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This paper presents the development of a macroscopic dynamic traffic assignment (DTA) model for contin-

uum transportation systems with elastic demand. A reactive dynamic user equilibrium model is extended to

simulate network equilibrium problems for an urban area with multiple central business districts (CBDs).

Each copy of traffic flow makes route choice decisions in a reactive manner to minimize the total travel

cost from origin to destination, based on instantaneous traffic information from a radio broadcasting service

or route guidance system. The elastic demand function for each copy of flow is associated with its total

instantaneous travel cost. The model is solved by a cell-centered finite volume method for conservation law

equations and a fast sweeping method for Eikonal-type equations on unstructured grids. Numerical exper-

iments for an urban traffic network with two CBDs are presented to verify the rationality of the model

and the validity of the numerical method. The numerical results indicate that the model captures some

macroscopic characteristics of two copies of flow interacting in time-varying urban transportation systems,

e.g., the spatial distributions of the flow density and flux and the path choice behavior in response to elastic

demand, and can describe traffic equilibrium phenomena, such as self-organization and traffic congestion

build-up and dissipation.

Key words : polycentric urban area; reactive dynamic user equilibrium; elastic demand; self-organization;

traffic congestion; unstructured meshes

History :

1. Introduction

Dynamic traffic assignment (DTA), a generalization of static traffic assignment, plays an important

role in traffic control and management. DTA models use time-varying traffic flow to capture traffic

dynamics. They can be used in offline transportation planning and policy evaluation and in real-
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time traffic management. The models are classified as dynamic user-optimal (DUO) models and

dynamic system-optimal (DSO) models according to their different assignment patterns. In DUO

models, the route choice behavior of travelers is based on the assumption that each user is self-

interested and will always travel along the least time/cost path (Wie et al. 1990, Lam and Huang

1995, Boyce et al. 1995, Li et al. 2000, Nagurney and Dong 2002, Friesz et al. 2010, Xu et al. 2014,

Hoogendoorn and Bovy 2004, Xia et al. 2008, Huang et al. 2009, Jiang et al. 2009, 2012, Du et al.

2013, Balijepalli et al. 2014, Chow et al. 2015, Levin et al. 2015). There are two DUO assignment

patterns (Tong andWong 2000): the reactive dynamic user-optimal (RDUO) assignment, in which a

user chooses a route that minimizes his/her instantaneous travel time/cost based on instantaneous

travel time/cost information gained through broadcasting (Wie et al. 1990, Lam and Huang 1995,

Boyce et al. 1995, Li et al. 2000, Huang et al. 2009, Jiang et al. 2009, Friesz et al. 2010), and the

predictive dynamic user-optimal (PDUO) assignment, in which an individual chooses a route that

minimizes his/her actual travel time/cost based on predictive travel time/cost information gained

through experience (Tong and Wong 2000, Hoogendoorn and Bovy 2004, Du et al. 2013). In DSO

models, each user is assigned the route that minimizes the total travel time/cost of the system

(Ghali and Smith 1995, Ziliaskopoulos 2000, Clarka et al. 2009, Carey and Watling 2012, Tao et al.

2014).

Conceptually, there are two common modeling approaches to traffic equilibrium problems:

the discrete (or microscopic) modeling approach and the continuum (or macroscopic) modeling

approach (Jiang et al. 2011). The discrete modeling approach, in which each road link within the

network is modeled separately and demand is assumed to be concentrated at hypothetical zone

centroids, is used for detailed studies of travel patterns in road network systems. Discrete DTA

models are used in mathematical programs (Ziliaskopoulos 2000, Carey and Watling 2012), opti-

mal control theory (Wie et al. 1990, Lam and Huang 1995), studies of variational inequality (Li

et al. 2000, Friesz et al. 2010), and computer simulations (Yang et al. 1993, Fukui and Ishibashi

2010). Based on the reasonable assumption that travelers make certain behavioral choices, these

discrete models can effectively represent the time-dependent nature of traffic demand and flow in

transportation systems. However, it is both challenging and demanding to model a large-scale con-

gested urban traffic network with a large number of links, intersections, interchanges, and severe

congestion with queues and spillbacks. Furthermore, some of the what-if questions asked during

the initial or conceptual phase of studies of such complex systems do not require very detailed

results.
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Due to its various advantages, the continuum modeling approach has recently been used in

regional studies and for modeling highly dense transportation systems. In the continuum approach,

a dense network is approximated as a continuum on which travelers are free to choose their paths

in a two-dimensional (2D) continuous space. In this modeling approach, the characteristics of a

network, such as its flow intensity, demand, and travel cost, can be represented by smooth math-

ematical functions and therefore less data are required for the model setup process. Furthermore,

this approach can reduce the problem size (which depends on the method adopted to approximate

the modeling region rather than on the actual number of links modeled) for a large/dense trans-

portation network and thus save on computational time and memory. Early studies used static

continuum equilibrium models to determine facility locations and perform policy, environmental,

and socio-economic analyses (e.g., Wong (1998), Yang and Wong (2000), Daniele et al. (2003), Ho

et al. (2006), Yin et al. (2013), Ho et al. (2013)). These static models might be adequate for the

long-term prediction of network planning, design, and routing, but have limitations for short-term

traffic predictions. Therefore, to investigate the macroscopic features and route choice behavior of

travelers, continuum static user-optimal models have been extended to continuum DTA models for

pedestrian flow (Xia et al. 2008, Huang et al. 2009, Jiang et al. 2009, 2012) and urban traffic flow

(Rossa et al. 2010, Jiang et al. 2011, Du et al. 2013, Saumtally et al. 2013).

