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Abstract This paper presents a novel and practical

approach for aggressive and agitated behavior recognition

using skeleton data. Our approach is based on feature-level

combination of joint-based features and body part-based

features. To characterize spatiotemporal information, our

approach extracts first meaningful joint-based features by

computing pairwise distances of skeleton 3D joint positions

at each time frame. Then, distances between body parts as

well as joint angles are computed to incorporate body part

features. These features are then effectively combined

using an ensemble learning method based on rotation for-

ests. A singular value decomposition method is used for

feature selection and dimensionality reduction. The pro-

posed approach is validated using extensive experiments

on variety of challenging 3D action datasets for human

behavior recognition. We empirically demonstrate that our

proposed approach accurately discriminates between

behaviors and performs better than several state of the art

algorithms.

1 Introduction

Globally we are facing a healthcare crisis related to caring

for a rapidly aging population who are suffering from a

variety of chronic medical conditions, such as dementia.

Caring for people with dementia is more complicated given

the severity of dementia they suffer from and the degree of

autonomy they need for the completion of their activities of

daily living (Mihailidis et al. 2008). Challenging behav-

iors, such as agitation and aggression, are very common in

people with dementia and regarded as part of behavioral

and psychological symptoms of dementia (BPSD) (Desai

and Grossberg 2001). Agitation consists of an unusual state

of motor or verbal activity that could be shown by some of

the following symptoms such as repetitive walking, wan-

dering, pacing or restlessness, frequent requests for atten-

tion or reassurance, frustration, anger or irritability,

screaming, cursing, and refusal to allow care to be per-

formed. Whereas aggression is when the behaviors are

taken to a more physical point and can be demonstrated by

behaviors such as verbal or physical threats, kicking and

punching, tearing things, and violent reactions (Mallidou

et al. 2013).

These challenging behaviors can cause great suffering

for persons with dementia, premature institutionalization,

and could result in staggering health care costs, significant

loss of quality of life, and a great deal of distress and

burden for caregivers (Moore et al. 2013). In addition,

(Tampi et al. 2011) reported that these challenging

behaviors add significantly to the direct and indirect costs

of care. For example, according to (Beeri et al. 2002), the

annual indirect cost of managing these challenging

behaviors in a patient with Alzheimer’s Disease (AD) was

about $2665 US, which was 25 % over the total annual

indirect cost of caring for a patient with AD ($10,350 US).
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In addition, the annual direct cost of these challenging

behaviors was about $1450 US, which was 35 % over the

total annual direct cost of caring for a patient with AD

($3900 US) (Beeri et al. 2002). Therefore, early detection

and recognition of these challenging behaviors can help

effectively provide better treatment for persons with

dementia, which in turn will help reduce caregiver’s burden

(Desai and Grossberg 2001) and reduce significantly health

care costs.

Understanding aggressive and agitated behaviors of

persons with dementia is usually difficult. These behaviors

are usually a result of the disease and are not intentional

(Gray 2004). Therefore, people with dementia would not

be able to give reasons for their behaviors (Gray 2004).

Direct observation from family caregivers and the care

staff is usually used to identify challenging behaviors.

However, this method is subjective, time consuming and

could increase the workload of care staff and caregivers

(Desai and Grossberg 2001). Therefore, researchers have

focused on developing intelligent systems to automatically

monitor and recognize aggression and agitation (Qiang

et al. 2007) as not only will technology reduce the man-

power and time needed to observe and detect these

behaviors (Fook et al. 2007), it will also have the potential

to give reliable and consistent results (Ya-Xuan et al. 2010;

Mori et al. 2007; Duong et al. 2005) on predictors of these

behaviors.

Much research has been conducted on human behavior

recognition (Aggarwal and Cai 1999; Bouziane et al. 2013;

Sheng et al. 2015; Zhu et al. 2013; Guo 2011), however,

little work has been done on automatic recognition of

agitated and aggressive behaviors in people with dementia.

Therefore, the motivations for our current work can be

summarized in the following points:

– The little work on automatic agitation and aggression

recognition,

– The goal of decreasing the suffering of persons with

dementia and increasing their quality of life,

– The goal of reducing caregivers’ burden and related

care costs.

Various types of sensors have been used for human

behavior recognition such as cameras (Fook et al. 2007),

the Microsoft Kinect (Osunkoya and Chern 2013),

accelerometers (Benayed et al. 2014), and multimodal

sensors such as motion sensors, acoustic sensors, RFID

sensors and pressure sensors (Qiang et al. 2007). However,

particular attention has been devoted recently to the use of

Kinect sensor given the rich information it provides of a

person’s behaviors when compared to other sensors (van

Teijlingen et al. 2012). Kinect, which is a vision sensor,

allows collecting different types of data such as individual

movements, physical and verbal behaviors using different

data formats such as skeleton data, depth data and color

data. Kinect sensor has been gaining momentum in dif-

ferent domains to monitor people behaviors. They have

been used in video surveillance (Benayed et al. 2014),

human-computer interaction (Osunkoya and Chern 2013),

and health and medicine (Gantenbein 2012).

In this paper, we propose an effective approach for

aggressive and agitated behavior recognition using skele-

ton data collected from a Kinect sensor. Our approach

combines joint-based features and body part-based features

using an ensemble learning method based on rotation for-

ests. The combination of these features leads to a signifi-

cant improvement in the recognition of aggressive and

agitated behaviors as compared to the state of the art

approaches. The novelty of our approach can be justified by

the fact that, our approach combines feature selection and

ensemble learning to achieve a good recognition accuracy

while using only a small number of features compared to

existing methods. The major contributions of this paper can

be summarized as follows:

1. Combine joint-based features and body part-based

features in a unified approach for aggressive and

agitated behavior recognition.

2. Incorporate feature selection with ensemble learning

method based on rotation forests in order to reduce

dimensionality and improve the recognition accuracy.

3. Conduct extensive experiments over a variety of 3D

action datasets to validate our proposed approach.

