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Abstract

Background: Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in
industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB).
Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years.
Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD).
However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated.

Methods: In the study, we constructed highly optimized plasmids to express the receptor binding domains of both
TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity
and protective effects.

Results: The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing
activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA
vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain.

Conclusions: This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and
TcdB as a DNA vaccine that could provide protection from C. difficile disease.
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Background
Clostridium difficile (C. difficile) is one of the most
predominant pathogens causing nosocomial intestinal
infections in industrialized countries. This bacterial
species causes about 10–20 % of the cases of
antibiotic-associated diarrhea, up to 70 % of the cases
of antibiotic-associated colitis, and the vast majority of
cases of pseudomembranous colitis. Clostridium diffi-
cile-associated disease (CDAD) causes economic loss
of billions of US dollars in many industrialized coun-
tries [1–4]. There is an increasing incidence of CDAD
in China caused by rapid economic development and

the frequent use of antibiotics. CDADs are mainly
caused by antibiotic-induced alteration of the normal
flora of the intestine, particularly the long-term use of
broad-spectrum antibiotics, thereby allowing C.
difficile to proliferate. Cancer chemotherapeutics,
hospitalization and immune deficiency are also risk
factors, especially in the immunocompromised and
the elderly [5]. The clinical manifestation of CDAD is
complicated, ranging from being a symptomless car-
rier to contracting life-threatening pseudomembran-
ous colitis. The prognosis of severe cases indicate that
the chance of mortality is 40 %. Metronidazole and
Vancomycin are the major treatment drugs for CDAD
[6]. However, the C. difficile genome has been found
to contain multiple-antibiotic resistant genes and C.
difficile clinical isolates resistant to both Metronida-
zole and Vancomycin have been reported [7], which
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increase the difficulty for treatment of C. difficile in
the future. For all these reasons, the design of vaccines
against CDAD is very important.
Disease caused by C. difficile is due to two enteric

toxins - TcdA and TcdB, produced by toxigenic strains
[8–11]. TcdA is an enterotoxin with cytotoxic activity
[12], whereas TcdB is a potent cytotoxin but has limited
enterotoxic activity. TcdA and TcdB show considerable
sequence and structural homology. Both have a C-
terminal RBD and N-terminal glucosyltransferase en-
zymatic domain [13, 14]. Repeating sequences in the
TcdA and TcdB genes harbor epitopes that can elicit
toxin neutralizing antibodies. Many studies have pro-
posed the RBD as a suitable target for a vaccine or im-
munotherapy [15–23].
Over the past two decades, great progress has been

achieved in the vaccine development against CDAD
[15, 17–19, 24–26]. However, most vaccine research for
C. difficile target a single antigen, either TcdA or TcdB
or a surface-layer protein (SLP) [24]. Furthermore, the
incidence of A-B+C. difficile strains appears to be in-
creasing worldwide over the past decade. These strain
types now represent a substantial number of C. difficile
isolates. New therapeutic approaches for CDAD treat-
ment such as toxin binders, passive immunotherapy or
active immunization through vaccination will now need
to target both TcdA and TcdB.

DNA vaccination is an effective platform to generate
antigen-specific antibodies and cell-mediated immunity.
The most prominent advantage of developing multiva-
lent DNA vaccines is that a plasmid vector with multiple
antigen epitopes can be cloned. Several other groups
have described vaccine plasmids that express either
TcdA and/or TcdB RBD against CDAD [15, 19]. In this
study, we created a DNA vaccine of C. difficile, which
encodes both toxin RBDs of C. difficile. The DNA vac-
cine was evaluated in two animal models for its im-
munogenicity, the ability to induce toxin neutralizing
antibodies and in vivo anti-toxin protective immunity.

