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Graphical abstract 
 

 

Abstract 
 

In this paper, the multiscale boundary element method is applied to solve the Laplace 

equation numerically. The new technique is the coupling of the multiscale technique and 

the boundary element method in order to speed up the computation. A numerical 

example is given to illustrate the efficiency of the proposed method. The computed 

numerical solutions by the proposed method will be compared with the solutions obtained 

by the conventional boundary element method with the help of Fortran compiler. By 

comparison, results show that the new technique use less iterations to arrive at the 

solutions.   
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Abstrak 
 

Dalam kertas kerja, kaedah skala berganda unsur sempadan digunakan untuk 

menyelesaikan persamaan Laplace secara berangka. Teknik baru adalah gandingan 

teknik skala berganda dan kaedah unsur sempadan untuk mempercepatkan pengiraan. 

Contoh berangka diberikan untuk menggambarkan kecekapan kaedah yang 

dicadangkan. Penyelesaian berangka menggunakan kaedah yang dicadangkan akan 

dibandingkan dengan kaedah unsur sempadan konvensional dengan bantuan 

pengkompilasi Fortran. Melalui perbandingan, Hasil Kajian menunjukkan bahawa teknik 

baru menghasilkan kurang lelaran untuk mencapai penyelesaian.   

 

Kata kunci: Persamaan laplace; kaedah unsur sempadan; teknik skala berganda 
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1.0  INTRODUCTION 
 

Numerical method is a popular subject and the basis of 

all branches of science and technology. In the past, 

solving problems numerically often meant a great deal 

of programming and numerical problems. The solution 

of Laplace equations is a well-known problem in many 

fields of science and engineering. Several types of 

numerical methods exist, each with their advantages 

and disadvantages. Laplace equation is a second 

order partial differential equation. This is often written as 

 

,02
22

 u
dy

ud

dx

ud                                             (1) 

 

The 2  operation is called the Laplacian of .u  Laplace 

equation are the simplest examples of elliptic partial 

differential equations. The general theory of solution to 

Laplace equation is known as potential theory. Laplace 

transform comes into its own when the forcing function 

in the differential equation starts getting more 

complicated. 
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There are many methods in solving the numerical 

computation of the Laplace equations such as the 

Finite Element Method (FEM) and the Boundary Element 

Method (BEM). The FEM does have similarities to the BEM 

in that it does use elements and nodes, but on the 

boundaries only. The FEM is a method of dividing a 

physical system to be analyzed into smaller pieces while 

the BEM is derived through the discretization of an 

integral equation. In the BEM, the discretization is done 

only at the boundary, and this will result in more efficient 

computation and easier to be used compared with the 

FEM [1]. 

This paper applied the multiscale boundary element 

method for the numerical solution of the Laplace 

equation. BEM has been widely used to solve the 

numerical problems, as it offers an excellent accuracy, 

efficient in modelling, an independent numerical 

method and easy mesh generation. This brings about 

the many advantages for the BEM. However, it suffers 

from well-known drawbacks with regard to the 

computational efficiency, since the conventional BEM 

leads to a linear system of equations with dense 

coefficient matrix [1]. Moreover, it requires the 

knowledge of a suitable fundamental solution of 

differential equation. Problems with inhomogeneities or 

nonlinear differential equations are not accessible by 

pure BEM. To overcome this problem, we study on the 

application of multiscale boundary element method for 

the numerical solution of the Laplace equations with 

the help of Fortran. Solving the problem of Laplace 

equations using Bondary Element Method is more 

slower since heavily use the numerical integration. 

Therefore we apply the Multiscale Boundary Element 

Method that will be able to solve the problems 

accurately and fast. 

 

 

2.0  BOUNDARY ELEMENT METHODS 
 

In The Boundary Element Method (BEM) is an important 

numerical technique, a method of great efficiency. 

Boundary value problem for systems of partial 

differential equations is always been solved using the 

BEM. BEM is a general numerical method for solving 

boundary-value or initial-value problems formulated by 

using of the Boundary Integral Equation (BIE). The 

dimension reduction in BIE formulations makes the BEM 

mesh much easier to generate for three dimensional 

problems or infinite domain problems. As early as 1963 

Jaswon and Symm presented a numerical technique to 

solve Fredholm BIEs, which consisted of discretizing the 

boundary into a series of small segments (elements). The 

two dimension potential problem was first formulated in 

terms of a direct BIE and solved numerically by Jaswon, 

Symm and Jaswon and Ponter [1]. 

