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Abstract

Classic parametric statistical tests, like the analysis of variance (ANOVA), are powerful tools

used for comparing population means. These tests produce accurate results provided the data

satisfies underlying assumptions such as homoscedasticity and balancedness, otherwise biased

results are obtained. However, these assumptions are rarely satisfied in real-life. Alternative

procedures must be explored. This thesis aims at investigating the impact of heteroscedas-

ticity and unbalancedness on effect sizes in two-way fixed-effects ANOVA models. A real-life

dataset, from which three different samples were simulated was used to investigate the changes

in effect sizes under the influence of unequal variances and unbalancedness. The parametric

bootstrap approach was proposed in case of unequal variances and non-normality. The results

obtained indicated that heteroscedasticity significantly inflates effect sizes while unbalanced-

ness has non-significant impact on effect sizes in two-way ANOVA models. However, the impact

worsens when the data is both unbalanced and heteroscedastic.

Key words: Fixed-effects analysis of variance, unbalancedness, heteroscedasticity, homoscedas-

ticity, effect size, eta-squared, traditional F-tests, robust tests, normality, outliers, Shapiro

Wilk’s tests.
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Chapter 1

Introduction

1.1 Background to the study

Analysis of variance (ANOVA) models have been useful and applicable tools in various disci-

plines other than statistics, especially for experimental design. Lewicki and Hill (2007) argued

that ANOVA models have, in general, several advantages over other multivariate techniques in

that they are robust and powerful tests in multivariate analysis. ANOVA models are a type

of linear models appropriate when dealing with a metric or quantitative (usually continuous)

response variable predicted by one or more explanatory factors that are measured on nominal

or ordinal scale, and thus are qualitative in nature. With these two factors in consideration,

there are basically two investigations that statistical analysts mainly focus on. Firstly, it is the

main effect, which is the effect of one independent variable or factor on the response variable,

averaging over the levels of the other independent variable(s). The second one is the interac-

tion effect, which represents the combined effects of the two or more independent variables,

called factors, in explaining the dependent measure.

An extension of ANOVA where two or more metric dependent variables are being influenced

by one or more individual categorical variables gives rise to multivariate analysis of vari-

ance (MANOVA). Instead of performing multiple individual tests for each dependent vari-

able, MANOVA makes it easier to conduct a single overall statistical test incorporating all the

dependent variables involved. Sawyer (2009) postulated that, a MANOVA model aims at estab-

lishing how the response variable is influenced by the explanatory factors and/or combinations
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of these, called factor interactions. The model also aims to investigate the differences in the

means between and within factor levels. The interest is on how the altering of these factors

could explain the variation in the combinations or interactions of the response variables at the

same time. Similarly, MANOVA models have many advantages over several univariate ANOVA

models used in isolation since one can collectively test a set of hypotheses of the differences

in factor level means. This also considers the correlation between response variables and thus

makes better use of the information in data. However, in some cases the investigators are only

interested in the effect of one or more independent variables on a single response variable, thus

the most appropriate technique to apply is ANOVA instead of MANOVA. The deciding factor

is the number and nature of the dependent variables involved in the study. ANOVA is appro-

priate for one metric dependent variable, whereas MANOVA is best for two or more dependent

variables.

In as much as the main focus of analysis of variance procedure is on investigating the main and

interaction effects of the factors in question, it is not sufficient just to report that an effect is sta-

tistically significant. Brown (2008) argued that reporting the traditional ANOVA source table

(with sum of squares due to the source (SS), degrees of freedom (df), mean sum of squares due to

the source (MS), the F-statistic (F), and the probability of finding the observed results when the

null hypothesis is true (p-value) and discussing the associated significance levels is not the end

of the study, but it is just the beginning because we can learn much more by carefully plotting

and considering the interaction effects and doing follow up analyses like planned or post-hoc

comparisons, power and effect size analysis, and so forth. In support of this, Olejnik and Al-

gina (2003) argued that researchers can improve the presentation of their research findings by

supporting their statistical significance test with effect-size measure, which is a standardized

index that is independent of sample size but seeks to quantify the magnitude of the difference

between populations or the relationship between explanatory and response variables. To aug-

ment the significance tests, effect sizes are commonly used to provide important information

on how strong the relationship between the variables involved is, if it ever exists (Lakens, 2013).

Nevertheless, ANOVA and MANOVA models have specific assumptions that must be satis-
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fied if accurate analysis and results are to be achieved. These assumptions require the data

to be normally distributed, homoscedastic (equal or homogeneous population variances) and

completely balanced (having the same cell size in each factor combination), which is a rare

situation to meet these assumptions in real-life data analysis. Furthermore, several studies

which involve comparison of continuous responses variables among a variety of conditions that

are discrete do apply analysis of variance (ANOVA), which is most appropriate only when the

data conforms to a perfectly or completely balanced design ( that is, when there are equal cell

sizes). Normally, it is rare, due to various reasons, for a researcher to deal with analysis of

data that is completely balanced. Recent study has shown that standard multivariate tests

with balanced data, testing for factor effects, produce exact results. Other statisticians have

discovered that, with the presence of unbalancedness in data, the tests can be biased, especially

when heteroscedastic covariance matrices are involved.

Literature shows that many researchers have in the past tried to alleviate the problems of

non-normality, heteroscedasticity and unbalancedness by applying data cleaning techniques

like imputation of missing data, and transformation. However, transformations can not be a

perfect solution to the problems of non-homogeneous population variances even if the data is

somehow normally distributed. Zhang (2012) also supported this argument and tried to rec-

tify the problem by applying the approximate Hotelling T2 test to one-way MANOVA in the

presence of heteroscedasticity. Generally, multivariate analysis of variance is one of the most

popular techniques that is used especially when data involved is not normal and heteroscedastic.

As noted by Erceg-Hurn and Mirosevich (2008), quite a number of recent powerful statistical

techniques which are capable of rectifying the problems involved in assumption violations of

classic parametric techniques are in place. However, it is unfortunate that most researchers do

not apply these techniques, rather they attempt to apply the multivariate analysis of variance

techniques without paying particular attention to the limitations of ANOVA when dealing with

heteroscedastic and unbalanced data.

There is great need to conduct a thorough investigation on the effects of heteroscedasticity

and unbalancedness on effect sizes in significance tests when dealing with ANOVA data. Kali-
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nowski and Fidler (2010) argued that it is a common misconception that statistical significance

indicates a large and/or important effect. The crucial message here is that the calculated prob-

ability (p-value) is a very limited piece of information, relating to false-positive (type I) error

rates only. The same applies to statistical significance, which is merely a statement about the

p-value relative to an arbitrary cut-off, so it too relates only to false-positive errors. There is

much more to know about a set of empirical data. The best way to determine what went on in a

study is to look at the effect size of the study, or consider any other measure that meaningfully

summarises what went on in that study.

1.2 Motivation and Contribution

Statistical significance tests including Analysis of Variance (ANOVA), Multivariate Analysis of

Variance (MANOVA) and Ordinary Least Squares (OLS) regression, that are widely applied in

numerous disciplines have underlying assumptions, especially normality and homoscedasticity,

which have to be satisfied. Thompson (2007) emphasized that, as researchers, we need to recog-

nise that if we violate the assumptions of statistical methods, like the homogeneity of variance

in ANOVA, we compromise not only our calculated probabilities (p-values) but also our effect

estimates. In addition to that, Erceg-Hurn and Mirosevich (2008) supported the argument by

pointing to the fact that when these assumptions underlying the parametric significance tests

are sufficiently satisfied, the tests produce accurate results.

As a turnaround campaign, one of the most internationally respected statistician, Kirk (2003),

painted a portrait of a possible future for a scientific world in which effect sizes play a pivotal

role. Kirk (2003) based his argument on the view that the current practice of focusing exclu-

sively on a dichotomous decision strategy of rejecting or failure to reject the null hypothesis

test based on p-values is actually impeding scientific progress as well as distracting researchers

from real goals. Contemporary research should focus on scientific hypotheses, what data tells

us about the magnitude of effects, the practical significance of effects, and the steady accumu-

lation of knowledge.
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In line with this notion, Bakeman (2005) indicated that, given a complete explanation of the

effect sizes and their applicability in various research designs, many more investigators would

probably include them in their statistical reports. The magnitude of effect-size explains how

strongly the explanatory variable(s) are related to the response variable. Eta squared (η2),

also equivalent to the usual correlation ratio (R2) and Partial Eta squared (η2partial) are the

basic effect-size measures among the list in ANOVA, some of which will be discussed in detail

in the next chapter. Basically, eta squared (η2) is defined as the ratio of the sum of squares

of the effect of interest to the total sum of squares. On the other hand, Partial eta squared is

statistically defined as the ratio of the sum of squares of whatever effect is of interest divided

by the sum of squares of that effect and its associated error variance. Eta squared has its own

disadvantages which the partial eta squared is able to take care of. In simple terms, eta squared

and partial eta squared can be formulaically expressed as follows:

η2 = SSeffect

SStotal

(1.1)

where:

SSeffect → represents the sum of squares of interest in ANOVA

SST otal → represents the total sum of squares

η2
partial = SSeffect

SSeffect + SSerror

(1.2)

where:

SSeffect → represents the sum of squares of interest in ANOVA

SSerror → represents the error sum of squares associated with the effect of interest.

In his report, Bakeman (2005) demonstrated the fact that in common data analytic approaches

like the analysis of variance (ANOVA) with repeated measures, there is a lot of confusion in

the choice of appropriate measure of effect size. He proposed the generalised eta squared (η2
G),

as defined by Olejnik and Algina (2003), as a preferred effect measure over eta squared or

partial eta squared. The main argument for this effect measure was based on the fact that
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it provides easy comparability across between-subjects and within subjects designs as well as

being easy to compute from common statistical packages. Bakeman(2005) highlighted that the

generalised eta squared is however the same as partial eta squared for factorial designs with

between-subjects manipulated factors, even though in other designs the generalised eta squared

is less than partial eta squared.

There has been some confusions and debates on which effect-size(s) are applicable in various

designs. Most of these effect-size measures are the same but bearing different names. A

recent study in mediation analysis, by Wen and Fan (2015), is one example of a disapproval

of the recommendation that was previously done by Preacher and Kelly (2011), that the most

appropriate mediation effect measure is the kappa squared (κ2). As defined by Preacher and

Kelly (2011), kappa squared is the ratio of the observed indirect effect relative to the maximum

possible indirect effect for the given data conditions in the given model.

κ2 = ab

m(ab)
, 0 ≤ κ2 ≤ 1 (1.3)

where:

ab → represents the indirect mediation effect of predictor variable, X say, on response variable,

Y

m(ab) = m(a)m(b) → represents the maximum possible value of the indirect mediation effect,

and

c → represents the direct effect of X on Y

m(a) → represents the maximum possible value of a (given the values of b and c)in the medi-

ation model

m(b) → represents the maximum possible value of b (given the values of a and c)in the medi-

ation model.

According to Wen and Fan (2015), κ2 is not an appropriate effect measure because it lacks

the property of rank preservation, otherwise it is inversely affected by the mediation effect it

represents. As a result, it gives paradoxical results in multiple mediation models. Wen and Fan
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(2015) proposed that the traditional mediation effect size measure, PM (the ratio of the indirect

effect to the total effect), together with some other statistical information, should be preferred

for basic mediation models. Recently, the effect size aspect has been one of the contentious

issues in various statistical areas including the mediation analysis (Fritz, Taylor & MacKinnon,

2012).

With numerous estimates of effect sizes proposed to augment statistical significance tests in

literature, these tools work appropriately under the conditions necessary for the design in

question. Analysis of variance (ANOVA) is one of the areas in statistics where effect sizes im-

plications are to be fully comprehended. As observed by Olejnik and Algina (2003), these effect

sizes do not generalise beyond the limits of the research designs dealt with. This leads us to

the fact that some effect measures are preferred over the others depending on such factors like

the research design, Type I error probabilities and power of tests. No wonder, Kondo-Brown

and Brown (2008) correctly preferred to use partial eta squared because their design was a

MANOVA, which by definition involves non-independent or repeated measures.

Despite vast literature on simulation studies comparing type I error probabilities and powers of

existing analysis of variance methods, there is need for thorough research on the effects of, and

the remedies to the bias arising from such irregularities like unbalancedness and heteroscedas-

ticity in ANOVA models. Many researchers have in the past tried to propose remedies to these

individual multivariate diagnostics especially through monitoring and controlling the Type I

error rate and power of the tests in one-way ANOVA models. The impact of unbalancedness

and heteroscedasticity on effect size has not yet been fully comprehended, and as such, can

never be underestimated especially in models such as the two-way fixed-effects ANOVA. It is

based on these known and unknown problems of unbalancedness and heteroscedasticity that

the motivation to bridge the gap by further investigating their impact on effect sizes on clas-

sic parametric two-way ANOVA tests, comparing four different models derived from the same

real-life data, has triggered the execution of this thesis.

The research was designed in such a way that investigations on the impact of heteroscedasticity
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and unbalancedness on effect size were conducted on a real-life dataset of two-way unbalanced

ANOVA design with heterogeneous variances. Three samples were simulated from the origi-

nal dataset, one that is balanced heteroscedastic, the other balanced homoscedastic, and the

third being unbalanced homoscedastic. The primary concern was to establish how the mag-

nitudes effect size are influenced by the presence of heteroscedasticity and unbalancedness in

the datasets. The impact of heteroscedasticity and unbalancedness was interpreted based upon

the changes in the Eta squared (η2), Partial Eta squared (η2
partial) and Omega squared (ω2)

effect size measures. The results of this research will act as a stepping stone and a bridging gap

for further research in solutions to assumption violations and meaningful effects of statistical

significance tests in multivariate analysis.

1.3 Objectives of the thesis

1.3.1 Objectives

This research tries to establish how the significance tests, effect sizes in particular, of a two-way

fixed-effects ANOVA model can be affected if the essential analysis of variance assumptions

of homoscedasticity and unbalancedness are violated. The aim is to investigate the impact of

heteroscedasticity and unbalancedness on parametric statistical tests of two-way fixed-effects

ANOVA model through observing the change in effect size measures. A comparison of the effect

sizes was done on a balanced heteroscedastic two-way fixed-effects ANOVA model (simulated

from the original dataset), against the unbalanced and heteroscedastic model from the original

real-life dataset; the balanced homoscedastic model against unbalanced homoscedastic dataset

model through testing the following hypotheses:

1.3.2 Hypotheses

(i) Hypotheses testing under unbalancedness and heteroscedasticity

Based upon the effect size benchmarks provided by Cohen (1988), the effect size will be

deemed small when 0.01 ≤ η2
partial < 0.06, medium when 0.06 ≤ η2

partial < 0.14, and large
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when η2
partial ≥ 0.14. The same guidelines will be used for Eta squared (η2) and Omega

squared (ω2).

(1a) H0(A): There is no significant effect size of factor A

H0(A): η2 < 0.06 (small effect size, Cohen (1988))

H1(A): Reject H0 if η2 ≥ 0.06 (at least medium effect size, Cohen (1988))

(1b) H0(B): There is no significant difference in the measures of effect size on

a balanced and unbalanced model

H0(B): η2
partial(balanced) = η2

partial(unbalanced)

H1(B): Reject H0 if η2
partial(bal) - η2

partial(unbal) > 0.06 (at least medium effect size, Cohen

(1988))

(1c) H0(C): There is no significant difference in the measures of effect size on

a homoscedastic and heteroscedastic model

H0(C): η2
partial(homosced) = η2

partial(heterosced)

H1(C): Reject H0 if η2
partial(homosced) - η2

partial(heterosced) > 0.06 (at least medium effect

size)

(ii) Hypotheses on testing Assumptions

(2) H0: The covariance matrices are the same (Homoscedasticity)

H0: Σ1 = Σ2 = ... = Σd,

where d = 1,...,h

(3) H0: The sample data was from a normally distributed population (Nor-

mality)

H0: Xh ∼ Np(µh, Σh),

where Xh is hth response variable group
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Hypotheses 1(a) - 1(c) are the main hypotheses on which the thesis is based on, and will be

dealt with in Chapter 4 and 5, whereas hypotheses (2) - (3), based on assumption tests, will

be tested in Chapter 3.

1.4 Overview of Theories

A brief review of the theories and concepts involved in analysis of variance (ANOVA) is pre-

sented, with particular focus on the two-way fixed effects ANOVA. The concepts of heteroscedas-

ticity and unbalancedness in ANOVA models are briefly explained.

1.4.1 Two-Way ANOVA

Loeza-Serrano and Donev (2014), define ANOVA as a commonly used traditional statistical

technique for investigating how one or more qualitative predictor variables, called factors, affect

a continuous dependent variable through considering the mean differences for the explanatory

factor categories, known as factor levels. In order to estimate the values of the factor level

means, given a certain combination of factor levels, outcomes called replicates must be ob-

served. Equal number of replicates for each factor combination gives rise to balanced data.

Usually, unbalanced data is generated when the number of replicates is not the same in factor

levels.

The history of ANOVA models can be traced back to the time just after 1920 when Sir Ronald

Fisher first used the technique to analyse agricultural and biological experiments. In support of

that, Rutherford (2012), confirmed that the method is contained in several statistical packages

and has been extensively applied in many other disciplines. However, according to Sahai and

Khurshid (2005), ANOVA was primarily applied on balanced data until Frank Yates discovered

that the technique can also be used for unbalanced data analysis in the 1930’s. This has drawn

attention to several researchers and statisticians who attempt to explore the means to address

unbalanced data in ANOVA models (Sahai & Khurshid, 2005).
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According to Olive (2010), fixed-effects models belong to a family of general linear models

comprising of mixed and random effects models. In a two-way fixed effects ANOVA model, the

response variable, Y say, is predicted by two categorical factors, D and H say. Sawyer (2009),

argued that these two factors involved in fixed-effects models are assumed to be non-random,

and their factor levels are not a random sample from a large population of levels. He further

suggested that a fixed-effects model is particularly suitable if the main aim is to draw inferences

precisely on the factor categories included in the data set of the model being studied.

A natural extension of a simple one-way ANOVA gives rise to a two-way ANOVA with interac-

tions in that two independent variables (factors) effects are considered against one dependent

(response) variable. The interaction effect, as defined by Loeza-Serrano and Donev (2014),

is the means to compare the effect of a combination of two or more factors across their levels on

the response variable. Following what several statisticians have proposed before, the two-way

fixed-effects ANOVA model with interactions can be modeled as follows:

yijh = µ + αi + βj + αβij + ϵijh (1.4)

in which yijh represents the response of the hth replicate on the ith level of factor A and jth level

of factor B, i = 1,2,...,k; and j = 1,2,...,m; h = 1,2,...,n. Analogously, µ is the overall mean, αi

and βj are the main effects of the ith and jth levels of factors A and B respectively; and αβij is

the interaction effect of the ith and jth levels of factors A and B. We assume that the ϵijh are

iid ∼ N(0;δ2
e), which implies that E(yijh) = µ + αi + βj + αβij and Var(yijh) = δ2

e .

The Null hypotheses of the two-way fixed-effects ANOVA can be expressed as given below:

H0(A) : α1 = α2 = ... = αk = 0 (1.5)

H0(B) : β1 = β2 = ... = βm = 0 (1.6)

H0(AB) : αβ11 = ... = αβk1 = ... = αβ1m = ... = αβkm = 0 (1.7)
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Hypothesis 1.5 opines the non-existence of factor A main effect, and 1.6 opines the non-existence

of factor B main effect, and 1.7 suggests the non-existence of the effect of interaction between

factors A and B. According to Olive (2010), the test statistic for the three null hypotheses

above follow the F-distribution, an analogy of the general linear hypothesis test statistic.

1.4.2 Unbalancedness

According to Olive (2010), a balanced design consists of all cells of the same size. Zetterberg

(2013) further elaborated that data is balanced when there are equally many observations for

each factor level combination. Thus unbalancedness can be defined as a situation whereby the

cell sizes are not equal across the factor combinations being compared. As noted by Harrar

and Bathke (2008), real life data is not balanced in most cases due to various reasons. Some

of the reasons that give rise to unbalancedness in data include the research design, research

instrument, or missing values due to other reasons beyond the control of the researcher. The

case when data is unbalanced must be treated as a separate issue different from a special case

for balanced data. The differences between balanced and unbalanced data are more than the

similarities thereof.

There are three ways in which balanced data can be marred in two-way ANOVA models. The

first situation is when the number of observations for the different factorial combinations are

not equal. The second situation is when some cell values (factorial combinations) are com-

pletely missing due to several reasons. The third situation is when some response variables

have not been measured on other experimental units, especially in multivariate data. Of the

three situations, Xu et al (2013) argued that the most common form of unbalancedness in data

is the first one, when the number of observations per cell (factor level combination) is not equal.

The three types of imbalance are discussed in turn.

(i) Unequal cell values

Unequal number of observations in each cell is the most common type of imbalance sit-
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uation in ANOVA data. This can happen due to various reasons. For an example, the

unit of study, which can be an organism or human being, might cease to be part of study

due to relocation, mortality or other reasons. In practice, ignoring the missing and only

analysing the available units will result in biased and incomplete reflection of the effects

of factors under study.

(ii) Some responses missing

This type of imbalance normally occurs when the researcher decides not to measure some

of the response variables on some individual units. There are so many factors that may

affect the collection of response measurements. This might be due to the difficulty to

acquire the individual’s response, or mortality of the subject during the course of study.

(iii) Some cells missing

This is a situation where by some cells (treatment combinations) are totally missing. This

is the most extreme case of imbalance which needs special care in analysis of variance. It

can be due to the fact that there was no information observed for other treatments. In

the presence of missing cells, it is not appropriate to proceed with inferences using the

traditional approaches of dealing with missing data that are presented later.

