectral density of
electric-field noise of SE ¼ 40ð1Þ × 10−12 V2=m2 Hz for
ω ¼ 2π × 3.6 MHz. The result is plotted as point [46]c in
Fig. 23. The frequency scaling was measured to be
α ¼ 1.53ð7Þ. The trap was then cleaned using an argon-ion
beam and the heating rate was remeasured. This gave an
inferred spectral density of electric-field noise of
SE ¼ 0.25ð1Þ × 10−12 V2=m2 Hz, a factor of 160 lower than
before cleaning. The point is plotted as [46]d in Fig. 23.
(Points [46]c,d in Fig. 23 are for improved cleaning param-
eters and at a higher trap frequency than points [46]a,b in
Fig. 8.) The frequency dependence after cleaning remained
essentially unchanged at α ¼ 1.57ð4Þ. It seems that the
source of noise before cleaning was a few monolayers of
(hydro)carbon on the surface of the gold, which could be
cleaned off by argon-ion-beam cleaning. This situation seems
to match well to the adatom diffusion considered theoretically
in Sec. V.D.
The process was shown to be repeatable by reexposing the

trap to air and then vacuum baking again. The field noise
before cleaning was 90ð10Þ × 10−12 V2=m2 Hz, which
returned to 0.75ð5Þ × 10−12 V2=m2 Hz after argon-ion-beam
cleaning. With no further processing this rose slightly to
1.1 × 10−12 V2=m2 Hz but then remained constant. Sub-
sequent experiments showed that the improvements obtained
by argon-ion-beam cleaning persisted for at least ten weeks
(Hite et al., 2013).
The frequency scaling of this noise source (both before and

after cleaning) is different to that observed by Allcock et al.
(2011). The absolute level before cleaning was also lower than
the level seen by Allcock et al. (2011) after cleaning. Despite
the efficacy of surface cleaning in both instances, the differ-
ence of the absolute heating rates and frequency scalings
suggests that Hite et al. (2012) may not be limited by the same
heating mechanism as Allcock et al. (2011).
Following the work of Hite et al., Daniilidis et al. (2014)

performed similar investigations of in situ ion-beam cleaning.
Using a trap with electrodes made of copper and aluminum
on a fused-quartz substrate with d ¼ 100 μm they saw a
similar decrease in the level of noise following argon-ion-
beam cleaning: it was reduced from 1.2 × 10−12 to 0.02 ×
10−12 V2=m2 Hz at frequencies just below 1 MHz. This
suggests that their experiment was also limited by surface
contaminants. For comparison, these are plotted as
points [57]a,b in Fig. 23. The value of α was measured to
be 1.27(23) before cleaning, and 0.95(28) after cleaning. In
contrast to Hite et al. (2012), they observed that—even after

cleaning—the trap surface was not atomically clean and oxide
free. Nonetheless, they found that after cleaning they were no
longer limited by these surface contaminants, but rather by
technical noise, observing a resonance in the frequency
spectrum around 800 kHz consistent with noise from their
filter board.

H. Conclusion

In conclusion it can be seen that, in certain instances, it is
possible to directly link the ion heating to specific aspects of
the experiment or to specific changes made. While the
absolute levels of heating observed in many of these experi-
ments are rather similar, the sources of heating in those cases
where it can be identified are seen to be diverse. This
conclusion, which was first hinted at by the wide-ranging
frequency-scaling behavior reported in Sec. III.A, has now
been explicitly borne out. As such one cannot investigate the
electric-field noise observed in ion traps as some homo-
geneous phenomenon, but rather as many different phenom-
ena which must be carefully teased apart.

VII. OPEN QUESTIONS

Having looked at mechanisms which can be more or less
established, there exist a number of experiments where the
noise is well characterized, but which do not lend themselves
to an unambiguous identification of the noise source. These
are discussed next in turn.

A. Cryogenic noise floor

Cooling an ion trap to cryogenic temperatures reduces the
ion-heating rate (see Sec. III.C)—and by implication reduces
the electric-field noise. At MIT temperature scalings in the
range 2 < γ < 4 have been observed, until a noise floor is
reached below around 30 K. Labaziewicz, Ge, Leibrandt et al.
(2008) suggested that the effect could be accounted for by a
continuous spectrum of thermally activated random processes
such as charge traps or adsorbate diffusion. (This is discussed
further in Secs. V.B–V.D.) While such models may be able to
account for the observed behavior, they are not the only
mechanisms which could, in principle, explain the observed
features. While the mechanisms suggested are speculative,
they indicate that the observed effects do not conclusively or
unambiguously point to a particular source, and that one or
more of a number of mechanisms may be at work in cryogenic
systems.

1. Johnson and technical noise

While every effort is usually made to keep cabling short,
cryostats generally require longer wires between the trap-drive
electronics and the trap. If the driving and control electronics
are held at room temperature [which is often, although not
always the case: cf. Poitzsch et al. (1996) and Gandolfi et al.
(2012)], short wires would provide little thermal resistance
and lead to a significant heat load at the cold stage (Ekin,
2007). Instead, longer wires are used, allowing the heat to be
exchanged between the wires and the cold finger. It is also
advantageous, from the perspective of the thermal load, for
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these wires to have a low thermal conductivity and conse-
quently a higher Ohmic resistance. Using longer wires of
higher resistance has the advantage of a much lower heat load
at the cold stage. However, it also means that in addition to the
basic resistance of the trap electrodes (which at cryogenic
temperatures may be ∼10 mΩ) there is also Johnson noise
from the cabling, which may have a resistance of ∼10 Ω.
As the temperature is reduced the resistance of most cables

scales approximately linearly with T. This would lead to an
expected value of γ ¼ 2 (see Sec. IV.D.3), as observed by
Labaziewicz, Ge, Leibrandt et al. (2008) in experiments with
good (i.e., low heating-rate) traps. The experiment used
phosphor-bronze cables (Labaziewicz, 2008), for which the
resistance changes only by around 20% between 300 and 4 K
(Tuttle et al., 2010). If the experiment were limited by this
resistance then one would expect a still smaller value of γ.
However, if the experiment were limited by other resistances,
a value of γ ¼ 2 is unsurprising. At some temperature—which
can vary significantly depending on the purity of the material
(Ekin, 2007)—the resistivity would plateau, becoming inde-
pendent of temperature and leading to an exponent of γ ¼ 1.
Even if the resistance of the cabling were to go to zero, at some
point the noise would be limited by the technical noise of the
drive electronics. In this case, where the driving electronics is
outside the cryostat, and where the rf and dc sources, leads,
and filters remain at a constant temperature throughout the
measurement (Labaziewicz, Ge, Leibrandt et al., 2008), this
noise level would be independent of the temperature at the trap
and appear as a leveling off of SE.

2. Magnetic pickup

In order to adequately exchange heat between the electrical
cabling and the cold finger, the cabling in a cryostat is
wrapped several times around each heat stage in the cryostat
(Ekin, 2007). This means that the level of EM pickup could be
considerably higher than in typical room-temperature systems,
where lengths of wire are generally kept to an absolute
minimum (see Sec. IV.C for a discussion of EM pickup).
The cryostat shrouds (at room temperature) provide a good

level of shielding for electric-field noise, although viewports,
imperfect seams, and other defects can allow non-negligible
amounts of EMI through (Miller and Bridges, 1966; Bridges,
1988; Rajawat, Kalghatgi, and Ron, 1995). As the temperature
is reduced, the resistance of the copper heat shields decreases,
and the magnetic-shielding effect increases. This effect has
already been noted in connection with the improved coherence
times of hyperfine qubits when shielded from variations in
magnetic fields at hertz frequencies (Brown , Wilson et al.,
2011). At radio frequencies, the improvement of shielding
with reduced temperature might be expected to lead to a
reduction in the ion-heating rate. Such an effect would also
reach a plateau when the heating becomes limited by some
effect other than EM pickup.