The rest of the paper is organized as follows. First, we give

an overview of related work in Sect. 2. Section 3 describes

the proposed approach in terms of features extraction,

learning and recognition using rotation forests method. The

results of our experiments on real 3D action datasets are

presented in Sect. 4. Finally, Sect. 5 presents our conclu-

sions and highlights future work directions.

2 Related work

Human action recognition was the subject of several

research studies over the last two decades using different

data inputs such as sensor data, images, depth data, and

skeleton data (Aggarwal and Ryoo 2011; Shotton et al.

2011; Oreifej and Liu 2013; Wang et al. 2012a; Yang et al.

2012; Kläser et al. 2008; Luo et al. 2013; Lu et al. 2014;

Hussein et al. 2013; Ohn-Bar and Trivedi 2013; Wang

et al. 2012b; Roy et al. 2016; Nazerfard and Cook 2015;

Bouchard et al. 2014; Zhan and Kuroda 2014; Maleki-

Dizaji et al. 2014; Andreu and Angelov 2013; Chikhaoui

et al. 2012, 2014). We refer the readers to (Aggarwal and

Ryoo 2011) for a review of RGB video-based approaches,

and (Chen et al. 2013; Ye et al. 2013) for a recent review
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of depth map-based approaches. In this section, we briefly

review the research that has been done on aggressive and

agitated behavior recognition.

Much work has been done on understanding and

managing aggressive and agitated behaviors specifically

for older adults with dementia (Ashok Krishnamoorthy

2011; Desai and Grossberg 2001). However, Only a few

studies have focused on using intelligent systems to detect

aggression and agitation in persons with dementia. In

Bankole et al.’s work (Bankole et al. 2012), the authors

investigated body sensor network technology in the

detection of agitation in older adults with dementia. The

authors compared observed agitated behaviors with body

sensor based recorded behaviors, and found a correlation

between the observed behaviors and body sensor recorded

behaviors. However, in their study, participants were

required different body sensors which are obtrusive.

Rajasekaran et al. (2011) proposed a wearable device for

early detection of anxiety and agitation in people with

cognitive impairment. Thomas et al. (Plötz et al. 2012)

proposed a system based on machine learning techniques to

segment relevant behavioral episodes from a continuous

wearable sensor stream and to classify them into distinct

categories of severe behavior such as aggression, disrup-

tion, and self-injury. The system was validated using

simulated data of episodes of severe behavior acted out by

trained specialists, and other daily living activities avail-

able datasets. However, all these studies looked at physi-

ological data to detect agitated and aggressive behaviors,

which required specific sensors for physiological data

collection. Our approach differs from the above studies in

the following ways. First, in our approach participants are

not required to wear any device for data collection. Second,

our approach relies only on skeleton data without the need

for physiological data. This makes our approach more

suitable for real world applications.

In Biswas et al. (2006) work, multi-modal sensors were

used to monitor agitation in people with dementia. The

agitation was detected and monitored by the sensors based

on the intensity of the movements such as sitting and

standing. However, the authors consider only limited

movements such as sitting and standing. In another agita-

tion detection study, researchers used a video camera-based

method to recognize agitated behaviors (Fook et al. 2007).

The recorded video data were then annotated based on the

gold standard agitation assessment tool to classify agitated

behaviors and non-agitated behaviors. Skin color segmen-

tation techniques were used in order to analyse video data

and extract relevant features describing agitated behaviors.

However, this technique present some limitations in terms

of the difficulty in detecting the skin regions during the

night and when the person is not facing the camera, which

could affect the feature extraction. Nirjon et al. (2013)

proposed a system to detect aggressive actions such as

hitting, kicking, pushing, and throwing from streaming 3D

skeleton joint coordinates obtained from Kinect sensors.

The authors combined supervised and unsupervised learn-

ing for behavior classification. However, the unsupervised

learning used in Nirjon et al. (2013) needs more inter-

ventions from the system’s users in order to label the

behaviors, which is not practical in real settings. Even

though their work is similar to our work in terms of

aggressive behaviors recognition using skeleton data, the

main difference relies on the methodological side in terms

of the features used and the classification algorithms

employed. In addition, we use two more actions namely the

wandering and tearing, which makes our data richer.

Some other researchers have looked at wearable devices

for detection of agitation and aggression (Sakr et al. 2010;

Rajasekaran et al. 2011; Plötz et al. 2012). For instance, in

Sakr et al.’s work (Sakr et al. 2010) using wearable sensors

to detect agitation, they used bio-physiological measures to

detect agitation by monitoring the changes of the heart rate,

galvanic skin response and skin temperature of the partic-

ipants. In another study, Rajasekaran et al. (2011) proposed

a wearable device for early detection of anxiety and agi-

tation in people with cognitive impairment. Thomas et al.

(Plötz et al. 2012) proposed a system based on machine

learning techniques to segment relevant behavioral epi-

sodes from a continuous wearable sensor stream and to

classify them into distinct categories of problem behavior

such as aggression, disruption, and self-injury. The system

was validated using simulated data of episodes of problem

behavior acted out by trained specialists, and other daily

living activities available datasets. The results from these

studies showed accurate detection of these problem

behaviors. However, all these studies required people to

wear the device on the body to track their actions, which

cannot be practical specifically when the sensor is taken

off. In addition, the problem with the wearable device is

that it could be stigmatizing to the users and not comfort-

able for users to wear, which could result in the abandon-

ment of the device.

Although the aforementioned approaches showed good

performance, they present some limitations. For example,

(1) they fail in discriminating between similar actions, (2)

most of them do not consider feature selection approaches

for dimensionality reduction, and (3) most of them do not

consider the combination of joint-based features and body

part-based features in one unified model. These points

motivate us to propose a more principled approach that

combines the joint-based features and body part-based

features using an ensemble learning method based on

rotation forests. In addition, our approach employs singular

value decomposition method for feature selection and

dimensionality reduction.
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3 Proposed approach

In this section, we describe our approach of aggressive and

agitated human behavior recognition in terms of feature

extraction and ensemble learning classification. The gen-

eral architecture of our approach is presented in Fig. 1. The

details of each segment in Fig. 1 are presented in the fol-

lowing sections.

