
Title Reliable detection for implicit waveform-specific learning in
continuous tracking task paradigm

Author(s) Yang, L; Wan, F; Nan, W; Zhu, FF; Hu, Y

Citation Scientific Reports, 2017, v. 7, p. 12333

Issued Date 2017

URL http://hdl.handle.net/10722/248480

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.



1SCiENTiFiC RepoRts | 7: 12333  | DOI:10.1038/s41598-017-11977-5

www.nature.com/scientificreports

Reliable Detection of Implicit 
Waveform-Specific Learning in 
Continuous Tracking Task Paradigm
Limin Yang1, Feng Wan1, Wenya Nan1,2, Frank Zhu3,4 & Yong Hu5

Implicit waveform-specific (IWS) learning during a typical continuous tracking task paradigm has been 
reported for decades, as evidenced by better tracking improvement on the repeated segment of a 
specific target waveform than random segments. However, the occurrence of the IWS learning in such 
a task paradigm has been challenged by several unsuccessful results in recent literature. This research 
concerns reliable detection of the induced IWS learning and to this end, proposes to use the similarity 
between the cursor and the target along the direction corresponding to the waveform pattern as the 
performance measure. A 3-day experiment designed with full examination on IWS learning including a 
practice phase, an immediate test phase and a consolidation test phase after 24 hours was conducted to 
validate the feasibility and sensitivity of the Pearson’s correlation coefficient on the vertical movement 
rv in this study. Experiment results indicate that rv is more sensitive in detecting the IWS learning in 
all phases compared to the conventional root mean square error (RMSE) performance measure. The 
findings confirm the importance of the performance measure in implicit learning research and the 
similarity measure in accordance with the waveform could be promising for waveform-specific learning 
detection in this paradigm.

Implicit learning is generally defined as a natural learning process, in which individual devotes sufficient atten-
tion to a structured stimulus environment without a clear awareness of what to learn or any conscious operation 
such as explicit strategies for learning1. The “implicit learning” phenomenon has been elicited in many learning 
processes of fundamental abilities in experiment situations, including language acquisition, object knowledge 
formation and motor learning2. Specifically in motor skills domain, the implicit learning involving many motor 
components is termed as implicit motor learning3, which has been investigated by a good number of studies4–8 
using the continuous tracking task paradigm developed by Pew9.

In a typical continuous tracking task, implicit motor learning is represented by implicit waveform-specific 
(IWS) learning. The participants are instructed to track a target horizontally moving across the screen follow-
ing an invisible trajectory with a hand-driven device. The waveform of the trajectory normally consists of three 
equal-duration segments, in which the middle segment is repeated throughout all trials while the other two seg-
ments are randomly generated for each trial under complexity control10. When participant’s continuous tracking 
performance on the middle repeated segment outperforms the outer random segments, waveform-specific learn-
ing happens. Generally, the participant is blinded to the segment composition and unaware of the existence of the 
repeated segment, which enables one to conclude that the waveform-specific learning is implicit.

The occurrence of IWS learning in the continuous tracking task paradigm was firstly reported by Pew9. Since 
then, many researchers utilized the continuous tracking task paradigm to investigate implicit motor learning in 
different research contexts such as comparison of implicit and explicit learning10,11, validation on the occurrence 
of implicit learning4,11,12, examination on the capability of implicit learning in older and younger adults13 and 
patients14,15, and investigation on oculomotor and manual coordination in implicit motor learning16.

Although most of the studies reported the occurrence of IWS learning in the continuous tracking task 
paradigm4,5,9–13,16,17, the failure to observe the IWS learning in several studies challenged the reliability of this 

1Department of Electrical and Computer Engineering, University of Macau, Macau S.A.R., China. 2Department 
of Psychology, College of Education, Shanghai Normal University, Shanghai, China. 3Faculty of Education, The 
University of Hong Kong, Hong Kong S.A.R., China. 4Department of Surgery, Li Ka Shing Faculty of Medicine, The 
University of Hong Kong, Hong Kong S.A.R., China. 5Department of Orthopaedics and Traumatology, Li Ka Shing 
Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China. Correspondence and requests for 
materials should be addressed to F.W. (email: fwan@umac.mo)

