
Title Capacity of Hybrid Wireless Networks with Long-Range Social
Contacts Behavior

Author(s) Hou, R; C, Y; Li, J; Sheng, M; Wong Lui, KS

Citation IEEE/ACM Transactions on Networking, 2017, v. 25 n. 2, p. 834-
848

Issued Date 2017

URL http://hdl.handle.net/10722/247450

Rights

IEEE/ACM Transactions on Networking. Copyright © Institute of
Electrical and Electronics Engineers.; ©2017 IEEE. Personal use
of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.; This work is licensed
under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/129921678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Capacity of Hybrid Wireless Networks with
Long-Range Social Contacts Behavior

Ronghui Hou, Yu Cheng, Jiandong Li, Min Sheng, and King-Shan Lui

Abstract—Hybrid wireless network is composed of both ad hoc
transmissions and cellular transmissions. Under the L-maximum-
hop routing policy, flow is transmitted in the ad hoc mode if its
source and destination are within L hops away; otherwise, it
is transmitted in the cellular mode. Existing works study the
hybrid wireless network capacity as a function of L so as to
find the optimal L to maximize the network capacity. In this
paper, we consider two more factors: traffic model and base
station access mode. Different from existing works which only
consider the uniform traffic model, we consider a traffic model
with social behavior. We study the impact of traffic model on
the optimal routing policy. Moreover, we consider two different
access modes: one-hop access (each node directly communicates
with base station) and multi-hop access (node may access base
station through multiple hops due to power constraint). We study
the impact of access mode on the optimal routing policy. Our
results show that: 1) The optimal L does not only depend on
traffic pattern, but also the access mode; 2) One-hop access
provides higher network capacity than multi-hop access at the
cost of increasing transmitting power; 3) Under the one-hop
access mode, network capacity grows linearly with the number of
base stations; however, it does not hold with the multi-hop access
mode, and the number of base stations has different effects on
network capacity for different traffic models.

Index Terms—Hybrid wireless networks, throughput capacity,
routing policy, social contact behavior, access mode.

I. INTRODUCTION

Studying network capacity is a big challenge and very
important work to deeply understand the service capability
provided by wireless networks. Gupta and Kumar are the
first to give an extensive research on the capacity of pure
ad hoc networks [1]. In a network of n nodes with chan-
nel capacity W , the average node throughput capacity is
Θ( W√

n logn
)1 when each node randomly and independently

chooses another node in the network as its destination. Gupta
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1The following notations are used throughout the paper. For two positive
functions f(x) and g(x):

Fig. 1. A illustration for hybrid wireless network.

et al suggest to introduce base stations to the network in order
to improve network capacity. When the path of a flow is
long, the packets can be forwarded by base stations. Since
the transmissions between two base stations are over the
wired network, the wireless resources consumption would be
reduced. The network composed by ad hoc transmission and
cellular transmission is called a hybrid wireless network. Fig. 1
illustrates a hybrid wireless network which is borrowed from
[2].

Routing policy is a dominant factor that affects network
capacity. Given a flow, routing policy determines whether the
flow is transmitted over the ad hoc layer or the cellular layer.
Existing works apply two kinds of routing policies: same cell
routing policy [3] and L-maximum-hop routing policy [4].
With the same cell routing policy, two nodes communicate
in an ad hoc manner if they are in the same cell; otherwise,
they communicate via the base stations. If the L-maximum-
hop routing policy is applied, the flow is transmitted over the
ad hoc layer if the source and the destination are within L
hops away; otherwise, the flow is transmitted over the cellular
layer. In this paper, we consider the L-maximum-hop routing
policy.

Intuitively, different L would produce different network
throughput. Only limited number of short ad hoc flows are
allowed when L is too small, such that the ad hoc resources
may not be fully utilized. On the other hand, if L is too
large, many long flows are transmitted in the ad hoc layer,
and more ad hoc resources are consumed for each flow
due to interference. Therefore, there exists an optimal L to
maximize the network throughput. This work aims at studying

1) f(n) = O(g(n)) iff (if and only if ) there exist constants N and C
such that |f(n)| ≤ C|g(n)| for all n > N ;

2) f(n) = Ω(g(n)) means that g(n) = O(f(n));
3) f(n) = Θ(g(n)) implies that f(n) = O(g(n)) and g(n) =

O(f(n));
4) If g(n) 6= 0, f(n) = o(g(n)) iff limn→∞

f(n)
g(n)

= 0.
5) If g(n) = w(f(n)), f(n) = o(g(n)).
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the network throughput capacity as a function of L so as to
find the optimal L.

Several metrics are used to study network capacity. Gupta
and Kumar introduced two new notions of network capacity:
throughput capacity and transport capacity [1]. The through-
put capacity refers to the time average of the number of bits
per second that can be transmitted by every source to its
destination, while the network’s transport capacity indicates
the sum of products of bits and the distance over which they
are carried. For instance, if two bits are carried over two
meters in each second, the network’s transport capacity is four.
Both throughput capacity and transport capacity quantify the
end-to-end throughput that can be achieved between source-
destination pairs. The throughput capacity is useful to capture
the impact of network topology, routing mechanism, and
scheduling algorithm on network capacity. Another metric,
transmission capacity, often used together with outage prob-
ability, quantifies the achievable single-hop rates in large
wireless networks. Transmission capacity analysis normally
assumes the one-hop flow traffic model, and focuses on the
impact of physical layer details on the network capacity. In this
work, we study the impact of routing policy on the capacity of
hybrid wireless networks, and thus, we focus on the analysis
of throughput capacity.

Most of the existing works on network capacity assume
the uniform traffic model that each source randomly selects
a node as its destination. Practically, traffic depends on the
behavior of the users [5]. It is well known that small-world
phenomenon is pervasive in a range of networks arising in
nature and technology, and is a fundamental ingredient in
the evolution of the World Wide Web. Watts and Strogatz
proposed a model for the small-world phenomenon, in which
the contacts of the social network are divided into local and
long-range contacts [6]. A source node normally contacts its
neighbors very often, but sometimes, the source node also
contacts targets which are far away from the source node.
In the model proposed by [6], a source node randomly selects
its long-range contacts with a probability proportional to the
inverse αth-power distribution, which is the long-range social
contacts traffic model in our draft. Local contact denotes the
communication from a source node to its neighbors. If all the
traffics are local contact traffics, the base station would not
be used for the data transmission, and the network capacity
is the same as that in a pure ad hoc network. In this work,
we study the capacity of hybrid wireless networks with the
long-range social traffic model. We aim to capture the impact
of joint routing policy and traffic model on the capacity of
hybrid wireless networks.

II. RELATED WORKS

Gupta and Kumar began the line of network capacity
study [1], and their work shows the asymptotic behavior of
per-node throughput capacity is Θ( W√

n logn
). The work in [1]

shows that pure wireless ad hoc network is not scalable with
the number of nodes, and many following works study how
to improve network capacity. Generally speaking, there are
three directions to improve network capacity. One direction

is to apply advanced physical layer techniques, such as direct
antennas [7], multi-packet reception (MPR) [8], and network
coding [9]. The second direction is to exploit node mobility
to increase network capacity [10]. The third direction is to
augment infrastructures, such as base stations, to the pure ad
hoc network, which is called hybrid wireless network [11], and
is the focus of this paper. In a hybrid wireless network, data
packets can be forwarded by base stations. Since the transmis-
sion between two base stations is over a wired network, the
consumption of wireless resources would be reduced, and thus,
the network throughput capacity is increased. The work in [12]
provides a comprehensive overview of the throughput capacity
in wireless networks including pure ad hoc networks and
hybrid wireless networks. We will describe the very related
works and present the significant differences between our work
and the existing works.