3. Fluctuating adatom dipoles

As discussed in detail in Sec. V.C.3, adatoms whose dipole
moment undergoes thermally induced fluctuations can exhibit
noise with similar characteristics to the behavior observed

by Labaziewicz et al. Considering a planar geometry, and
choosing some reasonable parameters for the adsorbate
properties, this mechanism might be expected to display γ ≈
2.5 above an activation temperature of a few tens of kelvins.
This is in broad agreement with the experimental observa-
tions. In trap [22]a [for which γ ¼ 3.0ð2Þ] the frequency
scaling was measured at cryogenic temperatures and found to
be α ≈ 1. The scaling predicted in Sec. V.C.3 for fluctuating
adatom dipoles was α ¼ 0 at low frequencies and α ¼ 2 at
high frequencies. The simple model here contains many
unknown parameters, and it may be that—with the particular
parameters of the contamination in this instance—the trap was
being tested near the characteristic frequency.
In summary, behavior observed by Labaziewicz, Ge,

Leibrandt et al. (2008) does not immediately rule out the
involvement of Johnson noise or EM pickup. Whether the
appearance of a noise floor at T ≈ 30 K is due to an
exponential suppression of thermally activated fluctuators
or set by a combination of different sources of electrical
noise in the circuit is still an open question.
Recently, Bruzewicz, Sage, and Chiaverini (2015) also

observed and characterized a low-temperature plateau in
γðTÞ. By considering the frequency and temperature scaling
of the noise in their particular system they showed that—at
least for the basic parameter estimates made in this review—
their results were not well described by the models presented
here for Johnson noise (Sec. IV.D), thermally activated TLFs
(Sec. V.B.3), fluctuating adatom dipoles (Sec. V.C), or adatom
diffusion (Sec. V.D). This result underscores the need for
further work, experimental and theoretical, in understanding
such behavior.

B. Noise above superconductors

The ion-heating rates above superconducting surfaces have
been measured in niobium traps and niobium nitride traps
(Wang, Ge et al., 2010). Nb (or NbN)-on-sapphire surface
traps, with an ion height of 100 μm, were operated at around
6 K (TNb

c ¼ 9.2 K, TNbN
c ¼ 16 K). The inferred electric-field

noise above both traps was comparable to the lowest value of
electric-field noise measured in Au, Ag, and Al traps of the
same design in the same apparatus. Furthermore, the temper-
ature of a single niobium trap was varied across the super-
conducting transition. The heating rates above and below Tc
were comparable.
Based on their observations, Wang, Ge et al. (2010)

concluded that the heating observed in this experiment was
not due to the buried defects in, or the resistance of, the trap
electrodes. They further surmise that the only remaining
option is that the observed heating is predominantly a surface
effect. However, from the wide variety of possible mecha-
nisms which may play a role in the heating observed in ion
traps, there may be other possible explanations yet to be
excluded, as discussed in Sec. VII.A: Johnson noise in
cabling, technical noise from drive electronics, and EM
pickup would all be expected to be independent of electrode
material and remain essentially unchanged when the trap itself
becomes superconducting.
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C. Frequency-independent heating rates

One of the largest traps in which heating rates have been
measured—trap [47] (Poulsen, Miroshnychenko, and
Drewsen, 2012)—which also had the lowest heating rate of
any room-temperature ion trap, exhibited a heating rate which
was independent of the motional frequency over the range
280–585 kHz, except for a narrow resonance at 295 kHz. The
trap was made of stainless-steel rods at a distance of 3500 μm
from the ion and plated with 5 μm of gold. The resonance was
traced to a nearby switched-mode power supply (discussed in
Sec. VI.B), although the cause of the underlying heating rate
(indicating a noise which scaled with α ¼ −1) is unclear.
Understanding the situation in this trap may be of significance
to quantum-information-processing experiments, particularly
in the low-frequency regime: certain gates which use the ions’
motional dipole to mediate the interaction (Cirac and Zoller,
2000) work faster at lower trap frequencies, as the ions are less
tightly localized. This, however, can cause technical chal-
lenges (Kumph, Brownnutt, and Blatt, 2011) as the heating
rate (normally) increases at lower trap frequencies which
cancels or even outweighs any benefit of the increased gate
speed. Should a regime be found in which this were not the
case, there may be new options available for scalable quantum
computing.
Bare blackbody radiation noise, at the temperatures and

frequencies of interest, would be expected to increase with
frequency and scale with α ¼ −2, as discussed in Sec. IV.A.
By additionally considering (conjectural) external sources of
rf noise, or frequency-dependent shielding effects, the
observed scaling may be consistent with technical noise.
This verdict is not, however, definitive and further inves-
tigation would be required in order to draw firm conclusions.
A few possible avenues are mentioned.
First, and most obvious, the trap is large. It is almost a factor

of 3 bigger than the next largest Paul trap in which a heating
rate has been measured: trap [13] (Home, 2006). Moreover, it
is almost a factor of 10 bigger than the next largest trap in
which α has been measured: trap [7]g (Turchette et al., 2000).
It would be interesting to know what happens between
these sizes.
A second interesting feature of the trap is that it is made

of stainless steel. This is not a common trap material,
having previously been used only for a few large traps
(Rohde et al., 2001; Home, 2006; Benhelm et al., 2008),
none of which have been used to measure α. Stainless
steel has the unusual property of having better magnetic-
field shielding at lower frequencies (over the range 0.1–
10 MHz) (Kaye et al., 1995). While vacuum chambers are
standardly made of stainless steel, it is not clear what
shielding effect, if any, might be gained from traps made
of stainless steel.
A final unusual aspect of the Aarhus trap’s operation is

noted. Almost all traps discussed in the literature, and all
traps in which α has been measured, create the trapping
potential by driving some electrodes with an alternating
voltage Vrf cosðΩrftÞ, while keeping the remaining electrodes
at rf ground. In the trap used by Poulsen et al. some electrodes
were driven with an alternating voltage ðVrf=2Þ cosðΩrftÞ,
while the remaining electrodes were driven 180° out of phase,

with −ðVrf=2Þ cosðΩrf tÞ. Provided the far-off ground (such as
the vacuum chamber) is a long way away and well shielded
from the ions by the trap electrodes, these two methods are
identical but for the former having a quasiuniform field
oscillating at the trap-drive frequency. In most traps, however,
the end caps—being close to the ions and held at rf ground—
break the symmetry between the two situations. By applying
rf voltages to the end caps Poulsen et al. preserved the
idealized behavior even against such symmetry breaking. It is
not immediately obvious why this would affect heating rates,
but is mentioned for completeness.

D. Very low absolute heating rates

Trapping 9Beþ in a molybdenum ring trap with an ion-
electrode distance of d ¼ 125 μm, Turchette et al. (2000)
observed a spectral density of electric-field noise of
140 × 10−12 V2=m2 Hz at ω ¼ 2π × 7.9 MHz, with a fre-
quency scaling of α ∼ 0. The trap was removed from vacuum
and cleaned with HCl to remove the Be coating deposited by
the atomic source. It was then electropolished in phosphoric
acid and rinsed in distilled water followed by methanol.
Following this treatment the noise was remeasured and found
to be 0.7 × 10−12 V2=m2 Hz at around the same frequency.
The trap also exhibited a frequency scaling of α ¼ 6.0ð2Þ
(over the range measured 3.2 MHz < ω=2π < 8.2 MHz). The
trap before and after cleaning is referred to in this review as
[7]c,h, respectively.
In a second, larger trap (d ¼ 280 μm), made in the same

piece of metal as trap point [7]c, the spectral density of
electric-field noise was measured to be 7.4 × 10−12 V2=m2 Hz
at ω ¼ 2π × 3.5 MHz. Following the same cleaning treatment
as described previously, the noise was measured to be
0.014 × 10−12 V2=m2 Hz at ω ¼ 2π × 3.3 MHz, a factor of
500 reduction from the initial measurement. The trap also
exhibited a frequency scaling of α ¼ 4.0ð8Þ (over the range
measured 1.3 MHz < ω=2π < 3.5 MHz), suggesting that
even lower heating rates might have been attainable at higher
trap frequencies. The trap before and after and after cleaning is
referred to in this review as [7]d,i, respectively.
It is not clear why the ultimate heating behavior in these

traps was different from the initial heating behavior and also
different from other traps. It was conjectured by Turchette
et al. that the modified behavior for traps [7]h,i was due to a
less-than-usual deposition of beryllium on the electrodes.
However, even with the advent of photoionization loading,
and the very low fluxes this requires (Kjærgaard et al., 2000;
Deslauriers et al., 2006; Brownnutt et al., 2007), the effect has
never been reproduced. Should the result be reproduced, it
would be of significant interest to the ongoing search for low
heating rates.

VIII. OUTLOOK

Given the present state of understanding in the literature,
as summarized in this review, there are several ways in
which ion-trap work, and more generally any work relating
to fluctuating electric fields near surfaces, might proceed.
The noise may be viewed as a problem to be removed, and
steps can be taken to reduce it without further effort to
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understand the exact causes. Alternatively, either for its own
sake or in an attempt to be better able to minimize it, the
noise may be further investigated. This could take the form
of continued heating-rate measurements in ion traps, or of
characterizing—experimentally or theoretically—particular
parts of the system separately. In practice, any given project
is likely to draw on a combination of these options, to
differing degrees, depending on its specific aims. They are
discussed here in turn.

