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The effects of Ta incorporation in Y2O3 gate dielectric on the electrical characteristics of InGaZnO

thin-film transistor are investigated. With an appropriate Ta content in the Y2O3 gate dielectric, the

saturation mobility of the thin-film transistor can be significantly increased, about three times that

of the control sample with Y2O3 gate dielectric. Accordingly, the sample with a Ta/TaþY ratio of

68.6% presents a high saturation mobility of 33.5 cm2 V�1 s�1, low threshold voltage of 2.0 V,

large on/off current ratio of 2.8� 107, and suppressed hysteresis. This can be attributed to the fact

that the Ta incorporation can suppress the hygroscopicity of Y2O3 and thus reduces the Y2O3/

InGaZnO interface roughness and also the traps at/near the interface, as supported by atomic force

microscopy and low-frequency noise measurement, respectively. However, excessive Ta incorpora-

tion in the Y2O3 gate dielectric leads to degradation in device performance because Ta-related

defects are generated. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965849]

The amorphous InGaZnO (a-IGZO) thin-film transistors

(TFTs) own high carrier mobility (>10 cm2 V�1 s�1), excel-

lent uniformity of device performance, and low-temperature

processing and thus have been intensively investigated for

applications in the next-generation active-matrix flat-panel

displays, which require fast refresh, high resolution and large

panel size.1,2 In addition, the fabrication process of a-IGZO

TFTs is compatible with the present technology employed for

the mass production of a-Si TFTs. Currently, the best IGZO

devices can do well in active-matrix liquid-crystal displays

(AMLCD) and nearly meet the needs of organic light-

emitting diode (OLED) displays. However, the high power

consumption of a-IGZO TFTs due to high operating voltage

and large gate leakage limits their applications, especially in

portable devices. Therefore, many researchers have tried to

adopt various high-k materials, e.g., Y2O3, HfLaO, and

BaSrTiO3,3–5 as the gate dielectric of a-IGZO TFTs in the

past few years. Among them, the a-IGZO/Y2O3 TFT could

present low leakage current, high breakdown voltage and

good high-temperature reliability due to both wide band gap

(5–6 eV) and excellent thermal stability of Y2O3 dielectric.6,7

However, the Y2O3 film is hygroscopic and its k value is rela-

tively low (11–18), which reduces the practical application

value of a-IGZO/Y2O3 TFT. On the other hand, Ta2O5 gate

dielectric with a high k value (�29) has been widely adopted

in a-IGZO TFTs to reduce the operating voltage.8–10 More

importantly, the Ta2O5 film is much less hygroscopic than the

Y2O3 film. It was reported that Ta incorporation in La2O3

gate dielectric could improve the electrical characteristics of

IGZO TFT because Ta incorporation could enhance the mois-

ture resistance of the La2O3 film and thus decrease the trap

density at/near the dielectric/IGZO interface.11 Therefore, the

aim of this work is to investigate the effects of Ta incorpora-

tion in Y2O3 gate dielectric of IGZO TFT. In detail, Ta

incorporation with different doses is tried out to identify the

optimal Ta content for the best device performance.

First, the standard RCA method was employed to clean

the p-type silicon wafers (h100i, 0.01–0.02 X cm), which

acted as both substrate and gate electrode. Then, a gate

dielectric film was deposited by sputtering in an Ar/O2

mixed ambient, with Ta metal target and Y2O3 ceramic tar-

get under various powers to realize different Ta contents.

After that, all the samples were annealed at 400 �C for

10 min in an N2 ambient with a flow rate of 500 mL/min.

Subsequently, a 60-nm IGZO film acting as the channel layer

was deposited by sputtering with a ceramic target

(Ga2O3:In2O3:ZnO¼ 1:1:1) in an Ar/O2 (24 sccm/1 sccm)

mixed ambient. Next, a conventional photolithography and

lift-off process were carried out to form the source/drain

electrodes with a channel of 100 lm in width (W) and 30 lm

in length (L), and the electrodes consisted of 20-nm Ti and

80-nm Au deposited by electron-beam evaporation. At last,

all the samples were annealed at 350 �C for 20 min in form-

ing gas (N2:H2¼ 95:5) to reduce the contact resistance of the

source/drain electrodes.