Methods
Plasmid design
The amino acid sequences corresponding to the RBD of
C. difficile TcdA (strain ATCC 43255/VPI 10463, residue
positions 2394–2710) and TcdB (strain ATCC 43255/
VPI 10463, residue positions 1855–2366) were identified
[13, 27]. A tissue plasminogen activator (tPA) sequence,
Kozak sequence, and an initiation codon were incorpo-
rated as shown in Fig. 1. Following commercial synthesis
(http://www.genscript.com/), these two genes were
inserted into the commercial vector pIRES (Clontech
Laboratories, Inc, USA). TOP10 chemically competent
E. coli was transformed and positive clones confirmed by

Fig. 1 A schematic description of vaccine vector. a Linear depiction of the three major domains identified within C. difficile TcdA and TcdB. Note:
ED; Enzymatic Domain; HD: Hydrophobic Translocation Domain; RBD: Receptor Binding Domain; IVS: Synthetic intron. b Schematic depiction of
the vaccine gene sequence as inserted into the eukaryotic expression vector, pIRES. c Protein expression from vaccine vectors following transient
transfection of COS7 cells. Immunoblot of COS7 cell lysates and supernatants following transient transfection with pTA (line1), pTB (line2) and
pTAB (line3) for detection of expressed protein products. Supernatant was clarified at 18,000 × g for 30 min prior to the procedure. The expected
size of TcdA-RBD is 35 kDa, TcdB-RBD is 60 kDa
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restriction digestion and DNA sequencing (BGI, China).
The resulting three plasmids are referred to as (1) pTAB,
(2) pTB and (3) pTA (Fig. 1b).

Bacterial strains and growth conditions
The C. difficile strain BI/NAP1/027 is a gift from Dr.
WC Yam, Queen Marry Hospital (Hong Kong). RBDs
from the ATCC 43255/VPI10463 and the BI/NAP1/027
strain share highly conserved sequences. ATCC 43255
TcdA RBD has a 96.2 % identity with that of BI/NAP1/
027, while there is an 88.5 % identity between the TcdB
RBD sequences of BI/NAP1/027 and ATCC 43255. BI/
NAP1/027 was cultured in Peptone Yeast Extract Agar
or broth (Sigma-Aldrich) in an anaerobic atmosphere
(10 % CO2, 10 % H2, 80 % N2) at 37 °C for overnight
(OD 1.2; 2.5 × 108 CFU/ml). The bacteria were harvested
using endotoxin-free PBS, washed twice, and suspended
in PBS at a concentration of 1 × 109 CFU/mL.

Protein expression
COS7 cells were plated in a 6-well dish at a density of
2 × 106 cells per well in Dulbecco’s Modified Eagle’s
Medium (DMEM) with 10 % Fetal Calf Serum (FCS)
(v/v) and 2 % penicillin–streptomycin (v/v). 24 h post-
plating, COS7 cells were transfected with 10 μg of

DNA vaccine vectors (pTA, pTAB and pTB). At 48 h
post-transfection, the cell lysates and supernatant were
collected and stored at -80 °C. The supernatant was
centrifuged at 16,000 × g for 45 min prior to Western
blotting.

Murine immunogenicity study
Six-week-old female BALB/c mice (6 mice per group)
were obtained from the Laboratory Animal Unit (LAU)
of The University of Hong Kong (HKU) and housed in
the animal room of Department of Microbiology. All
mouse experiments were approved by the Committee on
the Use of Live Animal in Teaching & Research
(CULATR) of HKU (Approval No. 2596-11). To evaluate
the immunogenicity of the DNA vaccine, LPS free
(<100 IU) plasmid DNA for inoculation was extracted.
Five groups of BALB/c were immunized at days 1, 14
and 28 (Fig. 2) with 50 μg of plasmid DNA by intramus-
cular injection (rear limbs). Groups were divided into
immunizations by (1) pIRES alone; (2) pTA; (3) pTAB;
(4) pTB; and (5) PBS as shown in Table 1. Each mouse
experiment was repeated in two independent experi-
ments. Blood samples were drawn by tail vein bleeding
on days 0, 21, and 35 for immunologic evaluation. Mice
were challenged with C. difficile TcdA or TcdB. Toxin

Fig. 2 ELISA detection of anti-TcdA/B antibody titers. The data are expressed as geometric mean titer (GMT) of TcdA-specific antibody ± standard
deviation (SD) of 10 mice per group. The lower limit of detection (1:10) is shown as dotted lines. The experiment was repeated at least twice.
a TcdA-specific IgG antibody responses in mouse sera collected at 7 days after each vaccination. b: TcdA-specific IgG1 and IgG2a antibody responses in
mouse sera obtained 7 days after the last boost. c TcdB-specific IgG antibody responses in mouse sera collected at 7 days after each vaccination.
d TcdB-specific IgG1 and IgG2a antibody responses in mouse sera obtained 7 days after the last boost
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challenge was performed by inoculating mice intraperi-
toneally (i.p) with 100 % of the minimal lethal dose
(MLD) of the toxin. Mice were monitored for 14 days
and survival was recorded for each vaccination group.
The MLD of both toxins were confirmed by titration on
age match control BALB/c mice. The MLD of toxins A
and B were identified to be 50 ng and 25 ng,
respectively.