A. Reduction of noise

Inasmuch as ion-trapping experiments wish to study the
basic nature of light-matter interactions, probe the foundations
of quantum mechanics, or build better clocks, electric-field
noise—whatever its causes—is almost always a distraction
from the physics under investigation. In this regard a prag-
matic approach, which does not interest itself with what
causes the noise beyond knowing how to suppress it, and
which allows experiments to move forward, may be attractive.
To this end, a number of things should be considered.
There are multiple sources of electric-field noise to be

reckoned with, a number of which can contribute to heating at
or near a level which can limit trapped-ion experiments. If
great effort is taken to suppress one (and only one) effect it is
likely that the experiment will be limited by a combination of
the other effects. Consequently, every precaution should be
taken to suppress all effects.
Ideally, the laboratory environment should be kept as

electronically quiet as possible. However, because it is
impossible to know all the sources of rf radiation a priori,
shielding is necessary to maintain a repeatable experiment.
Ambient electric fields can be blocked by a Faraday cage, as
used in the experiments of Daniilidis et al. (2014) and Weidt
et al. (2015). Mu-metal shielding, as used by Monz (2011),
attenuates both electric- and magnetic-field noise, although it
has drawbacks due to its greater cost, weight, and bulk. At low
temperatures the shielding effect of copper shrouds in a
cryostat can offer significant advantages (Brown, Wilson
et al., 2011).
Any electronic devices attached to the experiment, such

as voltage sources for dc or rf electrodes, should be as low
noise as possible. Noisy power supplies (Poschinger et al.,
2009) and dc control (Britton, 2008) can contribute noise at
a level which can limit experiments. Starting from initially
quiet sources, these should be filtered as heavily as possible,
noting also that nonoptimal filter design can also introduce
noise at a level which can limit experiments (Harlander,
2012). The filters should be situated as close to the trap as
possible to limit pickup of noise from fluctuating electric or
magnetic fields after the filters. It has been known for a long
time (Wineland, Monroe, Itano, Leibfried et al., 1998), but
bears repeating, that technical noise can be neglected in ion-
trap experiments if, and only if, great pains are taken to
reduce it as far as possible.
Any dielectrics present should be as low loss as possible.

This includes dielectrics in electronic components such as
capacitors, as well as any other material which is exposed to rf
radiation near the trap. These might include the trap substrate,
mountings for the trap, and any in-vacuum optics.

The trap-electrode surfaces should be as clean as possible.
In at least some cases, exposure of the electrodes to flux
from the atomic oven has been linked to increased heating
(Turchette et al., 2000; Letchumanan et al., 2007). This can be
minimized by using more efficient ionization and loading
methods (Kjærgaard et al., 2000; Cetina et al., 2007), by
cleaner loading systems (DeVoe and Kurtsiefer, 2002;
Brownnutt et al., 2007; Sage, Kerman, and Chiaverini,
2012), or by shielding the trap electrodes from the flux
(Britton et al., 2009; Allcock et al., 2011; Doret et al.,
2012). These precautions may not ultimately prove sufficient
as the act of ionizing atoms may degrade the trap surface
(Daniilidis et al., 2011). This problem can be mitigated in a
segmented trap by using separate zones for loading and for
operations (Blakestad et al., 2009; Doret et al., 2012).
A variety of noise mechanisms can be suppressed by

operating traps at cryogenic temperatures. This could be
expected to improve “typical” traps by 2 orders of magnitude,
while traps with initially high heating rates may be improved
even more. Cryostats have a number of advantages besides
suppression of heating rates, including fast installation of new
traps, ultralow background pressures, and the possibility of
using novel materials. Weighed against this is their expense
(both the initial costs of the cryostat and running costs related
to cryogens) and possible increased vibration.
To remove the causes of noise created by surface contam-

inants the traps may be cleaned in situ. Modest improvements
have been demonstrated using laser ablation cleaning (Allcock
et al., 2011). Improvements of around 2 orders of magnitude
have been reported using cleaning by argon-ion bombardment
(Hite et al., 2012; Daniilidis et al., 2014). Both methods
should be used with care as they aggressively remove material
from the trap surface and entail the possibility of damaging
the trap.
Once every effort has been made to reduce the sources of

noise, there are still further options for reducing the heating
rates. Almost all noise sources which are likely to limit ion
traps have lower spectral densities at higher frequencies.
Consequently, heating rates can be reduced by operating
experiments so that ions have higher motional frequencies.
An often-overlooked conclusion of Turchette et al. (2000)

regards another rather obvious possibility for reducing the
heating rate: bigger traps have smaller heating rates.
Turchette et al. noted that with relatively little reduction
in the trap secular frequency (which determined the fastest
gate speed for many gate implementations) a significant
decrease in the heating rate compared to the logic-gate speed
appeared possible by using larger traps. The greater amount
of data now available suggests that increasing the trap size
will not necessarily bring the level of improvement initially
anticipated by Turchette et al., although it will bring some.
Moreover, given the possibility of ultrafast gates (García-
Ripoll, Zoller, and Cirac, 2003; Bentley et al., 2013) it may
be that in the future the limit to gate speeds set by the
motional frequency is relaxed. Thus, while it often seems to
be anathema, unless there is some other specific reason for
requiring small traps, larger ion-electrode separations could
be advantageous.
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Finally, it has become common to plot and compare
SEðdÞ, rather than _̄nðdÞ, as this removes the influence of the
ion mass and therefore gives a fairer intertrap comparison of
the noise. However, it should not be forgotten that it is often
the heating rate _̄n and not the noise per sewhich is of interest
for many trapped-ion applications. There are many consid-
erations that go into the selection of the ion species to be
used (Hughes et al., 1998; Lucas et al., 2003; Wineland
et al., 2003). One aspect which may be added to the list of
considerations is that the heating rate is inversely propor-
tional to the ion mass. Were a heavier-mass ion to be used
then, to maintain the same trap frequency and stability
parameter, for a given size of trap, the rf voltage must be
increased in proportion to the ion mass. In larger traps where
high voltages are used already, further increases in voltage
may not be feasible. However, for smaller traps, higher
voltages may not be prohibitive. By way of illustration, for
the same level of electric-field noise, and assuming the
motional frequency is unchanged, an 171Ybþ ion will be
heated 19 times more slowly than a 9Beþ ion. All other
things being equal, this is a similar equivalent benefit as
might otherwise be expected by increasing the trap size by a
factor of about 7, or by operating the trap at liquid-nitrogen
temperatures.
In conclusion, there is not one magic bullet which makes all

of the problems go away, but rather steps must be taken to
ensure that the noise is reduced simultaneously on multiple
fronts. In opting to implement multiple of these solutions,
however, it should be noted that they may not all be
independent. For example, if cryogenic operation reduces
noise by freezing out the motion of surface contaminants, and
if electrode cleaning reduces noise by removing surface
contaminants, then the heating rate of a trap operated at
cryogenic temperatures might not be further reduced by in situ
cleaning of the electrodes. Recent results by McConnell et al.
(2015) support this idea. However, for many combinations the
effect on the heating rate is largely conjectural at this stage;
suggestions for future experiments in this direction are given
in Sec. VIII.B.6.

B. Investigation of noise in ion traps

Appreciation of the effects underlying electric-field noise in
ion traps can aid in finding ways to minimize or mitigate the
influence it has on experiments. As electric-field noise above
surfaces plays a role in a wide variety of experiments beyond
ion traps, an increased understanding in one system may serve
to shed light on others. It is also possible that the noise may
prove useful; it may, for example, offer new ways to analyze
surfaces to complement or extend the existing surface-science
toolbox. Whatever the reason, further systematic investigation
of the noise may be of interest.
As this review has pointed out, there are a number of

qualifications which must be made concerning any use of
trapped ions to characterize noise. The ion only provides
information regarding the total noise: how this relates to the
several mechanisms potentially causing it requires careful
interpretation. Furthermore, characterizing the noise in one
experiment does not necessarily say anything about the noise

in an experiment across the hall. As such, while the experi-
ments suggested here will fill in certain gaps in the literature,
one should be cautious of claiming too general a result. Given
the results may apply only to a particular experiment, all the
more care should be taken in generalizing results beyond ion
traps to, for example, nanocantilever systems or atom-trap
systems. Given these caveats, we consider a number of
parameters with respect to which electric-field noise in ion
traps may be investigated.