Received: 31 October 2016

Accepted: 30 August 2017

Published: xx xx xxxx

OPEN

mailto:fwan@umac.mo


www.nature.com/scientificreports/

2SCiENTiFiC RepoRts | 7: 12333  | DOI:10.1038/s41598-017-11977-5

task paradigm. Chambaron et al.18 observed IWS learning only when using exactly the same repeated segment 
reported by Wulf et al.12, but failed when the repeated waveform patterns assigned to the participants varied 
from each other. They inferred that the superior tracking performance in repeated segment observed by Wulf et 
al.12 might be due to the easiness of the repeated segment. However, such an inference was debatable given the 
procedural difference (e.g. numbers of practice trials, task speed and hand-driven device) between these two 
studies: it was pointed out that in contrast to a larger amount of practice in the original experiment12, only a single 
practice session of 12 trials in the replication18 might be insufficient for any effect of practice to occur4. In another 
study19, Lang et al. did not observe IWS learning in a standard continuous tracking task and they attributed the 
failure to the ceiling effect of tracking performance. This presumption was consistent with the viewpoint that the 
IWS learning did occur but the expression of knowledge was suffering from a ceiling effect4. In contrast to these 
negative results18,19, the validation study4 and our recent work5 successfully demonstrated the IWS learning in the 
continuous tracking task, in the condition that the repeated segments assigned to each participant were different.

A number of researchers have attempted to improve the continuous tracking task paradigm from different 
aspects, in order to increase its reliability for implicit motor learning study3–5,19. A major effort has been devoted 
to reinforcing the IWS learning effect during the task, such as Lang et al.’s investigations on enhancing the implicit 
learning through a better predictability by increasing target sequence regularities in the repeated segments3, and 
removing the negative guidance effect that prevents the participants from learning by suppressing visual feed-
back19. Another approach concentrates on the detection of the induced IWS learning, for instance Künzell et al. 
concerned how the tracking path characteristics as well as the target speed affected the IWS learning detection4, 
and our previous work tested the time-on-task effect on the detection and also provided refinements on the par-
adigm for more effective detection5.

This paper argues that a reliable tracking performance measure with specific sensitivity to IWS learning is crit-
ical to the continuous tracking task paradigm. The discrepant results from the aforementioned studies, to some 
extent, revealed the importance and difficulty of how to detect the IWS learning reliably and effectively. Currently, 
the root mean square error (RMSE) in screen pixels is the most widely adopted performance measure in the con-
tinuous tracking task for implicit motor learning research5,6,8,9,12,20,21. However, the RMSE index simply sums up 
the squared errors of every tracking, which focuses more on local errors than global similarity and is vulnerable 
to accidental errors that are unrelated to IWS learning, for instance the mistakes caused by hand-driven device 
control. Some researchers also used other conceptually similar dependent variables as performance measure, 
such as the integrated absolute error9 and the radial error22, which also concerned much detailed local informa-
tion. The low sensitivity and specificity of these existing performance measures in the IWS learning detection 
may imperil the reliability of the continuous tracking task paradigm for implicit learning studies. Differently, 
Lang et al.19 applied the inter-correlation coefficient on the horizontal movement, which is essentially a typical 
similarity indicator of two time series calculated by Pearson’s correlation test, to assess the tracking performance. 
Unfortunately, they still failed in detecting the IWS learning in the traditional continuous tracking task19, which 
might result from the ceiling effect due to the inappropriate difficulty set for the tracking task in the designed 
experiment as stated therein19.

Aiming at reliable detection of IWS learning in the continuous tracking task paradigm, this study investigated 
the feasibility and sensitivity of the Pearson’s correlation coefficient on the vertical movement (denoted by rv) 
as the performance measure, in comparison with the conventional measure using RMSE. The experiment was 
particularly designed with a practice phase, an immediate test phase and a consolidation test phase, for a full 
examination on IWS learning. More specifically, twenty-four participants performed the continuous tracking 
task on three days (i.e. Day 1, Day 2 and Day 3) in which they were instructed to track a moving target displayed 
on a monitor with a stylus and pen tablet. There was one block on Day 1 as the performance baseline. On Day 
2, five consecutive practice blocks followed by one transfer block and one retention block were performed. On 
Day 3, two retention blocks with one transfer block in-between were constructed for the consolidation test. Each 
block consisted of four trials and each trial was divided into three segments. In all trials, the waveforms in the 
first segment (Seg1) and the third segment (Seg3) were randomly generated, in the middle segment (Seg2) the 
waveform was repeated over trials in the practice and retention blocks, and randomly generated in the baseline 
and transfer blocks.