3.1 Feature extraction

A human skeleton can be represented by a hierarchy of

joints that are connected with bones. The spatiotemporal

features are local descriptions of human motions (Zhu et al.

2013). Therefore, an action can be described as a collection

of time series of 3D positions. The time series of 3D

positions represent 3D trajectories of the joints in the

skeleton hierarchy. Figure 2 shows a graphical represen-

tation of the joints and how they are measured in the 3D

space using a Microsoft Kinect sensor.

However, in order to accurately understand, recognize

and differentiate between human actions, taking only 3D

positions of the joints and how they evolve over time are

not sufficient given the similarity between human actions.

In order to obtain a better description and representation

of human actions, we incorporate relative and absolute

joint angles between each two connected limbs, and we

represent the skeleton motion data as the changes over

time of joint angles computed at each time frame. The

aim of computing relative and absolute joint angles is to

understand the contribution of each body part in per-

forming actions. Moreover, we incorporate another fea-

ture which is the distance between the different joints and

a fixed point of the skeleton, the hip centre, in order to

give more information of the body parts involved in each

movement over time. For instance, in a standing position,

the hands are close to the hip center. When the hands are

being raised up, the distance between the hands and hip

center will increase. Figure 3 shows an example of joint

angles and how they change over time, and the distance

between body parts and the hip centre during the move-

ment of rising hands. In addition, to characterize the

spatial information of each joint, we compute the distance

between the position of a joint at time t and its initial

position at time t0 (initial frame). This will further indi-

cate how far the joint will be with respect to its initial

position.

As we mentioned earlier, body part-based approaches

represent the human body as a constellation of a set of rigid

parts constrained in some fashion (Wang et al. 2012c).

Angles between each consecutive two parts represent one

of the important interpretable spatial features that allow to

understand how body parts are related during human

movements, which is important for action encoding. Note

that, each body part is defined as a vector represented using

two joint angle positions. For instance, the forearm is

defined using the elbow joint and the wrist joint. Formally,

let J be the skeleton joints in 3D space, and let JiðtÞ ¼
ðxiðtÞ; yiðtÞ; ziðtÞÞ be the 3D coordinates of joint i at frame

t. Therefore, the feature vector Ft structure at time t for

each frame can be expressed as:

Ft ¼ ½hrelative�angle; habsolute�angle;DHipCenter;DInitial� ð1Þ

where hrelative�angle consists of twelve relative angles at the

following joints: shoulder, elbow, wrist, hip, knee and

ankle for the left and right side, habsolute�angle consists of

twelve absolute angles for the same joints computed with

respect to the Kinect coordinate system as shown in Fig. 2,

DHipCenter is the distance between each joint and the hip

center, DInitial is the distance between a joint position at

frame t and the initial frame t0. These features are formally

defined as follows:

1. The relative angle hðP1;P2Þ between two body parts P1

and P2 can be calculated using the triangle of joints Ji,

Jj and Jk (i 6¼ j 6¼ k),where P1 is formed by joints Ji
and Jj, and P2 is formed by joints Jj, Jk as follows:

hðP1;P2Þ ¼ arctanðNðP1 � P2;P1:P2ÞÞ; ð2Þ

where P1 � P2 represents the cross product between

the two 3D vectors P1 and P2, which results in a vector

P, and P1:P2 is the dot product, which results in a

scalar value r. The NðP; rÞ is the normalization and is

computed as follows:

NðP;rÞ ¼
X3

i¼1

jPijr
 !1

r

: ð3Þ

Note that the angles are expressed in radian, therefore,

all angles are multiplied by 180 and divided by p to get

the values in degree. The absolute angles are computed

in the same way by taking two skeleton joints with

respect to the Kinect global coordinates system as

origin.

2. The distance DHipCenter between each joint Ji ¼
ðxi; yi; ziÞ and the hip center Jhc ¼ ðxhc; yhc; zhcÞ is

computed as follows:

Fig. 1 Architecture of our approach
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DHipCenter ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xhcÞ2 þ ðyi � yhcÞ2 þ ðzi � zhcÞ2

q

ð4Þ

3. The distance DInitial between a joint JiðtÞ ¼
ðxiðtÞ; yiðtÞ; ziðtÞÞ at time frame (t) and the same joint

at time frame (t0) is computed as follows:

DInitial ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiðtÞ� xiðt0ÞÞ2þðyiðtÞ� yiðt0ÞÞ2þðziðtÞ� ziðt0ÞÞ2

q

ð5Þ

Note that, the new version of the Kinect sensor (i.e. v2) can

track 25 skeleton joints instead of 20 joints. The five new

joints are: Spine shoulder, Hand tip left, Thumb left, Hand

tip right, and Thumb right. Therefore, more angles can be

computed using this new version. Note that we combined

all these features to make our approach robust in real

environments. Overall, we have 75 features extracted for

each frame. Once these features are computed, we can then

combine them in order to build a classification model.

3.2 Feature selection

One of the key issues in classification algorithms is the

large number of features used for the classification. To

overcome this issue, we resort to feature selection algo-

rithms in order to select the most discriminative features

that will help us distinguish between the different classes,

and reduce the classification space. In this paper, we use

the singular value decomposition (SVD) method to select

the most relevant features describing human behaviors.

SVD has been widely used in information retrieval for

reducing the dimension of the document vector space

(Deerwester et al. 1990). Given a generic rectangular m�
n matrix X, its singular value decomposition is:

X ¼ URVT ; ð6Þ

where U is a matrix m� r, VT is a matrix r � n and R is a

diagonal matrix r � r where r is the rank of the matrix

X. The diagonal elements of the R are the singular values

such that r1 � r2 � r3 � . . .� rr � 0. The two matrices

Fig. 2 Skeleton joints captured

by a Kinect sensor

Fig. 3 Example of how joint

angles and distances from the

Hip center change over time

during a movement
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U and V are unitary, i.e., UTU ¼ I and VTV ¼ I. It exists a

direct relation between the informativeness of the dimen-

sion and the value of the singular value. High singular

values correspond to dimensions of the new space where

data have more variability, whereas low singular values

determine dimensions where data have a smaller variability

(Liu 2006). These dimensions can not be used as dis-

criminative features in learning algorithms (Fallucchi and

Massimo 2009).