Hamster immunogenicity study
Golden Syrian adult female hamsters (6-week-old,
weighing ∼ 100 g) were purchased from LAU of HKU
and were housed individually in micro-isolator cages of
Department of Microbiology. Hamster experiments were
also approved by CULATR of HKU (Approve No. 2903-
12). Hamsters were vaccinated by i.m. injection for three
times in the thigh, on day 1, 14 and 28, with 100 μg
pTAB, pTA or pTB, respectively. Controls were vacci-
nated with empty plasmid (pIRES, p). Serum samples
were collected on days 21, and 35 for immunologic
evaluation. On three consecutive days (day 36, 37 and
38), each hamster was treated with 10 mg/kg of clinda-
mycin p.o. On day 39, each hamster received an intra-
gastric challenge of 1x108 CFU vegetative bacteria of C.
difficile BI/NAP1/027. Hamsters were monitored at 12-h
intervals. Each experiment was repeated in two inde-
pendent experiments.

ELISA
The TcdA and TcdB antibody titers were determined by
enzyme-linked immunosorbent assay (ELISA). Briefly,
TcdA and TcdB (0.5 μg/ml in 0.05 M carbonate/bicar-
bonate buffer, pH9.6, and 200 μL/well) were coated on
ELISA plates (Nunc, Roskilde, Denmark) by incubation
overnight at 4 °C. Plates were then blocked with PBS-
5 % (w/v) non-fat milk for 3 h at 37 °C and washed for 4
times with 0.05 % Tween in PBS. Two-fold serially di-
luted mice sera were then added into the wells and incu-
bated for 1 h at 37 °C. Plates were then washed 6 times
with PBS-0.05 % Tween and incubated with HRP-

conjugated goat anti-mouse IgG/IgG1/IgG2a for 1 h at
37 °C. Color was developed by using Trimethyl Borane
(TMB) solution (Sigma) and absorbance was measured
using an ELISA reader at 450 nm. The end-point serum
antibody titers represent the reciprocal dilution of the
last dilution providing an O.D. 2.1-fold higher than the
O.D. of negative controls at the lowest performed dilu-
tion. A sample of pre-immune serum obtained from
mice and hamsters were used as a negative control.

Neutralizing antibody test
Toxin neutralizing titers of the antiserum were deter-
mined by using Vero cells and both toxins. Vero cells
were grown in Eagle’s Minimum Essential Medium
(EMEM) containing 10 % fetal calf serum. For neutraliz-
ing antibody test, 0.5 ng (100 μl) TcdA or 0.1 ng (100 μl)
TcdB was incubated with 100 μl serial dilutions of serum
obtained from immunized mice or hamsters. After mix-
ing the antiserum and toxin at 37 °C for 90 min, the
mixtures were added to 96 well plates containing 1x105

Vero cells, and the plates were incubated in 5 % CO2 at
37 °C for 24 h. Incubation of Vero cells with toxin re-
sulted in a loss of cell adherence and a change in cell
morphology, which was detected by methyl thiazolyl
tetrazolium staining of toxin treated Vero cells after dis-
carding the non-adherent cells. The plates were read on
a microtiter plate reader at a wavelength of 490 nm. The
neutralization titer of an antiserum was recorded as the
serum dilution which gives a 50 % reduction in toxin ac-
tivity (ED50).

Statistical analysis
Log-rank (Mantel-Cox) analysis was used to analyze the
statistical significance of the data from the lethal chal-
lenge experiment. Analyses were performed using
GraphPad Prism 5 (GraphPad Software, United States)
and a p-value of < 0.05 was determined to indicate statis-
tical significance.