The electrical characteristics of the a-IGZO TFTs were

measured by an HP 4145B semiconductor parameter ana-

lyzer. In addition, the Al/dielectric/Si metal-insulator-semi-

conductor (MIS) capacitors were also prepared in order to

monitor the gate-oxide capacitance per unit area (Cox) by

using an HP 4284A precision LCR meter. The thicknesses of

dielectric and a-IGZO films were measured by a Wvase 32

ellipsometer. In addition, Nanopics 2100 atomic force

microscopy (AFM) and X-ray photoelectron spectroscopy

(XPS) were employed to measure the surface roughness and

elemental composition of the gate dielectrics, respectively.

The chemical composition of the gate dielectric films

was measured by XPS, and the Y 3d and Ta 4d signal is

shown in Fig. 1. Accordingly, the atomic ratio of Ta/(YþTa)

is 0%, 47.7%, 68.6%, and 72.7% for the samples A, B, C,a)Email: laip@eee.hku.hk
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and D, respectively. In Fig. 1(a), the Y 3d5/2 peak is located

at 158.9 eV for sample A, higher than the ideal value

(156.8 eV) of the Y-O bond in the NIST Database, sugges-

ting the formation of Y-OH bond,12 which results from the

hygroscopicity of Y2O3. With Ta incorporation, the Y 3d5/2

peak shifts to higher binding energy because Ta incorpora-

tion changes the hybridization of valence levels in TaYO

and further influences the Y-O bonding strength. However,

the Y 3d5/2 peak of sample D (159.7 eV) shifts to lower bind-

ing energy in comparison to sample C (160.0 eV) because

excessive Ta incorporation induces Ta-related acceptor-like

traps as negatively charged centers in sample D. In Fig. 1(b),

the Ta 4d5/2 peak shifts from 232.7 eV (sample B) to

231.2 eV (samples C and D) for increasing Ta content in the

gate dielectric film. It can be ascribed to the fact that Ta

incorporation can suppress oxygen vacancy, which is posi-

tively charged with an electric field affecting its neighbors,

thus leading to an increase in binding energy.13 In addition,

the position of Ta 4d5/2 peak for the TaYO films with heavy

Ta incorporation (in samples C and D) is very close to the

ideal value of 230.6 eV for Ta2O5 from the NIST Database.

The AFM images in Fig. 2 exhibit the surface roughness

of the gate dielectrics with different Ta contents, and the

root-mean-square (RMS) values are listed in Table I. It is

clear that the surface roughness is effectively reduced by Ta

incorporation, with RMS decreasing from 1.53 nm (sample

A) to 0.22 nm (samples C and D). The relatively large sur-

face roughness of sample A is resulted from the non-uniform

volume expansion of the Y2O3 film after moisture absorp-

tion,14 but Ta incorporation helps enhance the resistance of

the gate dielectric film against moisture absorption in the

other samples. Fig. 3 shows (a) the schematic diagram of the

IGZO TFT with TaYO gate dielectric and (b) the cross-

sectional structure of Si/TaYO/IGZO layers for sample C by

transmission electron microscopy (TEM). According to the

TEM image, the TaYO/IGZO interface is very smooth for

sample C with a Ta/(YþTa) atomic ratio of 68.6%, which is

consistent with the AFM result. In addition, a thin silicate

layer (thickness¼ 5.2 nm) between the gate dielectric and Si

substrate can be observed, which should be due to the mixing

between the gate dielectric and Si substrate during the post-

deposition annealing at 400 �C.

As shown in Fig. 4, the forward and reverse transfer

characteristics of the samples are measured as gate voltage

(VGS) first sweeps from �3 V to 8 V and then back to �3 V

with a sweeping speed of 0.65 V/s. The drain voltage (VDS)

is fixed at 5 V. Accordingly, threshold voltage (Vth) and satu-

ration mobility (lsat) are extracted from a linear fitting to the

FIG. 1. XPS spectra of Y 3d and Ta 4d for the gate dielectric films with dif-

ferent Ta/(YþTa) atomic ratios: 0% (sample A), 47.7% (sample B), 68.6%

(sample C), and 72.7% (sample D).

FIG. 2. AFM image of the gate dielectric films: (a) sample A, (b) sample B,

(c) sample C, and (d) sample D.

TABLE I. Electrical parameters of a-IGZO TFTs in this work.