Many works study the network capacity of hybrid wireless
networks. The same cell routing policy was studied first. The
work in [3] shows that if the number of base stations m
grows asymptotically slower than

√
n, the maximum network

throughput capacity is Θ(
√

n
log n

m2
W ). On the other hand,

if m grows asymptotically faster than
√
n, the maximum

throughput capacity is Θ(mW ). The work in [13] assumes
that m grows asymptotically with n, and sets the transmission
range of each node in a way that any two nodes in the same
cell can directly communicate with each other. This implies
that all the flows are transmitted by either one hop or two
hops. The authors derive the network throughput capacity
as Θ(n W

logn ). The work in [14] considers a specific case
that m = (Θ(nd)), where 0 < d < 1, and derive the
hybrid network capacity under the same cell routing policy.
Ref. [2] allows the source node to transmit to a base station
using multiple hops. The authors derive the network capacity
as Θ(

√
nm

lognWa) + Θ(mnWc), where Wa and Wc are the
bandwidth allocated for ad hoc mode and cellular mode,
respectively. When m grows asymptotically slower than n

logn ,

the maximum capacity is denoted by Θ(
√

nm
lognW ), which

follows that if the number of base stations are increased by k
times, we have a gain of

√
k on capacity.

The work in [4] applies the L-maximum-hop routing policy.
If the source can reach to the destination within L hops,
the packets are transmitted in the ad hoc manner. Otherwise,
the packets are forwarded by the base stations. It is shown
in [4] that when L = Ω( n

1
3

log
2
3 n

), the network capacity is

Θ( nWa

L logn ) + Θ(mWc). When L grows asymptotically slower

than n
1
3

log
2
3 n

, the network capacity becomes Θ(L2 log nWa) +

Θ(mWc). The work in [15] also applies the L-maximum-hop
routing policy, and studies the hybrid network capacity with
a function of L, base station number m, and the beamwidth
of directional antenna θ. The authors in [15] show that the
throughput capacity of the hybrid directional wireless network
is Θ(( nWa

θ2L logn )Wa) + Θ(mWc), if L = Ω( n1/3

θ4/3 log2/3 n
); and

Θ((θ2L2 log n)Wa) + Θ(mWc), if L = o( n1/3

θ4/3 log2/3 n
).

The work in [16] assumes that a source node transmits a
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portion of traffic to the destination using the ad hoc mode, and
transmits another portion through the base station, so that their
solutions are independent of routing policy. Their study shows
that if m grows asymptotically slower than

√
n

logn , adding
base station does not take benefit according to the scaling law
of network throughput capacity. If m grows asymptotically
faster than

√
n

logn and slower than n
logn , the network capacity

is Θ(mW ). If m grows asymptotically faster than n
logn , the

network throughput capacity becomes Θ( nWlogn ).
The work in [17] applies the same assumption as [13] that

m grows linearly with n. This work shows that per-node
throughput capacity Θ(1) is achievable with the appropriate
power control. The work in [18] considers that each base
station is placed with multiple antennas, and the total number
of antennas in the network scales linearly with n. The authors
derive the network capacity, so as to find the optimal network
configuration. All the flows in [17], [18] are transmitted over
the cellular layer.

In addition to the number of nodes and number of base
stations, some other factors impacting on the network capacity
have received much attention, such as multi-channel multi-
interface, channel model, network topology, traffic pattern,
and so on [12]. The work in [19] shows that different hybrid
network dimensions lead to significantly different capacity
scaling laws. Specifically, for a one-dimensional network,
augmenting base stations provides substantial capacity gain.
The work in [19] also analyzes the capacity of 2-dimensional
networks with square shape and strip shape.

As [12] mentioned, traffic pattern is an important factor
that affects network capacity. The work in [20] discusses the
impact of traffic model on network capacity. The probability
that a source node communicates with a destination x distance
units away is proportional with x−α [21]. The work in [20]
derives the network capacity as a function of α. Although
the power law distribution considers the impact of distance
on contact probability, this distribution does not consider the
fact that a user usually has more than one long-range social
contact in its social group [6]. The work in [5] studies the pure
ad hoc network capacity with the long-range social behavior.
The authors present the network capacity as a function of the
social behavior parameter. The problem becomes more com-
plicated when hybrid wireless network is considered because
the network capacity not only depends on number of nodes
and traffic model, but also depends on number of base stations
and routing policy. Our work is the first work that studies the
hybrid wireless network capacity when users exhibit social
contact behaviors. Our results allow the optimal routing policy
to be identified to maximize network capacity.

III. HYBRID WIRELESS NETWORK MODEL

Network Architecture Following the works in [2], [3], [15],
[16], [18], [22], we consider a two-dimensional hybrid wireless
network with unit square area. The hybrid wireless network
consists of two components: the ad hoc component and the
infrastructure component. In the ad hoc component, n nodes,
with the same transmission range r(n), are uniformly and
independently distributed on the square area. The n nodes

are assumed to be static with the same transmission range.
In the infrastructure component, m base stations are regularly
deployed in the network: dividing the area into m cells, and
each cell has a size of 1

m . The base stations are connected
by a wired network, such that there is no bandwidth limit. In
addition to the uniform node distribution, some works consider
the homogeneous poisson node distribution. As the results
of both distributions can be derived using similar approaches
[23], due to space limitation, we assume uniform distribution
in this paper.

Network Connectivity Following [5], r(n) = Θ(
√

logn
n ), so

that the probability that a node has no neighbor tends to zero
as n goes to infinity. In other words, the setting of r(n) assures
the connectivity of the network. This work applies the protocol
interference model. Assume that node i transmits to node j,
the packet can be correctly received by j if the following
conditions are satisfied: 1) The distance between i and j is
no larger than r(n); 2) no node inside the interference range
of node j is transmitting concurrently, where the interference
range is (1 + ∆)r(n), and ∆ > 0 is a constant.

Resource Allocation A fixed spectral bandwidth is shared
between the two components. Denote by W the total band-
width, Wa the bandwidth for ad hoc transmission, and Wc the
bandwidth for cellular transmission. We have Wa+Wc = W .
Following many existing works, we consider the centralised
TDMA-based access model. That is, the system is time-slotted,
and each link is specified to transmit in a certain time slot.
Any two interfering links cannot share the same time slot.

We apply the L-maximum-hop routing policy. If the source
and the destination are no more than L hops away, the data
is transmitted in an ad hoc manner; otherwise, the data is
transmitted using cellular resources. In the ad hoc manner,
the data is forwarded by the intermediate nodes between the
source and the destination. When using the cellular resources,
the source node first transmits the packet to the nearest base
station, and then, the data is forwarded to the base station
from which the destination can fetch the data. As the same
as many existing works, each node is associated with its
nearest BS. Each BS transmits directly to the users (downlink
transmission).

We consider two kinds of uplink cellular transmissions: one-
hop access and multi-hop access [2]. With one-hop access,
each node directly sends data to base station, which may
use more power than the ad hoc transmission. For multi-hop
access, a source node may not directly access base station
due to power limit. Instead, it sends its data in a hop-by-
hop manner to another node, that can directly access the base
station. Assume that a source node accesses its associated base
station with k hops. The previous k − 1 hops along the path
consume ad hoc resources but not cellular resources, and the
last hop transmission consumes cellular resources. In other
words, a cellular flow may consume ad hoc resources, and
thus, the average throughput of ad hoc flows would be reduced.
We will study the impact of access mode on network capacity.

Traffic Model We assume users exhibit social behaviors that
we apply the traffic model described in [5]. Let d−αi , d−αs,i ,
where d−αs,i denotes the distance between s and i. The long-
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range contacts are selected independently, but closer nodes to
the source have a better chance of being selected as a LSC.
Each source node has the same number of LSCs q selected in
independent random trials. The probability that a particular q
LSCs {vi1 , . . . , viq} can be written as

P (LSC = {vi1 , . . . , viq}) =
d−αi1 . . . d−αiq

NM
α,q

, (1)

where Nα,q =
∑

1≤i1<...,<iq≤n d
−α
i1

. . . d−αiq . We have∑
1≤i1<...<iq≤n P (LSC = {vi1 , . . . , viq}) = 1. The proba-

bility for node vk to be a LSC of node s is

P (vk ∈ LSC)
=

∑
1≤i1<...<iq−1≤n,ij 6=k P (LSC = {vk, vi1 , . . . , viq−1

})

=

∑
1≤i1<...<iq−1≤n,ij 6=k

d−αk d−αi1
...d−αiq−1∑

1≤i1<...,<iq≤n
d−αi1

...d−αiq
(2)

Denote by ϑs the destination of source node. Source node
randomly selects one node from its LSCs as the destination,
and thus the probability that vk is the destination of the source
node is given by

P (ϑs = vk) =
1

q
P (vk ∈ LSC). (3)

Our work presents a methodology to derive the capacity
of hybrid wireless networks, and can be extended to consider
other different traffic models. For instance, by considering the
power law traffic model in [20], we would obtain the different
Pad and Pcell, while the derivation procedure is similar. In our
technical report [24], we further consider another different way
for selecting LSCs, and we show that the derived results can be
easily extended to consider different ways of selecting LSCs.