Results
The illustration of the continuous tracking trajectories with horizontal movements and vertical movements is 
presented in Fig. 1. Regarding the tracking performance measures, a smaller RMSE or a higher rv indicates a 
better tracking performance. Figure 2 gives an example of the target and the cursor movements of three segments 
in one trial to show the individual tracking performance. In order to fully examine the IWS learning in the con-
tinuous tracking task, two-way analysis of variance (ANOVA) with repeated measures were performed for the 
tracking performance measures. Both tracking performance measures were normally distributed examined by 
Shapiro-Wilk test, and Greenhouse-Geisser adjustments were used if Mauchley’s test showed that assumptions 
of sphericity were violated. The analyses and comparisons between RMSE and rv were performed in three aspects 
based on the time course, including (1) across the practice phase, (2) during the immediate test phase on Day 2, 
and (3) during the consolidation test phase on Day 3, which are depicted in the following paragraphs.

Across the practice phase. Tracking performance measured by RMSE and rv on the Seg2 and the mean of 
random segments Seg1 and Seg3 across the practice phase were analyzed respectively by 2 (Segment: Seg2 and 
the average of Seg1 and Seg3) × 6 (Block: Block 1 to Block 6) repeated ANOVA. Regarding both RMSE and rv, a 
main effect of Block was evident (RMSE: F2.64, 60.65 = 28.009, p < 0.0001, partial-η2 = 0.549; rv: F1.91, 49.96 = 22.622, 
p < 0.0001, partial-η2 = 0.496), indicating the improvement of tracking performance by practice. This is consistent 
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with the tracking performance curve in Fig. 3 where all segments showed a decreasing trend in RMSE and an 
increasing trend in rv across the practice blocks.

However, neither a main effect of Segment (F1, 23 = 2.245, p = 0.148, partial-η2 = 0.089) nor a Segment × Block 
interaction (F3.33, 76.55 = 1.84, p = 0.141, partial-η2 = 0.074) was evident for RMSE, indicating that the improve-
ment of tracking performance over blocks measured by RMSE had no significant difference between the Seg2 
and the mean of random segments Seg1 and Seg3. On the contrary, Segment showed a significant main effect 
on rv (F1, 23 = 5.348, p = 0.03, partial-η2 = 0.189) so that the tracking performance in the Seg2 measured by rv was 
superior to the mean of random segments Seg1 and Seg3. Importantly, an expected significant Segment × Block 
interaction (F3.06, 70.44 = 2.965, p = 0.037, partial-η2 = 0.114) was observed for rv, suggesting that the improvement 
of tracking performance over blocks in the Seg2 was more significant than that of the random segments Seg1 and 
Seg3. This result provided evidence of IWS learning in the practice phase.

During the immediate test phase. The immediate test phase on Day 2 included the transfer test in Block 
7 and the retention test which was adjusted to be the average of Block 6 and Block 8 for counterbalance. Figure 4 
presents the tracking performance difference between the retention test and the transfer test (i.e. Transfer - 
Retention) across subjects (n = 24) measured by both RMSE and rv. It can be observed that the IWS learning 
was detected in most participants by both measures; nevertheless, the tracking performance measured by rv led 
to detection of the IWS learning in more participants than that measured by RMSE. Moreover, tracking perfor-
mance measured by RMSE and rv were analyzed respectively by a 2 (Segment: Seg2 and the average of Seg1 and 
Seg3) × 2 (Test: transfer test and retention test) repeated ANOVA.

For RMSE, a main effect of Test (F1, 23 = 4.804, p = 0.039, partial-η2 = 0.173) was observed, suggesting that 
the tracking performance in the transfer test was significantly lower than that in the retention test. However, 
neither a main effect of Segment (F1, 23 = 0.614, p = 0.441, partial-η2 = 0.026) nor a Segment × Test interaction 
(F1, 23 = 2.894, p = 0.102, partial-η2 = 0.112) was found, indicating that the decrease of tracking performance from 
the retention test to the transfer test had no significant difference between the Seg2 and the random segments 
Seg1 and Seg3.