Results
Protein expression
Supernatants and cell lysates were harvested at 48 h
post-transfection and detected for protein expression via
Western blotting with anti-His antibody. The target pro-
teins were highly expressed in the supernatants of the
cell lysates (Fig. 1c).

Immunogenicity of the DNA vaccine in mice
To investigate the antibody titers of TcdA-specific and
TcdB-specific antibodies in the sera of immunized mice,
the levels of IgG, IgG1, IgG2a antibodies were detected
by ELISA 7 days after the third immunization. As shown
in Fig. 2a, toxin A-specific IgG antibodies were detected
in mice immunized with pTA and pTAB, with mean

Table 1 In vitro and vivo evaluation of toxin neutralizing
antibody following immunization of mice with DNA vaccine

Vaccinea Dose Toxin neutralizing titer ED50
b Toxin challenge surivalc

Anti-TcdA Anti-TcdB TcdA TcdB TcdA + B

p 50 μg 0 0 0 0 0

pTA 100 ± 30.15 0 90 % 0 0

pTB 0 1133 ± 327.9 10 % 100 % 0

pTAB 140 ± 27.63 1200 ± 294.4 100 % 100 % 80 %
aMice received three immunizations (day 0, day 14 and day 28)
bSera were obtained 7 days following the third immunization. The data are
expressed as geometric mean toxin neutralizing titer ± Standard Error of the
Mean (SEM) of 10 mice per group
cBalb/C mice (10 mice/group) were challenged i.p with 50 ng TcdA or/and
25 ng TcdB 10 days following the second boost of DNA immunization
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titers of 1.0 × 103 and 1.6 × 103 respectively. High levels
of TcdB-specific IgG antibodies were also detected in
mice immunized with pTB and pTAB, both reaching
2.56 × 104 (Fig. 2c).
To further observe IgG antibody subtype responses,

TcdA and TcdB - specific IgG1 and IgG2a antibody titers
were also detected. As shown in Fig. 2b, immunization
with pTA and pTAB induced both Th1-(IgG2a) and
Th2-(IgG1) associated TcdA-specific antibody responses
with end point IgG1 and IgG2a antibody titers of 8.0 ×
102 and 2.0 × 102 for pTA and 1.6 × 103 and 8.0 × 102 for
pTAB, respectively. Similar with the anti-TcdB total IgG
production, mice immunized with pTB and pTAB also
induced both Th1-(IgG2a) and Th2-(IgG1) associated
high levels of TcdB-specific antibody responses, IgG1
and IgG2a antibody titers up to 2.56 × 104 and 3.2 × 104

for pTB and pTAB, respectively (Fig. 2d). Furthermore,
vaccination with empty vector alone induced only back-
ground level of TcdA or TcdB-specific IgG, IgG1 and
IgG2a antibodies at the lower limit of detection (1:10).
These results indicate that pTA, pTB and pTAB can in-
duce both Th1-(IgG2a) and Th2-(IgG1) associated anti-
body responses.
To test the functional activity of the DNA vaccine in-

duced antibodies to neutralize native toxin proteins,
toxin neutralization tests were performed (Table 1).
Serum samples from the pTAB group were found to
have TcdA and TcdB neutralizing activity. Additionally,
in mice immunized with pTA (pTB), the serum anti-
bodies can also neutralize TcdA (TcdB) activity.
Toxin challenge mouse model was used to evaluate

the protective efficacy of DNA vaccine. Immunized
Balb/C mice were injected i.p. with 50 ng TcdA or/and
25 ng TcdB 10 days following the second boost of DNA
immunization. Following TcdA challenge, 100 % (10/10)
of the mice in the p group and 90 % (9/10) in the pTB
group died (Fig. 4a). But for the pTAB and pTA groups,
100 and 90 % of the mice survived the lethal TcdA chal-
lenge, respectively (Fig. 3a). In the p and pTA group, all

mice died following TcdB challenge (Fig. 4b). In contrast,
100 % pTAB and pTB immunized mice survived the le-
thal TcdA challenge (Fig. 3b). The result (Fig. 3c) shows
that the pTAB had significantly improved the survival of
the mice following TcdA plus TcdB challenge. Survival
rate of 80 % was observed in mice immunized with
pTAB. However, in the p, pTA and pTB group, all mice
died within 2 days after TcdA plus TcdB challenge.