IV. HYBRID WIRELESS NETWORK CAPACITY STUDY

In this section, we study the hybrid wireless network capac-
ity with the concerned traffic model. We derive the network
capacities for different L’s under both the one-hop access and
multi-hop access modes, which facilitate us to find the optimal
L.

A. Definitions and Notations

The per-node network throughput capacity of the network,
denoted by Λ0, is the average transmission rate, measured in
bits or packets per unit time. The network throughput capacity
is thus calculated as Λ = n · Λ0. The per-node throughput
capacity is feasible if there exists a spatial and temporal
scheme for scheduling transmissions, such that each node
can transmit Λ0 bits per second on average to its destination
node. The throughput capacity of the network is said of order
Θ(f(n)) bits per second if there are deterministic constants
c1 > 0 and c2 <∞ such that

limn→∞ P (Λ = c1f(n) is feasible) = 1
limn→∞ P (Λ = c2f(n) is feasible) < 1.

An event A happens with high probability if limn→∞A =
1. Therefore, the network throughput capacity is defined based
on the definition of high probability.

As we said, the per-node throughput is the average trans-
mission rate that can be supported uniformly for each node. In
the hybrid wireless network, the flow is transmitted either in
ad hoc mode or in cellular mode. Denote by Λ0

ad and Λ0
c the

per-node throughput in ad hoc mode and in cellular mode,
respectively. Denote by Nad and Nc the number of flows
over ad hoc layer and cellular layer, respectively. The network
throughput is thus represented by Nad · Λ0

ad +Nc · Λ0
c .

B. Main Conclusions

We first present the main results in this subsection and
provide the detailed proof in Sections IV.C-IV.G.

Theorem 1. Consider a hybrid wireless network with one-hop
access mode.
Case I: q = n, traffic tends to be uniform.

When L = Θ

(
n

1
3

log
2
3 n

)
, the maximum network capacity is

Θ

(
n

2
3

log
1
3 n
Wa

)
+ Θ

(
mWc

)
.

Case II: limn→∞ q <∞, traffic exhibits social behavior.

1) 0 ≤ α < 2. When L = Θ

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, where

a(n) = Θ

(
logn
n

)
, we have the maximum network

capacity Θ

(
n

6−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

Wa

)
+ Θ

(
mWc

)
.

2) 2 ≤ α < 3. When L ≥ 1 and L = Θ

(
1

)
, the maximum

network capacity is Θ

(
n

lognWa

)
+ Θ

(
mWc

)
.

3) α ≥ 3. The network capacity is Θ

(
n

lognWa

)
+

Θ

(
mWc

)
, which is independent of L.

�
When α increases, the probability for selecting a destination

far away from the source node reduces, and so, the average
hop count of ad hoc flows would be reduced. Thus, more ad
hoc resources would be allocated for each flow, and the ad hoc
network capacity would be increased. Therefore, we observe
that the order of ad hoc network capacity increases with larger
α. When α is large enough, most of the destinations are near
to their sources, and the average hop count of ad hoc flows
is no more than a constant large value. At this time, the ad
hoc network capacity is independent of α. In Theorem 1, we
observe that the ad hoc network capacity is independent of α
when α > 2.

Intuitively, the traffic is more uniform as q increases. For
instance, it becomes the uniform traffic model when q = n.
Larger q implies that the average hop count of ad hoc flows is
higher, and thus, the ad hoc network capacity is reduced. We
should set smaller L with larger q to limit the long-range ad
hoc flows. Therefore, the optimal L and q are interdependent.
When α is large enough, say α > 2. Most of the flows are
short-range. A constant L can limit the average hop count of
ad hoc flows, so that the network capacity is maximized. In
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this case, the average hop count of ad hoc flows is independent
of q, and thus, the optimal L is independent of q.

Theorem 2. Consider a hybrid wireless network with multi-
hop access node.

When m = w( n
logn ), each source node can access the base

station directly with high probability. The network throughput
capacity is the same as that with one-hop access, and so we
have the same results as those in Theorem 1.

When m = o( n
logn ), we have the follows.

Case I: q = n, traffic tends to be uniform.
When L = Θ( n

1
2

(logn)
1
2m

1
6

), the maximum network capacity

is Θ

(
n

1
2m

1
6

(logn)
1
2
Wa +mWc

)
Case II: limn→∞ q <∞, traffic exhibits social behavior.

1) 0 ≤ α < 2. When L = Θ( n
1
2

(logn)
1
2
m−

1
2(3−α) ), the max-

imum network capacity is Θ

(
n

1
2

(logn)
1
2
m

1
2(3−α)Wa

)
+

Θ

(
mWc

)
.

2) 2 ≤ α < 3. When L = Θ( n
1
2

(logn)
1
2
m−

1
2 ), the max-

imum network capacity is Θ

(
n
α−1
2

(logn)
α−1
2

m
3−α
2 Wa

)
+

Θ

(
mWc

)
.

3) α ≥ 3. When L = Ω(( n
m logn )

1
2(α−2) ), the maximum

network capacity is Θ

(
n

lognWa

)
+ Θ

(
mWc

)
.

We then consider the case that m = Θ( n
logn ). When m ≥

1
2r2(n) , the average hop count for each source node to access
base station is one with high probability, and thus, the network
throughput capacity is the same as that with one-hop access
mode. We consider the case that m < 1

2r2(n) in the following.
Case I: limn→∞ q = ∞. The average hop count of each

source node to access base station is Θ(1). When L =

Θ

(
n

1
3

log
1
3 n

)
, the maximum network throughput capacity is

Θ

(
n

1
3

log
1
3 n
Wa

)
+ Θ

(
mWc

)
.

Case II: limn→∞ q <∞.
1) 0 ≤ α < 2. When L = Θ(( n

logn )
2−α
6−2α ), the maximum

network capacity is Θ

(
( n

logn )
4−α
6−2αWa

)
+ Θ

(
mWc

)
.

2) 2 ≤ α < 3. When L = Θ(1), the maximum network

capacity is Θ

(
n

lognWa

)
+ Θ

(
mWc

)
.

3) α ≥ 3. The network capacity is represented by

Θ

(
n

lognWa

)
+ Θ

(
mWc

)
, which is independent of L.

�
In the one-hop access mode, number of base stations m

does not affect the number of ad hoc flows and the average
hop count of ad hoc flows, that is to say, the ad hoc network
capacity is independent of m, and the optimal L is independent
of m. In the multi-hop access mode, m determines how

many ad hoc resources allocated for cellular flows, so that
the optimal L depends on m.

In the multi-hop access, we observe that the optimal L is
independent of q when 0 ≤ α < 2. Let us consider a specific
case that every cellular flow consumes ad hoc resources for
multi-hop access. In other words, all flows consume ad hoc
resources. The average hop count for each flow consuming
ad hoc resources is determined by both L and m, but not
q. Intuitively, the optimal L is set to obtain an appropriate
average hop count, and so the optimal L would depend on m
but not q.

In the multi-hop access mode, a cellular flow may consume
ad hoc resources, and thus, the ad hoc resources allocated for
ad hoc flows would be reduced as compared with one-hop
access mode. Therefore, the ad hoc network capacity with
multi-hop access mode is less than that with one-hop access
mode given a specific traffic model. More base stations would
reduce the average hop count for each node to access base
station, and thus, more ad hoc resources can be allocated
for ad hoc flows. Therefore, the ad hoc network capacity
increases as m increases. We can observe these conclusions
from Theorem 2.