For rv, there was a significant main effect of Test, with tracking performance decreasing from the retention 
test to the transfer test (F1, 23 = 12.612, p = 0.002, partial-η2 = 0.354), and a significant main effect of Segment with 
higher tracking performance in the Seg2 in comparison with the random segments Seg1 and Seg3 (F1, 23 = 6.141, 
p = 0.021, partial-η2 = 0.211). More in rv (F1, 23 = 11.659, p = 0.002, partial-η2 = 0.336), indicating that the decrease 
of tracking performance from the retention test to the transfer test in the Seg2 was significant larger than that in 

Figure 1. The decomposition of tracking movements in a single continuous tracking trial. (a) Vertical 
movements of the tracked target and controlled cursor. (b) Horizontal movements of the tracked target and the 
controlled cursor. (Blue lines are the boundaries between two consecutive segments).
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Figure 2. The target movement (blue curves) and the cursor movement (red curves) in three segments of an 
example trial. (Random: with random waveform patterns. Repeated: with repeated waveform patterns).

Figure 3. Mean tracking performance across the 3-day experiment for Seg2 and the mean of Seg1 and Seg3. 
R1 and R2 represent the retention tests 1 and 2 respectively with Seg2 as repeated segment while T represents 
the transfer test with Seg2 as random segment. (a) Measured by RMSE. (b) Measured by Pearson’s correlation 
coefficient rv.
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the random segments Seg1 and Seg3. This finding was consistent with our expectation and supported the occur-
rence of the IWS learning.

During the consolidation test phase. In order to compare the detection sensitivity of two performance 
measures to the offline consolidation of IWS learning, the tracking performance measured by RMSE and rv in the 
consolidation test phase on Day 3 were also analyzed respectively by a 2 (Segment: Seg2 and the average of Seg1 
and Seg3) × 2 (Test: transfer test and retention test) repeated ANOVA.

For RMSE, the main effect of Test (F1, 23 = 5.358, p = 0.03, partial-η2 = 0.189) was significant and the main 
effect of Segment approached significance (F1, 23 = 3.578, p = 0.071, partial-η2 = 0.135). Nevertheless, the Segment 
× Test interaction (F1, 23 = 0.158, p = 0.695, partial-η2 = 0.007) was far from evident. These results suggested that 
although the tracking performance significantly decreased from the retention test to the transfer test and the 
tracking performance was lower in the random segments Seg1 and Seg3 than the Seg2, the decrease of tracking 
performance did not have difference between the Seg2 and the random segments Seg1 and Seg3.

For rv, there was a significant main effect of Test (F1, 23 = 4.515, p = 0.045, partial-η2 = 0.164) but no main effect 
of Segment (F1, 23 = 1.846, p = 0.187, partial-η2 = 0.074). Nonetheless, we observed a significant Segment × Test 
interaction (F1, 23 = 9.765, p = 0.005, partial-η2 = 0.298), implying that the decrease of tracking performance was 
more pronounced in the Seg2 than in the random segments Seg1 and Seg3 when the repeated waveform pattern 
of Seg2 in the retention test was replaced by a random pattern in the transfer test. This result demonstrated the 
offline consolidation of IWS learning.

Discussion
In this study, we proposed to use the performance measure, i.e., the Pearson’s correlation coefficient on the verti-
cal movement rv, to detect the IWS learning in the continuous tracking task paradigm. The proposed measure has 
been investigated through a carefully designed experiment which comprises a practice phase, an immediate test 
phase and a consolidation test phase after 24 hours. To the best of our knowledge, it is the first time to investigate 
IWS learning in all three phases within one experiment, which enabled a full examination on IWS learning in all 
different phases and ensured the reliability of the experiment results. The feasibility and sensitivity of rv on the 
detection of IWS learning was compared with the conventional RMSE measure that is widely used for the contin-
uous tracking performance and the experiment results indicated that rv was superior to RMSE in the detection of 
IWS learning in the continuous tracking task paradigm.