The traditional approach of imposing balance through deleting some of the observations ran-

domly chosen from the cell with extra data before analysing the reduced dataset has been used

by investigators of late (Hair et al., 2014). When the missing observations are few, an easier

method is to fill in the gaps with estimates from the data, an approach called imputation (Hair

et al., 2014). Contemporary technology has come with statistical packages such as SPSS, R

and SAS, which have some methods for computing ANOVA sum of squares designated as Type

I through Type IV sum of squares for hypothesis testing as well as the provisions to deal with

missing data.
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1.4.3 Heteroscedasticity

Heteroscedasticity in ANOVA can be simply defined as a situation where the error terms (also

known as variances) are not equal between the groups of the predictor variables being com-

pared. McDonald (2014) asserted that in ANOVA and other parametric tests, homoscedasticity

assumption states that within-group standard deviations of the data set are all equal, otherwise

they are heteroscedastic. It is the violation of this homoscedasticity assumption that is called

heteroscedasticity, that is, when the error terms are unequal across the independent variable

values. Moder (2007) argued that violation of this homoscedasticity assumption may cause an

increase in Type I error rate which is not statistically desirable.

When the homoscedasticity assumption has been slightly violated, statistics has reliably proven

that ANOVA and MANOVA model estimations are robust. Moreso, it has been discovered that

the estimation in balanced ANOVA and MANOVA models is robust even with minor deviations

from the homoscedasticity assumption. However, it is not always the case that covariances are

equal for each factor combination as in balanced data. McDonald (2014) asserted that if the

deviation is severe, remedies like data transformation and non-parametric tests might fail to

rectify the heteroscedasticity problem.

According to Box (1949), Levene’s test can be used to test the homogeneity of variance assump-

tion in univariate ANOVA, whereas Box’s M test is used for multivariate analysis. The Box’s M

test is a statistical procedure used to test for homogeneity of covariance matrices in multivariate

analysis. It is basically meant to establish the existence or non-existence of homoscedasticity

across the independent variables levels in a multivariate analysis of variance model, whereas

Levene’s test is applicable to univariate cases.

Very little efforts to alleviate the problems involved in two-way fixed-effects ANOVA models

with unequal covariance matrices have been suggested in literature. The current situation im-

plies that a lot of effort and ideas are still needed to unearth the limitations and problems

associated with unbalancedness and heteroscedasticity when dealing with univariate and mul-
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tivariate data.

1.5 Layout of the thesis

Chapter 1 : Introduction: This chapter dealt with the introduction aspects which include

the background of the study, motivation and contribution that triggered the researcher to con-

duct such a study. A brief overview of the theories involved in multivariate statistical tests

analysis was given, with particular focus on the theory of ANOVA, unbalancedness and het-

eroscedasticity in ANOVA data.

Chapter 2 : Theory and Practice of heteroscedasticity and unbalancedness in

ANOVA models: This chapter presents a detailed explanation of the theories applied in

ANOVA, which include; the fixed-effects, random-effects and mixed-effects ANOVA models,

their assumptions and hypotheses testing. The main focus will be on two-way fixed-effects

ANOVA model with interactions. The impact of heteroscedasticity and unbalancedness on

two-way fixed effects ANOVA will be reviewed. Lastly but not least, the methods of testing

effect size in significance tests will be explained.

Chapter 3: Data Exploration: The original dataset is explored and cleaned for unneces-

sary information before it is used for analysis purposes. Missing values and outliers are checked

and corrective measures undertaken. The three basic assumptions of ANOVA (normality, ho-

moscedasticity and independence of observations) are tested, and remedies applied for any

violation of these assumptions.

Chapter 4 : Materials and Methods: This chapter outlines the methodology and tech-

niques used to analyse data. The Six-Stages model building proposed by Hair et al. (2014)

will be used to present the thesis report. The main focus of this chapter will be on defining

the materials used, research design, testing of ANOVA assumptions, estimating the ANOVA

model, testing the model fit and validation of results.
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Chapter 5 : Analysis and Discussion of Results: A detailed analysis and discussion of

the research findings is dealt with in this chapter. Comparisons of different outputs from the

statistical packages, SPSS and R, was used for data analysis and interpretation on both bal-

anced unbalanced and heteroscedastic two-way ANOVA models. The comparisons were based

on the methods used for significance testing and on the differences in effect sizes under the

influence of heteroscedasticity and unbalancedness in two-way ANOVA.

Chapter 6 : Summary, Conclusions, Limitations of the Study and Areas of Further

Research: The chapter presents a brief summary of the study; the conclusions derived from the

analysis done; the limitations and constraints that affected the study; and finally, the suggested

areas of further research that the research could not fully shed light on.
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Chapter 2

Theory and Practice of
Heteroscedasticity and Unbalancedness
in ANOVA Models

2.1 Introduction

This chapter is a text-book type review of well known documented concepts about ANOVA.

Among the concepts that will be reviewed are: the types of ANOVA models and their assump-

tions ranging from one-way to two-way fixed-effects ANOVA, random-effects and mixed-effects

ANOVA models and their associated hypotheses tests; the statistical tools used to measure

effect size; the origin of heteroscedasticity and unbalancedness in ANOVA data; the problems

involved in the analysis of variance in the presence of heteroscedasticity and unbalancedness

in research data; and the methods that have been used to stabilise heteroscedasticity and deal

with unbalancedness in ANOVA data.

2.2 Theory of ANOVA

The development of analysis of variance techniques in analysing experimental data is attributed

to Sir Ronald Fisher back in the 1920’s. Although the ANOVA technique was initially applied

to balanced data, it was later discovered that the method could be applied even on unbalanced

data (Sahai & Khurshid, 2005). This discovery worked as an eye-opener to several researchers

who started to explore other scenarios around ANOVA data like heteroscedasticity. As a result,

the method is now available in several statistical packages and has been extensively applied in

many disciplines.
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Loeza-Serrano and Donev (2014), define ANOVA as a commonly used traditional statistical

technique for investigating how one or more qualitative predictor variables, called factors, affect

a continuous dependent variable through considering the mean differences for the explanatory

factor categories, known as factor levels. In order to estimate the values of the factor level

means, given a certain combination of factor levels, outcomes called replicates must be observed.

Equal number of replicates for each factor combination balanced gives rise to balanced data.

In most cases, the number of replicates varies over factor levels, giving rise to unbalanced data.

Gaugler (2008) postulated that the balanced and unbalanced cases in multivariate analysis of

variance and ANOVA models is one important concept that must be carefully considered when

dealing with model estimation and hypothesis testing.

2.3 Models in ANOVA

There are two types of models that are used to describe the choice of levels of the independent

variable in ANOVA, which have essential inferential interpretation drawn from that study: the

factor levels can be deliberately chosen by the researcher, which is normally done; or they are

randomly selected from some larger set of levels.

If the factor levels are deliberately chosen, based on the researcher’s interest, and the levels

are a set of all possible choices, then we have a fixed-effect model or fixed-factor model,

also known as ANOVA Model I. The fact that the factor levels are not a random sample

from some larger population implies that the inferences made from that model will only be

generalisable to the levels involved. On the other hand, if the independent or factor levels were

a random set selected from a larger list of levels, then we have a random-effect model, also

known as the ANOVA Model II and the inference drawn from such model can be generalized

to the whole population of levels from which the sample of levels was drawn. The third type

of ANOVA model is the one which consists of a combination of fixed factor(s) and random

factor(s), the mixed-effects Model, known as the ANOVA Model III type. These are

discussed in detail in the next sections.
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2.3.1 Fixed-effects ANOVA models

According to Olive (2010), fixed-effects models belong to a family of a large set of general

linear models in which the levels of each factor are fixed and not a random sample from the

population of levels. The interest of the experiment is the differences in response among these

specific levels. Sawyer (2009), argued that a fixed-effects model is particularly suitable if the

main aim is to draw inferences precisely on the factor categories included in the data set of the

model being studied.

2.3.1.1 One-way fixed-effects ANOVA

One-way ANOVA has only one categorical independent variable or factor, which has two or

more (theoretically any finite number) nominal levels called factor levels. Hence, the reason

it is termed a single factor analysis of variance. We consider only one independent variable in

one-way ANOVA, which divides the subjects under study into two or more levels or groups.

However, the hypotheses formulated are based on the means of the groups of the single depen-

dent variable involved, which is measured from the subjects under study, in quantitative and

continuous nature.

In simple form, the one-way ANOVA model can be modeled as a means model, with a single

response variable related to level means of a categorical independent factor. The one-way

ANOVA means model can be expressed as follows:

yih = µi + ϵih (2.1)

where yih is the response of the hth replicate on the ith level of factor A, i=1,...,k; and h =

1,2,...,n. µi is the mean of the ith level of the independent factor , ϵih is the random error. We

assume that the ϵih are iid ∼ N(0;σ2
e), which implies that E(yih) = µi and Var(yih) = Var(ϵih)

= σ2.

When considering the deviation of each factor level from the overall population mean, i.e let
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αi = µi − µ be the deviation, implying µi = µ + αi. Substituting the deviations in model (2.1),

we formulate the following factor effects model:

yih = µ + αi + ϵih (2.2)

where yih is the response of the hth replicate on the ith level of factor A, i=1,...,k; and h =

1,2,...,n. Analogously, µ is the overall mean, αi is the main effects of the ith levels of factors A.

We assume that the ϵih are iid ∼ N(0;σ2
e), which implies that E(yih) = µ+αi and Var(yih) = σ2

e .

This study focused on the two-way fixed-effects ANOVA design which the next section is going

to talk about.

2.3.1.2 Two-way fixed-effects ANOVA

Two-way ANOVA with interactions is a natural extension of a simple one-way ANOVA in that

the effects two independent variables (factors), either in isolation or in combination, influence

the response or dependent variable. The means to compare the effect of one factor on the

response variable across the levels of the second factor is through observing the interaction

effect. In a two-way fixed-effects ANOVA model, the response variable, Y say, is predicted by

two categorical factors, X1 and X2 say. Sawyer (2009), argued that these two factors involved

in fixed-effects models are assumed to be non-random, and their factor levels are not a random

sample from a large population of levels. Following what several statisticians have proposed

before, the two-way fixed-effects ANOVA model with interactions can be modeled as follows:

yijh = µ + αi + βj + αβij + ϵijh (2.3)

where yijh is the response of the hth replicate on the ith level of factor A and jth level of factor

B, i = 1,2,...,k; and j = 1,2,...,m; h = 1,2,...,n. Analogously, µ is the overall mean, αi and βj

are the main effects of the ith and jth levels of factors A and B respectively; and αβij is the

interaction effect of the ith and jth levels of factors A and B. We assume that the ϵijh are iid ∼

N(0;σ2
e), which implies that E(yijh) = µ + αi + βj + αβij and Var(yijh) = σ2

e .
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The hypotheses involved with the two-way fixed-effects ANOVA in 2.3.3 can be written as null

hypotheses given below:

H0(A) : α1 = α2 = ... = αk = 0 (No factor A effect)

H0(B) : β1 = β2 = ... = βm = 0 (No factor B effect)

H0(AB) : αβ11 = ... = αβk1 = ... = αβ1m = ... = αβkm = 0, (No interaction) (2.4)

Analogous to the general linear hypothesis, the test statistic for the three null hypotheses above

follow the F-distribution.

2.3.1.3 Assumptions underlying the fixed-effects ANOVA Model I

ANOVA assumptions which this thesis focused on and tested include:

(i) Normality

This assumption of normality states that the dependent variable, from which the samples

are drawn, is normally distributed in each of the groups. It is a theoretical requirement

of the distribution of the populations from which the samples are drawn.

(H0): There is no significant deviation from normality for each of the dependent variable’s

groups/levels.

(H1): There is a significant deviation from normality.

The Shapiro-Wilk’s test is a statistical test used to test whether the sample data was

drawn from a normally distributed population or not. According to this test, the p-value

of the test is compared against a specified level of significance usually denoted as α, and

the following rejection criterion is used: Reject H0 in favour of H1 if p < α, otherwise

retain the null hypothesis.
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(ii) Homoscedasticity

The assumption of homogeneity of variance requires the variances across the groups of the

response variable to be equal. In conjunction with the normality assumption, the homo-

geneity assumption requires that the distributions in the populations are the same in all

dimensions, that is, in means, shapes and variance. Otherwise, there is heteroscedasticity

exists when the variances are unequal across the groups.

Levene’s test was used to test the violation of the homogeneity of variance tests on both

the balanced and unbalanced data sample. The Null hypothesis (H0: There is equality of

covariance matrices) was rejected at 5% significance level if p-value is less than α (5%).

(iii) Independence of observations

The independence of observations assumption requires that the error terms or residual

effect ϵih are independent from observation to observation. Furthermore, the ϵih are

randomly and normally distributed.

ϵih ∼ iN(0, σ2); where E(ϵih) = 0 and Var(ϵih) = σ2

Residual sequence plots can be used to check correlation of error terms, that is indepen-

dence. However, in most cases, independence of observation is simply ensured by the

nature of design (Hair et al., 2014).

(iv) Outliers

Outliers can be defined as anomalous values in the data set which tend to inflate the sam-

ple variance. This increase in sample variance has an inverse influence on the calculated

F-Statistic of the ANOVA, hence decreasing the chances of rejecting H0: Null hypothesis.

The Normal Q-Q plots or the box-and-whisker plots can be used to detect the presence

of outliers in the research data.
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2.3.1.4 Hypothesis testing on one-way fixed-effects ANOVA

The general Null hypothesis tested in one-way ANOVA model is expressed as follows:

H0 : α1 = α2 = ... = αk = 0 (2.5)

The null hypothesis assumes that there is no effect of the independent factor on the response

variable, against H1: At least one αi ̸= 0. The hypotheses of a one-way ANOVA can be tested

by partitioning the total sum of squares into the following components:

SSTOTAL = SSA + SSE (2.6)

where SST OT AL represents the total sum of squares, SSA is the sum of squares of factor A and

SSE is the sum of squares of the error terms. These components are used to construct a one-way

ANOVA table (1 ≤ i ≤ k; 1 ≤ h ≤ n) as follows:

Table 2.1: One-way fixed-effects ANOVA
Source of Variation df Sum of Squares E(MS) F
Factor A k-1 ∑k

i=1
∑n

h=1(Y i. − Y ..)2 SSA

k−1
MSA

MSE

Error n-k ∑k
i=1

∑n
h=1(Yih − Y i.)2 SSE

(n−k)
Total n-1 ∑k

i=1
∑n

h=1
∑n

h=1(Yih − Y ..)2

There are three sources of variation in one-way ANOVA data. These are: the factor, which is

the factor of interest in the study; the error, referring to unexplained random error; and the

total, representing the total variation in the data that is associated with the grand mean when

the factor of interest is ignored. The degrees of freedom (df) refers to the number of cell means

that are free to vary when the grand mean is predetermined. The sum of squares involved

are also determined according to the sources of variation, that is, quantifying the variability

between the groups of interest (SSfactor), variability within the groups of interest (SSerror), and

the total variability in the observed data (SStotal). The average of the sum of squares gives

the mean squares (MS) for the factor and error, which are used to calculate the F-statistic as

shown in Table 2.1 above.
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2.3.1.5 Hypothesis testing on two-way fixed-effects ANOVA

Two-way fixed-effects ANOVA model, in relation to the general hypotheses (2.4) and the con-

ditions for the basic ANOVA model, can assume as the following form:

H0(A) : α1 = α2 = ... = αk = 0

H0(B) : β1 = β2 = ... = βm = 0

H0(AB) : αβ11 = ... = αβk1 = ... = αβ1m = ... = αβkm = 0 (2.7)

where H0(A) is the main effect hypothesis of the first factor, A: H0(B) is the main effect hypothesis

of the other factor B, and H0(AB) is interaction effect hypothesis between the two factors.

Analogous to the previous section, the three null hypotheses above use the F-statistics, with

the total sum of squares partitioned as follows:

SSTotal = SSA + SSB + SSAB + SSerror (2.8)

Due to the fact that SSA, SSB, and SSAB are independent, the three hypotheses can be tested

separately. The following ANOVA table outlines the breakdown of the sum of squares involved

in a two-way fixed effects ANOVA model (1 ≤ i ≤ k; 1 ≤ j ≤ m; 1 ≤ h ≤ n).

Table 2.2: Two-way fixed-effects ANOVA
Source of Variation df Sum of Squares E(MS) F
Factor A k-1 ∑k

i=1
∑n

h=1(Y i. − Y ..)2 SSA
k−1

MSA

MSE

Factor B m-1 ∑k
i=1

∑m
j=1

∑n
h=1(Y .j. − Y ...)2 SSB

m−1
MSB

MSE

A*B (k-1)(m-1) ∑k
i=1

∑m
j=1

∑n
h=1(Y ij. − Y i.. − Y .j. + Y ...)2 SSAB

(k−1)(m−1)
MSAB

MSE

Error km(n-1) ∑k
i=1

∑m
j=1

∑n
h=1(Yijh − Y ij.)2 SSE

km(n−1)
Total kmn-1 ∑k

i=1
∑m

j=1
∑n

h=1(Yijh − Y ...)2

Of course there are many multi-way fixed-factor or effects (k-way fixed-effects)ANOVA models,

but this thesis concentrated on two-way fixed-effects models only. The components of Table 2.2

above are analogous to Table 2.1 except that there are additional sources of variation, factor B

and the interaction of the two factors.
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2.3.2 Random-effects ANOVA models

So far only the fixed-factor or effects models whose factor levels are specifically determined by

the researcher have been presented, in which the main interest is to compare the response effect

for only those fixed factor levels. However, in most cases, researchers have to randomly select

a sample of factor levels from the entire population of levels, and generalise the analysis results

to the entire population of levels.

A random-effect ANOVA model is the one that has a response variable being influenced by one

or more random factors which has many possible levels, and the main interest is to compare

the differences in the response variable over the entire population levels. As such, inferences

are drawn only from the random sample of levels included in the model.

2.3.2.1 One-way random-effects ANOVA

As stated before, the one-way random-effects ANOVA model consists of one independent factor

whose levels are a random sample from the entire population of levels, where the interest is

in the variability of the response variable over the entire population of the independent factor

levels. The variance components model of a one-way random-effects model is given by:

Yih = αi + ϵih (2.9)

where αi ∼ idd N(µ, σ2
A) ; ϵih ∼ N(0, σ2) ; αi and ϵih are independent. E(Yih) = µ ;

Var(Yih) = σ2
A + σ2 implying Y ∼ N(µ, σ2

A + σ2).

Analogously, letting µi = µ + αi in 2.9, we can express the variance component model as a

random-effects model as follows:

Yih = µ + αi + ϵih (2.10)

where:

αi ∼ N(0,σ2
A) are normally distributed independent variables; i=1,...,k and

the ϵih ∼ N(0,σ2) are also iid.
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The model can also be separated as:

Yih ∼ N(µ, σ2
A + σ2)

µ → is the overall mean,

αi → is the effect of the ith random level of factor A, and αi ∼ i.i.d N(0,σ2
A)

ϵih → is the error term.

2.3.2.2 Assumptions underlying the one-way random-effects ANOVA model

Before proceeding with any inferences in ANOVA, it is necessary to check the model assump-

tions first, otherwise biased conclusions may be obtained. The residual plot can be used to

check the random-effects model assumptions since the least squares estimations are the same

as those for fixed-effects models. The assumptions that need to be confirmed in random-effects

ANOVA model are given below.

(i) Homogeneity of variances

The variance of the data in the groups should be homogeneous, that is, the error terms

must be independently, identically and normally distributed,

ϵih ∼ N(0, σ2).

Checking for this assumption is analogous to the fixed effects case.

(ii) Normality of random effects αi

Random-effects ANOVA models are not robust to normality departure, hence, this as-

sumption is important to check. Normal probability (Q-Q) plots can also be used to check

for departure, noting that;

αi ∼ N(0, σ2
α) and Var(Yih) = σ2

α + σ2.

(iii) Independence of ϵih’s from αi’s
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This condition is very difficult to check, hence care must be taken when the design and

implementation is being chosen. However, heteroscedasticity of the ϵih’s can be an indi-

cation of violation of the independence assumption.

(iv) Independence of αi’s

The assumption is also difficult to check with the residuals, so care must be taken when

the design is used.

2.3.2.3 Hypothesis testing on one-way random-effects ANOVA

The hypotheses that we are concerned with in one-way random-effects model are a bit different

from the one-way fixed-effects model:

H0 : σ2
A = 0 against H1; σ2

A ̸= 0 (2.11)

The purpose of these hypotheses is to check the effect of the random factor on the response

variable as is the case with the fixed effects model. The composition and layout of the ANOVA

table is almost the same as the fixed effects one. The only difference is that the expected

mean squares, E(MSA) now reflect randomness of αi’s, but E(MSE) remains the same. That

is, E(MSA) = σ2
A + σ2 ; and E(MSE) = σ2 as usual.

Table 2.3: One-way random-effects ANOVA
Source of Variation df Sum of Squares E(MS) F
Random Factor A k-1 SSA = ∑k

i=1
∑n

h=1(Y i. − Y ..)2 MSA= σ2+knσ2
A

k−1
MSA

MSE

Error n-k SSE = ∑k
i=1

∑n
h=1(Yih − Y i.)2 MSE = σ2

(n−1)k
Total n-1 SST = ∑k

i=1
∑n

h=1
∑n

h=1(Yih − Y ..)2

The sum of squares in Table 2.3 above are calculated in a similar way to fixed-effects model.

Under H0, it can be seen that MSA

MSE
∼ F(k−1),(n−1)k, the Fisher distribution with k-1, (n-1)k

degrees of freedom.