Sample No. A B C D

Ta/(YþTa) 0% 47.7% 68.6% 72.7%

lsat_forward (cm2V�1s�1) 11.5 18.4 33.5 24.0

lsat_reverse (cm2V�1s�1) 6.3 16.6 23.1 21.8

Vth (V) 3.1 2.5 2.0 1.8

DVth (V) 1.8 1.6 1.1 2.0

Ion/Ioff (107) 5.6 4.6 2.8 2.8

Ion (lA) 56.0 186 320 369

Ioff (10�12A) 1.0 4.0 11 13

SS (V/dec) 0.190 0.204 0.190 0.184

Cox (lF/cm2) 0.14 0.21 0.22 0.29

Nt (1012cm�2) 1.9 3.2 3.0 3.8

aH 123.8 75.4 8.1 52.5

Tox (nm) 55.9 39.7 39.9 37.5

k 8.7 9.2 9.6 12.1

RMS (nm) 1.53 0.29 0.22 0.22
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plot of ID
1/2 versus VGS, based on the I–V equation of field-

effect transistor operating in the saturation region

ID ¼ ðlsatCoxW=2LÞðVGS � VthÞ2: (1)

The on current (Ion) is defined at VDS¼ 5 V and

VGS¼ 8 V, while the off current (Ioff) is the minimum current

in the transfer curve. The extracted electrical parameters are

listed in Table I. For sample A, the electrical performance is

relatively poor with a low lsat (11.5 cm2V�1s�1), which

should be attributed to a large Y2O3/IGZO interface rough-

ness and a high trap density at/near Y2O3/IGZO interface.

The moisture absorption of the Y2O3 film not only induces

non-uniform volume expansion but also increases oxygen

vacancies,15 which can act as acceptor-like traps as revealed

by a large positive DVth of 1.8 V, also consistent with other

results.16,17 With Ta incorporation, lsat is significantly

increased to 18.4 cm2V�1s�1 and 33.5 cm2V�1s�1 for sam-

ples B and C with a Ta/(YþTa) atomic ratio of 47.7% and

68.6%, respectively. On the one hand, the smoother dielec-

tric/IGZO interface after Ta incorporation contributes to less

scattering on channel carriers, resulting in higher lsat and Ion

values because the conduction channel is formed mainly in a

very thin layer close to the interface.18 On the other hand, Ta

incorporation reduces the hygroscopicity of the gate dielec-

tric film and thus the generation of oxygen vacancies11 at/

near the dielectric/IGZO interface, resulting in weaker

Coulomb scattering on the channel carriers. Furthermore, a

decrease of DVth from 1.8 V (sample A) to 1.1 V (sample C)

is also achieved by higher Ta content in gate dielectric film.

Compared to sample A, fewer acceptor-like traps are filled

during the forward sweeping in samples B and C with Ta

incorporation, and so smaller VGS increase is needed during

the reverse sweeping to accumulate the same number of elec-

trons in the conduction channel. In addition, amorphous

Y2O3 film is easy to crystallize with a crystallization temper-

ature of �400 �C,19 but Ta incorporation can suppress its

crystallization and thus trap generation,20 which enhances

the positive effects of Ta incorporation.

FIG. 3. (a) Schematic diagram of IGZO TFT with TaYO gate dielectric. (b)

Cross-sectional TEM image of Si/TaYO/IGZO layers in sample C.

FIG. 4. Forward and reverse transfer

characteristics of a-IGZO TFTs: (a)

sample A, (b) sample B, (c) sample C,

and (d) sample D.
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The trap density (Nt) at/near the dielectric/IGZO inter-

face can be calculated by the equation for the subthreshold

swing (SS) of the transistor

SS ¼ KT ln10

q
1þ q

Cox
Nt

� �
; (2)

where k is Boltzmann’s constant, T the temperature in

Kelvin, and q the electron charge.11 As shown in Table I,

although the SS of the devices look similar, their Nt values

are quite different. Sample A has the lowest Nt (Y2O3 is

well-known to be an excellent passivating agent) but shows

the lowest carrier mobility due to its largest dielectric rough-

ness. On the other hand, sample C displays the highest

mobility because it has the smallest dielectric roughness and

also lowest Nt among the Ta-doped samples.