In the practice phase, the ANOVA results showed a significant main effect of Block on both RMSE and rv, indicat-
ing that the tracking performance can be significantly improved by practice. This result is in line with our expectation 
and consistent with our previous work5 and the validation study of continuous tracking task for implicit motor learn-
ing4. More importantly, the Segment × Block interaction revealed significance in rv, indicating that the middle seg-
ment showed significant larger improvement over practice than the outer random segments, which provided a strong 
evidence of IWS learning. On the contrary, no Segment × Block interaction was found in RMSE. Künzell et al.4 and 
our previous work5 did not find the IWS learning effect in the practice phase using RMSE as the performance measure, 
either. A possible reason suggested by Künzell et al.4 on the lack of IWS learning detected during practice says that, 
although the IWS learning did happen, the expression of learning effect might suffer from a ceiling effect. The analyses 

Figure 4. The tracking performance difference in Seg2 between transfer and retention tests on Day 2 measured 
by (a). RMSE; (b) Pearson’s correlation coefficient rv.
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and comparisons between RMSE and rv in this study provided another possibility: the RMSE for detecting IWS learn-
ing in these two aforementioned papers might be not sensitive enough to reflect the true extent of the learning effect. 
Also, the experiment results demonstrated that rv possesses a higher sensitivity than RMSE to reflect the IWS learning 
in the practice phase and in the immediate test phase.

As one of the typical tasks to induce implicit motor learning, the continuous tracking task typically involves 
two types of learning: general motor skill (GMS) learning and IWS learning. GMS learning refers to the acqui-
sition of expertise with the general requirement of the task23, and it occurs when tracking both the random 
and repeated segments. As no waveform-specific learning occurs in the random segments, GMS learning can 
be measured by the tracking performance improvement in the random segments across practice blocks23. IWS 
learning is a specific representation of implicit learning in the repeated segment, and therefore it can be seen that 
GMS learning and IWS learning happen simultaneously in the repeated segment across the blocks. Both the GMS 
learning and IWS learning contribute to the tracking accuracy in the calculation of the performance measure, 
which may increase the difficulty of the IWS learning detection.

Obviously, in this task paradigm what we really aimed to measure is the waveform-specific learning perfor-
mance, which concerns how similar the trajectory drawn by the participant is to the given waveform pattern. 
RMSE squares the point-to-point distance errors and does not count the direction of errors, which may cause 
ambiguity about of the exact cursor position. Moreover, RMSE summarizes the squared errors at each point but 
not evaluates the shape of the whole cursor trajectory in comparison with the target trajectory that we care the 
most. In addition, RMSE is easy to be contaminated by accidental errors that are unrelated to IWS learning, which 
may hinder or even overwhelm the reflection of IWS learning. On the contrary, as a typical similarity indicator, 
Pearson’s correlation coefficient measures the degree of resemblance between two trajectories, which conceptually 
differs from RMSE and is closer to what we aimed to measure. For example, in Fig. 2 it can been seen that the 
tracking performance in the repeated segment Seg2 is better than that in the random segment Seg1, which can be 
reflected by rv rather than RMSE. What is more, the rv in this study counts less GMS learning effect than RMSE, as 
the rv focuses more on the IWS learning induced by the waveforms specifically designed in the vertical direction. 
As shown in Fig. 1, the waveform pattern of the target movements consists of a combination of a sinusoidal tra-
jectory in the vertical direction and a uniform rectilinear motion in the horizontal direction. These two different 
types of movements in two orthogonal directions are independent, implying that only the vertical movements 
carry the information of the repeated waveform pattern while the horizontal movements do not. As illustrated 
in Fig. 1b, no waveform-specific information is contained in the horizontal direction, and thus the horizontal 
tracking errors mainly arise from GMS learning but not IWS learning. Consequently, the Pearson’s correlation 
coefficient rv that concentrates on the vertical movements can reduce the interference of GMS learning especially 
from the horizontal direction and consequently measures IWS learning more precisely.