1. Frequency

It may be expected that α varies between experiments and
even takes different values for different parameter ranges in a
single experiment. Many noise sources (such as EMI, EM
pickup, Johnson noise from filter networks, technical noise,
and TLFs) can give rise to resonances at particular frequen-
cies. Some noise sources (such as filtered Johnson noise,
fluctuating adatom dipoles, and adatom diffusion) exhibit a
roll-off at higher frequencies. The characteristic frequencies at
which such resonances or roll-offs occur can provide signifi-
cant information about the underlying mechanism and go a
long way to constraining theory.
Most experimental results to date for frequency scaling

infer that, within some range of uncertainty, over the fre-
quency range measured, and at the resolution taken, α is
constant for that experiment. Other experiments clearly show
the presence of resonances in the spectrum (Poulsen,
Miroshnychenko, and Drewsen, 2012; Daniilidis et al.,
2014). Future work should be considered to search for
changes in α. This may necessitate higher-resolution scans
of the trap frequency and require measurements over a larger
range of frequencies. This is more time consuming than taking
a smaller number of points, but the information provided by
any features in the spectrum provides much greater insight
into possible mechanisms.
The frequency scaling expected for EMI, EM pickup,

Johnson, and technical noise can vary greatly depending on
the details of the apparatus. These include the details of the
driving electronics, the wiring, and the filter design. Future
investigations of heating which may either implicate or
exclude such noise sources would benefit from including
comprehensive details of the associated electronics.

2. Distance

As we have gone to pains to highlight, Figs. 8 and 12 are of
limited use in elucidating distance-scaling laws for noise. To
date, only one experiment has made a controlled measurement
of the distance scaling (Deslauriers, Olmschenk et al., 2006).
Given the complexity of the issues at hand, the case is clearly
not closed for investigating distance-scaling behaviors. There
are many different mechanisms at play and great care must be
taken to tease these apart and understand them. Just as
multiple experiments measuring frequency scalings have shed
light on the multifaceted nature of the noise (see Sec. III.A), so
multiple distance-scaling measurements may provide a fuller
picture.
For ease of interpretation, such experiments could be

carried out in traps with as simple a geometry as possible.
Of the geometries which support an analytical solution to the
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Laplace equation (Morse and Feshbach, 1953), two form a
trapping potential, shown in Figs. 26(a) and 26(b). The
toroidal solution is a ring trap, sometimes referred to as a
Paul-Straubel trap (Yu, Nagourney, and Dehmelt, 1991). The
bispherical solution has never been used in practice, although
it is approximated by a needle trap without sleeves. The
bispherical solution should be easier to scale in a controllable
way, in a manner similar to the work of Deslauriers,
Olmschenk et al. (2006), by mounting the spheres on a pair
of translation stages, as shown in Fig. 26(c).
Another possibility for scaling the ion-electrode separation

uses electrical, rather than mechanical, means to move the ion
closer to the trap. This can be achieved by varying the
amplitude of the rf voltage applied to some, but not all,
electrodes. Using this method the position of the rf null, and
thereby the position of the ion, can be moved. This was first
used by Herskind et al. (2009) to move the ions small
distances. It was later proposed as a way to measure heating
rates by Kim et al. (2010). In this latter proposal a surface
ring trap has multiple concentric ring electrodes to which
different rf voltages can be applied, thereby changing the ion
height d.
As there is no mechanical motion involved, and with

sufficient control of the variable rf voltages, this can be done
in a highly controlled and repeatable way. Also, being a planar
trap, the geometry is—for certain noise mechanisms—simple
to model. For a mechanism such as fluctuating adatom dipoles
the trap can be treated as a near-infinite plane: the dimensions
of the individual electrodes are unimportant. By contrast,
Johnson noise would be correlated across each electrode, but
be uncorrelated between electrodes. Consequently, the noise
due to particular electrodes would need to be individually
calculated and summed. Technical-noise sources may provide
a more complicated picture as the noise they inject into the
system may vary as a function of the rf voltage being supplied.
With careful design of the experiment it should be possible to
distinguish between such sources.
As stressed throughout this paper, while the ion-electrode

separation is known relatively easily, and while it is an

important number for many practical purposes, it is not
necessarily useful for elucidating heating mechanisms.
Some papers provide characteristic distances (assuming a
certain noise model), or provide sufficient detail that they may
be calculated, although this is not always the case. It would be
helpful for future literature to include traps’ characteristic
distances, for a selection of likely noise models. Calculating
the characteristic distances for arbitrary geometries is not
trivial, and the results can depend sensitively on how well the
model reflects, for example, slight imperfections in the real
trap geometry. A simulation-independent experimental bench-
mark for characteristic distances of Johnson noise (or other
noise sources which are correlated across the entire electrode)
can be achieved by deliberately applying excess white noise to
one or more trap electrodes and measuring the heating rate of
the ion (Daniilidis et al., 2011). Using this method it is
possible to measure the characteristic distances to various trap
features. This can either act as a benchmark against which
simulation results are tested or be used to obviate the need for
simulations.
Given the complexity of modeling trap geometries, and of

changing the distance to the trapping electrodes, it may be
advantageous to characterize the heating due to external
objects which are independent of the trap operation. It has
been proposed that this could be achieved by using an ion trap
with an open geometry and varying the distance between it
and some external object (Maiwald et al., 2009; Harlander
et al., 2010; Brownnutt et al., 2012).
At room temperature, heating-rate measurements have been

performed in traps varying in size by over 2 orders of
magnitude: 30 μm < d < 3500 μm. At cryogenic temper-
atures the range is much smaller: 40 μm < d < 230 μm.
Given the ease and repeatability of fabricating surface traps,
and the short times required to install new traps in cryogenic
systems (Wang, 2012), it would be straightforward to measure
traps larger than d ¼ 230 μm. This could provide a reasonably
standardized geometry to determine the distance scaling
and, given the current paucity of data in this range, even a
few results in larger traps would provide significant
information.

3. Correlation length

Different mechanisms for electric-field fluctuations often
result in significantly different spatial correlations of the noise.
Systematic measurements of noise-correlation lengths with
single- and multi-ion systems could shed further light onto the
origin of the underlying physical processes.
If the noise is correlated over distances of the order of

the ion-electrode separation or larger, a single ion can be
used to detect such correlations by measuring heating rates
along different directions and at different positions in the
trap. For example, the Johnson noise considered by
Leibrandt, Yurke, and Slusher (2007) is correlated across
each electrode, but uncorrelated between electrodes.
Consequently, the axial components of the noisy electric
field from a single segment cancel near the center of the
electrode and at this location the axial heating would be
much lower than the heating observed near the edge of an
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FIG. 26. Only two analytical solutions to the Laplace equation
are capable of trapping: (a) toroidal solutions and (b) bispherical
solutions. Toroidal solutions are already well known as ring traps,
although bispherical solutions would be simpler to scale in a
controllable way. This could be achieved in a manner similar to
thework of Deslauriers, Olmschenk et al. (2006), by (c) mounting
the spheres on a pair of translation stages. The vacuum chamber
provides a far-off ground.
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electrode. Such a behavior could be relatively simple to
measure experimentally.
As discussed in Sec. VI.A, another method of inferring

the correlation length of noise on surfaces can be performed
using traps with movable electrodes. With reference to
Fig. 24, in the limit of d ≫ Rel (in this example
Rel ∼ rprolate) the value of β is the same for both Johnson
noise (infinite patch size) and models with finite correlation
lengths. For d ∼ Rel the ion-electrode separation at which β
departs from this value is related to the patch size. By
measuring βðdÞ it is possible to determine the patch size or,
more generally, the noise-correlation length rc. This method
requires detailed modeling of the electrode configura-
tion and will be limited by the minimum achievable
ion-electrode distance.
Noise-correlation effects appear in multi-ion systems,

where the heating rates for different normal modes depend
strongly on the correlations of the noise over the extent of
the ion crystal (see Sec. II.C.3). The field correlations at the
positions of the ions are different from the correlations on the
surface and depend again on the trap-surface distance and
details of the trap geometry. This is illustrated in Fig. 27
where, for a simple planar geometry, the heating of the
common and the relative transverse mode for two ions
separated by a distance x0 is considered. The two modes
couple to the symmetric δEð0Þ ¼ ½δEzðt; r1Þ þ δEzðt; r2Þ�=

ffiffiffi
2

p

and antisymmetric δEð1Þ ¼ ½δEzðt; r1Þ − δEzðt; r2Þ�=
ffiffiffi
2

p
field

combinations, respectively. The corresponding spectral den-

sities of the electric-field noise Sð0ÞE and Sð1ÞE are compared at
different ion-surface spacings. Noise sources with different
correlations lengths become distinguishable for d≲ x0, while
for distances d ≫ x0 the noise always appears to be correlated.
Traps where ions are confined in separate but proximate wells
and x0 ∼ d (Brown, Ospelkaus et al., 2011; Harlander et al.,
2011; Wilson et al., 2014) would be particularly suitable to
search for such correlation effects.