C. Procedure of Network Capacity Derivation

The capacity in the cellular layer denotes the throughput
contributed by cellular transmission. Assume that there are at
most ∆c cells interfering with a given cell. The bandwidth
allocated for each cell is lower bounded by Wc

∆c
. On the other

hand, the bandwidth for each cell is upper bounded by Wc.
∆c is independent of n and m [4], and thus, the throughput
capacity for each cell is Θ(Wc). Since there are totally m
cells, the throughput capacity contributed by the cellular layer
is denoted by

Λc = Θ(mWc). (4)

In the following, we focus on analyzing the throughput
capacity contributed by the ad hoc layer. Before we present
the details, we describe our derivation process.

We divide the network area into multiple subcells, as
illustrated in Fig. 2 which is borrowed from [5]. Each subarea
has four neighbor subareas. Let a(n) be the area size, such that
the edge length is

√
a(n). We should have

√
a(n) = Θ(r(n)),

so that any two nodes in neighboring subareas can commu-
nicate with each other, where r(n) is the communication
range. In order to assure the network connectivity, we let
a(n) = Θ( logn

n ), since r(n) = Θ(
√

logn
n ). Note that a

cell may consist of several subcells. Fig. 2 illustrates four
cells divided by dash lines. Denote by Pad the probability
for each source node to transmit to the destination in an ad
hoc manner. Based on Pad, we calculate the number of flows
transmitted in the ad hoc layer, denoted by Nad. Afterwards,
we calculate the expected hop count for each ad hoc flow,
denoted by E[h], and then, we calculate the total number of
hops for all the ad hoc flows, H = Nad · E[h]. Since nodes
are randomly deployed in the network area, following [25],
we calculate the average number of flows going through a
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a(n)1/2 

A1 

A2 A4L 

A 

Fig. 2. A illustration for network division.

certain subcell, denoted by E[Z] = H · a(n). As referred to
[2], it is shown that there is at most c = O((2 + ∆)2) number
of interfering subcells of any given subcell. In Fig. 2, only
one subcell in each c subcells can be active at the same time.
Since c is independent of n and m, the bandwidth allocated
for each subcell is asymptotically proportional with Wa. We
thus calculate the bandwidth allocated for each hop in a given
subcell as Λ0

ad = Θ( Wa

E[Z] ). Finally, we discuss the network
throughput contributed by ad hoc layer as Λad = Nad · Λ0

ad.

D. Calculating Total Number of Ad hoc Flows

As illustrated in Fig. 2, when the destination is located at
the gray areas, the number of hops from the source to the
destination is L. We can observe that are 4x subcells in which
the destination is x hops away from the source node. Following
[5], we do not consider the edge issue. If the destination is
located in the area surrounded by the grey subcells, the flow
is transmitted in the ad hoc layer. Denote by P (X = x) the
probability that the destination is x hops away from the source
node. We thus have the following

P (X = x) =

4x∑
l=1

∑
vk∈Al

P (ϑs = vk) (5)

Al represents a subcell l hops away from the source node.
The probability for a destination located in Al is calculated
by
∑
vk∈Al P (ϑs = vk), that is, the sum of the probabilities

that each node in Al is the destination. Since the nodes are
randomly deployed in the network area, the probability for any
node located in Al is a(n), and the number of nodes contained
in Al is thus n · a(n). We thus have

P (X = x) =
∑4x
l=1

∑
vk∈Al P (ϑs = vk)

=
∑4x
l=1 n · a(n)P (ϑs = vk)

(6)

In Fig. 2, if the destination is located in subcell A, we
consider that it takes two hops from the source to the destina-
tion, and actually the destination may be in the transmission

range of the source node. This assumption would not affect
the analysis on the scaling behavior, as referred to [5].

When the destination is located in an area which is x ≤ L
hops away from the source node, the flow is an ad hoc flow.
The probability that a flow is an ad hoc flow is calculated as:

Pad =

L∑
x=1

4x∑
l=1

∑
vk∈Al

P (ϑs = vk) (7)

When the destination is located in an area which is x >
L hops away from the source node, the flow is a cellular
flow. The hop count of each flow is upper bounded by 2√

a(n)
.

Similar to (7) we calculate the probability that a flow is a
cellular flow as

Pcell =

2√
a(n)∑

x=L+1

4x∑
l=1

∑
vk∈Al

P (ϑs = vk) (8)

When f(n) = Θ(g(n)), it is denoted by f(n) ≡ g(n). In
general, we should consider two cases: limn→∞ q = ∞ and
limn→∞ q < ∞. However, in case that limn→∞ q = ∞, it
is difficult to rigorously analyze P (ϑs = vk), as explained in
our technical report [24]. It is obvious that P (ϑs = vk) = 1

n
when q = n, and we thus consider two cases: q = n and
limn→∞ q < ∞. As said in [26], each node normally has
constant LSCs from the social perspective, and [26] only
considers the case that q is constant, which is our second
case. In our technical report, we show that if we modify
the way for selecting LSCs, we can rigorously calculate
P (ϑs = vk) = Θ( 1

n ) when limn→∞ q =∞. This means that
our results for q = n is suitable for the case limn→∞ q =∞
when modifying the LSCs selection scheme.

Case I: q = n. We calculate

Pad =
∑L
x=1

∑4x
l=1

∑
vk∈Al P (ϑs = vk)

≡
∑L
x=1

∑4x
l=1 n · a(n) · 1

n

≡ Θ(1) · a(n)
∫ L

0
xdx = L2a(n)

(9)

Nad = nPad = Θ(nL2a(n)). (10)

Pcell =
∑ 2√

a(n)

x=L+1

∑4x
l=1

∑
vk∈Al P (ϑs = vk)

≡
∑ 2√

a(n)

x=L+1

∑4x
l=1 n · a(n) · 1

n

≡ ·a(n)
∫ 2√

a(n)

0 xdx− Pad = 1− L2a(n)

(11)

Ncell = nPcell = Θ(n(1− L2a(n))). (12)

Since each flow is transmitted using either ad hoc resources
or cellular resources, we should have Pcell = 1 − Pad.
According to (9) and (11), we have Pcell + Pad = Θ(1). For
instance, let L = 1√

a(n)
, and the source node is located on

the upper-left corner. We can easily verify that Pad = 1
2 and

Pcell = 1
2 , which is independent of the number of nodes. By

(9) and (11), Pad = Θ(1) and Pcell = Θ(1). As mentioned
in [4] and [5], the order calculation does not have to consider
the edge issue.
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Case II: limn→∞ q <∞. We have Lemma 1.

Lemma 1. The probability for each source node to transmit
the flow using ad hoc mode is

Pad =



Θ

(
n

n−q+1a
1−α2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n

n−q+1
lnL

ln a−
1
2 (n)

)
α = 2

Θ

(
n

n−q+1

)
α > 2

(13)

The probability for each source node to transmit the flow
using cellular mode is

Pcell =



Θ

(
n

n−q+1 (2− a1−α2 (n)L2−α)

)
0 ≤ α < 2

Θ

(
n

n−q+1

ln 2√
a(n)
−ln(L+1)

ln a−
1
2 (n)

)
α = 2

Θ

(
n

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2

)
α > 2

(14)

Proof. By (2) and (3), we have

P (ϑs = vk) =

∑
1≤i1,...,iq−1≤n,ij 6=k d

−α
k d−αi1 . . . d−αiq−1

q
∑

1≤j1,...,jq≤n d
−α
j1

. . . d−αjq
(15)

Let τ = (τ1, . . . , τn) represent (d−α1 , . . . , d−αn ),
υq,n(τ) =

∑
1≤i1≤i2≤...≤ip≤n τi1 . . . τip , and

υkq,n−1(τ) = υq,n−1(τ1, . . . , τk−1, τk+1, . . . , τn). We then
have

P (ϑs = vk) =
d−αk υkq−1,n−1(τ)

qυq,n(τ)
(16)

(17)-(22) are borrowed from [5]. In (19), B1 and B2 are
constants. dk is the distance from a node in Al to s, and so
we have B1x

√
a(n) ≤ dk ≤ B2x

√
a(n), where x denotes

the hop count from the node to s. In (20), γ ≤ 1 and dmax

denotes the maximum distance between any two nodes in the
network.