The modeling and simulation of real urban networks are complicated by problems such as het-

erogeneous users, elastic travel demands, and multi-modal networks, which have important effects

on traffic performance. Both the accuracy and the explanatory ability of DTA models can be

improved significantly by distinguishing classes of drivers and their specific driving characteristics

(Hoogendoorn and Bovy 2000). The heterogeneous users of a traffic flow in a transportation system

can be classified according to their reasons for traveling, vehicle types, and consumption values,

etc. Each class is then modeled as an equilibrium. Static multiclass user equilibrium models (Wong

1998, Ho et al. 2006, 2013) have been generalized to bi-direction pedestrian flow models that sat-

isfy the reactive continuum DUO principles (Jiang et al. 2009, 2012). Traffic demand and flow

patterns in real-world urban road systems are influenced by a variety of parameters in the demand

functions, and demand may be adversely affected by traveltime/cost (Babonneau and Vial 2008).

Traffic demand reflects more realistic travel behavior, as travelers can change their trip frequency,

departure time, transportation mode, and so on to avoid traffic congestion and tolls. For example,

as congestion increases, travelers may decide to use a different mode of travel (e.g. an underground

transport system that does not interfere with the road system), shift their time of travel (outside

the design period), or forgo some trips altogether (Xu and Gao 2007).
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Elastic demand models, in which the number of trips between each origin-destination (O-D)

pair varies with the network conditions, consider user responses to changes in network costs in an

aggregate way, different from re-routing. In reactive/predictive DTA models with elastic demand,

whether reactive types such as those in Wie (1991), Yang (1997), Xu and Gao (2007), Ryu et al.

(2014), or predictive types such as those in Szeto and Lo (2004), Han et al. (2011), Friesz and

Meimand (2014), the travel demand is generally assumed to be a monotonically decreasing function

with respect to the instantaneous/actual minimum travel time/cost between each OD pair. The

inclusion of multiple user classes and the consideration of elastic demand can refine the framework

of equilibrium DTA models. In fact, there are many discrete DTA models with multiple user classes

and elastic demand in the literature (Cantarella 1997, Nagurney and Dong 2002, Clarka et al. 2009,

Han et al. 2011, Xu et al. 2014), but few are continuum DTA models.

In this study we develop a macroscopic DTA model with elastic demand for a polycentric urban

city with multiple compact central business districts (CBDs). The model is characterized by con-

tinuous independent variables and is expected to investigate the macroscopic characteristics and

route choice behavior of multiple copies of urban traffic flow. A copy of flow is defined as the traffic

movements heading to a CBD or a destination, as in Potts and Oliver (1972). For each copy of

flow, the model is formulated as a flow conservation equation coupled with an Eikonal-type equa-

tion to describe the traffic flow propagation and assignment patterns, respectively. We postulate

that travelers’ path choice decisions are based on radio broadcasting information or route guidance

system information that is provided on a real-time basis at the time of decision-making. Each

copy of flow can follow the reactive continuum DUO principle by making strategic path choices to

minimize the travel cost between the departure point and destination location. The traffic demand

is assumed to be influenced by the level of service on the network, and thus for each copy of flow,

the instantaneous traffic demand depends on the instantaneous total travel cost. We also derive

the hyperbolicity of the continuum DTA model with elastic demand. A solution algorithm for

the model is presented based on a cell-centered finite volume spatial discretization method and a

fast sweeping method on unstructured meshes. Our numerical examples are designed to verify the

rationality of the model and the effectiveness of the numerical method.

The rest of the paper is organized as follows. Section 2 provides the mathematical formulation

for the DTA model with elastic demand in a polycentric urban city. Section 3 describes a solution

algorithm for the DTA model. In Section 4, numerical examples are presented to test the rationality

of the model and the efficiency of the algorithm. General conclusions are presented in Section 5.
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Figure 1 A polycentric urban region of arbitrary shape

2. Problem Formulation

Consider a polycentric urban region of arbitrary shape with M(M ≥ 2) compact CBDs (Figure 1).

In the region, the road network is very dense and can be viewed as a 2D continuum. The urban

region and its boundary are denoted by Ω (in km2) and Γ (in km), respectively. Let Γo (in km)

be the outer boundary of Ω, Γm
c (in km) be the boundary of the m-th (m= 1,2, ...,M) compact

CBD, Γi (in km) be the boundary of an obstruction, such as a lake, where traffic is not allowed to

enter or leave, and n be the unit normal vector going out of the region.