4. Temperature

In the traps where it was measured, the electric-field noise
scales less strongly at low temperatures (6 K < T ≲ 50 K)
than at higher temperatures (50 K≲ T < 300 K). Despite
such qualitative similarities there may be multiple effects at

play. This would not necessarily be surprising, given the wide
variety of noise sources in different experiments. Such
measurements therefore bear repetition by other groups to
see what happens in different experiments, possibly limited by
different noise sources.
If the noise floor is set by injected noise from sources

outside the cryostat then, if the temperature were further
reduced, these may remain the limiting factor. However, it
may be that traps at millikelvin temperatures have new
regimes of operation. In such a case it may also be
possible to separate out the damping rate Γ from the
occupation number of the thermal bath N̄ [see Eqs. (18)
and (19)].
No controlled measurements have been made regarding

the effects of elevated temperature on heating rates. It is
feasible to operate ion traps at 400 K or hotter (Chwalla,
2009). By increasing the temperature in a controlled
manner, even a modest change of ∼100 K above room
temperature would be expected to increase the heating rate
by a factor of 2–3 (assuming 2 < γ < 4). This should be
easily resolved and would provide information on heating
in a new regime. Interestingly, for some mechanisms it is
also predicted that the heating rate may decrease at higher
temperatures (see Fig. 19 and Sec. V.B.5).
Combinations of heating or cooling different parts of the

apparatus could also shed light on possible heating mecha-
nisms (Chiaverini and Sage, 2014). For example, if the
vacuum chamber were heated while the trap was held at a
constant temperature it may be expected that shielding of EMI
will decrease, due to the increased resistance of the chamber.
As a result the ion-heating rate may increase, despite the
constant trap temperature. Alternatively, heating (or cooling)
the electronics while leaving other parts of the apparatus at
ambient temperature would change the heating rate if Johnson
or technical noise were limiting factors, while leaving it
unchanged if the experiment is limited by other heating
mechanisms.

5. Equilibrium dynamics

Prior to the advent of laser cooling, hot ions (∼1 eV) were
routinely cooled in Penning traps using resistive cooling
(Wineland and Dehmelt, 1975; Itano et al., 1995). In principle,
resistive cooling (where hot ions are cooled toward equilib-
rium with an electronic circuit) is the flip side of Johnson-
noise or technical-noise heating (where cold ions are heated
toward equilibrium with an electronic circuit).
Resistive cooling has been used and characterized in

Penning traps for cooling clouds (N ∼ 105) of electrons
(Dehmelt and Walls, 1968; Wineland and Dehmelt, 1975). It
is difficult to compare these results to the work at hand,
however, as there exist thermalization mechanisms in a
cloud which are not present in few-ion crystals or single
trapped ions. Work on resistive cooling of single ions in
Penning traps is much more scarce [although see Van Dyck,
Jr., Farnham, and Schwinberg (1995) and Djekic et al.
(2004)]. All such experiments (with either single ions or
clouds) are performed in relatively large traps where
d > 2 mm. Separate experiments implemented resistive
cooling in Penning traps where the electronics was held
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FIG. 27 (color online). Effect of noise correlations in multi-ion
traps. The ratio between the spectral noise densities Sð1ÞE and Sð0ÞE
evaluated at equal frequencies plotted as a function of the ion-
surface distance for different correlation lengths rc. For this plot
an exponential cutoff for the noise correlations on the surface has
been assumed.
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at room temperature (Dehmelt and Walls, 1968), 80 K
(Wineland and Dehmelt, 1975), and 4.2 K (Gabrielse et al.,
1995; Djekic et al., 2004), although no systematic study has
been made of the equilibrium behavior as a function of
temperature.
In Paul traps, characterization of resistive heating has been

made by Church and Dehmelt (1969). This experiment cooled
a cloud of 104 protons in a spherical Paul trap with
d ¼ 1.6 mm. The initially hot ions (T ¼ 12 000 K) were
cooled to 900 K by coupling them to a resonant tank circuit
at 330 K. The discrepancy between the final ion temperature
and the temperature of the circuit indicates the presence of
some other heating mechanism. This was tentatively attributed
to electron bombardment degassing producing sufficient
distortion to cause heating of the ions by nonlinearities in
the rf field. However, such rf heating has very different
outworking in a cloud compared to an ion crystal (Chen
et al., 2013).
Despite the relevance for ion-heating discussions, no

experimental study has been made of resistive cooling—nor
of the equilibrium dynamics of trapped-ion heating—for
geometries differing significantly from hyperbolic surfaces
(such as planar traps), or for small traps (d < 1 mm). Nor have
characterizations been made in Paul traps for single ions or for
few-ion crystals. Moreover, no consideration has been made
regarding the adequacy of the resistive cooling model as a
function of frequency, trap size, or temperature. Given the
dearth of experimental data, experiments to characterize
the equilibrium behavior of trapped ions—at either 300 or
6 K—should be considered.
Beyond such regimes, it may be interesting to cool the

external circuits farther: to millikelvin temperatures.
Assuming there are no other effects to interfere with the
resistive cooling process, it may be possible to reach the
quantum regime of the ion’s motion with this method. From
here one could measure Γ (and thereby the noncommuting
part of the electric field) and N̄ independently (see
Sec. II.C.2). Work in Penning traps is not far from such
low-temperature regimes (Wrubel et al., 2011). Knowledge
about the stationary occupation number n̄ðt → ∞Þ provides
an additional analytic tool to distinguish between equilib-
rium and out-of-equilibrium noise processes, or to identify
whether the noise arises from a low- or high-temperature
source.

6. Noise combinations

Characterization of the observed noise as a particular
change is made—such as varying the temperature, or cleaning
the trap surface—can provide information about possible
noise sources, although it is not without ambiguity. By
changing several parameters in combination, each of which
has been characterized separately, one can infer more than was
possible from varying parameters individually. The combi-
nations and permutations are many, but one set of experiments
is outlined by way of an example.
Cleaning the electrodes with an Ar-ion beam reduces the

ion-heating rate observed, an effect attributed to the removal
of surface contaminants. Operating traps at cryogenic temper-
atures also reduces the ion-heating rates observed, possibly

due to suppression of thermally activated processes involving
contaminants on the electrode surface. If the conjectured
mechanisms are correct it would be expected that, having
cleaned the surface, operation at cryogenic temperatures
would bring no further improvement. A temperature scaling
of γ ¼ 0 might then be expected.
There are other possible causes for reduced noise at

cryogenic temperatures. If the initial reduction in noise as
the temperature is reduced from 300 to 30 K is due to
improved magnetic-field shielding then it would be expected
that γ ≠ 0 when an ion-beam-cleaned trap is cooled. In this
situation, however, a cryostat housed in Mu-metal shielding
might be expected to exhibit γ ¼ 0.

C. Further avenues for investigation of noise

There are a number of aspects of electric-field noise near
surfaces which have direct implications for ion traps, but
which are not best solved at the trap level. These require a
combination of experimental and theoretical investigation and
are addressed in turn.

• rf heating: Throughout most parts of this paper micro-
motion heating, or rf heating, has been neglected. This
was implicit from disregarding the higher-order terms in
Eq. (3). If qx is not sufficiently small (Blatt et al., 1986)
or when the ion is displaced from the rf null (Blakestad
et al., 2009) (see also Appendix B), these higher-order
terms become more important. Targeted work in this
direction could provide further insight into the role of
micromotion on the observed heating and how to use it
for measuring spectral densities of electric-field noise at
rf frequencies.

• Instabilities in small traps: While ion traps are generally
operated in a nominally stable region of the solutions to
the Mathieu equations, the effect of higher-order
terms in the potential can cause the ions to become
highly energetic or unstable (Wang, Franzen, and
Wanczek, 1993; Alheit, Kleineidam, and Vedel, 1996).
The microscopic surface structure of miniature ion traps
has been found to affect the performance of ion traps in
mass-spectrometer applications for ion-electrode distan-
ces ranging from 1 to several hundred micrometers (Xu
et al., 2009). Also, if ion traps are made smaller so that
the surface roughness is of a comparable scale to features
of the trap geometry, then the quadrupole assumption
made in Eq. (2) is not appropriate. Consequently, the
condition qx ≪ 1 is not sufficient to ensure that the
higher-order coefficients, C2j in Eq. (10), are small. A
quantitative analysis of anharmonicities in small ion
traps due to microscopic surface defects sheds light
on another possible heating mechanism. This may
become increasingly important as traps are miniaturized
further.