2.3.2.4 Two-way random-effects ANOVA

Extending the one-way random-effects model by introducing an additional random factor with

a subset of levels randomly selected from the entire population of levels as usual, we have a
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two-way random-effects model. This model with both effects random has the following means

and random effects model formats:

Yijh = µij + ϵijh (2.12)

Letting µij = µ + αi + βj + (αβ)ij, we can decompose the two-way random-effects means model

as follows:

Yijh = µ + αi + βj + (αβ)ij + ϵijh (2.13)

where 1≤ i ≤ k ; 1≤ j ≤ m ; 1≤ h ≤ n

µ → is the overall mean,

αi → is the effect of the ith random level of factor A, and αi ∼ i.i.d N(0,σ2
A)

βj → is the effect of the jth random level of factor B, and βj ∼ i.i.d N(0,σ2
B)

(αβ)ij → is the (i,j)th interaction effect of factors A and B, and (αβ)ij ∼ i.i.d N(0,σ2
AB)

2.3.2.5 Assumptions underlying the two-way random-effects ANOVA model

The assumptions that are associated with this model are:

(i) Homogeneity of error terms ϵijh’s

The variance of the data in the groups should be homogeneous, that is, the error terms

must be independently, identically and normally distributed

ϵijh ∼ i.i.d N(0,σ2)

(ii) Normality of random effects

αi ∼ i.i.d N(0,σ2
A)

βj ∼ i.i.d N(0,σ2
B)

(αβ)ij ∼ i.i.d N(0,σ2
AB)

As stated in the one-way case, the normal probability plots can be used to check these

assumption.
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(iii) Independence of ϵijh’s from αi’s and βj’s

Care must be taken when the design and implementation is being chosen, otherwise

heteroscedasticity of the ϵijh’s can be an indication of violation of the independence as-

sumption.

(iv) Independence of αi’s and βj’s

Also, this assumption is difficult to check with the residuals, so care must be taken when

the design is used.

2.3.2.6 Hypothesis testing on two-way random-effects ANOVA

The hypotheses that we are concerned with in two-way random-effects model are an extension

of the one-way random-effects model:

HA
0 : σ2

A = 0

HB
0 : σ2

B = 0

HAB
0 : σ2

AB = 0 (2.14)

The purpose of these hypotheses is to check the effects of the random factors and their in-

teractions on the response variable. The major objective is to extend the test conclusion to

the entire population of treatment levels. The composition and layout of the ANOVA table as

follows:

Table 2.4: Two-way random-effects ANOVA
Source df Sum of Squares E(MS) F
Factor A k-1 ∑k

i=1
∑n

h=1(Y i.. − Y ...)2 σ2+nmσ2
A+nσ2

AB

k−1
MSA

MSAB

Factor B m-1 ∑k
i=1

∑m
j=1

∑n
h=1(Y .j. − Y ...)2 σ2+nkσ2

B+nσ2
AB

m−1
MSB

MSAB

A*B (k-1)(m-1) ∑k
i=1

∑m
j=1

∑n
h=1(Y ij. − Y i.. − Y .j. + Y ...)2 σ2+nσ2

AB

(k−1)(m−1)
MSAB

MSE

Error km(n-1) ∑k
i=1

∑m
j=1

∑n
h=1(Yijh − Y ij.)2 σ2

(n−1)km

Total kmn-1 ∑k
i=1

∑m
j=1

∑n
h=1(Yijh − Y ...)2

All the F tests in random models require appropriate test statistics that are determined by

appropriate calculations of the expected mean squares. Correct denominators are supposed

to be identified to perform the appropriate F tests as shown in Table 2.4 above. The mean
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square of the random factors A (MSA) and B (MSB) both involve the interaction sum of squares

(MSAB) instead of the mean square error (MSE) as in fixed model. Only the test

HAB
0 : σ2

AB = 0 in (2.14) uses the error sum of squares (MSE) in the test statistic.

2.3.3 Mixed-effects ANOVA model

Sometimes we have a combination of fixed effects factors and random effects factors in a single

model. The simplest being a single fixed effect and a single random factor interacting to explain

the differences in the response variable.

2.3.3.1 Two-way mixed-effects ANOVA

We now consider a two-way mixed-effects ANOVA model with factor A fixed and factor B

random. The model is expressed thus:

Yijh = µ + αi + βj + (αβ)ij + ϵijh (2.15)

where 1≤ i ≤ k ; 1≤ j ≤ m ; 1≤ h ≤ n

µ → is the overall mean,

αi → is the effect of the ith level of fixed factor A, with ∑
i αi = 0

βj → is the effect of the jth random level of factor B, and βj ∼ i.i.d N(0,σ2
B)

(αβ)ij → are the (i,j)th interaction effects of factors A and B.

ϵijh → is the error term. Since randomness is catching, the interaction between a random and

fixed effect ends up random and has a distribution.

2.3.3.2 Assumptions underlying the mixed-effects ANOVA model

The assumptions of this model are that:

(i) Normality assumptions

ϵijh ∼ i.i.d N(0,σ2)

30



βj ∼ i.i.d N(0,σ2
B)

(αβ)ij ∼ i.i.d N(0,k−1
k

σ2
AB)

(ii) Independence assumption

(αβ)ij are independent of βj

ϵijh are independent of the βj and (αβ)ij

(αβ)ij not in the same column are independent, but those in the same column are depen-

dent.

(iii) Sphericity across the levels of the fixed factor

With the additional restrictions that ∑
iα = 0 for each j; and ∑

i(αβ)ij = 0 ∀j; (αβ)ij ∼

N(0,k−1
k

σ2
AB) it is important to note that testing the main effect of the fixed factor requires

an additional assumption that all the pairwise differences of the fixed factor levels must

be of homogeneous variance. This is called the assumption of sphericity across the fixed

factor levels.

2.3.3.3 Hypothesis testing on two-way mixed-effects ANOVA

The hypotheses of interest on this model are given by:

HA
0 : αi = 0 fixed effect

HB
0 : σ2

B = 0 random effect

HAB
0 : σ2

AB = 0 interaction effect (2.16)

It can be noted that the random effect hypothesis (HB
0 ) is tested by the error (F = MSB

MSE
) whilst

the fixed effect (HA
0 ) is tested by the interaction (F = MSA

MSAB
). More detail can be seen in the

ANOVA table below.
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Table 2.5: Two-way mixed-effects ANOVA
Source df Sum of Squares E(MS) F

Fixed A k-1 ∑k
i=1

∑n
h=1(Y i.. − Y ...)2 σ2+ (nm)

(k−1)
∑

α2
i +nσ2

AB

k−1
MSA

MSAB

Random B m-1 ∑k
i=1

∑m
j=1

∑n
h=1(Y .j. − Y ...)2 σ2+nkσ2

B

m−1
MSB

MSAB

A*B (k-1)(m-1) ∑k
i=1

∑m
j=1

∑n
h=1(Y ij. − Y i.. − Y .j. + Y ...)2 σ2+nσ2

AB

(k−1)(m−1)
MSAB

MSE

Error km(n-1) ∑k
i=1

∑m
j=1

∑n
h=1(Yijh − Y ij.)2 σ2

(n−1)km

Total kmn-1 ∑k
i=1

∑m
j=1

∑n
h=1(Yijh − Y ...)2

In this case, the F tests in the mixed model that involves the interaction of a fixed factor A and

a random factor B would require testing the effects of both the fixed factor and the random

factor by using the MSAB as the error term. However, the interaction effect AB is the only one

tested with the MSE as the error term (Table 2.5).

2.4 Heteroscedasticity in ANOVA

In both standard ANOVA and MANOVA models, there is a basic assumption that the samples

being dealt with are independent, normally distributed, and are homoscedastic over the levels of

factor combinations. Violation of the homoscedasticity, called heteroscedasticity, occurs when

the error terms are unequal across the independent variable values. A lot of negative effects

and problems are associated with the violation of ANOVA assumptions, resulting in biased and

optimistically inflated results. In order to have a strong grip on the concept, a brief review of

the components of a heteroscedastic ANOVA model is outlined in the next section.

2.4.1 Heteroscedastic two-way ANOVA model

Analogous to the balanced ANOVA design, we consider a two-way ANOVA model with two

fixed factors, factor A with levels i=1,...,k and factor B with levels j=1,...,m. Let Yijh, i,j and

h as defined, be random variable whose observed sample values are yijh. Also let the sample

mean (Y ij) and sample variance (S2
ij) be defined as follows:

Y ij = ∑nij

h=1
Yijh

nij
and S2

ij = ∑nij

h=1
(Yijh−Y ij)2

nij

The two-way heteroscedastic ANOVA model is therefore given by:
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Yijh = µ + αi + βj + (αβ)ij + ϵijh, (2.17)

where µ is the overall mean; αi is the effect of the ith level of factor A, βj the jth level of factor

B; whereas (αβ)ij represents the interaction effect of factors Ai and Bj, and ϵij ∼ N(0,σ2
ij)

For coefficients µ, αi, βj and (αβ)ij to be uniquely defined, additional constraints, ωi and νj,

are needed.

Suppose ωi and νj, (1 ≤ i ≤ k ; 1 ≤ j ≤ m) are non-negative weights (∑k
i=1 ωi > 0 and∑m

j=1 νj > 0), we apply the following constraints in model 2.17 above:∑k
i=1 ωαi = 0; ∑m

j=1 νjβj = 0; ∑k
i=1 ωi(αβ)ij = 0; ∑m

j=1 νj(αβ)ij = 0

where:

ωi = ui. = ∑j=1
m uij and νj = u.j = ∑k

i=1 uij, with restrictions ∑
i ui.αi = 0 and ∑

j u.jβj = 0,

with uij = nij

σ2
ij

, and 1 ≤ i ≤ k; 1 ≤ j ≤ m.

2.4.2 Hypothesis testing on heteroscedastic two-way ANOVA

The hypotheses that we mainly focus on, defined for 1 ≤ i ≤ k; 1 ≤ j ≤ m, are:

H0(A) : α1 = α2 = ... = αk = 0

H0(B) : β1 = β2 = ... = βm = 0

H0(AB) : (αβ)11 = ... = (αβ)k1 = ... = (αβ)1m = ... = (αβ)km = 0 (2.18)

H0(A) and H0(B) test the the presence of the main effects of factors A and B, respectively, and

H0(AB) tests the presence of an interaction effect between factors A and B, against their usual

alternative hypotheses.

For the standardised sum of squares due to factor A, factor B and the interaction sum of

squares, and the related p-values for hypothesis testing, reference is made to Arnold (1981);

Ananda and Weerahandi (1997); and Fujikoshi (1993). Nevertheless, as advised by Milliken

and Johnson (1984), Type III Sum of Squares, readily available in statistical packages SAS and
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SPSS, will be used when data in all treatment cells are available but with varying number of

observations per cell.

2.4.3 Methods of dealing with heteroscedasticity in ANOVA

When testing the equality of two or more population means, classical F-tests are popularly

used. However, due to the fact that these classical F-tests depend on normality, independence

and homogeneity of variance assumptions, serious problems may arise especially when the

homogeneity assumption is violated. Yiǧit and Gokpinar (2010) attested that, proceeding with

classical tests in the presence of heteroscedasticity may result in these classical F-tests failing

to reject the null hypothesis even if there is enough evidence that an effect exists. This is

especially problematic in small samples.

2.4.3.1 Data Transformation

Efforts to alleviate the problems of unequal variances involved in fixed-effects ANOVA models

have been recorded in literature recently. When classical F-tests are used, the problems of un-

equal variances(heteroscedasticity) and non-normality can be addressed by data transformation

techniques. According to Hair et al. (2014), heteroscedasticity can be a result of non-normality

in one or more of the variables. As a result, correcting non-normality in these variables, through

data transformation for example, can remedy the inequality of dispersion of variance. There

are various data transformation procedures that can be used which were cited by Hair et al.

(2014); Mosteller and Turkey (1977). Only three of the most common data transformations are

discussed in this section.

(i) The logarithmic transformation

logarithmic transformation involves taking the logarithm of each observed value of the

dependent variable. Any base can be used for the log, however, the most common are

base-10 and base-e (known as the natural logarithm, where the constant e = 2.7182818).

It does not matter which base is used because the bases are directly proportional to each

other. Log transformations, as they are usually called, are suitable for the variables that

are highly skewed. Since the logarithm of a negative number is undefined, a constant
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must be added to the values to avoid loss of data

(ii) The square root transformation

Square root transformation involves taking the square root of each observed value. Since

the square root of a negative number is not real, this technique is normally applied to

count variables, such as the number of accidents, cases of theft, bacteria population, which

assume only positive values. In case there are negative numbers in the dataset, there is

need to disturb the dataset by adding a constant value to all values in order to uplift the

negative values to above zero. However, it should be noted that square roots of numbers

between 0 and 1 become bigger while square roots of numbers above 1 get smaller. Hence,

this transformation is not suitable if the dataset contains a mixture of these.

(iii) The inverse transformation

Inverse transformation involves taking the inverse ( 1
y
) of the observed variable (y). This

kind of transformation changes very large numbers to very small numbers and vice-versa.

It actually reverses the order of the data scores. Hence, prior to applying inverse transfor-

mation, there is need to reflect (multiply each variable by -1 to reverse the distribution)

and then add a constant to uplift the values above 1, and then the inverse transformation

will resemble the original data. This type of transformation is most powerful for positively

skewed data since it compresses the right side of the distribution. In case of negatively

skewed data, it is necessary to reflect, add a constant to uplift to above 1, transform, and

then reflect again to restore to original order.

The three main transformations discussed above mitigate non-normality by compressing the

data scores on the right of the distribution more than the left side. Basically, this process

reduces the spacing between the data values, which is desirable to improve normality, but it

has some negative connotations on interpreting the results. Hence, care must be taken when

interpreting transformed data.
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2.4.3.2 Approximations of test statistics

As another remedy to the problems of classical F-tests and exact procedures when testing the

equality of means in the presence of unequal variances, some of the widely used alternatives

are the test statistics approximations which surrogate the classical F-tests. These approxi-

mations include the Welch (1951) test; Schott-Smith (1971); Brown-Forsythe (1974) test; the

Parametric Bootstrap test developed by Krishnamoorthy, Lu and Mathew (2007). According

to Yiǧit and Gokpinar (2010), these approximations of test statistics used to test the equality

of means when population variances are unequal are based on the standardised between-group

sum of squares and error sum of squares. A review of the standardised between-group sum of

squares; error sum of squares; and the approximations of test statistics for comparing two or

more population means in the presence of heteroscedasticity is presented as follows.

(i) The Standardised between-group sum of squares

Assume Yj1, ..., Yjnj
is a random sample from N(µj, σ2

j ) j=1,...,k. The equality of means

hypothesis concerned is given by:

H0 : α1 = α2 = ... = αk = 0; against

H1: at least αj ̸= 0.j = 1, ..., k (2.19)

The standardised between-group sum of squares when variances are not the same can be

expressed as follows:

T̂A = T̂ (σ2
1, ...., σ2

k) =
k∑

j=1

nj

σ2
j

Y
2
j −

(∑k
j=1 njY jσ

2
j )2

(∑k
j=1 nj/σ2

j )
(2.20)

where Y j = ∑nj

h=1 Yjh/nj j = 1,...,k.

The standardised between-group error sums is then given by:

Ŝerror =
k∑

j=1

njS
2
j

σ2
j

(2.21)
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(ii) The Parametric Bootstrap Test (PB)

Parametric bootstrap (PB) can be defined as a process that is used to generate samples

using sample statistics estimated from parametric models whose parameters have been

replaced by estimates. This method is computer-intensive process that is used to gen-

erate samples called bootstrap samples based on the original dataset under study. The

null hypothesis that the classical F-tests fail to reject in the presence of heteroscedas-

ticity (variances not equal) can be analysed based on the bootstrap samples to achieve

accurate results. Krishnamoorthy, Lu and Mathew (2007), have proposed a parametric

bootstrap (PB) test for testing equality of means in one-way ANOVA in the presence of

heteroscedasticity and unbalancedness.

As proposed by Krishnamoorthy, Lu and Mathew (2007), assuming δ2
j are unknown, a

natural test statistic can be derived by replacing σ2
j by S2

j in the standardised between-

group sum of squares in (2.20):

T̂A (S2
1,....,S2

k) =
k∑

j=1

nj

S2
j

Yj
2 -

(∑k
j=1

njYj

S2
j

)2

(∑k
j=1

nj

S2
j
)

(2.22)

where Y j = ∑nj

h=1 Yjh/nj and S2
j = ∑nj

h=1 (Yjh − Y j)2/(nj − 1), j = 1,...,k.

This test statistic in (2.22) is location invariant. Equating the common mean to zero,

and letting Y Bj
∼ N(0,

S2
j

nj
) and S2

Bj
∼ S2

j χ2
nj−1/(nj − 1), j=1,...,k and replacing Y , S2

j in

(2.22) above by Y Bj
and S2

Bj
respectively, the parametric bootstrap pivot variable can be

expressed as follows:

TAB
=

k∑
j=1

nj

S2
Bj

Y
2
Bj

−
(∑k

j=1 njY Bj
/S2

Bj
)2

(∑k
j=1 nj/S2

Bj
)

(2.23)

It can be noted that the distribution of Y Bj
is Zj

Sj√
nj

, where Zj is a standard normal

random variable. Without loss of generality, one can easily verify that the parametric
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bootstrap (PB) pivot variable in (2.23) is distributed as

T̂AB
(Zj, χ2

nj−1; S2
j ) =

k∑
j=1

Z2
j (nj − 1)
χ2

nj−1
−

[
∑k

j=1
√

njZj(nj−1
Sjχ2

nj −1
]2∑k

j=1 nj(nj−1)
S2

j χ2
nj −1

(2.24)

For a given α, we reject H0 in (2.19) if P[T̂AB
(Zj, χ2

nj−1; S2
j ) > T̂A0 ] < α

where T̂A0 is the observed value of TA in (2.22) above. However, for a fixed set of Sj

(j=1,...,k), the probability above does not depend on any known parameters, hence it

can only be approximated by Monte Carlo simulation as explained by the algorithm

given next.

Algorithm 1

• Given the set ni, yi and S2
i , for i=1,...,k, T̂AB

can be calculated and call it TA0.

• For j=1,...,m, then generate Zi and χ2
ni−1 where Zi ∼ N(0;1) for i=1,...,k

• Using T̂AB
in (2.24), compute T̂AB

(Zi, χ2
ni−1; S2

i )

• If T̂AB
(Zi, χ2

ni−1; S2
i ) > TA0 , set Qj=1 and terminate the loop.

• p = 1
m

∑m
j=1 Qj is the Monte Carlo estimate of the p-value α given above.

(iii) The Welch’s Test (1951)

This test is a generalisation of the Behrens-Fisher problem, when testing equality of only

two means is involved. Welch’s (1951) test came as the first solution to solve the problems

of unequal error variances when comparing means in one-way ANOVA. It is basically a

form of one-way ANOVA that does not assume equal variances. The test is based on

the Student’s t distribution with degrees of freedom depending on both sample size and

sample variances.

Considering equation (2.24), and letting ωj = nj/S2
j , j = 1,...,k, Welch (1951) derived a

test statistic given by:
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Wf = Ŝa(S2
1 , ...., S2

k)/(k − 1)
1 + 2(k−2)

k2−1
∑k

j=1
1

nj−1(1 − ωj∑
ωi

)2
∼ F(k−1,p) (2.25)

where F(q,p) is an F-distribution with (q,p) degrees of freedom, and Ŝa is given in (2.24)

above, and

p = [ 3
k2−1

∑k
j=1

1
nj−1(1 − ωj∑

ωi
)2]−1

The test rejects H0 given in (2.19) at a significance level α when the p-value P(Fk−1,p >

W )< α, for an observed ω of W.

The Welch test is built for non-homogeneous variances, but with the assumption of nor-

mality satisfied. It is considered a more robust and conservative statistic than other tests

like the Student’s t-tests in the presence of unequal population variances and unequal

sample sizes in the sense that it can maintain the type I error rate close to nominal. This

test achieves this robustness over the traditional F-test because it adjusts the denomina-

tor of the F ratio such that, despite the heterogeneity of the group variances, it has the

same expectation as the numerator when the null hypothesis is true (see equation 2.25

above).

(iv) The Brown-Forsythe Test (1974)

This is also known as the Brown-Forsythe F-ratio. The test is appropriate when both

the normality and homogeneous variance assumptions have not been satisfied. It also

modifies the denominator of the traditional F-test in ANOVA, making it more robust

than the classical F-test when ANOVA assumptions are violated.

Given the null hypothesis H0 in (2.19), Brown and Forsythe (1974) proposed the test

statistic:

B = Σk
j=1

nj(Y j − Y )2

Σk
j=1(1 − nj

n
)Ŝ2

j

(2.26)

Under H0, B has an F-distribution, Fk−1,p, where

p = [Σk
j=1(1−

nj
n

)S2
j ]2

Σk
j=1

(1−
nj
n )Ŝ4

j
nj −1
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Under H0 in (2.19), and given the value of α level, and an observed value Bs of B, the

Brown-Forsythe rejects H0 whenever the p-value is P(Fk−1,p > Bs) < α.

The Brown-Forsythe F-test is a test of equal population variances that is robust based on

the absolute differences within each group from the group median. Unlike the traditional

F-test which is divided by the mean square error, the Brown-Forsythe test adjusts the

mean square error (denominator) by using the observed variances of each group (equation

2.26). This gives it an edge over the classical F-test.

It is worthwhile to note that most of these robust ANOVA techniques (like Welch and Brown-

Forsythe tests) are only available in one-way analysis of variance. However, if they are to be

applied in two-way ANOVA, for an example in SPSS, the main factor effects can be tested by

means of fixing one independent variable (factor) and assume it constant while the means of

the other factor are compared using the usual one-way ANOVA process.