{
P (ϑs = vk) ≥ d−αk

υq−1,n(τ)−d−αk υq−2,n(τ)

qυq,n(τ)

P (ϑs = vk) ≤ d−αk
υq−1,n(τ)
qυq,n(τ)

(17)

υ1,n(τ)υq−1,n(τ)

qυq,n(τ)
= Θ(

n

n− q + 1
) (18)

{ ∑4x
l=1

∑
vk∈Al d

−α
k ≥

∑4x
l=1

∑
vk∈Al(B1x

√
a(n))−α∑4x

l=1

∑
vk∈Al d

−α
k ≤

∑4x
l=1

∑
vk∈Al(B2x

√
a(n))−α

(19)

υ1,n(τ) =
∑
vk
d−αk ≡

∫ γdmax√
a(n)

nx1−αdx

=


Θ(n) 0 ≤ α < 2

Θ(n ln a−
1
2 (n)) α = 2

Θ(na1−α2 (n)) α > 2

(20)

υ1,n(τ)υq−2,n(τ)

(q − 1)υq−1,n(τ)
= Θ(

n

n− q + 1
) (21)

υq−2,n(τ)
qυq,n(τ) = Θ( (q−1)n2

(n−q+1)(n−q+2)υ2
1,n(τ)

)

=


Θ( q−1

(n−q+1)(n−q+2) ) 0 ≤ α < 2

Θ( q−1

(n−q+1)(n−q+2) ln2 a−
1
2 (n)

) α = 2

Θ( q−1
(n−q+1)(n−q+2)a2−α(n) ) α > 2

(22)
Since the probability that each node vk is located in the

subcell Al is a(n), we now calculate

∑L
x=1

∑4x
l=1

∑
vk∈Al d

−α
k

= na1−α2 (n)
∑L
x=1 x

1−α

≡ na1−α2 (n)
∫ L

1
x1−αdx

=



Θ

(
na1−α2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n lnL

)
α = 2

Θ

(
na1−α2 (n)

)
α > 2

(23)

υq−2,n(τ)
qυq,n(τ)

∑L
x=1

∑4x
l=1

∑
vk∈Al d

−2α
k

=



Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)L2−2α

)
0 ≤ α < 1

Θ

(
(q−1)n

(n−q+1)(n−q+2) lnL

)
α = 1

Θ

(
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)

)
1 < α < 2

Θ

(
(q−1)n

(n−q+1)(n−q+2) ln2 a−
1
2 (n)

a−1(n)

)
α = 2

Θ

(
(q−1)n

(n−q+1)(n−q+2)a(n)

)
α > 2

(24)
We now consider the case of 0 ≤ α < 1. In

order to compare the order of n
n−q+1a

1−α2 (n)L2−α

with that of (q−1)n
(n−q+1)(n−q+2)a

1−α(n)L2−2α, we

calculate limn→∞
n

n−q+1a
1−α

2 (n)L2−α

(q−1)n
(n−q+1)(n−q+2)

a1−α(n)L2−2α
= ∞

based on a(n) = Θ( logn
n ). Thus, we know that the

order of n
n−q+1a

1−α2 (n)L2−α is higher than that of
(q−1)n

(n−q+1)(n−q+2)a
1−α(n)L2−2α. With the same method,

we can verify that
∑L
x=1

∑4x
l=1

∑
vk∈Al d

−α
k

υq−1,n(τ)
qυq,n(τ) =

Ω(
∑L
x=1

∑4x
l=1

∑
vk∈Al d

−2α
k

υq−2,n(τ)
qυq,n(τ) ). Therefore, we have

Pad =
∑L
x=1

∑4x
l=1

∑
vk∈Al P (ϑs = vk)

= Θ( n
n−q+1 )

∑L
x=1

∑4x
l=1

∑
vk∈Al

d−αk
υ1,n(τ)

(25)

Pcell =
∑ 2√

a(n)

x=L+1

∑4x
l=1

∑
vk∈Al P (ϑs = vk)

= Θ( n
n−q+1 )

∑ 2√
a(n)

x=L+1

∑4x
l=1

∑
vk∈Al

d−αk
υ1,n(τ)

(26)

Combining (20), (23), and (25), we obtain (13). Similarly,
we also obtain (14).
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By Lemma 1, we calculate the total number of ad hoc flows
and the total number of cellular flows as

Nad =



Θ

(
n2

n−q+1a
1−α2 (n)L2−α

)
0 ≤ α < 2

Θ

(
n2

n−q+1
lnL

ln a−
1
2 (n)

)
α = 2

Θ

(
n2

n−q+1

)
α > 2

(27)

Ncell =



Θ

(
n2

n−q+1 (2− a1−α2 (n)L2−α)

)
0 ≤ α < 2

Θ

(
n2

n−q+1

ln 2√
a(n)
−ln(L+1)

ln a−
1
2 (n)

)
α = 2

Θ

(
n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2

)
α > 2

(28)
(27) and (28) show that the number of ad hoc flows is

affected by the routing policy L. Due to L = O( n
1
2

(logn)
1
2

)

and a(n) = Θ( n
logn ), we can verify that Nad +Ncell = Θ(n).

When α > 2, Nad increases linearly with n, while the order
of Ncell depends on L. As α increases, more destinations are
near to the sources, and the number of ad hoc flows increases
faster as n increases. Our derivation results show that when
α > 2, the order of Nad is the highest, which is Θ(n) in case
that q is a constant. Note that larger L may yield larger Nad,
but the order of Nad is independent of L.

E. Calculating Number of Flows in Each Subcell

In the following, we describe how to calculate the total
number of flows going through a given subcell, which is
used to derive the average throughput of each ad hoc flow.
We should consider two cases: one-hop access and multi-hop
access.

1) One-hop access mode: Denote by H the total hops of
the ad hoc flows. Let hi be the number of hops of ad hoc flow
i. We have

E[H] = E[

Nad∑
i=1

hi] =

Nad∑
i=1

E[hi] (29)

Let Zji = 1 represent that flow i goes through subcell j;
otherwise, Zji = 0. Following [2], we have E[Zji ] = a(n),
where a(n) is the size of each subcell. The average number of
ad hoc flows going through a certain subcell can be calculated
as follows [25].

E[Z] = EH [E[Z|H]] = EH [HE[Zji ]]

= E[H] · Z[Zji ] = Nad · E[hi] · a(n)
(30)

By (30), in order to calculate E[Z], we need to calculate
E[hi].

E[hi] =
∑L
x=1 xP (X = x|ad hoc flow)

=
∑L
x=1 x

P (X=x,ad hoc flow)
P (ad hoc flow) =

∑L
x=1 x

P (X=x)
Pad

(31)

We also have

L∑
x=1

xP (X = x) =

L∑
x=1

x

4x∑
l=1

∑
vk∈Al

P (ϑd = vk). (32)

Calculating E[hi] also needs to consider two cases: q = n
and limn→∞ q <∞.

Case I: q = n.
Since P (ϑd = vk) = 1

n , we have

L∑
x=1

xP (X = x) =
2L(1 + L)(2L+ 1)a(n)

3
. (33)

Therefore,

E [hi] =
2L+ 1

3
. (34)

Case II: limn→∞ q <∞.
Similar to the calculation of Pad, we have

E[hi] =
∑L
x=1 x

P (X=x)
Pad

= 1
Pad
·Θ( n

n−q+1 )
∑L
x=1 x

∑4x
l=1

∑
vk∈sl

d−α

υ1,n(τ)

≡ 1
Pad
·Θ( n

n−q+1 )na1−α2 (n) · 1
υ1,n(τ)

∫ L
1
x2−αdx

(35)

Combining (13), (20), and (35), we have Lemma 2.

Lemma 2. The expected value for the number of hops of each
ad hoc flow is

E [hi] =



Θ

(
L3−α

L2−α

)
= Θ(L) 0 ≤ α < 2

Θ

(
L

lnL

)
α = 2

Θ

(
L3−α

)
2 < α < 3

Θ

(
lnL

)
α = 3

Θ

(
1

)
α > 3

(36)

�
(36) shows that when 0 ≤ α ≤ 3, the average hop count of

ad hoc flows increases with L, and the growth rate reduces as
α increases. When α is larger, more destinations are located
close to the source node, and thus, the impact factor of L on
the scaling law of E[hi] is less significant. When α > 3, we
find that the scaling law of E[hi] is independent of L.