• Spectrum of space-charge noise: Section IV.E consid-
ered heating due to space charges from electron
emission. Electron emission can usually be treated
as white noise. However, in ion traps, field-emitted
electrons would be correlated with the applied rf. It
may be worthwhile to calculate what effect this pulsed
white noise has on the electric-field spectrum and
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thereby on the ion heating. It may also be useful to
investigate the secondary effects of electron bombard-
ment on the anode, so that this source of noise could
also be eliminated.

• Characterization of TLFs: When considering TLF mod-
els in Sec. V.B, a number of different cases were
considered regarding the fluctuators’ spatial and ener-
getic distribution. Different distributions lead to different
predicted behavior. By experimentally measuring how,
for example, the frequency-scaling exponent α varies as
a function of temperature, it may be possible to constrain
certain aspects of the model. This could constrain, or
shed light on, what the physical mechanisms might be
that underlie the TLF behavior.

• Characterization of adsorbates: When considering
adsorbates in Secs. V.C and V.D a number of estimates
had to be made regarding, for example, the types of
adsorbate covering the surface and the way those
adsorbates are bound. There are two respects in which
these estimates could be greatly improved. First, it is
not known experimentally exactly what kind of surface
coverage occurs: what materials, in what conforma-
tions, etc. Materials-science experiments are required
to characterize the surfaces of ion traps, as the ion sees
them. Second, most theoretical studies of adsorbate
behavior focused on extreme cases of either alkaline
atoms (which are strongly bound to the surface) or
noble gases (which are very weakly bound to the
surface). Theoretical work is needed to develop models
in the intermediate regime for atoms such as carbon
and oxygen which are probably what contributes to
ion-trap noise in practice.

With this in mind, the investigation comes full circle in new
experiments which integrate surface-analysis tools into ion-
trap experiments to allow the microscopic structure and
composition of surfaces to be measured, while using the
ion to measure the electric-field noise (Hite et al., 2012;
Daniilidis et al., 2014). Ion traps can then contribute to the
toolbox of ways to investigate the surface contamination
which may have been limiting them.

D. Conclusion

In conclusion, it is clear that the topic of heating in ion traps
is complex and multifaceted. Consequently, it necessarily
draws on the insight of many diverse disciplines. At the same
time, it can be expected to provide insight of interest to
numerous disciplines.
The picture provided by ions is complicated by the fact that

numerous physically distinct heating mechanisms can gen-
erate similar levels of noise and may even manifest similar
scaling behaviors in certain regimes. Equally, a single basic
mechanism may manifest itself differently depending on
values of particular characteristic frequencies, distances,
and temperatures for the situation at hand. These characteristic
scales may vary with the experimental apparatus, the trap
material, or the type and coverage fraction of surface impu-
rities. Nonetheless, particularly when taken together, and in
collaboration with methods from other fields, such a diversity
of behavior can potentially be turned into an advantage: ions

offer a multitude of ways via which the noise might be
investigated.
In laying out the current state of understanding for noise in

ion traps, both experimental and theoretical, it is hoped that
the way forward for ion-trap research will become clearer.
First, in summarizing factors which may need to be consid-
ered, this review can provide a reference for those who have
no interest in noise, other than to reduce it. Second, it provides
an overview of what is known (and what is not known) to
provide structure both to those who intend to study the noise
further or use the noise to study other physical questions.

LIST OF SYMBOLS AND ABBREVIATIONS

Xk X of the kth mode
X̄ Mean X
δX Fluctuation of X
A Area of interest on trap surface
Ai Area of ith patch
Ael Area of electrode contributing to noise
AL Area of loop contributing to EM pickup
Ap Average patch area
â Annihilation operator
â† Creation operator
aL Lattice constant
ax Mathieu stability parameter (in x direction)
a0 Extent of ion’s ground-state wave function
B Magnetic field
B Magnetic-field strength normal to loop
b Floquet exponent
C Capacitance

C2j Floquet expansion coefficients
CV Voltage correlation function
Cσ Adsorbate-density correlation spectrum

C1, C2 Capacitances in Sec. IV.D
C3 van der Waals dynamic polarizability prefactor
c Speed of light

cc.m. Mode function of c.m. motional mode
cn Amplitude of motional state jni, also for n ∈

0; 1;…
D Characteristic trap dimension
D Diffusion constant

Di;j Characteristic distance to jth electrode for
E field in direction i

Dq Characteristic quadrupole distance
Dt Diffusion rate due to quantum tunneling
D0 Prefactor for thermally activated diffusion
d Ion-electrode separation
dI Dipole moment of ion
dj Distance from ion to jth electrode
dk Dipole moment of kth motional mode
E Electric field

δEð0Þ Symmetric combination of δEiðrjÞ
δEð1Þ Antisymmetric combination of δEiðrjÞ

Ei Component of E field in i direction

EðjÞ
i Ei due to jth electrode voltage

Estat Static electric field
Et Component of E field along trap axis
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Emax Largest energy difference in TLF distribution
ETLF Energy difference of a two-level system

e Elementary charge
jei Ion’s electronic excited state
ei Unit vector along the i axis, i ∈ x; y; z
et Unit vector along the trap axis
Fa External noise factor
F Filtering factor

GE Green’s function of the electric field
G Geometrical factor defined in Eq. (64)
g Bulk phonon density of states
ḡ Partial phonon density of states

jgi Ion’s electronic ground state
gD Geometrical factor ∝ E field of a dipole
~gD Dimensionless version of gD
Ĥ Hamiltonian

Ĥion-field Ion-field interaction Hamiltonian
Ĥt Trap Hamiltonian

ĤTLF Hamiltonian of a TLF
h Thickness of a surface layer on electrodes

Iη
~R

Dimensionless integral defined in Eq. (109),
η ∈ ⊥; ∥

k Phonon mode number
kx x component of laser wave vector
L Inductance
l Lattice coordination number
M Mass of an atom in the electrode
m Phonon number

jmi Phonon number state of ion or adatom
mad Mass of adatom
mI Mass of ion

mTLF Effective mass of a TLF
m0 Phonon number at t ¼ 0

N̄ Mean phonon occupation of heat bath
NA Number of fluctuators within an area A
NI Number of ions in a crystal
Np Number of patches
Nth Phonon occupation number in thermal equilib-

rium
n Phonon number

jni Phonon number state of ion or adatom
_̄n Heating rate

nB Bose-Einstein distribution
ni Unit vector from trapped ion to surface dipole i
ns Unit vector perpendicular to the surface
n0 Phonon number at t ¼ 0
P Used for various probability distributions
P Surface polarization density
Pn Occupation probability of vibrational level n
P0 Normalization constant for P
p̂ Quantized momentum of the ion

pjei Excitation probability

pBSB
jei Excitation probability on blue sideband

pRSB
jei Excitation probability on red sideband
Q Resonator’s quality factor
qx Mathieu stability parameter (in x direction)
R Resistance
~R Dimensionless electrode size for adatomdiffusion

Rel Electrode size or radius of curvature
RL Real part of inductor’s impedance
Rp Patch radius
RX Various resistances in Sec. IV.D;

X ∈ C, L, MS, S, wires, 1, 2
R12 Effective real circuit resistance seen by ion

r Position vector
Δr Small displacement of a dipole
rc Correlation length
rcc Radius of a cylindrical cone on a surface
rI Position of the ion (center of the trap potential)
ri Position of dipole i on (or in) the trap surface

rprolate Radius of spheroidal “needle” electrode
S Electrode surface

SB Spectral density of magnetic-field noise
SE Power spectral density of electric-field noise
~SE Median spectral density of electric-field noise

SðADÞE SE due to adatom diffusion

SðADFÞE SE due to adatom dipole fluctuations

SðBBÞE SE due to blackbody radiation

SðBBSÞE SE due to blackbody radiation above a surface

SðEMIÞ
E SE due to electromagnetic interference

SðJNÞE SE due to Johnson noise

SðPPÞE SE due to patch potentials

SðPUÞE SE due to electromagnetic pickup

SðSCÞE SE due to space charge

SðTLFÞE SE due to two-level fluctuators

SðkÞE SE for kth motional mode

Sð0ÞE Symmetric component of SE
Sð1ÞE Antisymmetric component of SE
SEE Energy spectral density of electric-field noise
SV Spectral density of voltage noise

