
ar
X

iv
:1

00
8.

38
07

v1
  [

nu
cl

-e
x]

  2
3 

A
ug

 2
01

0

Alpha-induced reaction cross section measurements

on 151Eu for the astrophysical γ-process

Gy Gyürky1, Z Elekes1, J Farkas1, Zs Fülöp1, Z Halász,1,
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C Yalçın2 and T Rauscher3

1 Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, POB.51., Hungary
2 Department of Physics, Kocaeli University, TR-41380 Umuttepe, Kocaeli, Turkey
3 Department of Physics, University of Basel, CH-4056 Basel, Switzerland

E-mail: gyurky@atomki.hu

Abstract.

In order to extend the experimental database relevant for the astrophysical

γ-process towards the unexplored heavier mass region, the cross sections of the
151Eu(α, γ)155Tb and 151Eu(α,n)154Tb reactions have been measured at low energies

between 12 and 17MeV using the activation technique. The results are compared with

the predictions of statistical model calculations and it is found that the calculations

overestimate the cross sections by about a factor of two. A sensitivity analysis shows

that this discrepancy is caused by the inadequate description of the α+nucleus channel.

A factor of two reduction of the reaction rate of 151Eu(α, γ)155Tb in γ-process network

calculations with respect to theoretical rates using the optical potential by McFadden

and Satchler (1966) is recommended.
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1. Introduction

About 99% of the natural nuclides beyond Iron observed in the Solar System are

synthesized in processes involving neutron captures. The main component of the

astrophysical s-process occurs in He-shell flashes of AGB stars [1, 2]. The weak s-

process component takes place in pre-explosive and explosive burning in massive stars

[3]. The neutrons released in the reactions 13C(α,n)16O and 22Ne(α,n)25Mg are building

up heavier elements through slow neutron captures and β−-decays along the line of

stability [4, 1]. In astrophysical environments providing very high neutron densities,

neutron captures become faster than β−-decays and synthesize extremely neutron-rich

nuclides close to the neutron dripline. These nuclei decay back to stability when the

neutron flux ceases [5]. This r-process can only occur in explosive environments but the
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specific site or sites are yet pending identification. The details of the r-process are much

less known than those of the s-process, regarding the nuclear physics input as well as

the astrophysical conditions.

The remaining 1% of Solar System nuclides comprises those proton rich isotopes

which cannot be produced by neutron capture reactions. They are the so-called p-

isotopes and 35 nuclides between 74Se and 196Hg belong to this category. In general,

their production mechanism is referred to as the astrophysical p-process. Since its

first consistent formulation [6] the p-process has been thought to proceed as a γ-

process, mainly by (γ,n), (γ,α) and (γ,p) photodisintegration reactions on pre-existing

s- or r-process seed isotopes in massive stars. Based solely on this model, however,

the calculations are not able to reproduce the Solar System p-abundances in certain

mass regions. Especially the light p-isotopes near the Mo-Ru region are largely

underproduced. To alleviate this problem, several other processes have been discussed

in recent years that could contribute to the production of light p-nuclei through proton

captures in highly proton-rich material: the so-called rp-process [7] and νp-process [8],

and proton captures on highly enriched s-process seeds during a type Ia supernova

explosion [9, 10].

The rp- (rapid proton capture) process is thought to power Galactic X-ray bursts

through thermonuclear explosions on the surface of neutron stars [7]. It may produce

proton-rich nuclides up to A ≃ 100 [11]. Its role in nucleosynthesis remains unclear

because it is uncertain whether the produced nuclides can be expelled into the interstellar

medium and play any role in the galactic chemical evolution thereafter. Modern

simulations of core-collapse supernova explosions reveal the existence of the νp-process,

where in the presence of strong neutrino fluxes proton rich matter is ejected, again

leading to the synthesis of nuclei through proton captures [8]. Calculations show that

this process can produce p-isotopes up to the mass region around A = 100. Which

nuclei are produced and how much mass is ejected depend sensitively on the conditions

in the deep layers of a core-collapse supernova which, in turn, are closely linked to

the explosion mechanism. Since the mechanism is not yet completely understood there

are considerable uncertainties in the astrophysical conditions. Similar uncertainties are

encountered in type Ia supernovae. In addition to the uncertainties in the explosive

burning, it is also not clear yet how the required enhancement of the seed nuclei can be

achieved.