Besides, the BEM is a semianalytical method and thus 

is more accurate, especially for stress concentration 

problems such as fracture of structures and can be 

applied along with the other domain-based methods 

to verify the solutions to a problem for which no 

analytical solution is available. Efficient in modelling, the 

ability to reduce the dimension of the problem by one 

is the principal advantage of the BEM over other 

numerical methods. This property is advantageous as it 

reduces the size of the system of the problem, leading 

to improved computational efficiency [2]. 

Consider the following Poisson equation governing 

the potential field   in domain V  (either 2D or 3D, finite 

or infinite) and S  is the boundary of the domain: 

 

,02  f   in V                                                              (2) 

 

where f  is a known function in domain V . Firstly must 

form an integral equation from the Poisson equation by 

using a weighted integral equation: 

 

.0)( 2  wf
V

                                                     (3) 

 

The fundamental solution ),( yxG  of a particular 

equation is the weighting function that is used in the 

boundary element formulation of that equation. The 

fundamental solution for potential problems satisfies: 

 

,/,,0),(),( 322 RRyxyxyxG                           (4) 

 

in which the derivatives are taken at point y , and 2R  

and 3R  indicate the full 2D and 3D spaces, 

respectively. While the Dirac   function y)(x,  

represents a unit source at the source point ,x  and 

),( yxG  represents the response at the field point y  that 

is due to that source. 

The Dirac   function y)(x,  in 2D and 3D has 

following sifting properties: 
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The fundamental solution ),( yxG  is given by: 
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where r  is the distance between the source point x  

and field point y , and its normal derivative is: 
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Then use the Green-Gauss theorem. The multi-

dimensional equivalent of integration by parts is the 

Green-Gauss theorem: 
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                   (9) 
 

for any two continuous functions u  and v , where n  is 

the component of the outward normal. 

Let ),()( yyv   which satisfies Equation (2), and 

),,()( yxGyu   which satisfies Equation (4). From 

Equation (9), we have: 
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Applying Equations (2), (4) and (5), we obtain: 

 

  
S

ydSyyxFyqyxGx )()(),()(),()( 

                                (11) 
 

where 
.

n
q








 
Equation (11) is the representation integral of the 

solution   inside the domain V  for Equation (2). Once 

the boundary values of both   and q  are unknown on 

S , if needed, Equation (11) can be applied to 

calculate   everywhere in V . This is the BIE generally 

used as a starting point for boundary elements. 

    

 

3.0  MULTISCALE BOUNDARY ELEMENT 

METHODS  
 

Past studies have demonstrated that all scale-born 

complexities can be effectively overcome, or 

drastically reduced by multiscale (multi-resolution, 

multilevel, multigrid, etc.) algorithms. A wide range of 

multiscale computational methods is described, 

emphasizing main ideas and inter-relations between 

various fields. Often, a combination of several muliscale 

approaches can benefit one particular problem in 

many different ways [3]. An example of a combination 

of muliscale approaches is by Silvan-Cardenas and 

Wang, 2006 who has investigated using the multiscale 

Hermite transform as an approach to separate terrain 

elevations from feature heights. Another work was by 

Aanonsen and Eydinov, 2006 who has investigated a 

multiscale method was proposed for more-effective 

history matching of petrophysical properties. While 

Bovolo et al, 2007 who has established a multiscale 

technique for reducing the impact of residual 

misregistration on unsupervised change detection in 

very high geometrical resolution images [4].  