In order to use SVD as feature selection, an important

way is to exploit its approximated matrices, which means

that, X � Xk ¼ Um�kRk�kV
T
k�n, where k is smaller than the

rank r of the matrix X. The computation allows to stop at a

given k different from the real rank r. Therefore, the sin-

gular vectors with largest singular values represent the

selected features.

3.3 Fusion and classification using ensemble

methods

Feature fusion is an important step to build a good classi-

fication model. Several classification methods could be

used such as SVM, decision trees, and naive Bayes to

perform classification. However, these methods have

shown to be less accurate when compared to ensemble

methods (Opitz and Maclin 1999). This motivates us to

incorporate ensemble methods to build our classification

model. The reason to use ensemble methods is to improve

the predictive performance of a given model through

combining several learning algorithms.

Rotation forest (Rodriguez et al. 2006) is an ensemble

method proposed to build a classifier, which uses inde-

pendently trained decision trees. It is found to be more

accurate than bagging, AdaBoost and Random Forest

ensembles across a collection of benchmark datasets

(Ludmila and Juan 2007). The advantage of rotation forests

lays in the use of principal component analysis (PCA) to

rotate the original feature axes so that different training sets

for learning base classifiers can be formed (Ludmila and

Juan 2007).

Formally, let x ¼ ½x1; . . .; xn�T be a data point described

by n features, and let X be an m� n matrix containing the

training example. Let Y ¼ ½y1; . . .; ym�T be a vector of class

labels for the training data, where yj takes a value from the

class labels fw1; . . .;wcg. Let D ¼ fD1; . . .;DLg be the

ensemble of L classifiers and F be a feature set. The idea is

that all classifiers can be trained in parallel. Therefore, each

classifier Di is trained on a separate training set TDi
to be

constructed as follows (Rodriguez et al. 2006):

1. split the feature vector F into K subsets. The subsets

may be disjoint or intersecting. Note that rotation

forest aims at building accurate and diverse classifiers.

Therefore, to maximize the chance of getting high

diversity, it is suggested to take disjoint subsets of

features. For instance, this can be obtained by taking

M ¼ n=K, where K is a factor of n.

2. for each of the subsets, select randomly a nonempty

subset of classes and then draw a bootstrap sample of

objects.

3. run PCA using only the M features in Fi;j and the

selected subset of X, where j is the jth subset of

features for the training set of classifier Di. Then, store

the obtained coefficients of the principal components

a1i;j; . . .; a
Mj

i;j in a matrix Ci;j.

4. rearrange the columns of the matrix Ci;j in a new

matrix Ba
i so that they correspond to the original

features in matrix X.

5. the training set for classifier Di is XB
a
i .

6. to classify a new sample x, we compute the confidence

w for each class as follows:

wjðxÞ ¼
1

L

XL

i¼1

di;jðxBa
i Þ; j ¼ 1; . . .; c ð7Þ

where di;jðxBa
i Þ is the probability assigned by the

classifier Di indicating that x comes from class wj.

Therefore, x will be assigned to the class having the

highest confidence value.

In rotation forest, bootstrap samples are taken as the

training set for each base classifier, and a transformation of

the feature set is performed for each base classifier. Finally,

rotation forest combines the results of all base classifiers

using majority voting method. The steps of our approach

are presented in Algorithm 1. The next section presents the

validation of our proposed approach.
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Algorithm 1: Classification algorithm using Rotation Forest
Input:
- 3D coordinates of skeleton joints for all behavior instances
- L: the number of classifiers in the ensemble method
- K: the number of subsets
- the set of class labels {w1,...,wc}
Output:
- Class labels for new behavior instances
Training phase
foreach Behavior instance do

foreach Time frame t do
- Compute the feature vector F t

end
- Add Ft to matrix X

end
- Compute matrices U , Σ and V T form matrix X using SVD Equation ( 6)

- Select k first singular values from matrix Σ s.t.
∑k

i=1 Σi,i∑n
i=1 Σi,i

≥ 90%

- Build the training set X ≈ Xk = Um×kΣk×kV
T
k×n

for i=1...L do
- Split F into K subsets: F i,j (j=1...K)
for j=1...K do

- Let Xi,j be the dataset obtained using the features in F i,j

- Eliminate a random subset of classes from Xi,j

- Select a bootstrap sample X ′
i,j of size 75% of objects from Xi,j

- Run PCA on X ′
i,j and store obtained coefficients in a matrix Ci,j

end
- Rearrange the columns of Ci,j in a new matrix Ba

i so that they match the
order of features in matrix X

- Build classifier Di using XBa
i as a training set

end
Classification phase
for a given x do

- Compute di,j(xBa
i )

- Compute confidence ψj(x) using Equation ( 7)
- Assign x to class having the largest confidence

end

4 Validation

We evaluate the performance of each feature representation

described above on five different human action datasets of

3D skeleton data. Each dataset has almost completely

distinct set of actions.

4.1 Datasets

In this section we present the datasets we used to validate

our proposed approach. Two datasets (TRI) and (Kintense)

contain agitated and aggressive behaviors, while the three

others UTKinect, Florence, and MSR-Action3D contain

different common human behavior actions such as drink,

answer phone, tie lace, bow, and read watch. The goal of

using these datasets is twofold:

– demonstrate the suitability of our approach for the

recognition of aggressive and agitated behaviors.

– demonstrate that our proposed approach is generic and

can be applied to different behavior actions.

In addition, the UTKinect, Florence, and MSR-Action3D

datasets contain some actions that are common for people

with dementia when they get agitated such as sit down and

stand up and clap hands repetitively (Manoochehri and

Huey 2012).

4.1.1 TRI dataset

The first dataset is obtained by conducting an experiment in

Toronto Rehabilitation Institute-UHN (TRI-UHN). Ten

(10) participants (6 males and 4 females, 3 among them

were left-handed) were involved in this experiment to

Feature-level combination of skeleton joints... 963
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conduct six (6) actions (hitting, pushing, throwing, tearing,

kicking and wandering) in front of a Kinect sensor v2.