2.4.4 Case studies dealing with heteroscedasticity in ANOVA tests

Zhang (2015a) conducted a study in trying to use a parametric bootstrap approach (PB) to

find solutions on one-way ANOVA in the presence of heteroscedasticity and unequal group

sizes without using transformation of data technique. Based on the parametric bootstrap test

proposed by Krishnamoorthy, Lu and Mathew (2007), Zhang (2015b) further extended the PB

algorithm to a multiple comparison procedure (MCP) to test the equality of factor level means

and to do pairwise comparisons of two-way ANOVA in the presence of unequal group sizes and

heteroscedastic variances.

Simulation studies pertaining to this effect showed that, under heteroscedasticity assumption,

the parametric bootstrap test proved to be one of the best technique for testing equality of

factor level means. Furthermore, Zhang (2015a) proposed a parametric bootstrap test for mul-

tiple comparison in one-way ANOVA when error variances and group sizes vary. The research

showed that a complete solution can be achieved when the proposed parametric bootstrap test
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of multiple comparison is used together with the Krishnamoorthy, Lu and Mathew (2007) PB

test. The simulation results achieved showed that the multiple comparison procedure and the

Type I error of overall test were both close to nominal level.

Moreover, Zhang (2015b) had another study where a parametric bootstrap approach for simul-

taneous confidence intervals was proposed for all pairwise multiple comparisons in a two-way

unbalanced design with unequal variances. Similarly, simulation results depicted that the Type

I error of the multiple comparison test were close to the nominal level, even for small samples.

The proposed method performed better than the Turkey-Kramer procedure under heteroscedas-

tic variances and unequal group sizes.

In another study, Xu et al. (2015) proposed a parametric bootstrap (PB) test to compare

it with the generalised F (GF) test for testing equal effects of factors of a two-way ANOVA

model without interaction in the presence of heteroscedasticity. They used the Monte Carlo

simulation to evaluate the powers of tests and the Type I error rates. In their study, it was

discovered that, in the presence of heteroscedastic error variances and/ or as the number of

factor levels increases, the classical F-test and the generalised F-test yield to serious Type I

error properties. However, with the use of the parametric bootstrap (PB) test, the Type I error

problems are kept under control. As a result of their research, Xu et al. (2015) concluded that,

the parametric bootstrap (PB) test performs satisfactorily better than the generalized F (GF)

test in two-way fixed effects models under heteroscedasticity, regardless of the number of factor

levels involved, sample sizes or error variance values.

Xu et al. (2013), in their article, considered a two-way ANOVA model with unequal cell fre-

quencies without the homoscedasticity assumption. They proposed a parametric bootstrap

(PB) approach for testing main and interaction effects, and comparing it with the generalised

F (GF) test. As usual, the Monte Carlo simulation was used to evaluate the The Type I error

rates and powers of the tests. Their studies showed that the parametric bootstrap test per-

formed satisfactorily better than the generalised F-test, even for small samples. As in the earlier

studies reviewed, the results of their study indicated that the generalised F test portrayed poor
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Type I error properties especially when the number of factor levels or treatment combinations

increased.

Wang and Akritas (2011) developed an asymptotic theory for hypotheses testing in high-

dimensional analysis of variance (HANOVA) in which the distributions are not specified at

all. Most results in the literature have been restricted to observations of no more than two-way

designs for continuous data. Wang and Akritas (2011) formulated a way that allowed the re-

sponse variable to be either continuous, discrete or categorical. They developed an asymptotic

theory to test the main and interaction effects of up to the third order in unbalanced designs

with unequal error variances, arbitrary number of factors and unequal sample sizes, using two

types of test statistics; one with χ2 distribution to test low-dimensional parameters; and other

with a limiting normal distribution for testing high-dimensional parameters.

Simulation results carried on the Arabidopsis Thaiana gene expression data show that the pro-

posed test statistics performed well in both continuous and discrete HANOVA in terms of type I

error accuracy, computing time and power. The ANOVA F-test was affected by unbalancedness

and heteroscedasticity. The proposed test portrayed proved to be more powerful, producing

reliable type I error rates as well as being computationally user-friendly when compared to the

traditional HANOVA methods.

Gaugler and Akritas (2013) proposed a modification in the F-Statistic in testing the significance

of the main random effects in two-factor random and mixed effects designs. Under the new

test procedures that Gaugler and Akritas (2013) proposed, the symmetry assumption was not

made, that is, the interaction term was not assumed independent from the main effect even

though the two are uncorrelated in the random effects model. They based their asymptotic the-

ory of deriving adjusted F-statistics based on the Neyman-Scott framework taking the notion

that the number of factor levels in both factors can be large whereas the sizes of the groups

can remain constant. As such, the test statistics can be derived by considering the difference

of suitably defined mean squares (MSB-MSE∗ for the mixed effects and MSB-MSAB for the

random effects, say) instead of the usual ratio, MSB/MSE.
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Using these newly proposed test statistics under fully nonparametric models, the simulations

done proved beyond doubt that these proposed statistics performed sufficiently well in situations

where classical F statistic seems to violate the underlying assumptions, especially balancedness,

symmetry and homoscedasticity.

On a different occasion, Zhang (2012) proposed a simple and accurate approximate degrees of

freedom (ADF) test to address the problem of heteroscedastic two-way ANOVA. This attempt

came as a means of amending the bias of blindly employing classical F-tests especially when the

ANOVA model is heteroscedastic. In the study, Zhang (2012) noted that simulations reflected

that ADF test produces good results in different cell sizes whereas the classical F-tests perform

badly in the presence of heteroscedasticity.

All in all, recent study shows that in the presence of heteroscedasticity, F-tests suffer from lack

of power, resulting in serious biased conclusions. In an empirical study conducted by Moder

(2007) on ANOVA problems, the assumption of equal variance seemed to be more problematic

in ANOVA models with wider ratios of standard deviations.

2.5 Unbalancedness in ANOVA Data

In simple terms, a balanced ANOVA design is one that consists of cells or factor combinations

of the same size. Having more observations in some factor combinations gives rise to more

information on the effect of those factor level combinations than for other cells with fewer ob-

servations. Consequently, the factor levels can not necessarily be independent, hence the tests

and estimates of the effects are eventually not independent too. This lack of balance distorts

the potential of an experiment to achieve the intended accurate results. Several methods to

alleviate this problem have been proposed in literature,(Xu et al., 2013) however, choosing the

most appropriate method is usually not an obvious task.

Literature in unbalanced data design was first realised in the mid 1930’s. Gaugler (2008) argued
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that, from a theoretical point of view, designing linear models from unbalanced data, and find-

ing suitable ways of deriving inferences from them is still not fully comprehended. Following

the same argument, Larson (2008), emphasised that the lack of balance in one-way or two-way

ANOVA analysis may cause serious problems if the investigator did not choose an appropriate

statistical package to handle the calculations.

2.5.1 Unbalanced two-way ANOVA model

Expressing the unbalanced ANOVA model design as a linear model has been a subject of debate

over a long time since its introduction in the 1930’s. Analogous to the balanced design model,

the two-way unbalanced fixed effects ANOVA model can thus be expressed as follows:

Yijh = µ + αi + βj + (αβ)ij + ϵijh (2.27)

where model assumptions and notation are the same as those in the balanced model design

except that h = 1,...,nij , where nij represents the (i,j)th replicate of factor Ai and Bj; 1

≤ i ≤ k; 1 ≤ j ≤ m.

2.5.1.1 Testing hypotheses in unbalanced two-way fixed-effects ANOVA model

Harrar and Bathke (2008) proposed that, unlike in balanced data, special precautions must be

taken when dealing with unbalanced data. It is worthwhile to note that due to the fact that the

independence of the sum of squares of both interaction and main effects in unbalanced data is

affected, testing these effects in the two-way fixed-effects ANOVA model calls for an approach

different from balanced data model. After realising the inexactness of F-tests in unbalanced

data, Zhang (2012), proposed that there is need for modifying the procedures of determining the

degrees of freedom and the effect of sum of squares. To this effect, Zetterberg (2013) supported

the idea that the four methods of partitioning sum of squares for factors in ANOVA models,

Type I, Type II, Type III and Type IV, be implemented. Type III sum of squares is adjusted

for all other effects in the ANOVA models, hence, this is going to be used for unbalanced data

with varied cell values.
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Analogous to the balanced two-way fixed-effects ANOVA model, we can state the hypotheses

for unbalanced data as follows:

H0(A) : α1 = α2 = ... = αk = 0

H0(B) : β1 = β2 = ... = βm = 0

H0(AB) : αβ11 = ... = αβk1 = ... = αβ1m = ... = αβkm = 0 (2.28)

H0(A) and H0(B) test the the presence of the main effects of factors A and B, respectively, and

H0(AB) tests the presence of an interaction effect between factors A and B against their usual

alternative hypotheses.

2.5.2 Methods of imposing balance on unbalanced data

(i) Deleting observations

Applying the traditional approach to amend the problems of unbalancedness in statistical

data, investigators in the past used to impose balance through deleting observations ran-

domly chosen from the cells with extra data before analysing the reduced data-set (Hair

et al., 2014). This approach may be statistically attractive, but the problem is that it

reduces accuracy of the model estimates and the power of the hypothesis tests. Hence,

it is not recommended because it leads to loss of essential information depending on the

eliminated observations.

(ii) Imputation

Another alternative is to impute (fill in estimated values from the data) especially when

the missing observations are few, and use standard ANOVA for balanced data (Hair et

al., 2014). However, it might look nice that the imbalance has been treated, parameters

correctly estimated, but the significance tests produced are flawed. A more powerful and

robust imputation method to deal with missing data is multiple imputation, which in-

volves creating several different copies of imputed datasets and appropriately combining

the results from each dataset. This method has an edge over other imputation methods

in that it takes into consideration the variability in results between the imputed datasets,
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at the same time showing the uncertainty associated with the missing values. Recent

statistical packages, like SAS, SPSS and R, come with various provisions to deal with

imbalance in ANOVA data, and a number of methods for computing ANOVA sum of

squares and testing hypotheses designated as Type I through Type IV sum of squares.

When dealing with missing data, Milliken and Johnson (1984) advised that a great deal of

thought is needed, statisticians should therefore avoid the practice of simply run a computer

program on the data and then select number to include in the report.

2.5.3 Dealing with unbalancedness in ANOVA tests

The term "unbalanced" is not easy to define precisely. As highlighted earlier on, there are

three situations that we consider when defining unbalancedness in ANOVA data. Whichever

the case might be, the key issue is that, unbalanced data affect the grand mean and the effect

mean, which are the basis of group means comparisons and ultimately the factor effects to be

detected. Complexities arise when some of the factors under study are considered random,

whereas with fixed effects, the challenge can be solved by making use of appropriate Sum of

Squares (designated as Type I through Type IV).

Dealing with unbalanced data in ANOVA often presents various problems. However, some of

these challenges can be mitigated by comprehensive understanding of the methods and assump-

tions involved. In as much as various methods of imposing missing data in unbalanced data

are available for use, negative impacts, like loss of essential information (when some values are

eliminated), or producing biased significance tests (when imputation is used) are a cause of

concern. Statistical computational methods specifically designed for unbalanced data in are

preferred (Milliken & Johnson, 1984).

Some of the recent efforts to curb the problems of unbalanced data include Zetterberg (2013)

study, who used two numerical examples in order to establish the advantages of newly modi-

fied tests against standard tests in multivariate analysis of variance (MANOVA). The research
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results indicated that the deviations between the tests were significantly smaller on balanced

data, whereas significant discrepancies could be seen on unbalanced data, in favour of modified

tests.

Prior to Zetterberg’s study, Zhang and Xiao (2012) had previously proposed some kinds of ad-

justments on the standard test statistics with the aim of accommodating unbalancedness and

heteroscedasticity of covariance matrices in unbalanced MANOVA data. In their study, they

discovered that MANOVA model was robust when balanced data is involved especially in the

presence of a slight violation to the homoscedasticity assumption. However, Zhang and Xiao

(2012) further concluded that bias in standard tests grows with the severity of heteroscedas-

ticity. The aim of their thesis was to use adjustments of the standard multivariate tests to

protect against this bias. Zhang and Xiao (2012) subsequently proposed modifying the Wilks’

Λ, Hotelling-Lawley Trace and Pillai’s Trace as a means to improve unbiased results in the

presence of unbalancedness and heteroscedasticity.

Even though we have some ways of treating unbalanced data using available Statistical com-

putation methods, these packages come with their shortcomings. As a result, researchers must

be very cautious especially when using F-tests in any kind of unbalanced data. The F-tests

are just approximations which are severely affected by the degree of imbalance in the data and

type of factors. This is a potential study gap that has to be filled in future.

2.6 Impact of heteroscedasticity and unbalancedness in
ANOVA

Dealing with unequal error variances in ANOVA tests has been a serious challenge that has

been overlooked (Krishnamoorthy, Lu & Matthew, 2007). As noted by Krishnamoorthy, Lu

and Matthew (2007), one of the main problems caused by heteroscedastic error variances is the

increase in the type I error rate in both one-way fixed effects and one-way random effects models

especially when testing the significance of the main and interaction effects. After comparing

various approaches to control the Type I error rate, the mentioned authors proposed the use of
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the parametric bootstrap approach, instead of the Welch test, generalised F-test or the James

(1951) second order test. Their tests results showed that the parametric bootstrap approach

could tame the type I error rate satisfactorily well, closely above the nominal level 0.05 in the

presence of heteroscedasticity regardless of the values of error variances, sample sizes or the

number of means compared.

Olejnik and Algina (2003) argued that the estimation of effect sizes depends largely on the

type of research design involved. Based on previous researches done on this matter, unbalanced

designs have little impact on effect size estimations, whereas with the combination of an unbal-

anced design and heterogeneous variances, the effect sizes tend to be overestimated. Empirical

studies by several authors have shown that the standard errors of effect size measures like the

eta squared and omega squared tend to grow large in small sample sizes in the presence of

heteroscedasticity. The magnitude of the effect size is generally reduced by population hetero-

geneity (Olejnik & Algina, 2003).

Moreso, a study conducted by Wang and Akritas (2006) in nonparametric tests investigating

the effect of unbalancedness and heteroscedasticity on the main effects of the models involved,

established that the p-values (calculated probability of getting the observed results when the

null hypothesis is true) increase as a result of the disturbance in the variances. This was also

evidenced by the disturbance in the classical F-tests due to the prevalence of unequal variances.

Increase in p-values leads to rejection of the null hypothesis when in fact it is true, that is Type

I error. The impact was worse when the model is both unbalanced and heteroscedastic.

Kesselman et al. (2008) postulated that, in the ANOVA context, the presence of heteroscedas-

ticity, coupled with skewness and/or outliers, can lead to devastating depressed Type I error

rates, decreased power to detect effects and inappropriate probability coverage for confidence

intervals (CIs). On another note, when unequal variances couples with unequal sample sizes,

the performance of classical F-tests is heavily compromised. Possible solutions have been pro-

posed in recent researches that, in situations like this, it is advisable to adopt the non-pooled

test statistics with trimmed means, like the Welch (1951); Brown and Forsythe (1974), and
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others, since they do not pool across heterogeneous sources of variations.

Most of the past and recent researches in this area focused on the impact of non-homogeneous

error variances on power analysis and comparison of tests in an attempt to control the type

I error rate in various models, especially the one-way ANOVA. Other studies concentrated

on the behaviour of different procedures in the presence of heteroscedasticity, non-normality

and unbalanced group sizes. The current study will be useful to future researchers as it tries

to further unearth the behavior of two-way fixed effects ANOVA models, with particular in-

terest in changes in effect sizes, under the influence of non-homogeneous error variances and

unbalancedness.

2.7 Calculating Effect Size

In addition to hypotheses testing and statistical significance tests, researchers are interested

in testing and estimating effect sizes. Effect size is a term that generally refers to a family of

numerical indices that quantify the magnitude of a treatment effect. Erceg-Hurn and Mirose-

vich (2008) defined an effect size as a measure that gives information about the magnitude of

an effect, which determines whether the effect is of practical significance or not. Furthermore,

Nandy (2012) defined effect size as simply a way of quantifying the size of the difference between

two groups. It measures the strength of the relationship. Basically, there are two ways effect

sizes are measured, resulting to two classes of effect sizes: the standardised mean difference ef-

fect sizes measured between two means (examples include Cohen’s d, Hedge’s g, Glass’s delta);

and the proportion of variance effect sizes measured as the correlation between the explanatory

variable classification and the scores of the response variable (e.g Eta Squared (η2), partial Eta

Squared (η2
partial), Epsilon Squared (ϵ), Omega Squared (ω2), intra-class correlation (ri). Each

of these two classes of effect size has a number of univariate and multivariate types.

Effect sizes in analysis of variance measure the magnitude of association between the grouping

variable (factor) and the dependent variable through the main and interaction effects. The

commonly used effect-size measures in ANOVA include Eta Squared (η2), partial Eta Squared
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(η2
partial), Omega Squared (ω2) and the intra-class correlation (ri). There are various effect sizes

suitable for different designs and experiments, readers are referred to Nandy (2012), Keselman

et al. (2008); Algina, Keselman and Penfield (2006), for more detailed information.

However, it has been discovered that most of the effect size measures used in Statistics are

robust to violation of normality and homoscedasticity assumptions. According to Erceg-Hurn

and Mirosevich (2008), if parametric assumptions are violated, it is not statistically wise to

report standard effect sizes (nor confidence intervals) because the degree of confidence would

be biased. The two authors further argued that it is unfortunate that most of the commonly

used standard parametric effect sizes, like the Cohen’s d and η2, are estimated under these

restrictive assumptions. The next section reviews the effect sizes that are commonly used for

standardised mean differences and proportion of variance between groups.

2.7.1 The Standardised Mean Difference

This is the most popular effect size measure suitable for interpreting the magnitude of a treat-

ment, a contrast between any give two treatment groups, or any other numerical comparison.

The most common contrast is the mean difference, (µi − µj), where mean µi and mean µj

are not the same. The mean difference effect measure depends on the scale of measurement

used to compute the means of the variable of interest. This scale-dependent problem can be

overcome by standardising the mean difference. Several standardised mean differences have

been proposed in literature, from univariate standardised mean differences (when the contrast

is for one response variable) to multivariate standardised mean differences (contrast applied on

several response variables).

A simple univariate standardised mean difference is given by:

δ = µ1 − µ2

σ
(2.29)

The Standardised Mean Difference is simply the difference between the two means (µ1 - µ2)

from the groups being compared, divided by the standard deviation (σ) of the population from

which the two groups were sampled. Being standardised means that the effect-size measure can
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be used to compare effect-sizes across different tests measured on different variables, or even

measured in different scales of measurement. If the population variance (standard deviation) is

not known, the standard deviation can be estimated in a number of ways giving rise to different

effect-size indices discussed below. One of the simplest way to estimate δ is by replacing µ1 and

µ2 with the means of group A and B respectively, σ estimated by sample standard deviation

(SD).

2.7.2 The Cohen’s (1965) d

The Cohen’s d effect size estimator assumes equality of variances, otherwise it is biased. It

standardizes the effect-size of the difference between two means, such that the difference between

the two means is "d" standard deviation (Cohen, 1965). Cohen’s d, a variant of the Standardised

Mean Difference, is given by:

d = (X1 − X2)
Spooled

(2.30)

where Spooled =
√

(n1−1)S2
1+(n2−1)S2

2
n1+n2

≈
√

(SD2
1+SD2

2)
2 is referred to as the standardiser.

Cohen’s d effect size is suitable for two sample independent groups with homogeneous or ap-

proximately equal variances. This justifies the assumption that the two sample standard devia-

tions estimate the same population standard deviation. Hence, a common standard deviation is

pooled from the two standard deviations. Otherwise, with different sample standard deviations,

pooling a common standard deviation to estimate Cohen’s d is inappropriate.

A guideline on the interpretation of Cohen’s d is as summarised below by Cohen (1992):

Table 2.6: Guideline on Cohen’s d
Effect Size d-Standardized mean difference Percentage of variance explained
Small 0.20 1%
Moderate 0.50 10%
Large 0.80 25%

According to Cohen (1992), this guideline is not a set of hard-and-fast rule, it should just be

used as a guideline. It is advisable to use these benchmarks based on the meaningful context

and after assessing all the contributing factors that may affect the interpretation of the study
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in question. An effect size d ≤ 0.20 may be considered small, d = 0.50 is moderate, while d ≥

0.80 is deemed large.

2.7.3 Glass’s ∆

In a situation where the two groups standard deviations are very different (heterogeneous), the

Cohen’s pooled standard deviation does not apply. The appropriate procedure of estimating

the pooled standard deviation when the group variances are heterogeneous was proposed by

Glass, McGaw and Smith (1981). One of the populations’ standard deviations (control group)

can be used as the standardizer to estimate a non-pooled standardizer for the effect size as

follows:

∆ = µ̂1 − µ̂control

σ̂control
(2.31)

The control group standard deviation is inserted as the standardizer of the difference between

the treatment group mean (µ1) and the control group mean (µcontrol) to estimate the Glass ∆.

Alternatively, in the presence of unequal variances, Kulinska and Staudte (2006), proposed a

pooled standardizer of a weighted sum of group variances and modified the estimator. The

estimator that they came up with depends on the sample size:

d = µ̂1 − µ̂2√
n1σ̂2

1+n2σ̂2
2

N

(2.32)

The effect size estimator works in the same way as the other standardized mean difference

estimators. The last estimator in this section looks at the the situation when the two groups

are of different sample sizes (unbalanced)

2.7.4 The Hedges’ g

This is another standardised mean difference type of effect-size measure that is suitable for two

groups of different sample sizes. The estimator is expressed as follows (Hedges, 1981):
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Hedges′ g = µ̂1 − µ̂2√
(n1−1)SD2

1+(n2−1)SD2
2

n1+n2−2

(2.33)

In this case, each group standard deviation is weighted by its sample size (ni). There are so

many modifications and adjustments made to these standardised mean difference effect-size

measures. This study focused only on the effect-size indices used in analysis of variance, and

these are discussed in the next section.