In this paper we attempts to make use of the 

conjugate gradient and interpolation as a multiscale 

technique coupling with BEM. Therefore, this study the 

application of the multiscale BEM for the numerical 

computation of the Laplace equation. In BEM, we form 

a standard linear system of equations 

 
,bAx                                                              (12) 

                                      

where A  is the coefficient matrix, x  is the unknown 

vector and b  is the known right-hand-side vector. The 

linear system can be solved numerically in many 

approach. Each with their advantages and 

disadvantages. However, one of the ideal is to apply 

multiscale technique. In other words, initially, we 

discretize the region in bigger mesh which produce 

small size of linear system. This small linear system can be 

solved using any method. Using the interpolation 

technique, we can predict better initial guess solution 

of higher resolution. Thus, with this better predicted initial 

solution, we can speed up the whole calculation of 

large linear system. In order to implement this multiscale 

concept appropriately, we propose the linear system 

solution using conjugate gradient method. In other 

words, conjugate gradient method will give better 

performance once the initial guess solution is 

“accurate”. The conjugate gradient methods are 

effective methods were widely use to solve 

unconstrained optimization problem 

 

),(min xf
x 

                                                           (13) 
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2

bAxxf 
                                                 (14) 

 

),(2)( bAxAxf T                                             (15) 

 

where nf :  is continuously differentiable. 

Conjugate gradient methods are iterative methods 

usually formulated as 
 

,1 kkkk dxx                                                   (16) 

 

where kx  is a current iterate,  0k  is the step length 

and kd  is a search direction defines as follows  
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where kg  denotes the gradient )( kxf  and k  is scalar 

(Yuan, 2009). 

Conjugacy of the search direction is one of the main 

properties of conjugate gradient method which is 

included in theorem 2.1. 

 

Theorem 1 

For positive defined quadratic function of the form 

 

,
2

1
)( cxbQxxxf TT                                         (18) 

 

where 0,,  Tn QQbx  and c  is a real number, the 

gradient vectors  kg  are mutually orthogonal. That is, 

 

 .for       ,0)( kigg iTk                                         (19) 

 

Moreover, the search direction vectors are mutually Q-

conjugate (Joshi and Moudgalya, 2004). In other words, 

 

 .for       ,0)( kiQdd iTk                                        (20) 

 

The basic conjugate gradient method which is 

designed for quadratic function is as below, 

 

Algorithm 1 

 

Step 1: Set 0k   select the initial point .0x  

 

Step 2: ).( 00 xfg   If ,00 g  stop; go to step 9: else, 

set 00 gd   

 

Step 3: .
kk

kk
k

dQd

gd
T

T

  

 

Step 4: .1 kkkk dxx   

 

Step 5:  ).( 11   kk xfg  If ,01 kg  stop; go to step 9. 

 

Step 6: .
1

kk

kk
k

Qdd

Qdg
T

T

  

 

Step 7: .11 kkkk dgd    

 

Step 8: Set ;1 kk  go to step 3. 

 

Step 9: End [7]. 

 

This method was first proposed for quadratic function 

it developed into a method for the general functions. 

For more details, please refer to Refs. [7]. 

Many different interpolation methods exist. In this paper, 

we use Piecewise Linear interpolation. This interpolation 

is the simplest method of getting values at positions in 

between the data points. The points are simply joined 

by straight line segments. Each segment that bounded 

by two data points can be interpolated independently. 

Here, we simulate the final results based on the previous 

computed results. For example, to obtain the result of 

8×8 size, we use the initial value from the result 4×4 size. 

   

 

4.0  NUMERICAL EXAMPLE  
 

Numerical example are presented in this section to 

demonstrate the accuracy and fast of the multiscale 

Boundary Element Method for the numerical 

computation of the Laplace equation compared with 

boundary element method. All computations were 

done using Fortran compiler. 

Consider the following the following Laplace 

equation governing the potential field   in domain and 

S  is the boundary of the domain:           

 

Vin       ,02    
 

the boundary conditions to be considered are: 

 

 on       ,  S       (Dirichlet Boundary Condition) 

qSq
n

q on     ,





   (Neumann Boundary Condition) 

 
in which the over bar indicates the prescribed value for 

the function. SSS q 
 is the boundary of the domain 

and n  is the outward normal of the boundary S . Figure 

1 shows the boundary conditions for this example.  

 

Figure 1  Boundary Conditions 

 

Figure 2 show the mesh of the graph that we will 

discretize the region in bigger mesh which produce 

small size by using multiscale technique. 
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Figure 2 Mesh of The Problem 

 

 

4.1  Results and Discussion 

 

Table 1 and 2 shows the iterations between 4×4, 16×16, 

32×32 and 64×64 sizes based on two methods. 