These actions have been identified as the most common

challenging aggressive and agitated behaviors1 observed

from persons with dementia. These behaviors were selected

from Cohen-Mansfield Agitation Inventory (CMAI) Scale

(Cohen-Mansfield 1991). These behaviors are described as

follows:

1. Hitting to perform this behavior, participants were

asked to raise one of their hands up and pretend to hit

something in front of them.

2. Pushing to perform this behavior, participants were

asked to use their both hands at the same time and

pretend to push something in front of them.

3. Throwing to perform this behavior, participants were

given an object and asked to throw it out as far as

possible using one hand. The object is a piece of light

foam cut from a camping mattress.

4. Tearing to perform this behavior, participants were

given a piece of paper and asked to tear it using both

hands.

5. Kicking to perform this behavior, participants were

asked to raise one of their feet up and pretend to kick

something in front of them.

6. Wandering to perform this behavior, participants were

asked to look for something that they couldn’t find.

They were asked to make a step forward and look for

something on the ground from side to side and then

look up for something from side to side, and then make

a step backward and redo the same movements.

Participants were asked to perform the full set of actions

using the right side of the body. For instance, hitting and

kicking with the right hand and right foot respectively.

Note that two of these actions, pushing and wandering, are

not specific to one side of the body. In order to ensure the

study is generic and takes into account both left-handed

and right-handed people, participants were then requested

to repeat the four laterally specific actions, hitting, kicking,

throwing and tearing, using the left side of the body. Par-

ticipants performed all the actions in front of a Kinect

sensor five times while facing each of three directions

(front, left and right). For example, during the hitting

action, participants did first the action facing the Kinect

sensor five times, then repeated the action another five

times with their left side facing the Kinect and then another

five times with their right side facing the Kinect. This is to

ensure that we take into account different situations that

might occur when a person is being monitored. A total of

((10 (participants) � 4 (behaviors) � 3 (sides) � 5 (repe-

titions) � 2 (left hand and right hand)) ? (10 (participants)

� 2 (wandering and pushing) � 3 (sides) � 5 (repetitions)

� 1 (one side of body)) = 1200 ? 300 = 1500) behavior

instances have been collected in our experiment. Figure 4

shows an example of a skeleton and a depth image for each

action performed by one participant.

Each action was performed using three different direc-

tions with respect to the Kinect sensor: front side facing the

Kinect, right side facing the Kinect and left side facing the

Kinect as shown in Fig. 5. To extract the skeleton data, we

used the Kinect Stream Saver application developed by

Dolatabadi et al. (2013) in our laboratory. Therefore, each

skeleton data consists of 3D coordinates of 25 joints with

time stamp indicating the time when the joint coordinates

were recorded at each frame. All the skeleton data were

recorded at 30 frame per second rate.

4.1.2 Kintense action dataset

In the Kintense action dataset (Nirjon et al. 2013), 19

healthy participants performed 4 different aggressive

actions collected using a Kinect sensor. These actions were

hitting, kicking, pushing and throwing. Each participant

performed the four actions in different distances and dif-

ferent angles with respect to the Kinect sensor. Skeleton

joint locations for 20 joints were provided in this dataset.

Each action was performed 4–8 times by each participant.

About 13000 action instances were collected in this dataset.

4.1.3 UTKinect action dataset

In theUTKinect action dataset (Xia et al. 2012), 10 participants

performed 10 different action classes collected using a Kinect

sensor. These actions were walk, sit down, stand up, pick up,

carry, throw, push, pull, wave hands, and clap hands. Skeleton

joint locations were provided in this dataset. Altogether, the

data set contained 6220 frames of 200 action samples. The

length of sample actions ranged from 5 to 120 frames.

4.1.4 Florence action dataset

The Florence action dataset (Seidenari et al. 2013) that was

collected at the University of Florence was captured using

a Kinect sensor. It included 9 activities: wave, drink from a

bottle, answer phone, clap, tie lace, sit down, stand up, read

watch, and bow. During acquisition, 10 participants were

asked to perform the above actions for 2–3 times. There

was a total of 215 activity samples.

4.1.5 MSR-action3D dataset

MSR-Action3D dataset (Li et al. 2010) was a dataset of

depth sequences captured by a depth camera. It contained

20 actions: high arm wave, horizontal arm wave, hammer,1 Here we use the terms Behavior and Action interchangeably.
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hand catch, forward punch, high throw, draw x, draw tick,

draw circle, hand clap, two hand wave, side-boxing, bend,

forward kick, side kick, jogging, tennis swing, tennis serve,

golf swing, pickup & throw. Ten (10) participants were

involved in the study and were asked to perform each

action for three times. The frame rate was 15 frames per

second. This dataset is challenging because many of the

actions in the dataset are highly similar to each other. We

used the the same experimental setup as described in (Li

et al. 2010; Yang et al. 2012) where the 20 action classes

were divided into three main action sets, each containing 8

action classes with some overlap between action sets. All

the classifiers were trained to distinguish between actions

in the same action set only. The reported accuracy is the

average over the three action sets.

4.2 Experimental results

We first evaluate the performance of our proposed

approach using all the datasets. Then, we compare our

results to the state-of-the-art methods to demonstrate the

superiority and effectiveness of our proposed approach. In

our experiments, we used the F-Measure, Accuracy and

Mean Absolute Error (MAE) to present the results. We

show first the recognition results before applying the SVD

feature selection method. We then apply the SVD feature

Fig. 4 Example of a skeleton

and a depth image for each

action performed by one

participant
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selection method to show how a small set of features can

achieve good recognition results comparing to the whole

set of features.

4.2.1 Recognition results without feature selection

In order to show how the combination of features leads to a

significant increase of the recognition accuracy, we have

included the recognition accuracy obtained for each set of

features separately and the combination of all these fea-

tures as shown in Tables 1 and 2. For the TRI dataset, the

results were computed for each direction (Front, Left and

Right) with respect to the Kinect sensor, and averaged for

the right-handed and left-handed. We used a 10-fold cross

validation method to evaluate our approach.