It is assumed that heterogeneous travelers continuously distributed over space are characterized

by their choice of trip destination. The m-th copy of traffic flow represents the travelers who are

traveling to the m-th CBD within the urban region. A DTA model with elastic demand for a poly-

centric urban city is developed to investigate the macroscopic characteristics of urban traffic flow

and the path-choice behavior of the heterogeneous travelers on a continuum network. In general,

traffic demand is influenced by the level of service on the network and by travelers’ willingness to

take a faster route based on available travel time/cost information (which is instantaneous through

broadcasting or predictive through experience). Here, we suppose that each copy of flow knows the

current instantaneous traffic conditions in the transportation system during a trip. For each copy

of flow, if the perceived travel time/cost is high, travelers may decide not to travel or to travel

using a different mode (e.g., a subway); if the perceived travel time/cost is low, then more travelers

may be willing to switch to road-based transport. The time-varying demand function (or demand

distribution) qm(x, y, t) (in veh/km2/hr), as a representation of the aggregate effect of all of the

decisions in the m-th copy of traffic flow, is assumed to be sensitive to changes in travel cost and

is represented by

qm(x,y, t) = qm(Φm(x, y, t), t), (1)
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where Φm(x,y, t) (in $) denotes the total instantaneous travel cost incurred by the m-th copy of

flow traveling from origin (x,y)∈Ω to the m-th CBD at time t. Based on Eq. (1), qm(x,y, t)dxdy

is the traffic demand from the sub-area at (x, y) ∈Ω at time t to the m-th CBD for each copy of

flow. Here, we consider the traffic demand for each copy of flow qm(x, y, t) to be a monotonically

decreasing function of the total instantaneous travel cost Φm(x, y, t) incurred by the m-th copy of

flow (Wong 1998, Han et al. 2011). In other words, as Φm(x, y, t) grows, qm(x, y, t) decreases, and

vice versa.

2.1. Flow Conservation Equations

Our method of modeling urban traffic flow at the macroscopic level is based on the assumption

that traffic streams as a whole are comparable to fluid particle flows, for which suitable balance

or conservation laws can be written. Based on the theory of continuous medium mechanics, the

traffic density, flow vector, and demand for each copy of flow should satisfy the following continuity

equation.

ρmt (x,y, t)+∇·Fm(x, y, t) = qm(x, y, t), (2)

which describes the conservation of the m-th copy of traffic flow in a topographically homogeneous

sub-area at (x, y)∈Ω without entrances or exits at time t. Here, ρm(x,y, t) (in veh/km2) is the traf-

fic density of the m-th copy of flow at location (x, y)∈Ω and time t. Fm = (fm
1 (x, y, t), fm

2 (x, y, t))

(in veh/km/hr) is the flow vector, where fm
1 , fm

2 are the flow fluxes in the x- and y- directions,

respectively.

The average speed Um(x, y, t) (in km/hr) of the m-th copy of flow is a function of the sum of

all of the densities at location (x, y)∈Ω and time t, i.e.:

Um(x, y, t) =Um
f (x, y)exp(−βρ2(x, y, t)), (3)

where ρ(x, y, t) =
∑M

m=1 ρ
m(x, y, t) is the total density of urban traffic flow, Um

f (x, y) (in km/hr)

represents the free flow speed of the vehicles at location (x, y), and β is a positive scalar that is

influenced by the urban road area ratio and the geometrics of the free section. The magnitude of

Fm(x, y, t) (in veh/km/hr) is defined as

∥Fm(x, y, t) ∥= ρm(x,y, t)Um(x, y, t). (4)

Based on Eqs. (3) and (4), the maximum flow intensity, Fm(x, y, t), for each copy of flow is achieved

at critical density

ρc =
1√
2Mβ

, (5)

which is calculated by ∂∥Fm∥
∂ρm

= 0,m = 1,2, ...M . When density ρm(x, y, t) < ρc, the m-th copy of

flow is in a non-congested state; otherwise, it is in a congested state.
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2.2. Path Choice Constraints

We assume that each copy of flow at location (x, y) ∈ Ω always selects the routes that minimize

the total travel cost to the destination based on instantaneous traffic information from a radio

broadcasting service or route guidance system provided on a real-time basis at the time of decision-

making. Let Cm(x,y, t) (in $/km) represent the local generalized transportation cost per unit

distance of travel incurred by the m-th copy of flow at location (x, y) and time t. We formulate the

cost distribution, Cm(x, y, t), for each copy of flow as the following general form in consideration

of different scenarios.

Cm(x, y, t) = κ(
1

Um(x, y, t)
+πm(ρ̃(x, y, t))), (6)

where ρ̃ := {ρ1(x, y, t), ρ2(x,y, t), ..., ρM(x,y, t)}, and κ (in $) denotes the value of time. In Eq. (6),

the term κ
Um(x,y,t)

, as the major factor, represents the cost associated with travel time, and the

term κπm(ρ̃(x, y, t)), as the minor factor, represents other associated costs such as a preference

for avoiding high-density regions or reducing collision conflicts. These conflicts express the mutual

effects of different types of travelers occupying a common space.

The functional form of travel cost Φm(x,y, t) for the m-th copy of flow can be written as

Φm(x, y, t) =Φm(xc, yc, t)+min
p

∫
p

Cm(x, y, t)ds, (7)

where p denotes any path from origin (x,y) ∈ Ω to destination (xc, yc) ∈ Γm
c , and Φm(xc, yc, t)

expresses the cost incurred by entering the m-th CBD at time t. We can obtain the reactive DUO

conditions as the equilibrated flow pattern in a polycentric urban network:

Cm(x, y, t)
Fm(x,y, t)

∥Fm(x,y, t) ∥
+∇Φm(x, y, t) = 0. (8)

From Eq. (8), the total instantaneous travel cost Φm(x, y, t) of the m-th copy of flow from an origin

(x, y)∈Ω to the m-th CBD satisfies the following Eikonal-type equation

∥∇Φm(x, y, t) ∥=Cm(x,y, t). (9)

Similar to Jiang et al. (2009), Eq. (8) can be shown as follows.