 

Table 1 Iteration Count for Multiscale Boundary Element 

Method 

 

n size No. of Iterations 

4×4 (Initial) 9 

4×4   16×16 9 + 39 =48 

4×4   32×32 9 + 180 = 189 

4×4   64×64 9+443=452 

 

Table 2  Iteration Count for Boundary Element Method 

 

n size No. of Iterations 

4×4  9 

16×16 62 

32×32 217 

64×64 463 

 

Table 3 and 4 shows the iterations between 5×5, 

20×20, 40×40 and 80×80 sizes based on two methods. 

 

Table 3  Iteration Count for Multiscale Boundary Element 

Method 

 

n size No. of Iterations 

5×5 (Initial) 16 

5×5   20×20 16 + 79 = 95 

5×5   40×40 16 + 252 = 268 

5×5   80×80 16+534=550 

 

Table 4  Iteration Count for Boundary Element Method 

 

n size No. of Iterations 

5×5  16 

20×20 102 

40×40 290 

80×80 640 

 

The multiscale Boundary Element Method for solving 

Laplace problems is presented in this paper. A 

multiscale technique approach, using a combination 

of the Conjugate Gradient and interpolation can 

significantly improve the conditioning of the Boundary 

Element Method systems of equations and thus can 

facilitate faster convergence when the multiscale 

Boundary Element Method is applied. 

Based on Table 1 and Table 2, the number of iteration 

was compared. To compute the result 16×16 size by 

using the multiscale Boundary Element Method, we 

need to compute 4×4 size first and then the result is used 

to compute the solution of 16×16 size. Therefore, the 

total number of iterations to compute 16×16 size 

solution is 48 iteration. However, the number of iteration 

needed to obtain the 16×16 size by Boundary Element 

Method is 62 iteration. Moreover, the number of 

iterations for 32×32 and 64×64 sizes by using the 

multiscale Boundary Element Method is less than 

Boundary Element Method.  

Based on Table 3 and Table 4, the number of iterations 

for 5×5, 20×20, 40×40 and 80×80 sizes by using the 

multiscale Boundary Element Method is less than 

Boundary Element Method. Clearly, the multiscale 

Boundary Element Method compute the solution faster 

than Boundary Element Method. 

The percentage of iteration reduction can be 

calculate by using the formula below.  

 

Percentage reduction of iterations 

= ([No. of iteration (BEM) – No. of iteration (Propose 

Method)] / [No. of iteration (BEM)]) x 100% 

 

Table 5  Percentage reduction of iterations 

 

n size Percentage reduction of 

iterations 

4×4   16×16 22.58% 

4×4   32×32 12.90% 

4×4   64×64 2.38% 

5×5   20×20 6.86% 

5×5   40×40 7.59% 

5×5   80×80 14.06% 

 

 

Based on Table 5, the percentage of iteration reduction 

is always positive. We always can obtain the results 

faster compare to the conventional Boundary Element 

Method. The schema of initial 5×5 element is more 

efficient than initial 4×4 element because the initial 

guess value is close to the exact solution. Piecewise 

Linear interpolation of 5×5 element can produce better 

initial guess value.  

The numerical example are presented that clearly 

demonstrate the effiency of the developed the 

multiscale Boundary Element Method for solving the 

Laplace Problems. 
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5.0  CONCLUSION 
 

Based on numerical result, we conclude that the 

multiscale Boundary Element Method is faster 

compared with boundary element method. This paper 

is expected to establish a numerical library for the 

solution of the numerical computation of Laplace 

Equations. For further work, we will simulate more 

element on boundary. In addition, the numerical results 

obtained will serve as reference and can be used for 

validation purposes against other (future) experimental 

and numerical results. On the other hand, the proposed 

method can be used as a reference for the future 

studies in many fields of science and engineering. More 

research need to be done to improve the Boundary 

Element Method regarding, for example, convergence 

of the solvers, optimization of the tree structures, and for 

dynamic and non-linear problems. Wide spread 

applications of the Boundary Element Method for 

solving large-scale engineering problems may not be 

far away.  
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