2.7.5 Eta Square (η2)

Effect-size indices in ANOVA measure the degree of association and the magnitude of the effect

of the independent factor to the dependent variable. Normally, this measure of association is

squared in order to relate to the proportion of variance in the response variable attributed to

the grouping factor. Eta Squared is one common measure of this type. From the ANOVA

table, Eta Square can be obtained by the ratio of the sum of squares as expressed below:

η2 = SSTreatment

SSTotal
(2.34)

where 0 ≤ η2 ≤ 1

The interpretation of η2 is just similar to the linear regression R2. It (η2 x 100%) measures

the proportion of the shared variance between the dependent variable and the independent

categorical factor(s). It is worthwhile to note that Eta Squared estimates the association for

sample. According to Nandy (2012), eta squared η2 is biased and tends to over-estimate the

population variance, and however, decreases as the sample size increases.

2.7.6 Partial Eta Square (η2
partial)

Analogous to Eta squared, the partial Eta squared measures the degree of association in the

sample. It is an adjustment to Eta squared by replacing the total sum of squares in the de-

nominator with the combined treatment and error sum of squares.

η2
partial = SSTreatment

SSTreatment + SSError
(2.35)

where 0 ≤ η2
p ≤ 1
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It (η2 x 100%) measures the proportion of the total variability in the dependent variable ex-

plained by the categorical factor(s). The interpretation is similar to η2, and this index estimates

the magnitude of the association in the sample too.

2.7.7 Epsilon Squared (ϵ2)

Since Eta squared inflates the population strength and is only best for measuring the effect

size of a particular sample, two adjustments to this effect were suggested. The first one is the

Epsilon squared estimator which is expressed as follows:

ϵ2 = SSTreats − dfTreats ∗ MSError

SSTotal
(2.36)

The adjustment is made on the numerator of Eta squared where the mean square error is

subtracted from the treatment or effect sum of squares. Epsilon squared can assume a negative

value, which is typically equated to zero effect.

2.7.8 Omega Squared (ω2)

A further adjustment to Epsilon Squared is the Omega Squared (ω2). The adjustment was

needed to address the problems of Eta squared which overestimates the population strength in

the association. Hence, by adding the mean square error to the total sum of squares on the

denominator of the Epsilon squared, the Omega Squared (ω2) is approximated.

ω2 = SSTreats − dfTreats ∗ MSError

SSTotal + MSError
(2.37)

where 0 ≤ ω2
p ≤ 1

Omega ω2 estimates the population variance whilst Eta η2 measures the sample variance, hence

Eta is always greater than Omega (ω2 < η2). Both Omega and Epsilon Squared can be negative

values, which are treated as zero values.
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When dealing with fixed factors in ANOVA, the partial Eta squared, Epsilon squared and the

Omega squared are the best measures of effect size (Olejnik & Algina, 2003). The following

guideline on interpreting the partial Eta squared, epsilon squared and Omega Squared indices

will be used for effect size:

Table 2.7: Guideline on Partial Eta Squared
Effect-size Value Magnitude of Effect Size
0.01 ≤ η2

partial < 0.06 Small effect
0.06 ≤ η2

partial < 0.14 Medium effect
η2

partial ≥ 0.14 Large effect

These guidelines are based on Cohen (1988) benchmarks for interpreting Eta squared effect

size, as such the partial Eta Squared (η2
partial), Epsilon squared (ϵ2) and Omega Squared (ω2)

will be similarly used as measures of effect size in this study. Statistical packages, SPSS, will

be used to generate most of these effect sizes estimators.

2.8 Post Hoc Tests

The term "post-hoc" is derived from the Latin terminology which means "after this". Post hoc

tests are statistical tests that are carried out after an analysis of variance test to establish where

the differences lie between groups. They are run when there is an overall significant group mean

in the significance tests. There are several post hoc tests to choose from, however, each test

has its own strengths and weaknesses over the other.

Generally, post hoc tests are based on the error termed familywise error (FWE). According

to Iker (2013), familywise error can be defined as the probability that any one of the group

comparisons or significance tests is a Type I error. It is worthwhile to note that as the number

of tests conducted increases, the Type I error (probability that one or more tests are significant

by mere chance) increases too. Hence, the familywise error is also called the cumulative or

alpha inflation Type I error. The familywise error (fwe) is thus defined as follows:
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αfwe ≤ 1 − (1 − αec)c (2.38)

where:

αfwe is the familywise error rate

αec is the normal alpha rate for each individual significance test (0.05, say)

c is the number of groups or comparisons in question.

Given the set of multiple tests or comparisons to be performed, the αfwe estimates the true

alpha level in each test. Normally, there is a discrepancy between this αfwe and the normal

alpha rate (0.05, say). In order to address this problem, especially when multiple comparisons

or test are performed, a number of solutions and corrections have been developed in Statistics.

Two of these approaches that will be used in this study are the Bonferronni and Games-Howell

test discussed below.

2.8.1 Bonferroni

The Bonferonni procedure is a multiple-comparison post hoc test that is used when performing

many independent or dependent statistical tests simultaneously. In this situation, carrying out

simultaneous tests leads to the increase in the Type I error, which increases with each single

test run. Bonferroni post hoc test is designed to address this problem. It is simply a newly

calculated familywise alpha error rate that is built to keep the familywise alpha value at 5% or

at any other stipulated level (10%, say). It is calculated as follows:

αB = αfwe

C (2.39)

where:

αB is the Bonferroni alpha value to be used

αfwe is the family error rate (given in 2.39)

C is the number of comparisons done in the tests
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This test is the most widely used post hoc test due to its simplicity and flexibility nature. It

can be used in other statistical tests other than the post hoc tests, for example in correlations.

However, a lot of modifications to Bonferonni test and other familywise error corrections have

been proposed in literature.

2.8.2 Games-Howell

This is a post hoc test used to detect the group differences when variances are not equal because

it takes into account the unequal group sizes. When the variances are severely unequal, it leads

to the increase in Type I error. Hence, Games-Howell is considered a better test especially in

small samples (sample size per each cell is less than 5) and unequal variances. It is based on

the modification of Welch’s correction to the degree of freedom, df. Using the group sample

sizes and their respective variances, Games-Howell test calculates df as follows (www.unt.edu):

df =
(S2

i
ni

+ S2
j

nj
)

(
S2

i
ni

)2

ni−1 +
(

S2
j

nj
)2

nj−1

(2.40)

where:

i,j are the factor levels determining the (i,j)th group

S2
i , S2

j are the sample variances of the ith and jth group respectively.

Games-Howell test is a post hoc test that is designed for the presence of unequal variances

(heteroscedasticity) in ANOVA tests. It also takes care of unequal group sizes (unbalanced

data) and small sample sizes (< 5, say). The combination of unequal variances unbalanced

small samples leads to increased Type I error rate which can be taken care of by this test.

2.9 Conclusion

This chapter presented the theories involved in analysis of variance (ANOVA) process. First,

it outlined the concept of ANOVA, the assumptions of ANOVA, and the types of ANOVA

models. The difference between one-way and two-way fixed-effects and mixed-effects models;

and hypothesis testing under unbalancedness and heteroscedasticity in ANOVA were elabo-

rated. The concepts of heteroscedasticity, unbalancedness and the associated effects in analysis
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of variance techniques were also discussed. Some of the methods that statisticians have been

applying to solve the problems of unbalancedness, heteroscedasticity, and calculation of effect

sizes in ANOVA were reviewed. Chapter 3 follows dealing with data exploration and remedies

applied to assumption violations in the research data.
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Chapter 3

Data Exploration

3.1 Introduction

In order to develop a high level of understanding of the data that will be used before analysis

is done, it is prudent to explore the distributions and characteristics of the variables, and find

out how a characteristic varies among the observations in the dataset. The primary concern

is to have a chance to reduce the amount of unnecessary information in order to focus on the

key aspects of the data. This will be done using exploration methods namely data visualisation

techniques and summary statistics on the variables involved.

3.2 Data Description

An original dataset, Grocery coupons.sav dataset of 1404 observations, adopted from SPSS,

was used to investigate the effects of heteroscedasticity and unbalancedness on effect sizes in

two-way fixed-effects ANOVA design with interactions. The dataset is a survey that was carried

out to investigate the spending patterns of customers coming to a certain shopping mall. This

dataset was chosen because it qualifies to model a two-way ANOVA model with interaction

due to the fact that it has a metric continuous dependent variable that is influenced by two

independent variables, called factors, which are categorical in nature. Furthermore, based on

the recommendations given by Hair et al. (2014), the sample size is large enough to cater for

at least 20 observations per cell, the recommended minimum cell-size in multivariate analysis

models. The dataset includes the following variables:

• The dependent variable Amount spent as the metric continuous response variable depend-
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ing on two categorical factors.

• The independent variable: (Factor A) Who shopping for, with three factor levels: 1 =

Self, 2 = Self and spouse, and 3 = Self and family.

• The independent variable: (Factor B) Use coupons, with four factor levels: 1 = No, 2 =

From newspaper, 3 = From mailings, and 4 = From both.

The original Grocery coupons.sav dataset consisted of 1404 observations, with unequal cell sizes.

Table 3.1 below shows number of observations (customers) in each factor combination or cell.

Table 3.1: Variables Types and Cell Sizes
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 140 148 120 76 484
Self & spouse 152 108 176 124 560
Self & family 112 72 104 72 360
Total 404 328 400 272 1404

The numerical values in Table 3.1 above represent the number of observations, in this case the

number of customers, which fall under the factor level combinations of categorical factors A

and B. The cell sizes for each factor combination are not the same, which suggests that an

unbalanced two-way ANOVA model is proposed for analysis in this study.

3.3 Descriptive Statistics

The amount spent means and standard deviations in each factor level and combination has

been summarised in Table 3.2 below. The dependent variable is Amount spent, and the two

factors influencing the dependent variable are Use coupons and Who shopping for.
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Table 3.2: Means (Standard deviations) Statistics
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 72.6525 86.7428 93.3618 95.3165 85.6544

(30.78268) (30.44535) (43.22774) (32.65347) (35.49042)
Self & spouse 97.3530 87.1181 97.9449 96.8228 95.4478

(42.54341) (42.75790) (40.4937) (47.93989) (43.29497)
Self & family 114.6829 111.3415 137.2683 142.5358 126.1099

(42.24326) (64.19930) (57.08706) (75.46532) (60.02387)
Total 93.5977 92.2661 106.7940 108.5025 99.9338

(42.16036) (44.86081) (49.48376) (57.00140) (48.54455)

A cursory look on the mean values in the table above, one can notice that most customers

spend more when buying for self and family (mean = $ 126.1099), than for anything else using

coupons from both (mean = $ 108.5025) mailings and newspapers. The same pattern can

be noticed on standard deviations, however, the variations are not that significantly different

across the factor combinations.

3.4 Distribution of the dependent variable

Two aspects are of vital interest when learning about the distribution of a numerical variable.

These are location and spread. Location refers to the central tendency of values in relation to

the central point, whereas spread refers to how dispersed or scattered the values are around the

location. The histogram approach was used to check the distribution of the dependent variable

Amount spent.
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Figure 3.1: Histogram: Amount spent

The location indicated by the histogram (Figure 3.1) above is the mean amount spent (mean =

99.93). It can be noted that the distribution of the values around the mean is not well balanced.

The histogram is slightly stretched to the right, giving it an elongated right tail. It is because

more observations are accumulated on the left side of the location (99.93) than on the right

side. Hence, this means that the data is right-skewed as displayed by a non-symmetric normal

curve that has an elongated right (upper) tail. This problem will be dealt with in detail in the

subsequent sections when assumptions are tested. The standard deviation of 48.544 implies

a wide spread or deviation from the mean, of amounts spent in the dataset. The bigger the

standard deviation, the more scattered the values are in relation to the mean of the dataset.

3.5 Data processing

Data processing, or preparing raw data for analysis, has to be considered before using the raw

data in its original form for analysis. This involves thoroughly checking for missing values and

possible outliers. Put in simple terms, an outlier is an observation that appears far away or

diverges from the rest of the observations in the sample. There are two types of outliers: uni-

variate and multivariate outlier. Univariate outliers are found in a single variable distribution,

whereas multivariate ones are observed when distributions in multi-dimensional space, involv-

ing more than one variable. Causes of existence of outliers vary with the type of errors that

can happen during data entry, measurement, experiment, data processing, or sampling if not
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by natural means.

Outliers have several negative impact on the results of data analysis which include:

• increasing the error variance and decreasing statistical power,

• decreasing normality structure of the data set if the outliers are not randomly distributed,

• affecting the basic assumptions in ANOVA.

Missing values in the dataset may occur during data extraction or data collection. The Grocery

coupons.sav dataset which was used in this research had no missing values. However, there is

need to take into consideration the observations called outliers, which have suspicious charac-

teristics that do not follow the overall patterns represented by the rest of the observations in

the dataset. Outliers can negatively impact statistical tests if not taken care of before analy-

sis is done. Box plots were used to identify possible outliers in the amount spent in Grocery

coupons.sav dataset used. The box plots in Figure 3.2 below show the possible outliers.

Figure 3.2: Amount spent: Box plots

Outliers are problematic and can impact on the group means and statistical tests. From Figure

3.2 above, the box plots indicate quite a number of possible outliers. Provided the exclusion of

these outliers will not affect the recommended group size and overall sample size, total exclusion

of extreme outliers from the dataset was called for since most of them were very much different

from the rest of the data values.
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After cleaning the extreme outliers, a reduced dataset consisting of 811 observations remained.

Figure 3.3 below displays cleaned data without extreme outliers.

Figure 3.3: Amount spent: Box plots (Outlier-free)

Exclusion of outliers from the sample did not affect the recommended sample and cell size,

minimum of 20 observations per cell, leaving the data free from the bias that these extreme

values could inject into the analysis of significance tests (Hair et al., 2014).

3.6 Data Transformation

As noted before, the original data is skewed to the right. Data transformation techniques can

be applied to reduce the influence of extreme values (skewness) that stretch the data away from

the central location. Two commonly used transformations that address the problem of skewness

are the logarithm function and the square root transformations. The P-P plots below show

the results of these transformations done to evaluate the skewness of the transformed data.
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Figure 3.4: Square Root Transform Figure 3.5: Natural Log Transform

In both transformations (Figure 3.4 and 3.5), the plotted points are fairly close to the diagonal

normal line, but produce a slight upward bend to the left of the normal line, which indicates

a slightly long tail to the right. This is a feature of presence of right-skewness in the data.

However, when compared to the original dataset, the transformed data, especially the natural

logarithm transformation, has significantly improved the skewness for the better. Since the

natural logarithm transformation is a better remedy for skewness on this case, therefore the

transformed data (lnAmount) will be used in subsequent analyses and significance tests.

3.7 Testing ANOVA Assumptions

Three basic analysis of variance model assumptions which must be tested include normality,

homoscedasticity, and independence assumption. The transformed dataset will be tested for

assumption violation.

3.7.1 Normality

The hypothesis being tested in this section is given by:

H0: The sample data was from a normally distributed population (Normality)

H1: The sample data was not from a normally distributed population

SPSS statistical package was used to generate the probability plots (p-p) plots, which are graphs

that show how the observations behave in relation to the normal line. Normality assumption is

violated if the plotted values deviate from the diagonal normal line of the p-p plot. To augment

the p-p plot test, the histogram approach were generated in R for univariate normality test.
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Normality assumption is violated if the normal curve on the histogram does not show a normal

"bell shape". To supplement the graphical assessment of normality, the Shapiro-Wilk normal-

ity tests were conducted for each simulated sample data. In each case, the null hypothesis is

retained when the p-value is greater than the stipulated alpha α level (0.05).

Based on the transformed Grocery coupons.sav original dataset, the following figures present

the normality test conducted:

Figure 3.6: LnAmount p-p plot Figure 3.7: LnAmount histogram

Looking at the p-p plot (Figure 3.6), most of the data plots follow the normal line although

there is slight deviation to the right of the line. Furthermore, the normal curve on the histogram

(Figure 3.7) is not perfectly normal "bell-shape", an indication that there might be chances of

normality violation. To augment the graphical normality assessment, Table 3.3 below gives the

Shapiro-Wilk normality test statistics.

Table 3.3: Normality Tests for Original Data
Shapiro-Wilk

Statistic df Sig.
Amount spent 0.9967 811 0.09498

The Shapiro-Wilk’s normality tests gives non-significant p-value (p = 0.09498) which is slightly

greater than the stipulated alpha (0.05). We fail to reject H0 and conclude that the original data

from the unbalanced and heteroscedastic model was from a normally distributed population.

Hence, normality assumption was not violated.
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3.7.2 Homoscedasticity

The null hypothesis under homogeneity of variance assumption states that the error variance of

the dependent variable is equal across groups. The calculated probability of finding the result

equal to, or more extreme than, what was actually observed when the null hypothesis is true is

known as the p-value. It is based on this p-value that the significance of the test is determined.

The probability of rejecting the null hypothesis in a statistical test when in fact it is true is

known as the significance level, normally denoted by α, expressed as a percentage (5% or 10%

say). Levene’s test is used to check the violation of the homogeneity of variance assumption.

The Null hypothesis (H0: There is homogeneity of error variance) is evaluated based on the

rejection criterion: Reject H0 at 5% significance level if p-value is less than α (5%). The results

of the equality of error variances test are given below.

Table 3.4: Levene’s Test of Equality of Error Variancesa

Dependent Variable: lnAmount
F df1 df2 Sig.

4.532 11 799 .000

The p-value < 0.001 from the Levene’s test of equal error variances in Table 3.3 above, is clearly

below alpha = 0,05. Hence, we reject H0 at 5% significance level and conclude that there is no

homogeneity in the error variances of the dependent variable (Amount spent) across the groups

in the data set. The original data is heteroscedastic.

3.7.3 Independence of observations

As indicated by Hair et al. (2014), the independence of observations is ensured by the nature

of design. The observations involved were customers visiting a shop, naturally independent

of one another, hence there was no need to test the independence of observations assumption

violation.
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3.8 Simulation samples

The study involved comparison of four different ANOVA designs derived from the same original,

unbalanced and heteroscedastic dataset. The other three models will be generated from the

samples simulated from this original data. Each data sample has to be explored for ANOVA

assumptions violation, and this is the purpose of the subsequent sections. Only normality and

homoscedasticity assumptions were considered since the independence assumption was already

met by the nature of design from the original data.

3.8.1 Balanced and heteroscedastic sample

A total of 100 samples of 864 observations each, with equal cell sizes, was randomly re-sampled

from the original Grocery coupons.sav dataset generating a balanced design. In a similar way,

the ANOVA assumptions were considered for this sample.

3.8.1.1 Normality

The probability plot and the histogram below displayed below provide a quick normality test

for the simulated dataset.

Figure 3.8: Bal-Heterosced P-p plot Figure 3.9: Normality histogram

Most of the data plots in Figure 3.8 above follow the normal line although there is slight

deviation to the right of the line. Furthermore, the normal curve on the histogram, Figure

3.9, shows an almost normal "bell-shape". On the two figures, we have some indications that

the balanced data sample might not be perfectly normal even though the departure is not so

severe. For an informed insight, we consider the normality tests displayed in Table 3.5 below.
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Table 3.5: Normality Tests for Balanced and Heteroscedastic Sample
Shapiro-Wilk

Statistic df Sig.
Amount spent 0.9966 864 0.05917

The p-value from the Shapiro-Wilk’s normality tests obtained is non-significant (p-value =

0.05917) and slightly more than the stipulated alpha (0.05). We fail to reject H0 conclude that

the simulated balanced heteroscedastic sample data was from a normally distributed population.

Hence, normality assumption was fairly satisfied.

3.8.1.2 Homoscedasicity

Levene’s Test of Equality of Error Variances for the balanced data sample are as summarized

below:

Dependent Variable: Amount spent
F df1 df2 Sig.

41.142 11 852 .000

Tests the null hypothesis that the error variance of the dependent variable is equal across groups

a. Design: Intercept + shopfor + usecoup + shopfor * usecoup

The p-value (Sig. = 0.000) from the Levene’s test of equal error variances above is clearly less

than alpha (0.05). Hence, we reject H0 at 5% significance level and conclude that there is no

homogeneity in the error variances of the dependent variable (Amount spent) across the groups

of the two factors. The balanced sample data is heteroscedastic.

3.8.2 Balanced and homoscedastic sample

Similarly, 100 samples of 864 observations each were simulated from the Grocery coupons.sav

data, customers who visited some shops to spend their money. The descriptive statistics from

the balanced and heteroscedastic sample were used to simulate these homoscedastic samples

with more or less the same distribution patterns as the original data except in the equality of

variances. An overall mean (mean = 83.9) and average standard deviation (s.d = 15) estimated

from the original dataset were used in the simulation process in R statistical package.
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3.8.2.1 Normality

Considering the Q-Q plot in Figure 3.10 below, almost all the plots closely follow the normal

line, which shows a normal pattern in the data plots. Hence, based on the graphical normality

assessment, one can conclude that the assumption of normality for the residuals is met.

Figure 3.10: Balanced Homoscedastic Q-Q Plot

This is further supported by the Shapiro-Wilk’s normality test given in Table 3.6 below.

Table 3.6: Normality Tests for Balanced and Homoscedastic Sample
Shapiro-Wilk

Statistic df Sig.
Amount spent 0.9986 864 0.7372

The Shapiro-Wilk normality test on the balanced and homoscedastic data sample gave a non-

significant p-value (p = 0.7372). The p-value is far greater than alpha (0.05). Hence, we

retain H0 and conclude that the dependent variable Amount spent in the balanced Grocery

coupons.sav data is normal in the population.