For the m-th copy of flow travelling along any used path p from location (x, y)∈Ω to destination

(xc, yc)∈ Γm
c , the total instantaneous cost incurred by that copy of flow can be obtained by

C̄m
p (x, y, t) =

∫
p

Cm(x, y, t)ds=

∫
p

Cm(x, y, t)
Fm(x, y, t)

∥Fm(x, y, t) ∥
·ds

= −
∫
p

∇Φm(x, y, t) ·ds=−(Φm(xc, yc, t)−Φm(x, y, t))
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= Φm(x, y, t)−Φm(xc, yc, t), (10)

using Eqs. (8)-(9) and Fm(x,y,t)

∥Fm(x,y,t)∥ , a unit vector that is parallel to ds along the path. The total

instantaneous travel cost at time t is thus independent of the used paths.

In contrast, for an unused path p̃ between location (x, y) ∈Ω and destination (xc, yc) ∈ Γm
d , the

total travelling cost incurred by the m-th copy of flow is

C̄m
p̃ (x, y, t) =

∫
p̃

Cm(x, y, t)ds≥
∫
p̃

Cm(x, y, t)
Fm(x, y, t)

∥Fm(x, y, t) ∥
·ds

= −
∫
p̃

∇Φm(x, y, t) ·ds=−(Φm(xc, yc, t)−Φm(x, y, t))

= Φm(x, y, t)−Φm(xc, yc, t), (11)

using Eqs. (8)-(9).

The inequality in (11) occurs because of some segments along path p̃ whose normal vectors

Fm(x,y,t)

∥Fm(x,y,t)∥ are not parallel to ds: ds > ( Fm(x,y,t)

∥Fm(x,y,t)∥) · ds for the segments. For any unused paths,

the total instantaneous travel cost is greater than or equal to that of the used paths. The model

guarantees that each copy of flow chooses a path in the continuum road network in a user-optimal

manner with respect to instantaneous travel information representing current traffic flow conditions.

A dynamic continuum model with elastic demand for a polycentric urban city can now be

formulated as the following set of differential equations. The flow conservation equation for each

copy of flow is 
ρmt (x,y, t)+∇ ·Fm(x, y, t) = qm(Φm(x, y, t), t),∀(x, y)∈Ω,

Fm(x, y, t) =−ρm(x,y,t)Um(x,y,t)∇Φm(x,y,t)

Cm(x,y,t)
,∀(x, y)∈Ω,

Fm(x,y, t) ·n= 0,∀(x, y)∈ Γ \Γm
c ,

ρm(x, y,0) = ρm0 (x, y),∀(x, y)∈Ω,

(12)

which is coupled with the Eikonal-type equation{
∥∇Φm(x, y, t) ∥=Cm(x, y, t), ∀(x, y)∈Ω,

Φm(x, y, t) =Φm
0 (x, y, t), ∀(x, y)∈ Γm

c ,
(13)

where Φm
0 (x, y, t) represents the cost incurred by entering the m-th CBD at time t and m =

1,2, ...,M.

Note that although the dynamic continuum model (12) is reactive, the decision to travel or not

to travel in each copy of flow is made at the beginning of the trip (e.g., at home). Once travelers

have made the decision to travel, the next decision is the route choice. Thus, for each copy of flow,

the demand is made at the beginning of an O-D pair, and does not change in the middle of a

journey (as governed by the conservation law (2)).
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2.3. Hyperbolicity of the Model

Let

ρ̄=



ρ1

ρ2

...
ρm

...
ρM


, f̄1 =



ρ1U 1ν1
1

ρ2U 2ν2
1

...
ρmUmνm

1
...

ρMUMνM
1


, f̄2 =



ρ1U1ν1
2

ρ2U2ν2
2

...
ρmUmνm

2
...

ρMUMνM
2


, q̄=



q1

q2

...
qm

...
qM


,

where ν⃗m = (νm
1 , νm

2 ) is a unit vector in the direction of motion for the m-th copy of flow. Based

on Eq. (4), Fm = ρmUmν⃗m.

From Eq. (2), the flow conservation equations for M copies of urban traffic flow can be described

as the following system.

ρ̄t +∇· F̄= q̄, (14)

where F̄= (f̄1, f̄2). Given that the travel direction of the m-th copy of flow ν⃗m is predefined, the

hyperbolicity of system (14) can be obtained.

The linearized form of (14) is

ρ̄t +Aρ̄x +Bρ̄y = q̄,

where flux Jacobian matrices A and B are respectively calculated by

A=
∂f̄1
∂ρ̄

= (aij), aij =U iνi
1δij + cij, cij = ρi

∂U i

∂ρj
νi
1,

B =
∂f̄2
∂ρ̄

= (bij), bij =U iνi
2δij + c̃ij, c̃ij = ρi

∂U i

∂ρj
νi
2.

Based on Eq. (3), we have

∂Um

∂ρ1
=

∂Um

∂ρ2
= ...=

∂Um

∂ρm
= ...=

∂Um

∂ρM
=

dUm

dρ
.