In addition to the implicit motor learning detection, performance measure is also a vital factor for the detec-
tion of implicit motor learning consolidation. Offline consolidation is an important issue for motor learning 
investigation in the continuous tracking task paradigm. Consolidation refers to that performance is robust and 
resistant to decay and interference with time passing and without further practice24,25. It can be assessed by repeat-
ing the test phase of the task separated by a period of time in which participants are not concerned with the task. 
Therefore, IWS learning consolidation can be measured by repeating the immediate test phase on a second day5. 
In this study, during the consolidation test phase on Day 3, it can be observed from Fig. 3 that RMSE showed 
an expected increase and rv had an expected decrease in the middle segment Seg2 in the transfer test. However, 
although RMSE detected the tracking performance difference between the transfer test and the retention test, 
it failed to reach significance in evaluating the tracking performance drop in the Seg2 from the retention test to 
the transfer test. Different from RMSE, rv presented a significantly sharper decline in the transfer test as a typical 
evidence of the IWS learning consolidation occurrence. These statistical results revealed that the offline consoli-
dation of IWS learning can be significantly reflected by rv rather than RMSE, which indicated that rv also outper-
formed RMSE in the detection of IWS learning consolidation. These findings further underlined the importance 
of appropriate performance measure to reflect the true extent of implicit motor learning.

A lot of efforts have been put in previous studies in order to increase the reliability for implicit motor learning 
research using the continuous tracking task paradigm, while on the other hand this reliability is reflected mainly 
by whether and how successful the IWS learning can be detected. As the GMS learning and the IWS learning may 
occur simultaneously, a successful detection of IWS learning depends on not only how strong the IWS learning 
is induced, but also how sensitive to the IWS learning the performance measure is, especially under the inter-
ference of GMS learning and other factors. This study proposed to use similarity in the waveform direction as 
the performance measure and the experiment results demonstrated that the proposed measure rv is superior to 
the widely used performance measure RMSE, leading to successful detecting of IWS learning in all three phases. 
This revealed the importance of the performance measure in the detection of IWS learning and provided more 
confidence when applying this paradigm as a tool for implicit motor learning research.

Method
Participant. A total of twenty-four right-handed young volunteers aged from 19 to 31 (mean: 24.1, SD: 3.06, 
15 male and 9 female) participated in this study. All participants had normal or corrected-to-normal vision and 
none of them had prior experience or knowledge of the continuous tracking task. Informed consents were signed 
before the experiment and honorarium for participation (approximately US $20) were paid after completing the 
whole experiment for all participants. This experiment was in accordance with the Declaration of Helsinki and 
approved by the Research Ethics Committee (University of Macau).

Task. Participant was seated comfortably in front of an LCD monitor (Sony, 17-inch, 1280 × 1024 pixel reso-
lution) at a typical viewing distance of around 60 cm. The area of full screen was proportionally projected to a 
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large pen tablet (PTH-851, Wacom Intuos pro, Japan) with an active area of 12.8 × 8.0 inch. Holding a stylus with 
their right hand, participants were instructed to control the movement of a cross-shaped white cursor to track a 
red dot with a diameter of 9 mm displayed on the screen. The ratio of the pen movement on the tablet and the 
cursor movement on the monitor was calibrated to reach exactly 3:4. The goal of this task was to track a targeted 
red dot moving horizontally with an invisible sinusoidal trajectory. A custom Java program (Sun Microsystems, 
Santa Clara, CA) was applied to generate the waveform patterns and present the movements of the target and 
cursor. In the meantime, both the trajectories of targeted red dot and manually controlled cursor were recorded 
by this program at a sampling rate of 32 Hz. The horizontal and vertical movements of the trajectories were 
respectively recorded in (x, y) coordinates in time series.

One trial composed of three segments with equal duration. In each segment, the movement of the targeted red 
dot consisted of the movements in both the horizontal and vertical directions. The horizontal movement was a 
uniform rectilinear motion, while the vertical movement was specified by the waveform as shown in equation (1) 
which was generated by sampling from a sine-cosine series.