3.8.2.2 Homogeneity

Violation of the homogeneity of variance on the balanced data sample was tested by Levene’s

test. The Null hypothesis (H0: There is homogeneity of covariance matrices) and the rejection

criterion: Reject H0 at 5% significance level if p-value is less than α (5%), was used.
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Levene’s Test of Equality of Error Variancesa

Dependent Variable: Amount spent

F df1 df2 sig.
1.003 11 852 .442

Tests the null hypothesis that the error variance of the dependent variable is equal across groups

a. Design: Intercept + shopfor + usecoup + shopfor * usecoup

The p-value = 0.442 from the Levene’s test of equal error variances above is clearly greater

than alpha = 0.05. Hence, we fail to reject H0 at 5% significance level and conclude that indeed

there is homogeneity in the error variances of the dependent variable (Amount spent) across

the groups of the two factors. The balanced data is homoscedastic.

3.8.3 Unbalanced and homoscedastic sample

From the original Grocery coupons.sav dataset, 100 samples of 850 observations each, with

unequal cell sizes, were drawn to build a balanced and homoscedastic model.

3.8.3.1 Normality

The Q-Q plots and Shapiro-Wilk’s test were used to check the normality pattern of the simulated

data. The graphical normality assessment shown by the Q-Q plot, Figure 3.11 below, gives an

impression of a normally distributed data, plotted point closely follow the diagonal normal line.

Figure 3.11: Unbalanced Homoscedastic Q-Q Plot
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The Q-Q plot above portrays an almost normal pattern since most of the plots closely follow

the diagonal normal line. To further clarify the assessment, the Shapiro-Wilk’s normality test

in Table 3.7 below confirms this pattern.

Table 3.7: Normality Tests for Unbalanced and Homoscedastic Sample
Shapiro-Wilk

Statistic df Sig.
Amount spent 0.9983 850 0.5562

The p-value (p = 0.5562) from the Shapiro-Wilk’s normality test is far greater than alpha =

0.05. Hence, we fail to reject H0 and conclude that the dependent variable Amount spent in

unbalanced Grocery coupons.sav sample is normal in the population.

3.8.3.2 Homoscedasticity

Levene’s Test for the null hypothesis that the error variance of the dependent variable is equal

across groups in the unbalanced data sample produced the following results:

Levene’s Test of Equality of Error Variancesa

Dependent Variable: Amount spent
F df1 df2 sig.

1.071 11 838 .382

a. Design: Intercept + shopfor + usecoup + shopfor * usecoup

Similarly, the p-value = 0.382 from the Levene’s test of equal error variances above is clearly

more than alpha = 0.05. Hence, we fail to reject H0 at 5% significance level and conclude that,

again there is homogeneity in the error variances of the dependent variable (Amount spent)

across the groups in unbalanced data. The unbalanced data is also homoscedastic.

3.9 Conclusion

This chapter presented the exploration and processing of the data that will be used to test

the research hypotheses. The original dataset transformed and the three simulated samples

constitute the basis for comparison of the four different two-way ANOVA models to be studied.
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The next chapter outlines the methodology used to analyse the research data, outlining the

first five stages of Hair et al. (2014) Six-Stage model building process.

73



Chapter 4

Materials and Methods

4.1 Introduction

Four models were considered to investigate the effects of unbalancedness and heteroscedas-

ticity in two-way ANOVA models. These models are the balanced homoscedastic ANOVA

model; unbalanced homoscedastic model; balanced heteroscedastic model; and unbalanced het-

eroscedastic model. Materials and methodologies used to present and analyse the data in each

of these four models are outlined following the six-stage model building proposed by Hair et

al. (2014). The six stages of model building are: Stage 1: The objectives of the study; Stage 2:

The research design; Stage 3: Testing assumptions of the research design; Stage 4: Estimation

of the two-way fixed-effects ANOVA models, assessing their overall fit; Stage 5: Validation of

results; and Stage 6: Analysis and discussion of results. The focus of this chapter is on the first

five stages.

4.2 Balanced and homoscedastic two-way ANOVA model

From the group means and standard deviations of the original dataset, Grocery coupons.sav

dataset adopted from SPSS, 100 samples of 864 observations each were simulated in R and

SPSS statistical packages. The individual group means used from the original dataset were as

summarised in Table 4.1 below, and a common standard deviation of 15.0 was used to simulate

72 observations in each cell.
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Table 4.1: Original data : Group Means
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both
Self 83.9 95.7 91.1 95.6
Self & spouse 101.1 91.0 104.1 95.3
Self & family 110.2 113.7 136.1 150.4

The self and family level of the factor shopfor had higher group means than any other factorial

combination. However, to achieve the desired homogeneity in error variances, a constant stan-

dard deviation of 15.0, estimated from the average group standard deviations of the original

data, was used together with each group mean to simulate the required homogeneous sample.

4.2.1 Research Objectives and Design

In this model, the aim is to establish how the amount spent by customers on shopping is influ-

enced by their reason for shopping (factor A) and the source of coupons used (factor B), when

the model is balanced and has homogeneous error variances.

The research design was a total of 100 simulated balanced data samples of size 864 each,

with homogeneous error variances, were used to investigate the effects of shopping options

(Who shopping for) and the use of coupons (Use coupons) to the amount of money spent by

customers (Amount spent). A two-way fixed-effects ANOVA design with interaction, having

Amount spent as the metric continuous response variable depending on two categorical factors;

factor A (Who shopping for) and factor B (Use coupons) is proposed.

4.2.2 Data Description and Sample Size

Each simulated sample of size 864, with equal cell sizes of 72 was generated from the original

data descriptive statistics (group cell means and a homogeneous standard deviation of 15.0).

Original data descriptive statistics were used in order to generate a sample that is closely related

to the original dataset.
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The data sample satisfied the recommended minimum cell size of 20 observations per cell

(group) and an overall sample size above 250 to maintain a statistical power of 0.80 (Hair et

al., 2014).

Table 4.2: Balanced & Homoscedastic Sample Cell Count
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 72 72 72 72 288
Self & spouse 72 72 72 72 288
Self & family 72 72 72 72 288
Total 216 216 216 216 864

Table 4.2 displays the simulated balanced data sample size, that is, the number of customers

per cell. The recommended minimum cell size (at least 20 observations per cell) was achieved.

Hence, the sample size was appropriate for analysis of variance.

4.2.3 Testing ANOVA Assumptions

This section was dealt with in Section 3.8.2 in detail. A recapitulation of the assumption tests

is summarised below.

4.2.3.1 Normality Assumption

The Shapiro-Wilk normality tests done in R statistical package produced a test statistic W =

0.9986. With the p-value = 0.7372 greater than α (0.05), supported by the normal Q-Q plot

in Figure 3.10, the balanced data sample was normal. Hence the assumption of normality for

the residuals was not violated.

4.2.3.2 Homogeneity Assumption

Levene’s test of equality of error variances resulted in a p-value = 0.442, clearly greater than

alpha = 0.05. Hence, we failed to reject H0 at 5% significance level and conclude that indeed

there is homogeneity in the error variances of the dependent variable (Amount spent) across

the groups of the two factors in the balanced sample data.
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4.2.3.3 Independence of observations

This sample resembled an original dataset whose observations were independent from one an-

other by the nature of the research design. Hence, the independence of observations assumption

was satisfied.

4.2.4 Estimating the ANOVA model and assessing overall model fit

Since the sampled data satisfies all the ANOVA assumptions, classical F-tests were used to es-

timate the balanced ANOVA model. The main and interaction effects were calculated based

on the type I sum of squares in which the F-tests and/or p-values as well as the effect sizes,

were used to test the existence of group differences in the dependent variable.

The traditional F-tests were used to estimate the balanced homoscedastic model based on the

simulated data sample. The ANOVA Table 4.3 below gives the estimated statistics for the

model. The shopfor main effect, the usecoup main effect and the interaction effect, (shop-

for*usecoup), p-values are each clearly significant (p-value < 0.001) and less than α (0.05),

which implies that theses effects are significantly contributing to the differences in amounts

spent by customers. Furthermore, with the significant main and interaction effects in the

model, the Adjusted R2 = 0,575 (greater than 0.5000) shows a fairly good model fit. The fitted

model explains about 58% (0.575 x 100) of the variability in the response variable, Amount

spent, being attributed to the reason for shopping (shopfor) and the source of coupons they

used (usecoup)
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Table 4.3: Balanced & Homoscedastic ANOVA
Source Type I Sum df Mean Square F Sig. Partial Eta

of Squares Squared
Corrected model 260952.807a 11 23722.982 106.943 .000 .580
Intercept 9654618.648 1 9654618.648 43523.121 .000 .981
shopfor 75416.045 2 37708.022 169.988 .000 .285
usecoup 35578.123 3 11859.374 53.462 .000 .158
shopfor*usecoup 1499958.639 6 24993.107 112.669 .000 .442
Error 188996.905 852 221.827
Total 10552441.33 863
Corrected error 449949.712 863

a. R Squared = .580 (Adjusted R Squared = .575)

The partial eta squared (η2
partial) effect-size statistics on the balanced homoscedastic model are

displayed in the last column in the above ANOVA table. Considering the guidelines suggested

by Cohen (1988), it can be noted that both the main effects and the interaction effect had large

effect size (η2
partial > 0.14), The greatest effect (0.442) is realized on the interaction between the

reason for shopping (Shopfor) and the source of coupons (Usecoup). Though the effect sizes in

this case are considered large, they are all below 50%.

Moreover, considering the profile plot for the same variables below, we can assess the interaction

between the independent variables, Who shopping for and Use coupons as factors affecting

Amount spent in Figure 4.1 below. Evidence of interaction between the factors shopfor and

usecoup is clearly depicted by the non-parallel lines in the profile plot.

Figure 4.1: Profile Plot: Balanced Homoscedastic Model

Interaction is more evident in self and spouse level of shopfor factor than in the other two levels.
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On the other hand, the No and From both levels of usecoup factor are almost parallel, indicating

very little interaction where as the From mailings level does interact with the rest of the factor

levels. One can safely conclude that, the differences in the amounts spent is explained by these

two factors in isolation and in combination.

Post hoc tests were conducted for the balanced homoscedastic model fitted in order to establish

the particular factor levels combinations that significantly contributed to the variations in the

dependent variable means. Table 4.4 displays the Bonferroni post hoc tests for the two factors.

Table 4.4: Balanced & homoscedastic ANOVA : Post Hoc
Dependent variable: Amount spent

Mean 95% Confidence
Difference Interval

(I)Who shop for (J)Who shop for (I-J) Std. Error Sig Lower Upper
Self Self and spouse .4517 1.24116 1.000 -2.5255 3.4289

Self and family -19.5893∗ 1.24116 .000 -22.5664 -16.6121
Self and spouse Self -.4517 1.2116 1.000 -3.4289 2.5255

Self and family -20.0410∗ 1.24116 .000 -23.1082 -17.0638
Self and family Self 19.5893∗ 1.2116 .000 16.6121 22.5604

Self and spouse 20.0410∗ 1.2116 .000 17.0638 23.0182

(I)Use coupons (J)Use coupons (I-J) Std. Error Sig. Lower Upper
No From newspaper .6204 1.43316 1.000 -3.1695 4.4103

From mailings 5.6108∗ 1.43316 .001 1.8209 9.4007
From both -11.8652∗ 1.43316 .000 -15.6551 -8.0753

From newspaper No -.6204 1.43316 1.000 -4.4103 3.1695
From mailings 4.9904∗ 1.43316 .003 1.2005 8.7803
From both -12.4856∗ 1.43316 .000 -16.2755 -8.6957

From mailings No -5.6108∗ 1.43316 .001 -9.4007 -1.8209
From newspaper -4.9904∗ 1.43316 .003 -8.7803 -1.2005
From both -17.4760∗ 1.43316 .000 -21.2659 -13.6861

From both No 11.8652∗ 1.43316 .000 8.0753 15.6551
From newspaper 12.4856∗ 1.43316 .000 8.6957 16.2755
From mailings 17.4760∗ 1.43316 .000 13.6861 21.2659
*. The mean difference is significant at the .05 level

The post hoc tests indicate that factor A (Who shopping for) had only one insignificant level

combination, "self - self and spouse" (Sig. = 1.000), the rest of the factor levels and their

combinations were significantly contributing to the differences in amount spent by customers.

A similar case for the factor B (Use coupons) levels, only the level combination, "No - From
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newspapers" had insignificant contribution to the dependent variable (Sig. = 1.000), whereas

the rest of the factor level combinations were significant (Sig. < 0.05).

4.3 Unbalanced and heteroscedastic model

It is very rare to get a real-life dataset that satisfies all the ANOVA model assumptions. The

original Grocery coupons.sav dataset adopted from SPSS, which was cleaned of all possible

outliers in the previous chapter, now comprising 811 observations, was no exception. In line

with the advice by Krishnamoorthy, Lu and Mathew (2007) when the ANOVA assumptions

have been violated, the parametric bootstrap (PB) sample estimation approach is the best

option in terms of controlling the type I error probability especially in the presence of unequal

variances. Hence, this approach will be used to estimate the ANOVA model for the unbalanced

and heteroscedastic dataset in this section. The first five stages of the model building process

are presented as usual.

4.3.1 Research Objectives

The main aim of this study is to establish how the amount spent by customers on shopping is

influenced by their reason for shopping (factor A) and the source of coupons used (fator B),

under the influence of unbalancedness and heteroscedasticity.

4.3.2 Research Design

A real-life dataset, Grocery coupons.sav, adopted from SPSS, is used to investigate the effects of

heteroscedasticity and unbalancedness on effect sizes of two-way fixed-effects ANOVA designs

with interactions. In each case, a two-way ANOVA design with interaction, having Amount

spent as the metric continuous response variable depending on two categorical factors; Who

shopping for (shopfor) (with three factor levels: self, self and spouse, and self and family); and

Use coupons (with four factor levels: No, From newspaper, From mailings and From both) is

proposed.
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4.3.3 Data Description and Sample Size

After cleaning the original Grocery coupons.sav dataset of all the possible outliers, the sample

was reduced to a total of 811 observations with unequal cell sizes. Table 4.5 below is the two-

way Anova design proposed, showing the varying standard deviations in each cell.

Table 4.5: Unbalanced & Heteroscedastic Sample Standard Deviations
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 10.2 9.6 11.5 16.2 13.0
Self & spouse 7.1 10.9 6.3 10.0 10.1
Self & family 12.1 13.8 12.8 38.0 27.1
Total 14.8 14.2 21.5 34.1 23.4

Variations in standard deviations, from as little as 6.3 to a maximum of 38.0, in the factorial

combinations indicate unequal variances across the groups in the model, a justification that a

heteroscedastic two-way ANOVA design should be proposed.

All the cell sizes in each factorial combination in Table 4.6 below were above 40. The dataset

satisfied the recommended minimum cell size of 20 observations per cell (group) to maintain a

statistical power of 0.80 (Hair et al., 2014).

Table 4.6: Unbalanced & Heteroscedastic Sample Cell Count
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 72 72 72 68 284
Self & spouse 72 72 72 72 288
Self & family 72 42 68 57 239
Total 216 186 212 197 811

Table 4.6 displays the original data sample size, that is, the number of customers per cell (fac-

torial combination) who came for shopping with or without coupons. All the cell (group) sizes

were adequate enough to meet the recommended minimum cell size (at least 20 observations
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per cell). Hence, the sample was appropriate enough to warrant accurate analysis results. The

next subsection looks at testing ANOVA assumptions.

4.3.4 Testing ANOVA Assumptions

ANOVA assumptions which were tested include normality, homoscedasticity, and independence

assumption.

4.3.4.1 Normality

The hypothesis being tested in this section is given by:

H0: The sample data was from a normally distributed population (Normality)

Based on the normality test done in Section 3.7, the p-p plots and the normal curve showed

that the reduced original dataset was normally distributed, though not perfectly normal. It

was established that the data had little skewness problems that could not be totally eradicated

by data transformation. Hence, as a remedy to this problem, a parametric bootstrap approach

will be used when estimating the ANOVA model for this dataset.

4.3.4.2 Homoscedasitcity

The p-value of (p < 0.001), from the Levene’s test of equal error variances in Section 3.7.2,

was clearly below alpha = 0,05. Hence, the homogeneity of the error variances assumption was

not satisfied across the groups in the dependent variable (Amount spent). The original data is

therefore heteroscedastic.

4.3.4.3 Independence of observations

The independence of observations is ensured by the nature of design (Hair et al., 2014). The

observations involved were customers visiting a shop, naturally independent of one another,

hence the independence of observations assumption was satisfied.
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4.3.5 Estimating the ANOVA model and assessing overall model fit

Since the previous section shows that the dataset used was not perfectly normal and that it had

some little skewness problems that could not be ironed out through data transformation, it was

prudent to apply the parametric bootstrap approach (defined in Section 2.4.3) to approximate

the test statistics in model estimation since it is robust to assumption violations. Basically,

two types of hypotheses were tested: the main and interaction effects. Null hypotheses for

the main effects and existence of interaction effects were rejected if the p-values for factor/or

interaction factor exceeded the α level of significance (5%). Type III sum of squares was used

for the unbalanced two-way ANOVA. In each case, the F-tests and/or p-values as well as the

effect sizes, were used to test the existence of group differences in the dependent variables.

Overall model fitness was tested using the R2 adjusted. The higher the R2 adjusted (above

50% or 0,5000 ,say) the better the model fit. Alternatively, the F-test could also be used to

check the overall model fitness.

The parametric bootstrap estimation, based on 100 samples, was used to approximate the het-

eroscedastic model based on the original unbalanced data. The ANOVA Table 4.7 below gives

the estimated statistics of the model.

Table 4.7: Unbalanced & heteroscedastic ANOVA
Dependent variable: Amount spent

Source Type III Sum df Mean Square F Sig Partial Eta
of Squares Squared

Corrected model 268661.971a 11 24423.816 112.794 .000 .608
Intercept 88414226.278 1 8841426.278 46831.340 .000 .981
shopfor 182374.629 2 91187.315 421.120 .000 .513
usecoup 34393.629 3 11464.543 52.945 .000 .166
shopfor*usecoup 49141.645 6 8190.274 37.824 .000 .221
Error 173011.700 799 216.535
Total 9289258.197 811
Corrected error 441673.671 810

a. R Squared = .608 (Adjusted R Squared = .603)

Considering the significance (p-value) column in Table 4.7 above, the shopfor main effect p-

value (Sig = 0.000) is clearly less than α (0.05), hence we conclude that the main effect of
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shopfor is significantly contributing to the differences in amounts spent by customers. Simi-

larly, the usecoup main effect is also significant since the p-value (p-value < 0.001) is less than α

(0.05) at 5% level of significance. The same applies to the interaction effect, (shopfor*usecoup),

which is clearly significant, p-value (p < 0.001) less α (0.05). More-so, the Adjusted R2 = 0.603

(greater than 0.5000) shows a fairly good model fit. The fitted model explains 60% (0.603 x

100) of the variability in the response variable, Amount spent, being attributed to the reason

for shopping (shopfor) and the source of coupons (usecoup) they used.

The effect sizes on the unbalanced heteroscedastic model were calculated using the partial eta

squared (η2
partial) statistics. The last column in the above ANOVA table gives the effect-size

values of the calculated. Considering the guidelines suggested by Cohen (1988), it can be noted

that both the main effects and the interaction effect had considerably large effect size (η2
partial

> 0.14). The greatest effect (0.513%) is attributed to reason for shopping (shopfor), whereas

the source of coupons (usecoup) contributed less effect size (0.166), which resulted in a fairly

high interaction effect size of 0.221.

Moreover, considering the profile plot for the same variables below, we can have a pictorial

glimpse of the interaction between the independent variables, Who shopping for and Use

coupons as factors affecting Amount spent in Figure 4.2 below.

Figure 4.2: Profile Plot: Unbalanced Heteroscedastic Model

Evidence of interaction between the factors shopfor and usecoup is clearly depicted by the
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non-parallel lines in the profile plot. Interaction of the two factors is more in self & spouse level

of the factor shopfor than in any other level. One can safely conclude that, the differences in

the amounts spent was influenced by these two factors in isolation and in combination.

Having a significant interaction effect as shown in the ANOVA Table 4.7, it was necessary to

perform post hoc tests in order to establish where exactly the differences occurred between the

groups of the amounts spent. Table 4.8 below displays the bootstrap Bonferroni post hoc tests

for multiple comparisons for the two factors.