2) Multi-hop access mode: The derivation procedure is
the same as the previous one. We first calculate the total
hop counts of all the cellular flows transmitted using ad
hoc resources, denoted by E[H ′], and then, we calculate the
total number of cellular flows going through a certain subcell
with consuming the ad hoc resources, denoted by E[Z ′].
E[Z]+E[Z ′] denotes the total number of flows going through
a given subcell with consuming ad hoc resources.

Denote by E[h′] the average number of hops for each source
node to access base station. For instance, if a source accesses
the base station by three hops, the previous two hops consume
ad hoc resource, and the last hop consumes the uplink cellular
resource.
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a(n)1/2

s

Fig. 3. A illustration for multihop access.

Similar to most existing works, each node is associated with
its nearest base station. Fig. 3 shows an area with the size of

1√
m
· 1√

m
centers around the source node s. There must exist

a base station in this area, and thus, the maximum hop counts

from the source node to the base station is
1√
2m√
a(n)

. We calculate

E[h′] as

E[h′] =
∑ 1√

2ma(n)

x=1
4x

1/ma(n)(x− 1)

=
2( 1√

2ma(n)
−
√

2ma(n))

3

(37)

The total area for base station located x hops away from the
source node is 4xa(n), and thus 4xa(n)

1/m denotes the probability
that the base station in this area is x hops away. x − 1 is
the number of hops consuming ad hoc resource. When the
flow is determined to be transmitted in cellular mode, E[h′]
only depends on the distance between the base station and the
source node, which is independent of the specific traffic model
and routing policy.

Similar to (30), we calculate the total hop counts of cellular
flows going through a certain subcell with consuming the ad
hoc resources:

E[Z ′] = EH′ [E[Z ′|H ′]] = EH′ [H
′E[Zji ]]

= E[H ′] · Z[Zji ] = Ncell · E[h′] · a(n)

= Ncell

2·a(n)( 1√
2ma(n)

−
√

2ma(n))

3

(38)

We thus calculate the total number of flows going through
a certain subcell and consuming ad hoc resources as

E[Ztotal] = E[Z] + E[Z ′]. (39)

F. Network Capacity Analysis with One-hop Access

In this section, we study the network capacity when each
node accesses base station with one-hop. We calculate the
throughput of each ad hoc flow

Λ0
ad = Θ

(
Wa

E[Z]

)
. (40)

In case that E[Z] = O(1), we should set Λ0
ad = Θ(Wa),

since the average throughput of ad hoc flows should not be

larger than Wa. In the following, we analyze whether E[Z] =
O(1) given a specific traffic model.

In the case that q = n, we have

Λ0
ad = Θ

(
Wa

E[Z]

)
= Θ

(
Wa

Nad·E[hi]·a(n)

)
= Θ

(
Wa

nL3a2(n)

) (41)

In case that L = Ω

(
n

1
3

log
2
3 n

)
, we have

Λad = Nad · Λ0
ad = Nad ·Θ

(
Wa

Nad·E[hi]·a(n)

)
= Θ

(
nWa

L logn

)
(a(n) = Θ( logn

n ))
(42)

When L = O

(
n

1
3

log
2
3 n

)
, we have Λ0

ad = Ω(Wa). That is,

per node ad hoc capacity grows asymptotically faster than a
constant. On the other hand, the maximum capacity for each
ad hoc flow must be less than Wa, and thus we have Λ0

ad =
O(Wa). Finally, we have Λ0

ad = Θ(Wa) under this situation.
The network ad hoc capacity is calculated as

Λad = Nad · Λ0
ad = Nad ·Θ(Wa)

= Θ

(
L2 log nWa

)
(a(n) = Θ( logn

n ))
(43)

Combining (42) and (43), the ad hoc network capacity is

maximized when L = Θ

(
n

1
3

log
2
3 n

)
, which is

Λ∗ad = Θ

(
n

2
3

(log n)
1
3

Wa

)
(44)

We now consider the network capacity in the case that
limn→∞ q <∞. By (27), (30), (36), and (40), we calculate

Λ0
ad =



Θ

(
n−q+1

n2a2−
α
2 (n)L3−α

Wa

)
0 ≤ α < 2

Θ

(
(n−q+1) ln a−

1
2 (n)

n2La(n) Wa

)
α = 2

Θ

(
n−q+1

n2a(n)L3−αWa

)
2 < α < 3

Θ

(
n−q+1

n2a(n) lnLWa

)
α = 3

Θ

(
n−q+1
n2a(n)Wa

)
α > 3

(45)

(a). When 0 ≤ α < 2, we should discuss the per

node ad hoc capacity when L = Ω

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
and

L = O

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, separately. In case that L =

O

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, we have Λ0

ad(n) = Ω(Wa); at the

same time, there is the constant that the per node ad hoc
capacity must be no greater than Wa, we therefore have
Λ0

ad(n) = Θ(Wa). In summary, we have
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Λ0
ad =


Θ

(
n−q+1

n2a2−
α
2 (n)L3−α

Wa

)
L = Ω

(
( n−q+1

na2−
α
2 (n)

)
1

3−α

)
Θ

(
Wa

)
L = O

(
( n−q+1

na2−
α
2 (n)

)
1

3−α

)
(46)

When L = Ω

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, the network capacity is

written as

Λad = Nad · Λ0
ad

= Θ

(
n2

n−q+1a
1−α2 (n)L2−α

)
·Θ
(

n−q+1

n2a2−
α
2 (n)L3−α

)
= Θ

(
Wa

a(n)L

)
(47)

When L = O

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, the network capacity is

written as

Λad = Nad · Λ0
ad

= Θ

(
n2

n−q+1a
1−α2 (n)L2−α

)
·Θ
(
Wa

)
= Θ

(
n2

n−q+1a
1−α2 (n)L2−αWa

) (48)

By (47) and (48), we have the maximum ad hoc network

capacity when L = Θ

(
( n−q+1

n2a2−
α
2 (n)

)
1

3−α

)
, which is

Λ∗ad = Nad · Λ0
ad

= Θ

(
n2

n−q+1a
1−α2 (n)L2−α

)
·Θ
(
Wa

)
= Θ

(
n

6−α
6−2α

(logn)
2−α
6−2α (n−q+1)

1
3−α

Wa

)
(a(n) = Θ( logn

n ))

(49)
Assume that q is a constant. When α = 0, we have Λ∗ad =

Θ

(
n

2
3

(logn)
1
3
Wa

)
according to (49), and it is the same as (44)

derived by assuming the uniform traffic model. When α =
0, each node randomly selects q constant long-range social
contacts from all the nodes in the network, and then randomly
chooses the destination from the q LSCs. This implies that the
destination is uniformly selected by the source node, and thus,
the traffic model is basically the same as the uniform traffic
model. Therefore, the capacity scaling behavior with α = 0
and constant q is the same as that with the uniform traffic
model.

(b). When 2 < α < 3, by (45), the capacity increases as
L decreases. Since L must be larger than 1, we have the
maximum capacity when L = Θ(1). By (45) and (27), the
maximum network capacity is written as

Λ∗ad = Nad · Λ0
ad

= Θ

(
n2

n−q+1

)
·Θ
(

n−q+1
n2a(n)·Θ(1)Wa

)
= Θ

(
n

lognWa

)
(a(n) = Θ( logn

n ))

(50)

(c). When α > 3, by (45), the per node capacity is
independent of L, and the maximum network capacity is

Λ∗ad = Nad · Λ0
ad

= Θ

(
n2

n−q+1

)
·Θ
(
n−q+1
n2a(n)Wa

)
= Θ

(
n

lognWa

)
(a(n) = Θ( logn

n ))

(51)

When α ≥ 3, the destination is probably located locally
around the source node, and therefore, the flow probably has
small hop count and is transmitted in the ad hoc layer. That
is why the network capacity is independent of L.