The composite Jacobian matrix is defined as Fn = Anx +Bny, where (nx, ny) is a non-zero unit

vector. The characteristic polynomial of Fn is∣∣∣∣∣∣∣∣∣∣∣

U 1ω1 + c1 −λ c1 . . . c1 c1
c2 U 2ω2 + c2 −λ . . . c2 c2
...

...
. . .

...
...

cM−1 cM−1 . . . UM−1ωM−1 + cM−1 −λ cM−1

cM cM . . . cM UMωM + cM −λ

∣∣∣∣∣∣∣∣∣∣∣
,

where ωm = νm
1 nx + νm

2 ny and cm = ρmωm dUm

dρ
, 1≤m≤M.
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T
i
 T

i1

T
i2

T
i3

Figure 2 A typical unstructured triangular grid.

Subtracting Column i−1 from Column i (i=M, ...,2) of the determinant described above gives

us, ∣∣∣∣∣∣∣∣∣∣∣

U 1ω1 + c1 −λ λ−U1ω1 . . . 0 0
c2 U 2ω2 −λ . . . 0 0
...

...
. . .

...
...

cM−1 0 . . . UM−1ωM−1 −λ λ−UM−1ωM−1

cM 0 . . . 0 UMωM −λ

∣∣∣∣∣∣∣∣∣∣∣
:= PM(λ).

From Zhang et al. (2006), we know that characteristic polynomial PM(λ) has M unequal real roots,

and system (14) is therefore strictly hyperbolic.

3. Solution Procedure

To solve the dynamic continuum model composed of Eqs. (12) and (13), the cell-centered finite

volume spatial discretization method for the flow conservation equation in Eq. (12) and the fast

sweeping method for the Eikonal-type equation in Eq. (13) on unstructured triangular meshes are

introduced. Let T h :=
∪

Ti∈T h Ti be a regular triangulation of the computational domain Ω with

Np nodes, Nt cells, and Nf faces. The size of the discretization is defined by h := superTi∈T h{hTi
},

where hTi
is the exterior diameter of the triangular cell Ti. The neighboring triangles of Ti are

denoted Tik with a counter-clockwise convention, as sketched in Figure 2.

3.1. Finite Volume Spatial Discretization

In this subsection, the total instantaneous travel cost Φm(x,y, t) for each copy of flow is assumed

to be known for all (x, y) ∈ Ω and time t. The cell-centered finite volume method is considered:

each triangular cell Ti represents a control volume. The unknowns, which are the densities of the

m-th copy of flow, are stored in the geometric centers of the cells.

Integrating Eq. (12) over each control volume Ti and using the Gauss theorem yields

∂ρm(xi, yi, t)

∂t
+

1

Ai

∮
∂Ti

Fm(x, y, t) ·nids= qm(Φm(xi, yi, t), t), (15)
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where (xi, yi), Ai, ∂Ti, and ni are the geometric center, area, boundary, and outward unit normal

vector of the triangular cell Ti respectively. The integral expression
∮
∂Ti

Fm(x, y, t) · nids in Eq.

(15) is approximately calculated by∮
∂Ti

Fm ·nids=
3∑

k=1

(
F̃m ·n

)
ik
|lik|, (16)

where |lik| is the length of the k-th edge lik of Ti, nik represents the corresponding unit normal

vector going out of Ti, and F̃m
ik denotes the numerical flux through the middle point of lik, k= 1,2,3.

See Jiang et al. (2009) for details of the numerical method used to calculate the numerical flux F̃m
ik.

3.2. Calculation of ∇Φm on the Control Volume Surfaces

In this subsection, we assume that the traffic density ρm(x, y, t) for each copy of flow is known for

all (x, y) ∈Ω and time t. On each triangular cell Ti the total instantaneous travel cost Φm(x, y, t)

for each copy of flow is approximated by the following linear function:

Φm(x, y, t)|Ti
=

3∑
k=1

N̂kΦ
m
k ,

Its gradient on Ti is thus approximated by a constant vector,

∇Φm(x, y, t)|Ti
=

3∑
k=1

∇N̂kΦ
m
k , (17)

where {N̂k}3k=1 is the set of Lagrangian interpolation bases and Φm
k , k= 1,2,3 are the values of Φm

at the three vertices of the triangular cell Ti. For each copy of flow, the values of Φm at all of the

grid points can be solved by the fast sweeping method based on Eq. (13). Further details of this

procedure are described in Xia et al. (2008) and Qian et al. (2007)).

3.3. Time Discretization

A second-order explicit total variation diminishing Runge-Kutta time-stepping method (Shu and

Osher 1988) is chosen to discretize Eq. (15) and thus the coupled system composed of Eqs. (12) and

(13) can be decoupled. Note that the flux vector Fm in Eq. (12) is relevant to the value of ∇Φm.

Therefore, at each time step we must first obtain the values of ∇Φm at all of the grid points of the

unstructured triangular meshes based on the known value of {(ρm)n} at the n-th time step (see

Subsection 3.2). The solution value of {(ρm)n+1} at the (n+1)-th time step can then be obtained

from {(ρm)n} at the n-th time step as follows.