As shown in Table 1, the combination of all the features

leads to a higher recognition accuracy and a lower MAE

when compared to the recognition results using features

taken separately. For example, in the TRI dataset with right-

handed, the recognition accuracy has improved with 1 %

(99.75) when we combined distance to hip center feature

(98.88) with the remaining three features. In addition, the

MAE has decreased from (0.02) to (0.01) when all features

are combined together. Similarly, in the TRI dataset with

left-handed, the recognition accuracy has increased with

2 % from (97.76) using the absolute angle feature to (99.57)

using all the features combined. In addition, the MAE has

decreased drastically from (0.05) with the absolute angle

feature to (0.02) with all the features combined. The high

recognition results obtained could be explained by the fact

that the features used in our approach are discriminative so

that they allow to distinguishwith high accuracy between the

different behaviors. The same observations were found in

the Kintense dataset.

In the other three datasets (UTKinect, Florence and

MSR-Action3D dataset) with various human behavior

actions, our approach also achieves high recognition

accuracy as shown in Table 2. For example, in the

UTKinect dataset, the recognition accuracy has improved

with 4.29 % (98.37) when we combine the absolute angles

feature (94.08) with the remaining three features (i.e. rel-

ative angles, distance to hip center and distance between

current and the initial frame). Moreover, the MAE has

decreased from (0.03) using absolute angles feature to

(0.02) when all features are combined together. Similarly,

the recognition accuracy has increased with 4.1 % (97.26)

in the Florence dataset when compared to the recognition

accuracy obtained using the distance between body parts

and the hip center feature (93.15). Moreover, the recogni-

tion error has decreased from (0.05) to (0.03). In the MSR-

Action3D dataset, the recognition accuracy has increased

drastically with 8.75 % when we combine the absolute

angles feature (82.65) with the remaining three features.

Similarly, the MAE has decreased from (0.03) using the

absolute angles feature to (0.02) when all features are

combined together. This in turn demonstrates the effec-

tiveness of the feature combination in terms of accuracy

and recognition error. Therefore, our approach recognizes

the actions with high accuracy and low recognition error in

all the datasets.

Although the results show that when features were taken

separately, such as absolute angles and distances with

respect to the hip centre, are promising, these features may

not be discriminative for actions involving same body parts

such as the Hitting and Pushing actions, and the Kicking

and Wandering actions. For example, as shown in Fig. 6a,

b, the joint angles of the Elbow, Wrist and Handtip are

involved in both the Hitting and Pushing actions, which

Fig. 5 Three different angles

with respect to the Kinect sensor

used during our experiments
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increases the similarity between these two actions. Simi-

larly, in the Wandering action shown in Fig. 6c, more joint

angles are involved during the performance of this action.

This in turn increases the similarity between the Wandering

and Kicking actions, which makes difficult to differentiate

between them. This demonstrates how our approach per-

forms better when all features are combined together.

Therefore, the combination of these features yields a much

better performance in terms of recognition accuracy and

recognition error rate. This is a very important observation

in gesture recognition applications. Indeed, in gesture

recognition applications, the recognition accuracy is of

high importance in order to personalize and adapt services

according to the user gesture.

Despite with high recognition accuracy of our

approach when all features are combined together, some

actions are still misclassified with other actions as shown

in Tables 3, 4, 5 and 6. For space limitation, we present

confusion matrices only for TRI Right-Handed, Kin-

tense, UTKinect and Florence datasets.

For instance, in TRI dataset shown in Table 3, 9 instances

of the Hitting action were misclassified as the Throwing

action and 23 instances of the Kicking action were mis-

classified as the Wandering action. Similarly, in Kintense

dataset shown in Table 4, 290 instances of the Hitting action

weremisclassified as the Throwing action, and 208 instances

of the Throwing action were misclassified as the Hitting

action. InUTKinect dataset shown inTable 5, 12 instances of

Table 1 Agitated and

aggressive behavior recognition

results obtained from TRI and

Kintense datasets

Dataset Features F-Measure MAE Accuracy (%)

hrelative�angle 0.93 0.06 93.70

habsolute�angle 0.97 0.04 97.30

TRI Right-Handed DHipCenter 0.98 0.02 98.88

DInitial 0.94 0.05 94.77

ALL 0.99 0.01 99.75

hrelative�angle 0.94 0.09 94.78

habsolute�angle 0.97 0.05 97.76

TRI Left-Handed DHipCenter 0.96 0.06 96.20

DInitial 0.83 0.15 83.58

ALL 0.99 0.02 99.57

hrelative�angle 0.95 0.08 95.45

habsolute�angle 0.97 0.07 96.95

Kintense dataset DHipCenter 0.98 0.04 98.63

DInitial 0.92 0.10 92.79

ALL 0.99 0.04 99.12

Table 2 Common behavior

recognition results obtained

from UTKinect, Florence and

MSR-Action3D datasets

Dataset Features F-Measure MAE Accuracy (%)

hrelative�angle 0.87 0.06 87.91

habsolute�angle 0.94 0.03 94.08

UTKinect dataset DHipCenter 0.92 0.04 92.79

DInitial 0.90 0.04 90.09

ALL 0.98 0.02 98.37

hrelative�angle 0.84 0.07 84.48

habsolute�angle 0.92 0.05 92.20

Florence dataset DHipCenter 0.93 0.05 93.15

DInitial 0.70 0.09 70.34

ALL 0.97 0.03 97.26

hrelative�angle 0.78 0.04 78.59

habsolute�angle 0.82 0.03 82.65

MSR-Action3D dataset DHipCenter 0.81 0.04 82.00

DInitial 0.65 0.05 65.98

ALL 0.91 0.02 91.41
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the Pick up action were misclassified as Walk action and 13

instances as Carry action. In Florence dataset shown in

Table 6, 21 instances of theTie lace actionweremisclassified

as Bow action, and 9 instances of the Sit down action were

misclassified as Bow action. The reason of the misclassified

actions is due to the involvement of the same body parts to

perform the action. For example, both the actions of Hitting

and Throwing involve the arm to perform the action. This is

also the case for theKicking andWandering actions that both

involve the movements of the leg, and Tie lace and Bow

actions that involve the movement of upper part of the body.