G. Network Capacity Analysis with Multi-hop Access

In this section, we study network capacity when node
accesses base station with multiple hops. In the previous
section, we calculate the total number of flows going through
a given subcell with consuming ad hoc resources E[Ztotal].
We then have the average throughput of each ad hoc flow as

Λ0′

ad = Θ(
Wa

E[Ztotal]
) (52)

Denote by Nhybrid the number of cellular flows which
consume ad hoc resources. The network throughput can be
calculated as

Λ′ = Nad · Λ0′

ad + Λ0′

ad ·Nhybrid

+(κ ·mWc − Λ0′

ad ·Nhybrid)

= Nad · Λ0′

ad + κ ·mWc

(53)

The first part in (53) represents the total throughput of the ad
hoc flows, the second part represents the total throughput of the
cellular flows which consume some ad hoc resources, called
hybrid flows, and the third part represents the total throughput
of the cellular flows only consuming the cellular resources.
We mentioned before that each cell is allocated for κ ·mWc

cellular resources, where κ is a constant, and the total cellular
resources become m ·κ ·Wc. Each cellular flow consumes the
same uplink and downlink cellular resources, and so the total
throughput for the cellular flows should be m · κ ·Wc. The
total cellular throughput should be divided into two parts, One
part is the hybrid flows with the throughput Λ0′

ad ·Nhybrid, and
another part is the pure cellular flows, which thus have the
total throughput of m · κ ·Wc − Λ0′

ad ·Nhybrid.
When m = w( n

logn ) or m = c n
logn , c ≥ 1, there is at

least a base station in each subcell with high probability. Each
source node can access base station with one hop, and thus, the
network throughput is the same as that with one-hop access
mode. We are going to study the network capacity when m =
o( n

logn ) and m = c n
logn , c < 1.

Case I: q = n.
We first consider the case that m = c n

logn , c < 1. By (37),
we have E[h′] = Θ(1). Based on (10), (12), (30), (34), and
(38), we calculate

E[Z] =
2nL(1 + L)(2L+ 1)a2(n)

3
= Θ(nL3a2(n)) (54)
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E[Z ′] = (2− 2L(1 + L)a(n))na(n)
= Θ((1− L2a(n))na(n))

= Θ(na(n)) (∵ L = O(
√

n
logn ) L2a(n) = O(1))

(55)

E[Ztotal] = E[Z] + E[Z ′] = Θ(nL3a2(n)) + Θ(na(n))
(56)

When L = Ω( n
1
3

log
1
3 n

) and L = O( n
1
2

log
1
2 n

), E[Ztotal] =

Θ(nL3a2(n)), we calculate the network throughput as

Λ′ = Nad · Λ0′

ad + κ ·mWc

= 2nL(L+ 1)a(n) ·Θ( Wa

nL3a2(n) ) + Θ(mWc)

= Θ( 1
La(n)Wa) + Θ(mWc)

(57)

When L = O( n
1
3

log
1
3 n

) and L ≥ 1, E[Ztotal] = Θ(na(n)),
we calculate the network throughput as

Λ′ = Nad · Λ0′

adWa + κ ·mWc

= 2nL(L+ 1)a(n) ·Θ( Wa

na(n) )Wa + Θ(mWc)

= Θ(L2Wa) + Θ(mWc)
(58)

Based on both (57) and (58), the network throughput with
m = c n

logn , c < 1 is maximized when L = Θ( n
1
3

log
1
3 n

), and
the maximum network throughput is

Λ′max = Θ(
n

2
3

log
2
3 n

Wa) + Θ(mWc). (59)

We then consider the case that m = o( n
logn ). When

m = o( n
logn ), since

√
ma(n) = o( 1√

ma(n)
), we have E[h′] =

Θ( 1√
ma(n)

) according to (37). We have E[Z ′] = Θ( na(n)√
ma(n)

),

and the network capacity is calculated as

Λ′ = Nad · Λ0′

adWa + κ ·mWc

= 2nL(L+ 1)a(n) ·Θ( Wa

nL3a2(n)+
na(n)√
ma(n)

)Wa

+Θ(mWc)

= Θ( L2

L3a(n)+ 1√
ma(n)

Wa) + Θ(mWc)

(60)

When L = O( 1
m1/6a1/2(n)

), we have L3a(n) =

O( 1√
2ma(n)

), and thus

Λ′ = Θ(
√

2ma(n)L2Wa +mWc). (61)

When L = w( 1
m1/6a1/2(n)

) and L = O(
√

n
logn ),

1√
2ma(n)

= O(L3a(n)), and the network throughput is

represented by

Λ′ = Θ(
1

La(n)
Wa +mWc). (62)

According to both (61) and (62), the network is maxi-
mized when L = Θ( 1

m1/6a1/2(n)
), and the maximum network

throughput is

Λ′max = Θ(
m1/6n1/2

log1/2 n
Wa +mWc). (63)

Case II: limn→∞ q <∞.
We first consider the case that m = c n

logn , c < 1. We have
E[h′] = Θ(1). Combining (27) and (28), (30), (36), and (38),
we have (64).

(1) 0 ≤ α < 2
Since L2a(n) = O(1), E[Ztotal] =

Θ( n2

n−q+1a(n)(a1−α2 (n)L3−α + 2)).

When L = Ω(a
α−2
6−2α (n)), E[Ztotal] =

Θ( n2

n−q+1a
2−α2 (n)L3−α). In this case, we can verify

that E[Ztotal] = Ω(log n). The network capacity is

Λ′ = Θ(Λ′0adNad +mWc) = Θ(
1

a(n)L
Wa +mWc) (66)

When L = O(a
α−2
6−2α (n)), E[Ztotal] = Θ( n2

n−q+1a(n)). The
network capacity is calculated as

Λ′ = Θ(Λ′0adNad +mWc) = Θ(
L2−α

a
α
2 (n)

Wa +mWc) (67)

According to both (66) and (67), the network capacity
is maximized when L = Θ(a

α−2
6−2α (n)), and the maximum

network capacity is

Λ′max = Θ((
n

log n
)

4−α
6−2αWa +mWc) (68)

(2) 2 < α < 3.
E[Ztotal] = Θ( n2

n−q+1a
α
2 (n)(a1−α2 (n)L3−α +

a1−α2 (n)L2−α − 2)) = Θ( n2

n−q+1a(n)L3−α) due to
a1−α2 (n)L3−α = Ω(1). The network capacity is calculated as

Λ′ = Θ(Λ′0adNad +mWc) = Θ(
n

L3−α log n
Wa+mWc) (69)

The network capacity is maximized when L = Θ(1), and
the maximum network capacity is

Λ′max = Θ(
n

log n
Wa +mWc). (70)

3) α > 3.
E[Ztotal] = Θ( n2

n−q+1a
α
2 (n)(a1−α2 (n) + a1−α2 (n)L2−α −

2)) = Θ( n2

n−q+1a(n)). The network capacity is independent
of L, and the maximum network capacity is

Λ′max = Θ(
n

log n
Wa +mWc). (71)

We then consider the case that m = o( n
logn ). When

m = o( n
logn ), we mentioned before that E[h′] = Θ( 1√

ma(n)
).

Combining (27) and (28), (30), (36), and (38), we have (65).
1) 0 ≤ α < 2.
Since a1−α2 (n)(L + 1)2−α = O(1), we can easily verfy

that E[Ztotal] = Θ( n2

n−q+1a
1
2 (n)(a

3−α
2 (n)L3−α+ 1√

m
). When

L = O( n
1
2

log
1
2 n
m−

1
2(3−α) ), a

3−α
2 (n)L3−α+ 1√

m
= Θ( 1√

m
), the

average throughput of ad hoc flow is
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E[Ztotal] =



Θ( n2

n−q+1a
2−α2 (n)L3−α + n2

n−q+1 (2− a1−α2 (n)(L+ 1)2−α)a(n)), 0 ≤ α < 2

Θ( n2

n−q+1
La(n)

ln a−
1
2 (n)

+ n2

n−q+1

ln 2√
a(n)
−ln(L+1)

ln a−
1
2 (n)

a(n)), α = 2

Θ( n2

n−q+1a(n)L3−α + n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2 a(n)), 2 < α < 3

Θ( n2

n−q+1a(n) lnL+ n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2 a(n)), α = 3

Θ( n2

n−q+1a(n) + n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2 a(n)), α > 3

(64)

E[Ztotal] =



Θ( n2

n−q+1a
2−α2 (n)L3−α + n2

n−q+1 (2− a1−α2 (n)(L+ 1)2−α) a(n)√
ma(n)

), 0 ≤ α < 2

Θ( n2

n−q+1
La(n)

ln a−
1
2 (n)