Table 4.8: Unbalanced & heteroscedastic Post Hoc
Dependent variable: Amount spent

Mean Bootstrapa

Difference BCa 95% CI
(I)Who shop for (J)Who shop for (I-J) Bias S.E Lower Upper
Self Self and spouse -6.3297 -.0012 .9756 -8.1663 -4.4535

Self and family -36.2783 -.0870 1.8778 -39.9304 -32.8745
Self and spouse Self 6.3297 .0012 .9756 4.3243 8.2253

Self and family -29.9485 -.0858 1.8037 -33.3516 -26.6864
Self and family Self 36.2783 .0870 1.8778 32.6961 40.2191

Self and spouse 29.9485 .0858 1.8037 26.4828 33.6967

(I)Use coupons (J)Use coupons (I-J) Bias S.E Lower Upper
No From newspaper .4513 -.0197 1.4537 -2.3658 3.3694

From mailings -11.5722 .0041 1.8301 -15.1920 -8.0712
From both -12.9482 -.1010 2.7052 -18.3750 -8.1598

From newspaper No -.4513 .0197 1.4537 -3.4686 2.4676
From mailings -12.0234 -.0237 1.7473 -15.2650 -8.3921
From both -13.3995 -.0814 2.7048 -19.4205 -8.3379

From mailings No 11.5722 -.0041 1.8301 8.1320 15.0066
From newspaper 12.0234 -.0237 1.7473 8.5296 15.1787
From both -1.3760 -.1051 2.9173 -7.0586 4.0376

From both No 12.9482 .1010 2.7052 7.8951 18.7523
From newspaper 13.3995 .0814 2.7048 8.3398 19.4200
From mailings 1.3760 .1051 2.9173 -4.2759 7.2684

a. Unless otherwise noted, bootstraps are based on 1000 bootstrap samples

Reading from the bias-corrected and accelerated (BCa) 95% confidence intervals, the bootstrap

post hoc tests indicate that all factor A (Who shopping for) levels had significant mean dif-

ferences ( BCa 95% Confidence Intervals do not cut through zero), hence these factor levels

were significantly contributing to the differences in amount spent by customers. On the other
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hand, factor B (Use coupons) had two level combinations, "No - From newspapers" and "From

both - From mailings" which had insignificant contributions to the dependent variable (BCa

95% Confidence Intervals include zero), whereas the rest of the factor level combinations were

significantly contributing to the differences among the amounts spent.

4.4 Unbalanced and homoscedastic model

Using the same approach as in the balanced model, a total of 100 samples of 850 observations

each, with unequal cell sizes, were simulated from the original Grocery coupons.sav dataset

using different group means and a common standard deviation from the original data descriptive

statistics.

4.4.1 Research Objectives and Design

In this model, the aim is to investigate the effect of two independent categorical factors, Who

shopping for and Use coupons on the numeric response variable Amount spent when the sample

data has unequal cell sizes, but having homogeneous error variances.

The research was designed in such a way that 100 unbalanced simulated data samples of size

850 each, with homogeneous error variances, were used to investigate the effects of shopping

patterns (shopfor) and the use of coupons (usecoup) to the amount of money spent by cus-

tomers. A two-way fixed-effects ANOVA design with interaction, having Amount spent as the

metric continuous response variable depending on two categorical factors, Who shopping for

and Use coupons, is proposed.

4.4.2 Data Description and Sample Size

Each simulated sample of size 850 with unequal cell sizes was generated from the original data

descriptive statistics (group cell means, homogeneous standard deviation of 15.0). Original

data descriptive statistics were used in order to generate samples that are closely related to the

86



original dataset but of an unbalanced ANOVA design.

With a simulated sample of size 850 generated from the original data, having a minimum cell size

of 68 across all the factor combinations, the dataset satisfied the recommended minimum cell

size of 20 observations per cell (group) to maintain a statistical power of 0.80 (Hair et al., 2014).

Table 4.9: Unbalanced & Homoscedastic Sample Cell Count
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 68 70 72 72 282
Self & spouse 72 70 72 72 284
Self & family 70 72 72 70 284
Total 210 212 214 214 850

Table 4.9 above displays the cell sizes in the simulated unbalanced data sample. The recom-

mended minimum cell size of at least 20 observations per cell was satisfied and thus, the sample

is adequate for analysis of variance analysis.

4.4.3 Testing ANOVA Assumptions

The ANOVA assumptions for this model were tested in Section 3.8.3. Both the normality and

homoscedasticity assumptions were satisfied. More-so, due to the nature of the research design,

the independence of observations assumption was also ensured, hence no assumption violation

was found.

4.4.4 Estimating the ANOVA model and assessing overall model fit

Since the sampled data satisfies all the ANOVA assumptions, classical F-tests were also used to

estimate the unbalanced ANOVA model. The main and interaction effects were calculated

based on the type III sum of squares due to unbalancedness in the dataset. The F-tests and/or

p-values as well as the effect sizes, were used to test the existence of group differences in the

dependent variables.
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The traditional F-tests were used to estimate the unbalanced homoscedastic model based on

the simulated data sample. The ANOVA Table 4.10 below gives the estimated statistics for the

model.

Table 4.10: Unbalanced & Homoscedastic ANOVA
Dependent variable: Amount spent

Source Type III Sum df Mean Square F Sig Partial Eta
of Squares Squared

Corrected model 25114.810a 11 23192.255 104.105 .000 .577
Intercept 9496909.554 1 9496909.554 42629.721 .000 .981
shopfor 74881.889 2 37440.944 168.065 .000 .286
usecoup 35224.549 3 11741.516 52.705 .000 .159
shopfor*usecoup 148357.243 6 24726.207 110.991 .000 .443
Error 186686.894 838 222.777
Total 9935506.316 850
Corrected error 441801.704 849

a. R Squared = .577 (Adjusted R Squared = .572)

The shopfor main effect, usecoup main effect and the interaction effect, (shopfor*usecoup) p-

values are each clearly significant (p-value < 0.001 < α (0.05)), which implies that theses effects

are significantly contributing to the differences in amounts spent by customers. Furthermore,

with the significant main and interaction effects in the model, the Adjusted R2 = 0,572 (greater

than 0.5000) shows a fairly good model fit. The fitted model explains about 57% (0.572 x 100)

of the variability in the response variable, Amount spent, being attributed to the reason for

shopping (shopfor) and the source of coupons they used (usecoup)

The partial eta squared (η2
partial) effect-size statistics on the unbalanced homoscedastic model

are displayed in the last column in the above ANOVA table. Considering the guidelines sug-

gested by Cohen (1988), it can be noted that both the main effects and the interaction effect

had large effect size (η2
partial > 0.14). The greatest effect (0.443) is attributed to the interaction

between the reason for shopping (shopfor) and the source of coupons (usecoup). Though the

effect sizes in this case are considered large, they were less than 50%.

Moreover, considering the profile plot for the same variables below, we can assess the interac-

tion between the independent variables, Who shopping for and Use coupons as factors affecting
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Amount spent in Figure 4.3 below.

Figure 4.3: Profile Plot: Unbalanced Homoscedastic Model

Pictorial evidence of interaction between the factors Shopfor and Usecoup is clearly depicted

by the non-parallel lines in the profile plot. There was little interaction between the No and

From both levels of the Usecoup factor indicated by almost parallel line graphs in the profile

plot (Figure 4.3), where as the From mailings and From newspaper levels exhibit interaction

with the rest of the factor levels. On the other hand, the Who shopping for factor displays

less interaction activity in the first two levels, Self and Self and family, while much association

is seen in the third level Self and family. One can safely conclude that, the differences in the

amounts spent is explained by these two factors in isolation and in combination.

Post hoc tests were conducted for the unbalanced homoscedastic model fitted to provide a

further confirmation of the actual source of significant interaction between the factor levels.

Table 4.11 displays the Bonferroni post hoc tests for the unbalanced homoscedastic model

factors.
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Table 4.11: Unbalanced & Homoscedastic ANOVA : Post Hoc
Dependent variable: Amount spent

Mean 95% Confidence
Difference Interval

(I)Who shop for (J)Who shop for (I-J) S.E Sig Lower Upper
Self Self and spouse .5436 1.25476 1.000 -2.4663 3.5535

Self and family -19.2411∗ 1.25476 .000 -22.2510 -16.2312
Self and spouse Self -.5436 1.25476 1.000 -3.5535 2.4663

Self and family -19.7847∗ 1.25254 .000 -22.7892 -16.7801
Self and family Self 19.2411∗ 1.25476 .000 16.2312 22.2510

Self and spouse 19.7841∗ 1.25254 .000 16.7801 22.7892

(I)Use coupons (J)Use coupons (I-J) S.E Sig Lower Upper
No From newspaper .7879 1.45316 1.000 -3.0551 4.6308

From mailings 5.5304∗ 1.44978 .001 1.6964 9.3644
From both -11.5779∗ 1.44978 .000 -15.4119 -7.7439

From newspaper No -.7879 1.45316 1.000 -4.6308 3.0551
From mailings 4.7425∗ 1.44632 .007 .9177 8.55674
From both -12.3658∗ 1.44632 .000 -16.1906 -8.5409

From mailings No -5.5304∗ 1.44978 .001 -9.3644 -1.6964
From newspaper -4.7425∗ 1.44632 .007 -8.5674 -.9177
From both -17.1083∗ 1.44292 .000 -20.9241 -13.2924

From both No 11.5779∗ 1.44978 .000 7.7439 15.4119
From newspaper 12.3658∗ 1.44632 .000 8.5409 16.1906
From mailings 17.1083∗ 1.44292 .000 13.2924 20.9241

*. The mean difference is significant at the .05 level

The post hoc tests confirm the profile plot graph results (Figure 4.3) that the Who shopping

for factor had insignificant level combination in "self - self and spouse" levels (Sig. = 1.000),

but the rest of the factor levels and their combinations were significantly contributing to the

differences in amount spent by customers. Similar pattern can also be noted for the second

factor (Use coupons) levels, only the level combination, "No - From newspapers" had insignif-

icant contribution to the dependent variable (Sig. = 1.000), whereas the rest of the factor

level combinations were significant (Sig. < 0.05). Generally, there is enough evidence of some

interactions between the two factors in question and their respective factor levels.

4.5 Balanced and heteroscedastic model

A total of 100 balanced samples of 864 observations each, with equal cell sizes of 72 observations,

were randomly sampled from the original Grocery coupons.sav dataset. This implies that the

samples had unequal variances since it is just a subset of the original dataset. Similarly, based
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on the argument by Krishnamoorthy, Lu and Mathew (2007) on heteroscedatic data samples,

the parametric bootstrap approach was proposed to estimate the ANOVA model in order to

control the type I error probability. The first five stages of the model building process are

presented as usual.

4.5.1 Research Objectives and Design

The main aim of this study is to establish how the dependent variable Amount spent by cus-

tomers on shopping is explained by the categorical factors, Who shopping for and Use coupons,

under the influence of heteroscedasticity.

The research design was in such a way that 100 samples from the original dataset, Grocery

coupons.sav, adopted from SPSS, were used to investigate the effects of heteroscedasticity on

effect sizes of two-way fixed-effects ANOVA model with interactions. In this case, a two-way

ANOVA design with interaction, having Amount spent as the metric continuous response vari-

able depending on two categorical factors, Who shopping for and Use coupons is proposed.

4.5.2 Data Description and Sample Size

The 864 sampled observations were categorised into 4 by 3 factor levels of the explanatory

variables. With equal cell sizes of 72 observations each, the sample had varying group standard

deviations, indicating the presence of non-homogeneous group variances. Table 4.12 below

shows the proposed balanced two-way ANOVA design, with varying group variances (standard

deviations displayed in each cell).

Table 4.12: Balanced & Heteroscedastic Sample Standard Deviations
FACTOR B
(Use Coupons)

FACTOR A No From From From
(Who shopping for) Newspapers Mailings Both Total
Self 10.21389 9.61191 11.54082 24.15467 15.92713
Self & spouse 7.09907 10.91701 6.30587 9.96651 10.10320
Self & family 12.10203 64.19930 14.67940 75.46532 52.14203
Total 14.79198 38.82084 21.41514 50.81324 34.98403
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The largest variations in mean amount spent was realised in the Self and spouse level of Who

shopping for. Varying standard deviations across the group cells is a justification that a het-

eroscedastic two-way ANOVA design should be used.

In each sample, the factorial combination had a cell size of 72 observations, the sample satisfied

the recommended minimum cell size of 20 observations per cell (group) to maintain a statistical

power of 0.80 (Hair et al., 2014). Hence the overall sample size was adequate to apply analysis

of variance approach to test the factor effects.

4.5.3 Testing ANOVA Assumptions

ANOVA assumptions for this model were tested in Section 3.8.1. In brief, the assumption tests

were as follows:

• Normality assumption was not perfectly met since the data exhibit little departure from

normality due to skewness.

• Homogeneity of error variances assumption was violated. The Levene’s equal variances

test had a p-value = 0.000, which is less than 0.05 α significance level, resulting in the

rejection of the null hypothesis for homogeneity of error variances.

• Independence of observations was satisfied due to the nature of research design.

With this scenario, the ANOVA assumptions are violated, which implies that classical F-tests

would be inappropriate to apply (Erceg-Hurn & Mirosevich, 2008). However, robust parametric

bootstrap approach can be used to estimate the model, since it can control the type I error

rate.
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4.5.4 Estimating the ANOVA model and assessing overall model fit

The fact that the basic ANOVA assumptions were violated, and that data transformation

could not perfectly amend the problem as indicated in Chapter 3, the parametric bootstrap

approach (defined in Section 2.4.3) will be used to approximate the test statistics in model

estimation since it is robust to these assumption violations. The usual hypotheses of the main

and interaction effects were tested, the Null hypotheses for the main effects and existence of

interaction effects rejected if the p-values for factor/or interaction factor exceed the α level of

significance (5%). Type I sum of squares were used for the balanced two-way ANOVA, with

the F-tests and the effect sizes used to test the existence of group differences in the dependent

variables.

The parametric bootstrap estimation, based on 1000 samples, was used to approximate the

balanced heteroscedastic model based on the sampled data. The bootstrap ANOVA Table 4.13

below gives the estimated statistics of the model. The shopfor main effect p-value (p < 0.001)

is clearly less than α (0.05), hence we conclude that the main effect of shopfor is significantly

contributing to the differences in amounts spent by customers. Similarly, the usecoup main

effect is also significant (p-value < 0.001 < α = 0.05) at 5% level of significance. The same

applies to the interaction effect, (shopfor*usecoup), which is clearly significant (p-value < 0.001

< α = 0.05). However, the Adjusted R2 = 0.224 (less than 0.5000) shows a poor model fit.

The fitted model explains only 22.4% (0.224 x 100) of the variability in the response variable,

Amount spent, being attributed to the reason for shopping (shopfor) and the source of coupons

they used (usecoup).
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Table 4.13: Balanced & heteroscedastic ANOVA
Dependent variable: Amount spent

Source Type I Sum df Mean Square F Sig Partial Eta
of Squares Squared

Corrected model 246772.346a 11 24423.850 23.613 .000 .234
Intercept 9496231.072 1 9496231.072 9995.564 .000 .921
shopfor 173817.489 2 86908.745 91.479 .000 .177
usecoup 31422.770 3 10474.257 11.025 .000 .037
shopfor*usecoup 41532.087 6 6922.014 7.286 .000 .049
Error 809437.914 852 950.045
Total 10552441.33 864
Corrected error 1056210.260 863

a. R Squared = .234 (Adjusted R Squared = .224)

The effect sizes on the unbalanced heteroscedastic model were calculated using the partial eta

squared (η2
partial) statistics. The last column in the above ANOVA table gives the effect-size

values of the calculated. Considering the guidelines suggested by Cohen (1988), it can be noted

that only the Who shopping for effect had a fairly large effect size (η2
partial = 0.177 > 0.14). On

the other hand, the Use coupons contributed less 0.05 effect size (0.037), which resulted in a

very low interaction effect size of 0.049 as well. Although both the main and interaction effects

were all significant (Sig = 0.000), the strength or magnitude of their effects is very low (poor

model fit) as indicated by a low Adjusted R2 of 22.4%.

Furthermore, looking at the graphical presentation in form of a profile plot for the interaction

of the variables in the model, we can assess the interaction between the independent variables,

Who shopping for and Use coupons as factors explaining the Amount spent in Figure 4.4 below.
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Figure 4.4: Profile Plot: Balanced Heteroscedastic Model

Evidence of interaction between the factor levels of Who shopping for is clearly displayed by

crossing lines in the profile plot. Considerable interaction is vividly detected from the Who

shopping for factor levels self & spouse and self & family, line graphs clearly non-parallel,

whereas little interaction is displayed between the levels self and self & spouse, two pairs of

lines almost parallel. On the other hand, the Use coupons factor levels seems to have non-

significant interaction between the level combinations From mailings - From both, and No -

From newspapers, since the respective pairs of plots are almost superimposed on one another.

One can safely conclude that, the differences in the amounts spent was fairly influenced by

these two factors in isolation and in combination.

Having a significant interaction effect as shown in Table 4.13, this leads us to the usual analysis

of post hoc tests in order to establish the exact factor levels contributing to the differences in

the group means of the amounts spent. Table 4.14 below displays the bootstrap Bonferroni

post hoc tests for multiple comparisons for the two factors.
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Table 4.14: Balanced & Heteroscedastic Post Hoc
Dependent variable: Amount spent

Mean Bootstrapa

Difference BCa 95% CI
(I)Who shop for (J)Who shop for (I-J) S.E Sig. Lower Upper
Self Self and spouse -5.7816 1.1279 .074 -8.0019 3.4824

Self and family -32.5594∗ 3.2488 .000 -39.0175 -26.3137
Self and spouse Self 5.7816 1.1279 .074 -3.5013 7.9651

Self and family -26.7779∗ 3.2130 .000 -33.2729 -19.7124
Self and family Self 32.5594∗ 3.2488 .000 26.0931 39.0807

Self and spouse 26.7779∗ 3.2130 .000 20.6166 32.8515

(I)Use coupons (J)Use coupons (I-J) S.E Sig. Lower Upper
No From newspaper -.9478 2.8420 1.000 -7.4732 4.7628

From mailings -11.4725∗ 1.8101 .001 -15.1913 -7.7173
From both -13.4051∗ 3.6599 .000 -20.9670 -6.0973

From newspaper No .9478 2.8420 1.000 -4.0986 6.6362
From mailings -10.5247∗ 3.1074 .002 -16.2294 -4.6003
From both -12.4574∗ 4.4302 .000 -21.2139 -4.0733

From mailings No 11.4725∗ 1.8101 .001 7.9412 14.9779
From newspaper 10.5247∗ 3.1074 .002 3.3888 16.8415
From both -1.9327 3.7110 1.000 -9.1540 5.2537

From both No 13.4051∗ 3.6599 .000 6.4423 20.6762
From newspaper 12.4574∗ 4.4302 .000 4.0528 20.6762
From mailings 1.9327 3.7110 1.000 -5.6144 9.8038

a. Unless otherwise noted, bootstraps are based on 1000 bootstrap samples

Reading from the bias-corrected and accelerated (BCa) 95% confidence intervals, the bootstrap

post hoc tests indicate that in factor A (Who shopping for), the levels Self and Self & spouse

had insignificant collective contribution (Sig.= 0.074 > 0.05 α level) to the amount spent by

customers because the BCa 95% Confidence Intervals cut through zero whereas the rest of

the factor level combinations had significant interactions (Sig. = 0.000). On the other hand,

factor B (Use coupons) had two level combinations, "No - From newspapers" and "From both

- From mailings" which had insignificant contributions (Sig. = 1.000 > 0.05 α level) to the

dependent variable (BCa 95% Confidence Intervals include zero), whereas the rest of the factor

level combinations were significantly contributing to the differences among the amounts spent.

4.6 Validation of Results

The bootstrap samples generated from the original dataset, based on 100 samples, for the het-

eroscedastic samples produced consistent results similar to the original sample. More-so, the
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simulation samples (homoscedastic data samples simulated from the original dataset) also pro-

duced results consistent with the original data analysis results. Hence, based on the bootstrap

and simulation sample results, we conclude that the results of this study had both internal and

external validity.

4.7 Conclusion

This chapter presented the materials in a form of datasets used to test the research hypotheses,

the methodology used to analyse the research data, outlining the first five stages of Hair et

al (2014) Six-Stage model building process: the objectives of the research, research design,

testing of ANOVA assumptions, estimation of the ANOVA models and assessing the model fit,

as well as validation of results. The methods used to estimate the four ANOVA models, that

is, the homoscedastic, heteroscedastic, balanced and unbalanced ANOVA model, and to assess

their model fit were articulated. These methods spontaneously guaranteed the validity of the

research results. The next Chapter 5, deals with the analysis and discussion of results in detail

with regards to the main objective and hypotheses of the thesis.
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Chapter 5

Analysis and Discussion of Results

5.1 Introduction

Based on the effect sizes estimated by Eta squared (η2), Partial Eta squared (η2
partial), and

Omega squared (ω2), the impact of heteroscedasticity and unbalancedness on the significance

tests in each of the four models will be analysed. In each case, the changes in effect sizes will be

evaluated and comparisons made for the three effect-size magnitudes. A detailed comparison on

the effects of unbalancedness and heteroscedasticity on two-way fixed effects ANOVA models

significance tests will be assessed based upon these changes in effect-sizes.

5.2 Effect-size analysis

A detailed comparative analysis of the impact of unbalancedness and heteroscedasticity was

done through comparing the changes in Eta squared (η2), Partial Eta squared (η2
partial) and

Omega squared (ω2) effect sizes in the four models. Following the Cohen (1988) guidelines, the

difference in effect size was considered significant if it exceeds 0.06 (6%), that is from moderate

to large effect size. The effect sizes in each of the four models are summarised in Table 5.1

below.
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Table 5.1: Effect sizes
Model Effect Size
1. Balanced Homoscedastic model η2 η2

partial ω2

Factor A 0.007 0.285 0.007
Factor B 0.004 0.158 0.004
Interaction A*B 0.015 0.442 0.015
2. Unbalanced Homoscedastic model η2 η2

partial ω2

Factor A 0.008 0.286 0.007
Factor B 0.004 0.159 0.003
Interaction A*B 0.015 0.443 0.015
3. Balanced Heteroscedastic model η2 η2

partial ω2

Factor A 0.016 0.177 0.016
Factor B 0.003 0.037 0.003
Interaction A*B 0.004 0.049 0.004
4. Unbalanced Heteroscedastic model η2 η2

partial ω2

Factor A 0.020 0.513 0.020
Factor B 0.004 0.166 0.004
Interaction A*B 0.005 0.221 0.005

A cursory look on the effect size summary Table 5.1 above, in all the four models the effect-size

measures, eta squared (η2) and omega squared (ω2), estimated very small effect magnitudes

(less than the hypothesised minimum 0.06 stated in hypothesis 1(a) H0(A)). On the other

hand, the partial eta squared (η2
partial) estimated considerably greater effect sizes, ranging from

small (less than 0.06) to large (more than 0.14). It can also be noted that the unbalanced

heteroscedastic model had somehow exaggerated effect sizes amongst the four models. The ω2

and η2 estimated very low and almost equal effect-size magnitudes, far less than the η2
partial

in each model. In support of Thompson (2007), the ω2 effect sizes were always less than or

equal to η2, which indicated that ω2 is more conservative than the η2 and the η2
partial, which

many researchers argue that the later overestimates effect size. However, due to the fact that

ω2 and η2 yielded insignificant effect-size magnitudes, the η2
partial is recommended for analysis

purposes in this section since it had considerably significant effect measures that are above the

hypothesised minimum (0.06).