However, this is a challenging and common issue to any

classification algorithm where similarities are observed

among the data.
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Fig. 6 Example of relative angles computed for some actions performed by a participant in TRI right-handed dataset

Table 3 Confusion matrix

obtained from the TRI Right-

Handed dataset

Hitting Kicking Pushing Tearing Throwing Wandering

Hitting 4211 1 4 0 9 3

Kicking 0 4518 1 1 0 23

Pushing 3 3 4114 15 3 1

Tearing 0 1 7 5648 1 0

Throwing 10 1 1 6 4845 6

Wandering 0 1 0 0 1 18857
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4.2.2 Recognition results using feature selection

In order to show the effectiveness of the feature selection

method we propose in our approach, we apply different

values of k to all the datasets to select the relevant number

of features for classification. The k used here is smaller

than the rank r of the matrix X of the training data. We used

k = 5, 10, 15, 20, 25, 30, 35, 40 and 45 in our experiments.

Figure 7 shows the recognition results in terms of

F-Measure obtained from all the datasets using different

values of k.

The results show that with 20 features (k = 20), we are

able to reach a high recognition accuracy. For example, in

the TRI Right-Handed dataset, the recognition accuracy

increased from 0.54 using k = 5 to 0.77 using k = 10, and

reach to an accuracy of 0.96 when k = 20. Similarly, in the

Kintense dataset, the recognition accuracy has increased

from 0.77 using k = 5 to 0.93 using k = 10, with an

improvement of 15.8 %. In addition, an improvement of

3.9 % has been achieved using k = 20 when compared to k

= 10. Although the recognition accuracy continues to

increase as k increases, the increase is much smaller when

k is greater than 20. This indicates that the 20 features

selected using SVD are able to describe the variability of

the data and they are sufficient to describe and represent

with high accuracy the different behaviors.

As shown in Fig. 7, when k = 20, the recognition results

tend to be similar to those when k = 25, 30, 35, 40 and 45.

Therefore, choosing k = 20 is considered to be a good

empirical choice for the number of features in all the

datasets.

The potential of reducing the dimensionality is not only

to reduce the size of feature set, but also to rely on the gain

of the time when processing high dimensional data. For

example, in a machine with 6 GB of memory and 2.5 GHz

processor, taking all the features in our approach with TRI

Right-Handed dataset resulted in a training set with more

than 70 features and the time taken to build the model and

Table 4 Confusion matrix obtained from the Kintense dataset

Hitting Kicking Pushing Throwing

Hitting 27190 29 51 290

Kicking 30 33498 17 52

Pushing 73 47 16718 60

Throwing 208 60 34 30302

Table 5 Confusion matrix obtained from the UTKinect dataset

Walk Sit down Stand up Pick up Carry Throw 60Push 60Pull 60Wave hands Clap hands

Walk 808 1 0 4 4 0 0 0 0 0

Sit down 3 652 0 8 2 0 0 0 0 0

Stand up 0 0 493 0 0 0 0 0 0 0

Pick up 12 8 2 667 13 0 1 0 0 1

Carry 3 0 0 1 886 0 0 0 0 1

Throw 0 0 0 0 1 236 2 2 1 1

Push 0 1 0 0 0 0 184 11 0 1

Pull 0 0 0 0 0 0 0 273 0 0

Wave hands 0 0 0 0 0 0 1 0 876 4

Clap hands 0 0 0 0 1 0 0 0 3 566

Table 6 Confusion matrix obtained from the Florence3D dataset

Wave Drink Answer phone Clap Tie lace Sit down Stand up Read watch Bow

Wave 432 3 1 3 1 0 0 2 2

Drink 3 417 1 0 0 0 0 2 4

Answer phone 0 4 384 1 0 1 0 1 0

Clap 3 1 2 361 0 3 0 0 0

Tie lace 2 1 1 2 529 0 1 0 21

Sit down 0 0 0 4 3 403 1 1 9

Stand up 0 0 0 0 1 0 421 0 0

Read watch 3 1 2 11 1 2 0 361 1

Bow 0 0 0 1 1 2 0 0 598

Feature-level combination of skeleton joints... 969

123



 0

 0.2

 0.4

 0.6

 0.8

 1

TRI-Right-Handed

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(a) TRI Right-Handed dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

TRI-Left-Handed

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(b) TRI Left-Handed dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

Kintense

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(c) Kintense dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

UTKinect

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(d) UTKinect dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

Florence

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(e) Florence dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

Florence

F-
M

ea
su

re

k=5
k=10

k=15
k=20

k=25
k=30

k=35
k=40

k=45

(f) MSR-Action3D dataset

Fig. 7 Recognition results using different values of k
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classify the data was 4,337,080 ms. However, the time

taken to build the model and classify the data when k = 20

was only 785,462 ms, which was approximately 1/5 of the

processing time when all features were taken into account.

Similarly, in the MSR-Action3D dataset, the time taken to

build the model and classify the data with all features was

3,823,729 ms, and the time taken to build the model and

classify the data was only 1,273,561 ms when k = 20. This
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further indicates that k = 20 is a good choice for the

number of features. Therefore, choosing k = 20 makes our

approach more practical to deploy for real time applica-

tions. Figure 8 shows the execution time using different

values of k.

4.2.3 Ensemble method versus conventional classifiers

One of the potentials of our approach is the use of the

ensemble method based classification that aggregates many

other classifiers (i.e. decision trees). In order to validate the

superiority and performance of the ensemble method based

classification over the conventional classification algo-

rithms, we compared our approach with several conven-

tional classification algorithms including single classifiers

such as decision trees2 (DT), multilayer perceptron (MLP),

support vector machines (SVM)3, and bayesian networks

(BN)4, and ensemble methods such as random forests

(RF)5, Decorate ensemble method6 (Melville and Mooney

2004), MetaCost ensemble method7 (Domingos 1999),

AdaBoost ensemble method8 (Freund and Schapire 1997),

and Bagging ensemble method9 (Breiman 1996). We used

default settings of all classifiers provided by the Weka

framework10 Table 7 compares the recognition accuracy

results obtained from the ensemble method and the con-

ventional classifiers in all the datasets.