+ n2

n−q+1

ln 2√
a(n)
−ln(L+1)

ln a−
1
2 (n)

a(n)√
ma(n)

), α = 2

Θ( n2

n−q+1a(n)L3−α + n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2

a(n)√
ma(n)

), 2 < α < 3

Θ( n2

n−q+1a(n) lnL+ n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2

a(n)√
ma(n)

), α = 3

Θ( n2

n−q+1a(n) + n2

n−q+1
1−2(a(n)L2)

α
2
−1

Lα−2

a(n)√
ma(n)

), α > 3

(65)

Λ′0ad = Wa

E[Ztotal]
= Θ(n−q+1

n2 a−
1
2 (n)m

1
2 )

= Θ( n−q+1

n
3
2 log

1
2 n
m

1
2 ) = O(1)(∵ m = o( n

logn ))
(72)

We thus calculate the network throughput as:

Λ′ = Θ(Λ′0adNad +mWc)

= Θ(a
1−α
2 (n)m

1
2L2−αWa +mWc)

(73)

When L = Ω( n
1
2

log
1
2 n
m−

1
2(3−α) ), a

3−α
2 (n)L3−α + 1√

m
=

Θ(a
3−α
2 (n)L3−α). Since E[Ztotal] = Θ(na2−α2 L3−α) =

Ω(1), we calculate the network throughput as

Λ′ = Θ(Λ′0adNad +mWc) = Θ( 1
a(n)LWa +mWc) (74)

According to (73) and (74), the network throughput is
maximized when L = Θ( n

1
2

log
1
2 n
m−

1
2(3−α) ), and the maximum

network throughput is

Λ′max = Θ(
n

1
2

log
1
2 n

m
1

2(3−α)Wa +mWc) (75)

2) 2 < α < 3.
Since L = O(

√
n

logn ), (a(n)L2)
α
2−1 = O(1). We

thus calculate E[Ztotal] = Θ( n2

n−q+1a
1
2 (n)(a

1
2 (n)L3−α +

L2−αm−
1
2 )).

When L = O(a−
1
2 (n)m−

1
2 ), Θ(a

1
2 (n)L3−α +

L2−αm−
1
2 ) = Θ(L2−αm−

1
2 ), E[Ztotal] =

Θ( n2

n−q+1a
1
2 (n)L2−αm−

1
2 ). When L = Θ(a−

1
2 (n)m−

1
2 ), we

calculate E[Ztotal] = Ω(1). Since E[Ztotal] becomes
larger with the smaller L, E[Ztotal] = Ω(1) when
L = O(a−

1
2 (n)m−

1
2 ). Therefore,

Λ′ = Θ(Λ′0adNad +mWc)

= Θ( n
1
2

log
1
2 n
m

1
2Lα−2Wa +mWc)

(76)

When L = Ω(a−
1
2 (n)m−

1
2 ), Θ(a

1
2 (n)L3−α +

L2−αm−
1
2 ) = Θ(a

1
2 (n)L3−α). We have E[Ztotal] =

Θ(na(n)L3−α). We can easily verify that E[Ztotal] = Ω(1),
and then

Λ′ = Θ(Λ′0adNad +mWc) = Θ(
1

a(n)L3−αWa +mWc) (77)

According to (76) and (77), the network capacity is maxi-
mized when L = Θ( n−

1
2

log
1
2 n
m−

1
2 ), and the maximum network

capacity is

Λ′max = Θ(
n
α−1
2

log
α−1
2 n

m
3−α
2 Wa +mWc). (78)

3) α > 3
Similar to the case with 2 < α < 3, we calcu-

late E[Ztotal] = Θ( n2

n−q+1a
1
2 (n)(a

1
2 (n) + L2−αm−

1
2 )).

When L = O((a(n)m)−
1

2(α−3) ), Θ(a
1
2 (n) + L2−αm−

1
2 ) =

Θ(L2−αm−
1
2 ), E[Ztotal] = Θ(na

1
2 (n)L2−αm−

1
2 ). When

L = Θ((a(n)m)−
1

2(α−3) ), E[Ztotal] = Θ(log n). Since
smaller L produces larger E[Ztotal], we have E[Ztotal] =
Ω(1). The network capacity is calculated as

Λ′ = Θ(Λ′0adNad +mWc) = Θ((a(n)m)
1
2Lα−2Wa +mWc).

(79)
When L = Ω((a(n)m)−

1
2(α−3) ), Θ(a

1
2 (n) +L2−αm−

1
2 ) =

Θ(a
1
2 (n)), and E[Ztotal] = Θ( n2

n−q+1a
1
2 (n)a

1
2 (n)) The net-

work capacity is calculated as

Λ′ = Θ(Λ′0adNad +mWc) = Θ(
n

log n
Wa +mWc). (80)

Thus, the network is maximized when L =
Ω((a(n)m)−

1
2(α−3) ), and the maximum network capacity is

Λ′max = Θ(
n

log n
Wa +mWc). (81)
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For simplicity, we did not consider the cases of α = 2 and
α = 3 in the above discussion, and the analysis is actually
very similar as before. Due to space limitation, we omit the
boundary issue for α.

H. Maximum Network Capacity Comparison

Generally speaking, the maximum network capacity with
one-hop access is shown in (82); the maximum network
capacity with multi-hop access and m = c n

logn , c < 1 is shown
in (83); and the maximum network capacity with multi-hop
access and m = o( n

logn ) is shown in (84).
Based on the derived results, we have the following obser-

vations.
1) With the uniform traffic model, we can easily verify that

the network capacity with one-hop access grows with the
fastest speed. With multi-hop access mode, the network
capacity with m = c n

logn , c < 1 grows more quickly than
that with m = o( n

logn ). The derived results align with
our expectations. In the hybrid wireless network with
one-hop access, the long-range flow would not consume
the ad hoc resources, such that the average ad hoc
network capacity is higher. On the other hand, with multi-
hop access mode, even the number of ad hoc flows is
reduced, some cellular flows still need to consume ad
hoc resources, and thus, the ad hoc network capacity is
reduced as compared with one-hop access.

2) In multi-hop access mode with m = Θ(1), the network
capacity with uniform traffic model is the same as that
in the pure ad hoc network. With the constant number of
base stations, the order of the hop count for accessing
base station is Θ(

√
n

logn ). This implies that m = Θ(1)

does not improve the scaling behavior of network ca-
pacity under the multi-hop access mode. The results tell
us that only augmenting base stations would not help to
improve network scaling law performance, and we should
increase the transmitting power of each node.

3) With the traffic model limn→∞ q < ∞ and α ≥ 3,
although the network capacity is the same for one-hop
access and multi-hop access, optimal L is different. In
the one-hop access and multi-hop access with m =
c n

logn , c < 1, the network capacity is independent of
L. However, in the multi-hop access mode with m =

o( n
logn ), L should be set as Ω(( n

m logn )
1

2(α−2) ). When
L is too small, many short-range flows are transmitted
through the cellular layer. Since each source node ac-
cesses base station with multiple hops, it is possible that
the number of hops for a certain flow is increased when
transmitting in cellular layer than that in ad hoc layer.
Therefore, setting optimal L is important to improve
network capacity performance.

V. CONCLUSION

This work studies the scaling capacity of hybrid wireless
networks with social behavior. The considered traffic model is
represented by three parameters: n, α ≥ 0, and q, in which n
is the number of nodes, q denotes the number of long-range

social contacts (LSCs) for a source node, and α is a factor to
affect the probability for selecting LSC. Larger α implies a
source node prefers a near node to be a LSC. When q = n,
the concerned traffic model is actually the uniform traffic
model. In hybrid wireless networks, routing policy selects a
transmission mode for a flow. We apply the L-maximum-
hop routing policy, that is, the distance between source and
destination is less than L hops, the flow is transmitted in ad
hoc mode; otherwise, it is forwarded by base stations.

We derive the network capacity as a function of n, α, q,
L, and m, where m is the base station number. Our derived
results identify the optimal L to maximize network capacity.
Moreover, we consider the case that a source node accesses
base station via multiple hops. The multi-hop access would
consume ad hoc resources, and our derivation results show that
the optimal L depends on m. Although our analysis assumes
a specific traffic model and node distribution model, our
derivation method can be extended to consider other different
traffic models and node distribution models.
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