SðiÞV SV on the ith patch
Sμ Dipole fluctuation spectrum due to single dipole

Siμ Spectrum of dipole i
S0 SE at zero temperature (fit parameter)
s Electrode-electrode separation
sη Orientation-dependent constant, η ∈ ⊥; ∥
T Temperature
Δt Time interval
T� Characteristic temperature of adatom system
Tc Critical temperature of superconductor

Tmin Minimum relaxation time for symmetric double
well

T0 Turn-on temperature for noise
T1 Characteristic relaxation time of a TLF
t Time
~t Dimensionless time

tw Waiting time after cooling the ion
U Adatom-surface potential

UvdW van der Waals potential
U0 Depth of adatom-surface potential
uem Spectral energy density of blackbody radiation
u Dimensionless solution of Mathieu equation
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V Voltage applied to trap electrodes
ΔV Vmax − Vmin
Vb Potential-barrier height for TLFs or adsorbate

hopping
Vi Fluctuating voltage on the ith patch
Vj Voltage on jth electrode
VL EMI voltage induced in a loop

Vmax Largest TLF barrier height
Vmin Smallest TLF barrier height
Vpot Potential forming a TLF
Vrf rf voltage applied to trap electrode
V0 Most-likely TLF barrier height
v Sound velocity
vl Longitudinal sound velocity
vt Transverse sound velocity
v0 Dimensionless tip radius in Eq. (46)
W Work function

ΔW Change in work function
~w Dimensionless width of surface-adatom

potential
X0 Amplitude of ion’s secular motion
x Position of ion

Δx Mean displacement of ion from rf null
x̂ Quantized position ion, 3D
x̂ Quantized position of ion, 1D

xemm Amplitude of excess micromotion
xinh Solution to inhomogeneous Mathieu equation
x0 Equilibrium separation of two ions in a trap
x̂0 Quantized relative position of the ion
y Space coordinate

ZESR Equivalent series impedance
Z12 Impedance of a circuit across terminals 1 and 2
z Distance from the trap surface

zw Separation between wells
z0 Equilibrium position of adatom above a surface
α Frequency-scaling exponent
αp Dynamic polarizability of a particle
β Distance-scaling exponent
Γ Damping rate
Γh Rate of heating from n ¼ 0 to n ¼ 1

ΓðkÞ
h Γh for the kth motional mode
Γlf
h Heating rate due to low-frequency noise ω ∼ ωt

Γrf
h Heating rate due to noise on rf drive

Γhop Hopping rate between adsorption sites
Γn→m Transition rate from jni to jmi

Γ0 Characteristic transition rate of adatom fluctuation
γ Temperature-scaling exponent
Δ Energy difference between two wells
Δ0 Tunneling coupling between two wells

Δmax Maximum value for Δ
Δ0;max Maximum value for Δ0

Δ0;min Minimum value for Δ0

δ Frequency shift
δs Skin depth
ϵ Relative electric permittivity
ζ Numerical factor in Eq. (96)
η Lamb-Dicke parameter
Θ Unit step function
θ Dielectric loss

θcc Angle of a cylindrical cone on a surface
κ Dipole geometrical efficiency factor

κi;j Generalized κ for i direction and jth electrode
λ Tunneling parameter
λ0 Most-likely tunneling parameter
μ Dipole on a surface
μ Dipole moment

Δμ Change in dipole moment on/off patch
μ̂ Dipole operator of a TLF

δμi Fluctuating dipole moment ⊥ to surface
μn Average dipole moment of adatom in state jni
μ0 Permeability of free space
νn Vibrational frequency of adatom in motional

state jni, also for n ∈ 0; 1;…
νnm νn − νm
ν10 Characteristic vibrational frequency ¼ ν1 − ν0
Ξl Longitudinal deformation potential constant
Ξt Transverse deformation potential constant
ρ Density of electrode material

ρcoh Coherence of a superposition state
ρe Electrical resistivity
ρI Reduced ion density operator
ρ0 Reduced ion density operator at t ¼ 0
σd Areal density of surface dipoles
σp Patch coverage fraction

σx, σz Pauli operators
~σz Pauli operator in a rotated eigenbasis

hσzieq Equilibrium value of TLF population difference
τe Temporal width of electron pulse
τ0 Characteristic time of TLF switching or

adsorbate hopping
Φ Potential (in space)

Φdc dc potential
Φp Potential of a patch
Φrf rf potential
Φ0 Constant electrode potential
ϕ Angle used in the diagonalization of ĤTLF
φ0 Initial phase of ion’s motion
χi Step function defining patch i

jψi Wave function of the motional state of the ion
jψLi Wave function in left well
jψRi Wave function in right well
jψ0i Wave function at t ¼ 0
Ωc Rabi frequency on carrier transition
ΩL Rabi frequency

Ωn;m Coupling between states jg; ni and je;mi
Ωrf Trap-drive frequency
ω Angular frequency

Δω ω − Ωrf
~ω Dimensionless frequency for adatom diffusion

ωax Ion motional frequency in the axial direction
ωc.m. Frequency of c.m. mode
ωd Characteristic frequency set by d
ωi Ion motional frequency in the i direction,

i ∈ x; y; z
ωR Characteristic frequency set by Rel
ωr Ion motional frequency in the radial direction

ωrec Recoil frequency of a trapped ion
ωt Ion motional frequency
ac Alternating current
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AES Auger-electron spectroscopy
c.m. Center of mass
DAC Digital-to-analog converter

dc Direct current
EPR Equivalent parallel resistance
ESR Equivalent series resistance
EM Electromagnetic

EMF Electromotive force
EMI Electromagnetic interference
MF Medium frequency

PDOS Partial density of states
rf Radio frequency

rms Root mean squared
TLF Two-level fluctuator
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APPENDIX A: DERIVATION OF THE
HEATING RATE Γh

This Appendix summarizes the derivation of the heating
rate Γh, given in Eq. (10) using time-dependent perturbation
theory. For the following derivation to be valid it must be
assumed that the disturbance of the ion by the noisy electric
field is weak jdIδEðtÞj ≪ ℏωt, and that the correlation time of
δEðtÞ is short compared to the resulting heating time 1=Γh.
In the interaction picture with respect to the trap

Hamiltonian ĤtðtÞ, the motional state of the ion can be
written as jψðtÞi ¼ P∞

n¼0 cnðtÞjni, where the amplitudes
cnðtÞ evolve as

_cn ¼ i
dI
ℏ
½ ffiffiffi

n
p

uðtÞcn−1 þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
u�ðtÞcnþ1�δEðtÞ: ðA1Þ

The ion is initially prepared in the lowest vibrational state j0i,
and for short times c0ðtÞ≃ 1 and cn>1ðtÞ≃ 0. By integrating

Eq. (A1) for _c1ðtÞ the probability P1ðΔtÞ ¼ jc1ðΔtÞj2 of
finding the ion in the first vibrational state after a time Δt is

P1ðΔtÞ ¼
d2I
ℏ2

	




Z

Δt

0

dt0uðt0ÞδEðt0Þ





2
�

¼ 2d2I
ℏ2

Re
Z

Δt

0

dt1

Z
t1

0

dt2u�ðt1Þuðt2ÞhδEðt1ÞδEðt2Þi:
ðA2Þ

For times Δt, which are much longer than the correlation time
of δEðtÞ, the lower integration bound for t2 can be shifted to
−∞. The heating rate is defined as Γh ¼ P1ðΔtÞ=Δt and using
the expansion of uðtÞ given in Eq. (7) it can be written as

Γh ¼
2d2I
ℏ2

Re
X
i;j

C�
2iC2j

�
1

Δt

Z
Δt

0

dt1e−iΩrf ði−jÞt1
�

×
Z

∞

0

dτe−iΩrfðb=2þjÞτhδEðt1ÞδEðt1 − τÞi: ðA3Þ

For times Δt ≫ Ω−1
rf the integral over t1 averages approx-

imately to zero for i ≠ j and it is equal to Δt for i ¼ j.
For a stationary noise process hδEðt1ÞδEðt1 − τÞi ¼
hδEðτÞδEð0Þi ¼ hδEð−τÞδEð0Þi� and Eq. (A3) reduces to
the result given in Eq. (10).