5.2.1 Impact of unbalancedness on effect size

A summary of the effect-size differences of the balanced and unbalanced two-way fixed-effects

ANOVA models is displayed in the last column of Table 5.2 below. Based on partial eta squared

(η2
p) effect-size measure and the hypothesis 1(b) H0(B) in the first chapter, the difference (d)
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column in the table below summarises the discrepancies between the balanced and unbalanced

models effect sizes.

Table 5.2: Effect changes due to unbalancedness
Homoscedastic models

Effect Measure Balanced Unbalanced Difference
ANOVA ANOVA d

Factor A: η2 0.007 0.008 0.001
η2

p 0.285 0.286 0.001
ω2 0.007 0.008 0.001

Factor B: η2 0.004 0.004 0.000
η2

p 0.158 0.159 0.001
ω 0.003 0.003 0.000

A*B: η2 0.015 0.015 0.000
η2

p 0.442 0.443 0.001
ω2 0.015 0.015 0.000
Heteroscedastic models

Factor A: η2 0.016 0.020 0.004
η2

p 0.177 0.513 0.336
ω2 0.020 0.016 0.004

Factor B: η2 0.003 0.004 0.001
η2

p 0.037 0.166 0.129
ω2 0.003 0.004 0.001

A*B: η2 0.004 0.005 0.001
η2

p 0.049 0.221 0.172
ω2 0.004 0.005 0.001

The first pair of homoscedastic models’ effect-size differences were far below the hypothesised

minimum effect magnitude of 0.06 especially in the main effects of both factors. Hence, based

on the hypothesis 1(b), we fail to reject H0(B) and conclude that unbalancedness had little or no

significant impact on main and interaction effect sizes in homoscedastic two-way fixed-effects

ANOVA models.

However, considering the second pair of heteroscedastic models, significant partial eta squared

(η2
p) effect-size differences (d > 0.06) between the balanced and unbalanced models can be seen.

Hence, we reject the hypothesis 1(c) H0(C) and conclude that, ceteris paribus, unbalancedness

contributed to the differences (d) in main and interaction effect-size magnitudes in the het-

eroscedastic models.
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Furthermore, a close comparison of the effect sizes from the balanced models against the un-

balanced models counterparts indicates an increasing trend in the effect sizes as the model

becomes unbalanced. This drives us to the conclusion that unbalancedness inflates the effect-

size magnitudes in two-way fixed-effects ANOVA models.

5.2.2 Impact of heteroscedasticity on effect size

The effect of heteroscedasticity could be seen when comparing the balanced models against the

unbalanced models effect size changes as shown in column labeled d in Table 5.3 below. Small

to moderate effect size changes in the factor A and B main effects were depicted in balanced

homoscedastic and heteroscedastic models. However, the interaction effect had a large effect

difference in these models (d > 0.14). Furthermore, medium to large effect changes (d > 0.06)

were seen when the model is unbalanced, with the largest effect change in the interaction effect

realized by η2
p.

Looking at the balanced models first in Table 5.3, it is clear that the homoscedastic model

had generally higher partial eta squared (η2
p) effect sizes (η2

p > 0.14) than the heteroscedastic

counterparts, which suggests that the presence of heteroscedasticity reduced the effect-size mag-

nitudes in the model. Based on hypothesis 1(c) H0(C) and considering the partial eta squared

measure, the differences in the main and interaction effect sizes due to heteroscedasticity were

significant ( difference d > 0.06) in the models involved. One can conclude that heteroscedas-

ticity in balanced two-way fixed-effects ANOVA reduces the effect size of the model. However,

the reduction depends on the severity of heteroscedasticity (Erceg-Hurn & Mirocevich, 2008).
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Table 5.3: Effect sizes under heteroscedasticity
Balanced models

Effect Measure Homoscedastic Heteroscedastic Difference
ANOVA ANOVA d

Factor A: η2 0.007 0.016 0.009
η2

p 0.285 0.177 0.108
ω2 0.007 0.016 0.009

Factor B: η2 0.004 0.003 0.001
η2

p 0.158 0.037 0.121
ω 0.003 0.003 0.000

A*B: η2 0.015 0.004 0.011
η2

p 0.442 0.049 0.393
ω2 0.015 0.004 0.011

Unbalanced models
Factor A: η2 0.008 0.020 0.012

η2
p 0.286 0.513 0.227

ω2 0.007 0.020 0.013
Factor B: η2 0.004 0.004 0.000

η2
p 0.159 0.166 0.007

ω2 0.003 0.004 0.001
A*B: η2 0.015 0.005 0.010

η2
p 0.443 0.221 0.222

ω2 0.015 0.005 0.010

On the other hand, the pattern in the magnitude of effect sizes in unbalanced models was not

consistent. The main effect-size magnitudes increased with heteroscedasticity, where as the

interaction effect-size magnitude decreased. In conclusion, based on the results of this study,

the presence of unequal variances yields inconsistent effect-size changes in unbalanced two-way

fixed-effects ANOVA. Weird and over-estimated effect-size measures existed especially when the

model is both unbalanced and heteroscedastic. However, there were significant differences in

both the main and interaction effect sizes in these unbalanced models, leading to the rejection

of hypothesis 1(c) H0(C) and a conclusion that heteroscedasticity does affect the main and

interaction effect sizes in two-way fixed-effects ANOVA either positively or negatively.

5.3 Robust versus Traditional F-tests

When the variances are not equal and the cell sizes are different, the F tests are not robust

enough to produce accurate results (Yigit and Gokpinar, 2010). Literature suggests several

subrogates to the traditional F-tests, like the Welch test and Brown-Forsythe F-test, which are

good alternatives when dealing with one-way ANOVA in the presence of heteroscedasticity and
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unbalancedness. In our case, the traditional F-test was compared against the robust parametric

bootstrap approach. We consider first the magnitudes of effect size each method could detect in

the presence of heteroscedasticity and unbalancedness. Table 5.4 below is a presentation of the

traditional F-test ANOVA for the unbalanced and heteroscedastic transformed original dataset.

Table 5.4: Balanced & heteroscedastic Traditional F-test ANOVA
Dependent variable: Natural log Amount

Source Type III Sum df Mean Square F Sig Partial Eta
of Squares Squared

Corrected model 19.327a 11 1.757 107.688 .000 .597
Intercept 17018.641 1 17018.641 1043092.872 .000 .999
shopfor 13.790 2 6.895 422.613 .000 .514
usecoup 2.112 3 .704 43.140 .000 .139
shopfor*usecoup 3.015 6 .503 30.802 .000 .188
Error 13.036 799 .016
Total 17387.144 811
Corrected error 32.363 810

a. R Squared = .597 (Adjusted R Squared = .592)

The above table displays almost similar results pattern shown in the bootstrap ANOVA Table

4.7 for the same model discussed in the previous chapter. The shopfor main effect was clearly

significant (Sig. = 0.000) since this p-value is less than the α (0.05). The same applies to the

second factor (usecoup) and the interaction effect (shopfor*usecoup), which are both signifi-

cantly contributing to the differences in amounts spent by customers. The three effect sizes

for the main and interaction effects all exceeded the hypothesized threshold, 0.06. Furtermore,

the Adjusted R2 = 0.592 is greater than 0.5000 (50%), showing a fairly good model fit as well.

Hence, based on hypothesis 1(a) H0(A), the traditional F-test managed to detect significant

main and interaction effect sizes since all η2
partial were greater than 0.06

However, the main focus is on the differences, if any, between the performance of the traditional

F-test against the robust test (parametric bootstrap (PB) method in this case) in the presence

of both heteroscedasticity and unbalancedness. To illuminate the important differences, a

comparison of the magnitudes of effect sizes based on partial eta squared (η2
partial) for the two

approaches is displayed in Table 5.5 below.
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Table 5.5: Traditional versus Robust Effect Sizes Under Heteroscedasticity
Factor Effect Traditional Robust Difference

(F-test) (PB) d
Factor A: η2

p 0.514 0.513 0.001
Factor B: η2

p 0.139 0.166 0.027
Interaction A*B: η2

p 0.188 0.221 0.033
Adjusted R2 0.592 0.603 0.011

Although the differences (d) in the last column of Table 5.5 above were less than the hypothe-

sised threshold 0.06, it can be clearly noticed that the parametric bootstrap (PB) had generally

higher partial eta squared effect sizes across all factors than the traditional F-test. This is fur-

ther supported by a higher Adjusted R2 value (0.011 more) than the traditional F-test one.

Hence we can conclude, based on these test results, that the robust parametric bootstrap ap-

proach performs better than the traditional F-test approach in terms of measuring effect sizes in

a two-way fixed-effects ANOVA under the influence of heteroscedasticity and unbalancedness.

This echoes what Yigit and Gokpinar (2010) said, that the traditional F-tests are less robust

in the presence of unequal variances.

However, there was no big difference to deliberate on post hoc tests since the two methods

produced the same post hoc results in terms of significant and insignificant factor levels under

the same conditions.

5.4 Conclusion

This chapter presented a detailed comparative analysis of the effects of unbalancedness and

heteroscedasticity on effect sizes in the four different two-way ANOVA models. These two phe-

nomena proved to have significant impact on the magnitudes of effect sizes in isolation as well

as in combination, depending on their severity of course. A comparison of the traditional or

classic F-tests against the robust parametric bootstrap approach when dealing with two-way

fixed-effects ANOVA in the presence of heteroscedasticity and unbalancedness was presented.

Chapter 6 follows summarising the findings of the thesis, highlighting the conclusions, limita-

tions and areas of further study.
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Chapter 6

Summary, Conclusions, Limitations of
the Study and Areas of Further
Research

6.1 Introduction

Analysis of variance (ANOVA) models are useful tools applicable in various disciplines when

dealing with multivariate analysis. Important assumptions of ANOVA have to be satisfied in

order to get statistically accurate analysis results. A brief summary of the study on effects

of heteroscedasticity and unbalancedness on effect sizes in two-way fixed-effects ANOVA sig-

nificance tests conducted and the conclusions deduced are outlined. The study had its own

limitations which are exposed here. Lastly, areas of further research which the researcher could

not shed light on will be indicated in this chapter.

6.2 Summary of the study

Analysis of variance techniques produce accurate results when the ANOVA assumptions are

not violated. In real life situations, it is usually rare to have data that satisfies all the ANOVA

assumptions, especially the normality and homoscedasticity assumptions. Once these assump-

tions are not met, especially the equality of variance and balanced cell sizes, then the ANOVA

F-tests suffer in terms of accuracy (Yigit & Gokpinar, 2010).

The study aimed at assessing the effects of heteroscedasticity and unbalancedness in conducting
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analysis of variance tests. Precisely, the dissertation tried to establish:

I the effects of heteroscedasticity on effect sizes in two-way fixed-effects ANOVA model

significance tests.

I the effects of unbalancedness on effect sizes in two-way fixed-effects ANOVA model sig-

nificance tests.

I the ways of dealing with heteroscedastic and unbalanced data in order to achieve more

accurate ANOVA tests results.

Chapter 1 outlined the background of the problem of unbalancedness and heteroscedasticity.

The major aim, objectives and hypotheses to be tested were presented in detail. In addition to

that, the chapter concluded with a brief overview of the theories involved in analysis of variance.

Chapter 2 discussed the theory and practices of ANOVA, heteroscedasticity and unbalanced-

ness. Some ways of dealing with the problems of heteroscedasticity and unbalancedness in

ANOVA models were reviewed. There are several types of ANOVA models depending on the

number of factors and the nature of factors involved. Section 2.4 deliberated on fixed-effects

ANOVA models (ANOVA Model Type I), starting from one-way to multi-way ANOVA models.

Section 2.5 dwelt on random-effects ANOVA models, whose factor levels are a random sample

selected from the entire population of factors (Gaugler & Akritas, 2013). The study focused on

two-way fixed effects ANOVA. A combination of fixed and random factors makes a mixed-effect

ANOVA model. A detailed explanation on the assumption underlying each type of ANOVA

model as well as the types of hypotheses associated was presented.

ANOVA models are affected by the violation of equality of variance assumption. In the past,

researchers have proposed some methods to deal with the problems of heteroscedasticity in

ANOVA models. Most of the suggested methods have been applied to one-way ANOVA mod-

els only. Some of the discussed methods include; data transformation techniques (Hair et al.,

2010); the parametric bootstrap (PB) approach (Krishnamoorthy, Lu & Mathew, 2007); Schott-

Smith test (Schott & Smith, 1971); the Brown-Forsythe test (Brown & Forsythe, 1974); Welch’s

test (Welch, 1951). The impact of unbalancedness and heteroscedasticity measuring tools sug-
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gested were the effect-size measures (eta squared, partial eta squared and omega squared).

Chapter 3 was data exploration. The original dataset was explored and prepared for proper

data analysis purposes. Missing values and outliers were checked and corrective measures ap-

plied. The three basic assumptions of ANOVA (normality, homoscedasticity and independence

of observations) were tested, and remedies applied for any violation of these assumptions. A

parametric bootstrap approach was proposed for analysis of variance in the presence of unequal

variances in the data.

The ANOVA assumptions tested in R and SPSS were as follows:

� Normality assumption: Tested by The Shapiro Wilk’s test and the Q-Q plots.

� Homoscedasticity assumption: Tested by Levene’s test at 5% significance level

� Independence of observation assumption: Guaranteed by the nature of study

Box plots produced in R, were used to detect outliers in the data. The analysis data was cleaned

of all problematic outliers as they appeared to contribute to biased results. Elimination of these

extreme values stabilised the ANOVA model without jeopardising the required sample size.

Chapter 4 presented the materials and methods used to analyse data in line with the main

objectives of the study. The study aimed at establishing the impact of unbalancedness and

heteroscedasticity on significance tests and effect size of two-way fixed effects ANOVA with

interactions. One secondary dataset, unbalanced and heteroscedastic, extracted from SPSS,

was used to simulate three samples for comparison purposes: the balanced heteroscedastic,

balanced homoscedastic and unbalanced homoscedastic datasets. Analysis was done in R and

SPSS software packages. The Grocery coupons.sav dataset adopted from SPSS, was used to

simulate the other three datasets for investigating the effects of heteroscedasticity and unbal-

ancedness in two-way fixed-effects ANOVA design with interactions. A two-way ANOVA design

with interaction, having Amount spent as the metric continuous response variable depending

on two categorical factors; Who shopping for (shopfor) (with three factor levels: self, self and
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spouse, and self and family); and Use coupons (with four factor levels: No, From newspaper,

From mailings and From both) was proposed.

The analysis and discussion of research results of the two-way fixed effects ANOVA models

were the main focus of this chapter. For the balanced two-way ANOVA model, Type I sum

of squares was applied, whereas the Type III sum of squares was used for unbalanced two-way

ANOVA model (Ecerg-Hurn & Mirosevic, 2008). The main and interaction effects significance

were tested at 5% significance level. The overall model fit was assessed by interpreting the

Adjusted R2. The model was deemed fit if the Adjusted R2 was high (above 0.5 or 50%).

Chapter 5 presented a comparative analysis and discussion of results. Effects of unbalananced-

ness and heteroscedasticity on two-way fixed effects ANOVA models were noted from the differ-

ences and shifts in effect sizes, measured by the Eta squared (η2), Partial Eta Squared (η2
partial),

and Omega squared (ω2) statistics. A comparison of the performance of the traditional F-tests

against the robust parametric bootstrap approach was also done. Cohen (1988)’s guidelines for

small (effect < 0.06), medium (0.06 ≤ effect < 0.14) and large (effect > 0.14) effect size were

used to interpret the effect calculated and to test the hypotheses involved as summarized below.

� Significant effect size: Tested using Cohen (1988) guideline on small, medium and

large effect size.

� Significant change in effect size: Guided by Cohen (1988) benchmarks (effect-size

difference considered significant when it exceeds 0.06)

6.3 Findings

⋆ There was insignificant change in effect sizes (η2
balanced − η2

unbalanced < 0,06) due to unbal-

ancedness between the models from samples with equal variances. Based on the results

of this study, it can be concluded that unbalancedness has little or no significant impact

on the effect size in two-way fixed effects ANOVA, especially when the homoscedasticity

assumption is satisfied. Furthermore, the unbalanced models portrayed slightly greater
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effect sizes than the balanced counterparts, leading to the conclusion that unbalancedness

inflates the effect-size magnitudes in two-way fixed-effects ANOVA models.

⋆ Heteroscedasticity generally reduces the effect size of both balanced and unbalanced two-

way fixed-effects ANOVA models. However, an inconsistent pattern in the magnitude of

effect sizes was realised in the unbalanced models. The main effect-size magnitudes in-

creased with heteroscedasticity, whereas the interaction effect-size magnitude were signif-

icantly reduced. In conclusion, the study revealed that the presence of unequal variances

(heteroscedasticity) in unbalanced two-way fixed-effects ANOVA yields inconsistent and

over-estimated effect-size changes.

⋆ Partial Eta Squared (η2
partial) tends to over-estimate the effect size regardless of sample

size, whereas Omega Squared (ω2) and Eta Squared (η2) are more conservative than

Partial Eta Squared. It is recommended that researchers interested in determining effect

sizes in ANOVA models may, but not solely, rely on the most popular partial eta squared.

⋆ Based on effect size estimation, the traditional F-tests were found to be less robust than

the parametric bootstrap approach in the presence of unbalancedness and heteroscedas-

ticity. The parametric bootstrap (PB) technique could detect more effect-size magnitudes

than the traditional F-tests. Hence, it is advised to consider the robust parametric boot-

strap (PB) approach when dealing with heteroscedastic and unbalanced two-way ANOVA

models.

6.4 Limitations of the study

• There are many effect size measures proposed in literature. Focusing only on Eta squared

(η2), Partial Eta squared (η2
partial) and Omega squared (ω2) was a limitation to the re-

search. More interesting features and behaviours in other effect size measures not included

in the study could have been missed in the process.

• Traditional F-tests are not robust in the presence of heteroscedasticity and unbalancedness

in ANOVA tests. Several robust tests have been proposed in literature to alleviate the

problem. However, some of these robust tests, like the Brown-Forsythe and Welch’s test,

are only applicable to one-way ANOVA. Better results could be achieved if the other
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robust tests that are applicable in two-way fixed-effects ANOVA with interactions are

explored.

• One secondary data set and simulation samples were used in the study. The sets of factors

that were used could be insufficient to reflect the accurate results and findings that can

be generalised for other different datasets. Insufficient information can lead to biased

conclusions. However, the dataset and the simulated samples were chosen for analysis

purposes that are only in line with the major objectives of the study.

• There could be some shortfalls contributed by the methods applied in both estimations

(simulation sample) and analysis methods, which affect the accuracy of results and yet

they were not catered for in this thesis. These include the retention of some outliers in the

analysis sample, and the elimination of the other extreme values. With the reduced sam-

ple, though the sample size was statistically acceptable and large, essential information

can be lost.

6.5 Areas of further research

⋆ Many researchers have in the past tried to alleviate the problems of heteroscedasticity in

one-way ANOVA and MANOVA. Little has been done to assess and address the issue in

Analysis of Covariance (ANCOVA).

⋆ There is a wide gap in the analysis of the effects of heteroscedasticity and/or unbalanced-

ness in random effects models. Very few researchers have attempted the area.

110



APPENDICES

APPENDIX A: R CODES

R Codes for Simulation samples

>sim1.amnt <- rnorm(72,mean=83.9,sd=15)

>sim1.amnt

>Usecoup<-C(rep("No",72),rep("Nespaper",72),rep("Mail",72),rep("Both",72))

>Usecoup

>Shopfor<-C(rep("Self",288),rep("SelfSpouce",288),rep("SelfFamily",288))

>Shopfor

R Codes for ANOVA

>Bal.homo<-data.frame(Amnt.spent,Shopfor,Usecoup)

>Bal.homo

>Bal.homo.anova<-aov(Amnt.spent Shopfor*Usecoup)

>Bal.homo.anova

R Codes for Normality tests

>qqnorm(Amnt)

>qqline(Amnt)

>shapiro.test(Amnt)

R Codes for Outlier detection

>boxplot(Amnt)
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APPENDIX B: F CODES

Bootstrap

BOOTSTRAP

/SAMPLING METHOD=SIMPLE

/VARIABLES TARGET=amtspent INPUT=shopfor usecoup

/CRITERIA CILEVEL=95 CITYPE=BCA NSAMPLES=1000

/MISSING USERMISSING=EXCLUDE.

UNIANOVA amtspent BY shopfor usecoup

/METHOD=SSTYPE(1)

/INTERCEPT=INCLUDE

/SAVE=PRED

/EMMEANS=TABLES(OVERALL)

/EMMEANS=TABLES(shopfor)

/EMMEANS=TABLES(usecoup)

/EMMEANS=TABLES(shopfor*usecoup)

/PRINT=ETASQ HOMOGENEITY DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=shopfor usecoup shopfor*usecoup.
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