α θ θ θ θ θ θ θ θ

θ θ θ θ

= + + + + + + + +

+ + + +

b a b a b a b a b

a b a b

sin cos sin2 cos2 sin3 cos3 sin4 cos4

sin5 cos5 sin6 cos6 (1)
i i i i i i i i i

i i i i

0 1 1 2 2 3 3 4 4

5 5 6 6

αi  is the rounded vertical coordinate of the i-th position at which the target is to be displayed, 
θ π= × . ×i time freq2 14 /( )i , with time representing the segment duration and freq representing the sampling 
frequency. The duration is 17.14 s, and the sampling frequency for display is chosen as the same as that for record-
ing for consistency and simplicity. In order to create a smooth transition between segments, the first 15% and last 
15% of each segment was transformed to ensure that the initial and final locations of each segment fell on the 
horizontal line in the middle of the screen. Therefore, only the rest 70% of each segment (i.e., 1.5π out of π.2 14  or 
12 seconds in duration) was under complexity control and subsequently analyzed for tracking performance eval-
uation. Each of the three segments (Seg1, Seg2 and Seg3) had its own waveform pattern. The coefficients of the 
waveform patterns for all the three segments were generated following two criteria aiming to appropriately con-
trol the complexity: (a) the values of coefficients were within the range of ± 5, and (b) the differences among the 
mean velocities of the generated waveform patterns of the three segments were no more than 1% when running 
the coefficients through the experiment setup. The waveform patterns of Seg1 and Seg3 were randomly generated 
and thus different for each trial, whereas the waveform patterns of Seg2 were repeated over trials for each partic-
ipant. Twenty-four selected waveform patterns from a pool of more than three thousand generated patterns fol-
lowing the criteria mentioned previously were randomly assigned to each participant so that the repeated patterns 
in Seg2 differed for each participant.

Procedure. Participants were told that they would see a small red dot (tracking target) occurring on the left 
middle of the screen and moving horizontally until reaching the right edge of the monitor. The task for all par-
ticipants was to try their best to track the dot with the cursor as accurately as possible by controlling a stylus to 
draw on the tablet. For each participant, the whole experiment consisted of 11 blocks of the continuous tracking 
task on three days, denoted by Day 1, Day 2 and Day 3 respectively. On Day 1, Block 1 was taken as a tracking 
performance baseline test with randomly generated waveforms in Seg2. On Day 2, Blocks 2 to 6 and Block 8 had 
repeated waveform patterns in Seg2, while in Block 7, the waveforms in Seg2 were replaced by random patterns. 
Blocks 1 to 6 were considered as the practice phase and Blocks 6 to 8 were the immediate test phase, in which 
Block 6 and Block 8 were retention tests while Block 7 was a transfer test. On Day 3, another test phase of three 
blocks (i.e. Blocks 9 to 11) was performed in order to test the offline consolidation of implicit motor learning. 
To counterbalance the effect caused by the order of blocks, Block 9 and Block 11 were designed as retention tests 
while Block 10 was a transfer test, and the segment settings were the same as in the immediate test phase on Day 
2. Each block was composed of four trials with a 15-s interval between two consecutive trials and a 90-s break was 
also provided between blocks. In order to get familiar with the continuous tracking task, participants completed 
a warm-up trial right before the formal task on each day. After completing the whole experiment, participants 
were first asked whether they had noticed anything particularly about the tracking waveform and then whether 
they had noticed any repetition of any part of the tracking waveform. The participants, who claimed that they had 

Figure 5. The schematic representation of the whole 3-day experiment.



www.nature.com/scientificreports/

8SCiENTiFiC RepoRts | 7: 12333  | DOI:10.1038/s41598-017-11977-5

noticed the repetition, were further asked which part was repeated over trials. As a result, no participant reported 
any awareness of the repeated waveform pattern, which ensured that the waveform-specific learning was implicit. 
The schematic representation of the experiment process was shown in Fig. 5.

Performance measures. In order to investigate the feasibility and sensitivity of the Pearson’s correlation 
coefficient on the vertical movement rv for the IWS learning detection in the continuous tracking task paradigm, 
both rv and RMSE were considered as the performance measures for comparison. The RMSE for each of the three 
segments was calculated respectively in each trial and then averaged across trials per block as the dependent 
measure of tracking performance in the corresponding block. Pearson’s correlation coefficient rv for each segment 
in all trials was calculated as shown in Equation (2), where X = {x1, …, xn} represents the target vertical locations 
on the screen in time series, Y = {y1, …, yn} represents the cursor vertical locations on the screen in time series, x  
was the mean of X, and y  was the mean of Y. For each of three segments, the average rv across four trials per block 
was taken as the tracking performance in the corresponding block.
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