(ρm)
(1)
i = (ρm)ni −

∆t

Ai

3∑
k=1

(F̃m ·n)nik|lik|+∆t(qm)ni , (18)
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(ρm)n+1
i =

1

2
[(ρm)ni +(ρm)

(1)
i − ∆t

Ai

3∑
k=1

(F̃m ·n)(1)ik |lik|+∆t(qm)
(1)
i ], (19)

where the choice of the time step ∆t must satisfy the Courant-Friedrichs-Lewy condition and

m= 1,2, ...,M .

4. Numerical Experiments

In this section, a numerical example is designed to verify the rationality of the developed dynamic

continuum model with elastic demand for a polycentric urban city and the validity of the numerical

method of the model. Consider a model city (see Figure 1) with two compact CBDs, CBD 1 and

CBD 2, located at (14 km,20 km) and (31 km,23 km), respectively, both with a diameter of 1 km.

The users traveling to CBD 1 and CBD 2 are called Copy 1 and Copy 2, respectively. The modeling

period is 6:00 am-11:00 am, i.e. t∈ T = [0 hr,5 hr].

The elastic traffic demand function qm(Φm(x, y, t), t) for each copy of flow is assumed to be

qm(Φm(x, y, t), t) = qmmax[1− γ1Φ
m(x,y, t)]gm(t),m= 1,2, (20)

where qmmax (in veh/km2/hr) is the maximum demand of each copy of flow and γ1 is a positive

scalar taking 0.002 $−1. In Eq. (20), the factor [1−γ1Φ
m(x, y, t)] accounts for the greater number of

trips that will be generated in the domain with lower cost, which explains that the traffic demand

is elastic. The function gm(t) represents the periodically changing nature of the demand. Here,

g1(t) is defined by

g1(t) =

 t/2, t∈ [0 hr,2 hr],
2− t/2, t∈ [2 hr,4 hr],

0, t∈ [4 hr,5 hr],

and g2(t) is defined by

g2(t) =


t, t∈ [0 hr,1 hr],
1, t∈ [1 hr,3 hr],

4− t, t∈ [3 hr,4 hr],
0, t∈ [4 hr,5 hr].

In Eq. (3), the parameter β is set to 2×10−6 and the free-flow speed function Um
f (x, y) is given by

Um
f (x, y) =Um

max[1+ γ2d
m(x,y)],

where Um
max is the maximum speed of each copy of flow, dm(x, y) is the distance between a location

(x, y) ∈ Ω and the center of the m-th CBD, and γ2 = 0.004 km−1. Based on Eq. (5), the critical
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density ρc, which is characterized by the coexistence of the free flow traffic and jammed traffic

phases in the modeling domain, is ρc ≈ 353.55veh/km2. In Eq. (6), κ= 75 $/hr and

π1(ρ̃(x, y, t)) = π0[
ρ2(x, y, t)

ρ1(x,y, t)+ ρ2(x, y, t)
]2, (21)

π2(ρ̃(x, y, t)) = π0[
ρ1(x, y, t)

ρ1(x, y, t)+ ρ2(x,y, t)
]2, (22)

with π0 = 0.0025 hr/km. Eqs. (21) and (22) represent the extra expense incurred by the collision

avoidance behavior of two types of travelers during their encounter in the common space.

It is assumed that there is no traffic at the beginning of the modeling period, i.e., ρm0 (x, y) =

0,∀(x, y) ∈ Ω, and that no cost is incurred on entering each CBD, i.e., Φm
0 (x, y, t) = 0,∀(x, y) ∈

Γm
c , t ∈ T . For the m-th copy of flow, the total load demand qmΩ (t) over the whole domain at time

t, and the corresponding cumulative demand Qm
Ω (t) are calculated respectively by

qmΩ (t) =

∫ ∫
Ω

qm(Φm(x, y, t), t)dxdy,

Qm
Ω (t) =

∫ t

0

qmΩ (ξ)dξ,

The total inflow fm
CBD(t) through Γm

c at time t, and the corresponding cumulative inflow Fm
CBD(t)

are expressed by

fm
CBD(t) =

∮
Γm
c

(Fm ·n)(x, y, t)ds,

Fm
CBD(t) =

∫ t

0

fm
CBD(ξ)dξ.

Scenarios
Copy 1 Copy 2

q1max u1
max q2max u2

max

Scenario 1 400 65 300 65
Scenario 2 300 65 400 65
Scenario 3 400 80 300 80
Scenario 4 300 80 400 80
Scenario 5 300 80 400 65
Scenario 6 300 65 400 80

Table 1 Simulated scenarios with different model parameters.

We now investigate the effects of the model parameters on the macroscopic characteristics of

urban traffic flow, such as the density distributions and route choice behavior of multiple copies

of urban traffic flow. We consider several scenarios and vary the model parameter values, such as

the peak value of traffic demand and travel speed, for each copy of flow (see Table 1). To verify

the convergence of the numerical method for the proposed model, we test three different meshes
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Figure 3 The plot of the total density ρ.
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Figure 4 The plot of the cumulative inflow Fm
CBD(t).

of triangular elements (Mesh 1: 2,464 nodes and 4,731 elements; Mesh 2: 5,614 nodes and 10,919

elements; Mesh 3: 22,653 nodes and 44,661 elements) in Scenario 1. Figure 3 shows the curves

of total density ρ along the line passing through the centers of two CBDs, i.e., (14 km,20 km)

and (31 km,23 km), at different times. Shocks are clearly seen around both CBDs due to the

increasing number of travelers gathering around them and their limited capacity. In addition, traffic

congestion occurs when the two copies of flow queue up to enter the CBDs. Figure 4 plots the

cumulative inflow, Fm
CBD(t), for each copy of flow. It can be seen from both Figures 3 and 4 that

the curves for Meshes 1, 2, and 3 in each sub-figure nearly coincide, which indicates the good

convergence behavior of the model’s numerical algorithm.