Protective efficacy of pTAB in a hamster model
Hamster model is the gold standard for evaluation of
vaccine against CDAD which can be induced by clinda-
mycin following a challenge with C. difficile. To evalu-
ate the protective efficacy of the DNA vaccine,
hamsters (n = 6) were vaccinated for three times. Serum
samples obtained 7 days following each immunization
were checked by ELISA to detect antibodies. Significant
levels of anti-TcdA and TcdB antibodies were detected
after the third immunization by pTAB. Only background
(titers < 10) were observed in empty vector immunized
controls. As observed in the mice immunogenicity study,
hamster anti-TcdB titers (pTAB: GMT= 1.0 × 105, pTB:
GMT= 6.8 × 104) were consistently higher than those ob-
served for anti-TcdA (pTAB: GMT= 7.1 × 103, pTA:
GMT= 4.9 × 103) (Fig. 4).
To evaluate in vivo protective efficacy, 8 days following

the third immunization, hamsters were treated with clin-
damycin and challenged with 1 × 108 CFU C. difficile BI/
NAP1/027. Similar to the BALB/c mice model, the DNA
vaccine group has significantly improved survival follow-
ing 1 × 108 CFU C. difficile BI/NAP1/027 challenge. Sur-
vival rate of 100, 50 and 66.7 % were observed in hamster
immunized with pTAB, pTA and pTB respectively (Fig. 5).
Specifically, CDAD was detected in 30 % of the empty vec-
tor immunized hamsters within 24 h. At 48 h, almost all
hamsters in the group showed moderate to severe disease
and had all died by day 5. However, hamsters immunized
with pTAB did not have signs of CDAD until 60 h. The
disease noted in pTAB group was less severe and 70 % of

Fig. 3 Survival in vaccinated Balb/C mice following challenge with purified. C. difficile toxins. Balb/C mice (10 mice/group) were challenged i.p
with (a) 50 ng TcdA; (b) 25 ng TcdB; or (c) 50 ng TcdA and 25 ng TcdB. 10 days following the second boost DNA immunization, and monitored
for survival for 14 days. *, P≤ 0.05; ***, P ≤ 0.001. Data from two replicate experiments are shown
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the hamsters recovered to normal health by day 6 (data
not shown). Of most concern, 100 % survival was ob-
served in the pTAB group at day 14. Additionally, all ham-
sters in pTAB group exhibited mild to moderate CDAD in
the early stages of the experiments and remained symp-
tom free at the end of the study.

Discussion
C. difficile secretes two toxins: TcdA (both an enterotoxin
and cytotoxin) and TcdB (a potent cytotoxin). These two
toxins can mediate the pathogenesis of CDAD. Since
2002, researches have isolated a novel epidemic typed BI/
NAP1/027 strain [28], which produces 16-fold higher level
of TcdA and 24-fold higher level of TcdB than the nonhy-
pervirulent strain VPI 10463 [8]. The role of TcdA and
TcdB in CDAD has been confirmed in numerous studies.

According to an early study in which two purified toxins
were administered by intragastrically, CDAD was only de-
tected after the administration of purified TcdA, and TcdB
cannot induce severe disease unless it is co-
administered with TcdA, suggesting that TcdA is the
primary pathogenic factor and the toxins act synergis-
tically [29]. After outbreaks of A-B+ pathogenic C. dif-
ficile variants, an important role for TcdB in C.
difficile pathogenicity was established [30–32]. Since
both toxins have the same importance to the patho-
genesis of C. difficile, any immunotherapeutic drugs
must target both TcdA and TcdB.
In this study we describe a DNA vaccine - pTAB, con-

sisting of the TcdA RBD (15 of the 31 repetitive oligo-
peptide sequences) and the TcdB RBD (23 of the 24
repetitive oligopeptide sequences) joined by IRES se-
quence. This DNA vaccine candidate focuses on the
TcdA and TcdB RBD portions. This choice is supported
by previous research demonstrating that: (i) antibodies
targeting the RBD of both TcdA and TcdB have toxin
neutralizing activity [19, 33]. (ii) the passive transfer of
anti-TcdA-RBD or TcdB-RBD antibodies are protective
in animal CDAD models and [23] (iii) hamsters immu-
nized with RBD of TcdA and/or TcdB are protected
against CDAD [17].
Several other groups have described vaccine plasmids