However, the performance of the a-IGZO TFT degrades

when the Ta/(YþTa) atomic ratio reaches 72.7% (sample

D), leading to lsat of 24.0 cm2V�1s�1 and DVth of 2.0 V,

both inferior to those of sample C. This should be due to the

fact that excessive Ta incorporation could generate more Ta-

related traps, e.g., Ta interstitials, at/near the dielectric/chan-

nel interface.21 In addition, Ta is also an excellent n-type

dopant in oxide film22 and can increase the carrier concentra-

tion at the dielectric/channel interface, which could partly

explain the higher Ion value of sample D (369 lA) than that

of sample C (320 lA) even with a lower lsat. Also, the higher

k value of sample D than sample C results in larger Cox and

thus higher Ion. Owing to the higher trap density of Ta2O5,

Ioff significantly rises from 1� 10�12 A (sample A) to

13� 10�12 A (sample D). In addition, the k value of the

dielectric film monotonically increases with Ta content from

8.7 (sample A) to 12.1 (sample D) due to the higher k value

of Ta2O5 than that of Y2O3 and so induces the reduction of

Vth from 3.1 V (sample A) to 1.8 V (sample D).

The output characteristics of the samples are exhibited

in Fig. 5. For all the samples, a linear relation between ID

and VDS is observed in the range of low VDS and current sat-

uration is displayed in the range of high VDS, which are the

typical characteristics of field-effect transistor in an n-type

enhancement mode.

The low-frequency noise (LFN) measurement is con-

ducted with a fixed gate overdrive voltage (VGS � Vth) of

5.0 V and VDS of 1.0 V to ensure that the samples work in

the linear region, and the results are shown in Fig. 6. At low

drain voltage (linear region), the carrier density is uniform

along the channel and so the LFN can reflect the average

defect density over the entire channel region. The larger

gate-oxide thickness (Tox) of sample A contributes to its

larger Vth, but it does not affect the comparison of LFN

because the gate overdrive voltage (VGS � Vth) is fixed at

the same value for all the samples. The carrier-mobility fluc-

tuation model predicts that SID/ID
2 should vary as 1/ID,

which cannot completely explain the LFN results in the

insert of Fig. 6, implying that the LFN also originates from

carrier-number fluctuation caused by the trapping and

detrapping of charge carriers at/near the dielectric/channel

interface.23,24 Based on the LFN results in Fig. 6, the

Hooge’s constant (aH), which reflects the level of LFN, is

extracted according to the following equation:25

SID fð Þ
I2
D

¼ aHq

fWLCoxjVGS � Vthj
; (3)

where f is the frequency and q is the electron charge. In Table

I, the lowest noise is achieved by sample C with the smallest

aH of 8.1, supporting the above conclusion that its trap density

at/near the dielectric/IGZO interface is the lowest among the

Ta-doped samples. This result further proves that Ta incorpo-

ration with an appropriate dose can effectively suppress the

FIG. 5. Output characteristics of

a-IGZO TFTs: (a) sample A, (b) sam-

ple B, (c) sample C, and (d) sample D.
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trap generation at/near the dielectric/IGZO interface caused

by the hygroscopicity of Y2O3. However, excessive Ta incor-

poration can generate more Ta-related defects and thus induce

a higher noise level, as revealed by sample D with a larger aH

of 52.5. Though with the lowest Nt, sample A has the largest

aH because its largest dielectric roughness induces the stron-

gest carrier scattering among the samples.

In this work, the electrical characteristics of a-IGZO

TFT with Y2O3 gate dielectric have been improved by incor-

porating Ta in the gate dielectric. It is found that by enhanc-

ing the moisture resistance of the Y2O3 gate dielectric, the

Ta incorporation with an appropriate dose reduces not only

the dielectric/channel interface roughness but also the traps

at/near the interface. As a result, the device performance can

be significantly improved. For example, the sample with a

Ta/(YþTa) atomic ratio of 68.6% has achieved high lsat of

33.5 cm2 V�1 s�1, low Vth of 2.0 V, large Ion/Ioff of 2.8� 107,

and relatively small DVth of 1.1 V. However, excessive Ta

can generate defect states at/near the dielectric/channel inter-

face and in the dielectric bulk, thus degrading the electrical

performance of the device. In addition, AFM and LFN

results also well support the physical mechanisms responsi-

ble for the effects of Ta incorporation on the electrical char-

acteristics. In summary, the TaYO gate dielectric is a

promising candidate for realizing high-performance a-IGZO

TFT in advanced flat-panel displays.
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