The following numerical experiments are performed on an unstructured triangular grid with 3,266

nodes and 6,298 elements (see Figure 5).Figure 6 shows the density distributions for the dissipation
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Figure 5 The unstructured triangular grid.

of two copies of urban traffic flow in four phases in Scenario 1. In the first phase (t= 1hr), Copy

1 displays almost a free-flow state and does not appear near CBD 2, whereas Copy 2 has light

traffic congestion (i.e., the flow density exceeds the critical density, ρc ≈ 353.55veh/km2) within a

narrow range of the western regions of CBD 2. To avoid collision conflict with Copy 1, Copy 2 tries

to travel away from CBD 1. In the second phase (t= 2hr), as more travelers gather around their

destinations and wait in line for entry to the CBDs during rush hours in both copies, traffic jams

are caused within about 2 kilometres of each CBD. Copy 1’s density is higher in the eastern part of

CBD 1’s boundary as the location of CBD 1 within the domain causes more traffic to arrive from

the east of the model city. The opposite phenomenon is observed for Copy 2. To reduce the total

travel cost, travelers in each copy of flow may drive close to each other’s destination at the peak

times, although there exists a risk of collision. In the third phase (t= 3hr), despite lower demand,

the traffic jams spread to a wider range of nearby areas of the two CBDs, as the arriving travelers

pile up on the road network. In the fourth phase (t= 4hr), the travelers gathered around the two

CBDs travel to their own destinations and each copy of flow recovers to the free-flow state.

Figure 7 depicts the density distributions for the dissipation of two copies of urban traffic flow

in four phases in Scenario 2. In the first phase (t= 1hr), the spatial distribution of the density ρ2

is slightly different from Figure 6 (b) and the congested region is wider (see Figure 7 (b)). In the

second phase (t = 2hr), light traffic congestion occurs in the eastern part of CBD 1’s boundary.

In contrast, heavy traffic congestion emerges in Copy 2 and spreads within several kilometers of

the surrounding regions of CBD 2, due to greater traffic demand loading onto the network during

rush hour. The heavy congestion expands to the south-east border of the city, which is close to

the southern part of CBD 2’s boundary. In the third phase (t= 3hr), traffic congestion propagates
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Figure 6 Density plot of Scenario 1 (left: Copy 1; right: Copy 2).

very rapidly through the middle ground (across the lake) between the two CBDs. More serious

congestion is observed in Copy 2 as more travelers gather on the roads around CBD 2 and queue

up for entry into CBD 2 (see Figure 7 (f)). The resulting traffic flow in Copy 1 is in the free-flow

state around CBD 1 and the congested region is much closer to CBD 2 (see Figure 7 (e)). Copy 2

is the major stream on the network as it has a greater loaded traffic demand. The minor stream,

Copy 1, will give way to the major stream, if the two copies of flow interact in the common area.
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Figure 7 Density plot of Scenario 2 (left: Copy 1; right: Copy 2).

This can explain a typical self-organization phenomenon observed in urban transportation systems.

In the fourth phase (t= 4hr), traffic congestion continues, but the crowded conditions in Copy 2

are alleviated.

Figure 8 shows the flow vector Fm(x, y, t) of each copy of flow at different times in Scenarios 1

and 2, to improve our understanding of the distribution and evolution of the two copies of urban

traffic flow on the road networks. In Scenario 1, traffic congestion only occurs in the surrounding
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area of each CBD (see Figure 8 (a), (c) and (e)) and quickly disappears as the reduced demand

is reduced (see Figure 8 (g)). In Scenario 2, severe congestion appears around CBD 2 in the early

stages (see Figure 8 (b) and (d)) and rapidly propagates to the regions far away from CBD 2 as

the demand increases. Some of the roads used by Copy 1 traveling from the east of the city are

thus blocked. As more vehicles assemble on the road network, two opposing ‘”strips”, one Copy 1

and the other Copy 2, develop between the two CBDs (see Figure 8 (f) and (h)). This situation

is similar to what we previously observed in crossing pedestrian flows (Hoogendoorn and Daamen

2005; Jiang et al. 2009), which demonstrates that this self-organization phenomenon also occurs

for multiple copies of urban traffic flow. Over time, the over-crowded condition in the major stream

of Copy 2 is alleviated first.

By comparing Scenarios 1 and 2 above, we observe that different maximum values of the traffic

demand and travel speed for each copy of flow produce different traffic conditions in the continuum

network Ω. In Figure 9, for each copy of flow, the total demand qmΩ (t) over the whole domain

and the total inflow fm
CBD(t) through Γm

c are plotted for the two scenarios. In Scenario 1 (see

Figure 9 (a)), for each copy of flow, qmΩ (t) and gm(t) change similarly over time, which indicates

the periodically changing nature of demand. The available capacities of the two CBDs are very

similar. Due to the long peak period (i.e., t∈ [1hr,3hr]) the inflow of CBD 2 reaches its maximum

first and sustains it for more than two and a half hours, resulting in traffic congestion and delays.