Although the conventional classifiers such as RF, Dec-

orate and Bagging achieve good results, overall our

approach performs better than all the conventional classi-

fiers in all the datasets as shown in Table 7. The only

dataset where the Decorate classifier achieves relatively

better results (96.6 %) compared to our approach (96.5 %)

is the TRI-Right-Handed. It is shown that overall SVM and

BN classifiers achieve the lowest results in all the datasets.

Similarly, MetaCost and AdaBoost ensemble methods

achieve the lowest results in all the datasets. Table 7 also

shows that RF has good recognition accuracy results in

TRI, Kintense, UTKinect and Florence datasets as our

approach. This can be explained by the fact that RF is

considered as an ensemble method classifier as RF com-

bines several decision tree based classifiers. However, in

MSR-Action3D dataset with the large number of overlap-

ping actions and the small number of instances for each

action, all the classifiers do not show as high accuracy as

our approach. Indeed, the RF classifier achieves an accu-

racy of 80.52 %, the Decorate classifier achieves an

accuracy of 81.72 %, and the Bagging classifier only

achieves an accuracy of 77.6 %, while our approach

achieves the best results with an accuracy of 82.3 %. This

further demonstrates the suitability and superiority of the

rotation forest ensemble learning method over the con-

ventional single and ensemble method classifiers.

4.2.4 Comparison with state of the art approaches

In order to compare our approach with the state of the art

methods, we compared our approach with the approach of

(Nirjon et al. 2013) for behavior recognition using expert

classifiers, the approach of (Guo 2011) for behavior

recognition using log covariance matrices, and the

approach of (Zhu et al. 2013) for behavior recognition

Table 7 Comparison of the recognition accuracy results obtained from the conventional classifiers and our approach in all the datasets

Classifiers Datasets

TRI right-handed TRI left-handed Kintense UTKinect Florence MSR-Action3D

DT (Quinlan 1999) 89.41 92.12 88.64 78.33 79.38 69.56

MLP (Haykin 1998) 76.89 79.72 65.24 78.75 71.76 44.62

SVM (Burges 1998) 52.71 50.32 73.31 37.93 55.35 53.55

BN (Friedman et al. 1997) 71.81 74.5 64.26 65.03 61.9 47.56

RF (Breiman 2001) 96.29 96.9 95.91 87.14 93.25 80.52

Decorate (Melville and Mooney 2004) 96.6 96.57 96.57 87.05 91.88 81.72

MetaCost (Domingos 1999) 44.31 29.83 29.99 15.5 14.99 8.85

AdaBoost (Freund and Schapire 1997) 48.44 35.07 34.1 30.64 19.32 11.5

Bagging (Breiman 1996) 94.31 94.3 92.47 82.17 87.3 77.6

Our approach 96.5 97.5 97.2 90.2 95 82.3

2 Confidence factor C = 0.25.
3 SVM with radial basis function kernel.
4 BN with K2 search algorithm.
5 Number of trees n = 10.
6 Decision tree as base classifier.
7 ZeroR as base classifier.
8 Decision stump tree as base classifier.
9 RepTree as base classifier.
10 http://www.cs.waikato.ac.nz/ml/weka/.
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Fig. 9 Comparison results with state of the art methods
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using random forest based classification. We used different

experimental settings such as 50 % subject split, 1/3 of data

for training, 2/3 of data for training. The rational of using

all these settings is: (1) to test the inter-subject general-

ization of our approach while using as much data as pos-

sible for training, (2) to test the sensitivity of our ensemble

method classifier to reducing the number of training sam-

ples, and (3) to test the performance improvement when

samples are used in training and testing. The comparison

results are presented in Fig. 9 for each dataset.

As shown in Fig. 9, our approach achieves almost the

best recognition results in all the datasets. The methods of

(Nirjon et al. 2013) and (Guo 2011) achieves the lowest

results in all the datasets, except for the Kintense dataset

where the approach of (Nirjon et al. 2013) achieves good

results. As shown in Fig. 9, the method of (Zhu et al. 2013)

also achieves good results. This can be interpreted by the

use of random forest classifier which is considered as an

ensemble classifier that combines several decision trees

classifiers. Overall, our approach performs better than the

other approaches in all the datasets.

To highlight the importance of features used in our

approach and their discriminative power, we compared

the results obtained by our approach and those obtained

by combing our features and features used in existing

methods. Figure 10 shows a comparison of the results

obtained.

As shown in Fig. 10, our approach performs better

compared to the approach where features are combined

from previous methods and our approach in all datasets.

This demonstrates the importance of the features selected

by the SVD method and their discrimination power com-

pared to features from previous methods.

5 Conclusion

In this paper we have studied the problem of agitated and

aggressive behavior recognition. We have proposed an

effective approach based on feature fusion extraction from

skeleton joint data. Our approach extracts first features

such as absolute and relative angles, joint distance with

respect to the hip center, and joint distances with respect to

the initial frame. Then, a feature selection method is pro-

posed based on the singular value decomposition in order

to reduce dimensionality and to select the best features that

are relevant to represent the different behaviors and to

distinguish between them. For classification, we proposed

an ensemble method classification based on rotation forest.

We have illustrated the effectiveness and suitability of

our approach through extensive experiments on multiple

real agitated and aggressive behavior datasets and common

human behavior datasets. The experimental results show

the suitability of our approach in representing behaviors

and distinguishing between them. In addition, we have also

illustrated how our approach outperformed several of the

state of the art methods.

The work we have proposed in this paper constitutes a

first step towards the development and deployment of a

practical system for the recognition of agitated and

aggressive behaviors for people with dementia. This in

turn, opens new research directions in the ambient assisted

living regarding the prediction of the occurrence of agitated

and aggressive behaviors in people with dementia, and the

issue of big data, specifically with images, videos and

audio data, that require efficient and scalable algorithms for

processing and management.
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