that express either TcdA and/or TcdB RBD [15, 16, 19]. In
this report, we describe a new vaccine plasmid pTAB, that
expresses both toxin RBD sequences. The pTAB was con-
structed from a commercial mammalian expression vector,
pIRES, that allows high level expression of two genes of
interest from the same bicistronic mRNA transcript. The
vector contains the encephalomyocarditis virus (ECMV)
internal ribosome entry site (IRES) flanked by two mul-
tiple cloning sites (MCS A and B), an arrangement that al-
lows cap-independent translation of the gene cloned into
MCS B [25]. In the DNA vaccine, TcdB-RBD and TcdA-
RBD was cloned into the MCS A and MCS B, respectively.
The pTAB vaccine plasmid is much more cost-effective
than creating two separate plasmids.
Since antibody responses to both RBDs are important

for control of CDAD. When DNA vaccine plasmids ex-
pressing either A-RBD or B-RBD are co-delivered, it
seems that A-RBD dominates the immune response
suggesting antigen interference [15]. The pTAB was de-
signed in a way that the A-RBD was placed down-
stream of a partially disabled IRES sequence [25] to
reduce the rate at which the TcdA-RBD is translated
relative to that of TcdB-RBD, thus provoking the gener-
ation of a higher titer of B-RBD antibody compared to
A-RBD. Immunization of mice and hamsters elicited
the generation of both TcdA and TcdB antibodies
(Figs. 2, 3 and 4) which were capable of neutralizing
toxin in vivo assays (Table 1). Immunization with pTAB

Fig. 4 ELISA detection of hamster serum antibody titers induced by
pTA, pTB and pTAB. The data are expressed as geometric mean titer
(GMT) of TcdA or TcdB-specific antibody ± standard deviation (SD) of
10 mice per group

Fig. 5 Survival in vaccinated hamsters following challenge with C.
difficile BI/NAP1/027. Hamsters (n = 6) were immunized with the DNA
vaccine. Two weeks following the third immunization, hamsters were
treated with clindamycin p.o. (10 mg/kg) and the following day
received an intra-gastric challenge of 108 CFU C. diff BI/NAP1/027.
*, P≤ 0.05; ***, P≤ 0.001. Data from two replicate experiments are shown
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provided 100 % protection against a TcdA or TcdB
MLD challenge, and also produced 80 % protection
against TcdA MLD plus TcdB MLD challenge.
pTAB also demonstrated protective efficacy in the

hamster CDAD model, reducing the severity and time
till onset of CDAD and significantly protecting the
hamster from mortality induced by challenge with BI/
NAP1/027. The significance of this hamster model is
characterized by a very rapid progression of CDAD and
high mortality. In the empty vector group, hamsters
challenged with 108 CFU BI/NAP1/027 had all died by
day 5, but 100 % survival was observed in the pTAB
group at day 14. While hamsters in the pTAB group
that exhibited CDAD were characterized as mild to
moderate, all recovered and were symptom free by the
end of study (14 days). Since BI/NAP1/027 is a double
positive (A+B+) strain, immunized pTA and pTB cannot
exhibit a 100 % survival.
Although recently one research has shown that two DNA

plasmids encoding the TcdA and TcdB RBDs respectively
can induce protective antibody responses if used together
in mouse model, the study did not investigate whether a
single-plasmid (pARBD or pBRBD) can protect mice from
TcdA plus TcdB challenge [15]. Our experiments showed
that neither pTA nor pTB single immunization was suffi-
cient to protect mice from a TcdA plus TcdB MLD double
challenge. In contrast, compared to the prior study, our re-
search utilized one plasmid (pTAB) instead of two separate
plasmids for immunization, achieving even better protec-
tion after challenged with double lethal dose toxins in
mouse model.

Conclusions
This study has demonstrated a single plasmid encoding
the RBD domains of C. difficile TcdA and TcdB as a
DNA vaccine that could provide protection from C. dif-
ficile disease.
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