APPENDIX B: EXCESS MICROMOTION AND HEATING

This Appendix discusses modifications of the heating rate
Γh for an ion which is displaced from the rf null by a static
electric field Estat. The following analysis is restricted to a one-
dimensional motion of the ion along the x axis and to small
stability parameters qx and ax. While the current analysis uses
a fully quantum-mechanical description of the ion, an equiv-
alent conclusion can be obtain from a classical pseudopoten-
tial analysis (Blakestad et al., 2009).
In the presence of a static offset field, the quantized motion

of the ion is described by the total trap Hamiltonian

ĤtðtÞ ¼
p̂2

2mI
þ jej

2
½Φ00

dc þ Φ00
rf cosðΩrftÞ�x̂2 − jejEstatx̂: ðB1Þ

The position operator x̂ðtÞ in the Heisenberg representation
obeys the inhomogeneous Mathieu equation,

d2

dt2
x̂ðtÞ þ jej

mI
½Φ00

dc þ Φ00
rf cosðΩrftÞ�x̂ðtÞ ¼

jej
mI

Estat; ðB2Þ

with general solution

x̂ðtÞ ¼ xinhðtÞ þ x̂0ðtÞ: ðB3Þ

Here x̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mIωtÞ

p ½uðtÞâ† þ u�ðtÞâ� is identical to the
position operator defined in Eq. (5) for Estat ¼ 0 and xinhðtÞ is
a particular solution of the inhomogeneous Mathieu equation.
To lowest order in qx

xinhðtÞ≃ Δx
�
1þ qx

2
cosðΩrf tÞ

�
¼ Δxþ xemmðtÞ; ðB4Þ
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where Δx ¼ jejEstat=mIω
2
t is the mean displacement of the

ion from the rf null and xemmðtÞ ∼ Δx is the amplitude of
the excess micromotion. Again, the quantum state of the
ion can be expressed in terms of the number states jni ¼
ðâ†Þn= ffiffiffiffiffi

n!
p j0i of a reference oscillator with time-independent

annihilation and creation operators â and â†. However, in the lab
frame, the center of the wave function is modulated by xemmðtÞ.
The coupling of the ion to an additional noisy potential is

described by the Hamiltonian Ĥion-fieldðtÞ ¼ jejδΦðt; x̂Þ. In
the interaction picture with respect to ĤtðtÞ and expanded
around the mean position Δx, the resulting ion-field coupling
is given by

Ĥion-fieldðtÞ≃ jej½xemmðtÞ þ x̂0ðtÞ�δΦ0ðt;ΔxÞ

þ jej
2
½xemmðtÞ þ x̂0ðtÞ�2δΦ00ðt;ΔxÞ: ðB5Þ

The first term represents the direct coupling of the noisy
electric field δEtðtÞ ¼ −δΦ0ðt;ΔxÞ to x̂0ðtÞ. The second term
is proportional to the gradient of the noisy electric field
δE0

tðtÞ ¼ −ΔxδΦ00ðt;ΔxÞ. It contributes to heating via a
mixing between xemmðtÞ and x̂0 and is therefore relevant only
for a nonzero Δx. Explicitly, by expanding Ĥion-fieldðtÞ up to
first order in qx,

Ĥion-fieldðtÞ≃ −dI½â†eiωtt þ âe−iωtt�

×

�
δEtðtÞ þ

qx
2
cosðΩrftÞðδEtðtÞ þ ΔxδE0

tðtÞÞ
�
:

ðB6Þ

Using this form of the interaction Hamiltonian we can
follow the same approach as taken in Eqs. (A2) and (A3),

TABLE III. Summary of theoretical predictions for different noise mechanisms. Unless otherwise stated, the values given are for
ω ¼ 2π × 1 MHz, d ¼ 100 μm, and T ¼ 300 K. The values presented are given for the purpose of orientation only. Details and discussion
of the circumstances under which they hold, and also circumstances under which the noise behavior may be significantly different, are given in
the relevant portions of the main paper, to which the reader is referred.

Source Geometry α β γ
SE=

ðV2=m2 HzÞ Section Notes

Blackbody radiation −2 0 1 10−22 IV.A

Near-field blackbody Plane −0.5 2–3 1 10−17 IV.A Au electrodes: ρe ¼ 2.21 × 10−8 Ωm

EMI 1 0 a
10−14 IV.B Outdoors, near buildings

3 0 a
10−10 IV.B Indoors, unshielded

EM pickup 1 JNb > 1 10−12 IV.C Indoors, unshielded loop of area
100 cm2, D ¼ 1000 μm;

Johnson noise Plane ∼c 2 2 ∼c IV.D
Spheres ∼c 4 2 ∼c IV.D Rel ≪ d
Needles ∼c 2.5 2 ∼c IV.D Geometry approximating that of Deslauriers,

Olmschenk et al. (2006), 30 μm < d < 200 μm
Surface ∼c Ud 2 10−12 IV.D Geometry from Leibrandt, Yurke,

and Slusher (2007)
2 Level ∼c Ud 2 10−14 IV.D Geometry from Leibrandt, Yurke,

and Slusher (2007)
Technical noise ∼c JNb ∼c

10−14 IV.D 80 dB of filtering, D ¼ 1000 μm

Space charge Point 0 4 ∼c
10−11 IV.E 1 nA electron emission

Patch potentials Plane Ee 4 Ud Ud V.A rc ≪ d
Plane Ud 2 Ud Ud V.A rc ≫ d
Sphere Ud 4(⊥), 6(∥) Ud Ud V.A rc ≪ d
Needle Ud 4(⊥), 6(∥) Ud Ud VI.A rc ≪ d

TLFs Plane 1 4 1 10−12 V.B Uniform TLF distribution

Adatom dipoles Plane 0 4 2.5 10−13 V.C γ ¼ 0 for T ≲ T� ≈ 60 K; α ¼ 2
for ω≳ Γ0 ∼ 2π × 10 MHz

Adatom diffusion Plane 2 6 Ee
10−18 V.D.3

Needle 1.5 6(⊥), 8(∥) Ee
10−14 V.D.3

Patches 1.5 4(⊥), 6(∥) Ee
10−13 V.D.4

Excess micromotionf ∼c 4 ∼c
10−11 IV.D.6,

Appendix B
3 μm from rf null;

SV ¼ 2 × 10−17 V2=Hz;
Dq ¼ 100 μm

aIt is not necessarily physically meaningful to assign a temperature to EMI.
bJN: Scales in the same way as Johnson noise.
c∼: Can take such a wide range of values that it is not considered sensible to state a single number.
dU: Value not known.
eE: Follows an exponential scaling, rather than a power law.
fThe heating rate for this mechanism must be calculated using Eq. (13), rather than Eq. (12).
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using Fermi’s golden rule to derive the total heating
rate Γh ≃ Γlf

h þ Γrf;þ
h þ Γrf;−

h .
Restricted to low frequency noise ω ∼ ωt, only the first

term,

Γlf
h ¼ 2d2I

ℏ2
Re

Z
∞

0

dτe−iωtτhδEðτÞδEð0Þi; ðB7Þ

contributes. This is identical to the standard result for the
heating rate given in Eq. (12). Therefore, the effect of low
frequency noise on a displaced ion is the same as for an ion
positioned at the rf null.
For noise at frequencies ω ∼ Ωrf , and provided Δx ≠ 0,

both the direct coupling and the effect of a nonzero field
gradient become important. This provides two additional
contributions to the heating rate:

Γrf;�
h ¼ 2d2I

ℏ2

�
qx
4

�
2

Re
Z

∞

0

dτe−iðΩrf�ωtÞτ

× hðδEtðτÞ þ ΔxδE0
tðτÞÞðδEtð0Þ þ ΔxδE0

tð0ÞÞi: ðB8Þ

Specifically, for noise applied via the trap electrodes
ΔxδE0

tðtÞ≃ δEtðtÞ, the two noisy fields in Eq. (B8) add
constructively. Therefore, the resulting rf heating rate for
a displaced ion is 4 times as large as predicted by Eq. (A3)
using C2 ¼ C−2 ¼ qx=4. The identification δEðtÞ ¼
ΔxΦ00

rfδVðtÞ=Vrf , valid for a quadrupole potential near the
center of the trap, then leads to the result in Eq. (13).

APPENDIX C: SUMMARY OF NOISE
CHARACTERISTICS

One of the central messages of this paper is that the issues
involved in trapped-ion heating are complex, and simplifi-
cations are made at one’s own peril. Even minor changes in
certain details of the experiment can have significant
impacts on the noise behavior. Weighed against this is a
need to maintain some kind of overview. Table III summa-
rizes some of the major theoretical results of this paper.
The table is intended for orientation and as a guide to
reading the main paper. In the interests of summarizing
material, the many caveats which go with these results have
been omitted here. The absolute levels of the noise are to be
treated with particular caution: they have been calculated (as
described) to give indicative values of what may be seen.
Depending on the details of the experiment the values
actually observed, for any given source, might differ from
these by many orders of magnitude.
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