However, at t= 4hr, the road congestion improves as there is no traffic demand loaded into the

road system. All of the travelers in each copy of flow can enter their respective CBDs during the

modeled period. After t= 4.5hr or so, there is no traffic on the road network. In Scenario 2 (see

Figure 9 (b)), there are dramatic fluctuations in the qmΩ (t) and fm
CBD(t) curves for each copy of

flow. This phenomenon occurs at a non-peak time (after t= 2hr) for Copy 1, but occurs during

rush hour for Copy 2. The inflow of CBD 2 reaches its maximum when traffic congestion appears.

For Copy 2, q2Ω(t) reaches its maximum at t= 1hr, then decreases until reaching zero at t= 4hr,

which is different from the behavior of g2(t). The elastic change of the traffic demand and the total

instantaneous travel cost Φ1(x, y, t) explain this difference. When the road system is overcrowded

for a long period, Φm(x, y, t) for each copy of flow increases significantly, which causes a drop in

the demand. If we also consider the results in Figure 7, then we predict that the over-crowded

status will continue until next modeling period, as fm
CBD(t) for each copy of flow does not decrease

to zero at the end of this modeling period.

The corresponding cumulative demand Qm
Ω (t) and the cumulative inflow Fm

CBD(t) for each copy

of flow are plotted in Figure 10. In Scenario 1 (see Figure 10 (a)), for each copy of flow there is
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Figure 8 Flow vector plot (left: Scenario 1; right: Scenario 2; green: Copy 1; red: Copy 2).

a deviation between the Qm
Ω (t) and Fm

CBD(t) curves, at some point, which implies a traffic delay.

However, the two curves coincide perfectly with each other at a certain point demonstrating that

no traffic is detained in the system during the modeled period. In Scenario 2 (see Figure 10 (b)),

the deviation between the two curves is much greater than in Figure 10 (a), which means more

serious congestion. The two curves for each copy of flow also do not overlap until the end of the

modeling period, which further shows that the traffic delay caused by traffic congestion will last
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Figure 9 The total demand and total inflow of the two scenarios.
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Figure 10 The cumulative demand and cumulative inflow of the two scenarios.

until the next modeling period.

Figure 11 illustrates how fm
CBD(t) changes across six scenarios. In Figure 11 (a), the two curves

in Scenarios 4 and 6 almost coincide. Scenario 3 has the largest CBD 1 available capacity and

Scenario 2 has the smallest. In Scenarios 1,3,4 and 6, f1
CBD(t) falls to zero, indicating that all of

Copy 1 enter CBD 1. In Scenarios 2 and 5, there is an apparent fluctuation in the curves after

t= 2hr, which demonstrates that a serious traffic jam occurs in the network and that part of Copy

1 will be stranded in these two scenarios. Similar results are observed in Figure 11 (b). For example,

Scenarios 2 and 5 show the fluctuations in the f2
CBD(t) curve, showing that part of Copy 2 will be

also stranded. The numerical results of these simulations suggest measures to ease urban traffic

congestion from the macroscopic point of view. For example, some of the traffic demand of Copy

2 can be distributed to Copy 1 and/or the city’s transportation infrastructure can be improved to
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Figure 11 The total inflow of the six scenarios.

increase the maximum permissible user speed.

5. Conclusion

In this paper, we develop a dynamic traffic assignment model with elastic demand for a polycentric

urban area that predicts the evolution of multiple copies of urban traffic flow over space and time

in continuum time-varying transportation systems. The model satisfies the reactive dynamic user

equilibrium principle, which describes the route choice behavior of each copy of flow. The model’s

numerical algorithm combines the cell-centered finite volume spatial discretization method and

fast sweeping method on unstructured meshes. The results of numerical simulation show that the

model is capable of investigating the macroscopic characteristics of multiple copies of urban traffic

flow, such as the spatial distribution and temporal evolution of the flow densities and fluxes, and

path choice behavior in response to elastic demand for each copy of flow. Our proposed model also

captures observed traffic flow phenomena, such as self-organization and the building, propagation,

and dissipation of congestion. We recommend macro-level measures for easing existing or avoiding

future traffic congestion in polycentric urban areas.

The continuum or macroscopic modeling approach requires fewer data for the model setup pro-

cess than the discrete or microscopic modeling approach, which requires detailed data for all road

links and intersections included. The former is therefore particularly useful for highly populated

urban regions such as the cities of many Asian countries, in which both population and road density

are very high, and the attributes of roads and signalized intersections are rarely available. The bet-

ter understanding of the global characteristics of a road network conferred by the model developed

herein allows traffic control and management to be visualized and the qualitative diagnosis and
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localization of traffic congestion to be improved. In this paper, we assume the travelers in a dense

urban transportation system to be divided into two types based on their travel purpose and that

each traveler type makes route choice in a reactive manner based on the desire to minimize their

total instantaneous travel cost from origin to destination, i.e., to the select CBD. In follow-up work,

we will consider the influence of consumption values, i.e., assume that different types of travelers

place different values on time.
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