All these processes may contribute to the production of the light p-isotopes, but

there are many open questions regarding these processes and many details must still

be worked out. On the other hand, none of these processes seem to be able to produce

heavy p-isotopes for A > 100−110. The heavy p-isotopes can only be synthesized by the

classical γ-process [6, 10]. For the γ-induced reactions to take place, a high temperature

environment is needed. It has been shown that the O/Ne layers of massive stars reach

temperatures of about 2 − 3 GK during the core-collapse supernova explosion for a

period of the order of one second [6, 12, 3]. The heavy seed isotopes are disintegrated

by consecutive (γ,n) reactions complemented by (γ,α) and (γ,p) reactions on the neutron



Alpha-induced reaction cross section measurements on 151Eu 3

deficient side of the nuclear chart.

Although the basics of the γ-process have been laid down several decades ago, many

details of the process are still unknown and even the most recent model calculations are

unable to reproduce well the Solar System abundances of heavy p-isotopes (see e.g.

[13]). On the one hand, this concerns the ambiguities in the astrophysical conditions

under which the process takes place (seed isotope abundances, peak temperatures, time

scale, etc.). On the other hand, large uncertainties are introduced into the calculations

by the nuclear physics input, most importantly by the reaction rates (determined from

cross sections). γ-process models require the use of huge reaction networks including

tens of thousands of nuclear reactions, and the rates of these reactions at a given stellar

temperature are necessary inputs to the network calculations. The reaction rates are

generally taken from calculations using the Hauser –Feshbach statistical model [14, 15].

For photodisintegration reactions with charged particle emission there is only a limited

number of cases in the relevant mass and energy range where the theoretical reaction

rates can be compared with experimental data. Therefore the model calculations remain

largely untested. Model calculations show that the resulting p-isotope abundances are

very sensitive to the applied reaction rates [16, 17], thus the experimental check of

statistical model calculations is very important.

Experimental information about the most important γ-induced reactions can be

obtained from the study of the inverse capture reactions and using the detailed balance

theorem. This approach is not only technically less challenging but also provides more

relevant astrophysical information than the direct study of the γ-induced reactions

[18, 19, 20]. In the case of (α, γ) reactions, however, the relevant energy range is well

below the Coulomb barrier, making the capture cross sections very small. Therefore,

in spite of the increasing experimental efforts of recent years, there are only very few

nuclides for which (α, γ) cross sections are available experimentally (for the list of studied

isotopes see [21]). Moreover, these measurements are almost completely confined to the

lower mass region of the p-isotopes, although calculations show that (γ, α) reactions play

the major role in the heavy mass region of the γ-process network [16, 17]. Therefore,

the extension of the available experimental database of (α, γ) cross sections toward the

heavier mass region is of crucial importance.

In the present work the cross sections of the 151Eu(α, γ)155Tb and 151Eu(α,n)154Tb

reactions have been measured. In section 2 the importance of these reactions are

underlined, section 3 gives detailed description of the experimental technique, while

in section 4 the experimental results are presented. The results are compared with

statistical model calculations and the astrophysical conclusions are drawn in section 5.

2. The case of 151Eu + α

Typical γ-process model calculations [13, 17, 3] show a strong underproduction of the

p-isotopes at the Mo-Ru region. This underproduction may be explained (at least in

part) by processes other than the γ-process (such as the above mentioned rp- and νp-
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Figure 1. Left: the studied reactions and the decay of the reaction products. Right:

decay of the different states in 154Tb. The decay parameters are taken from [24, 25, 26].

processes) as they can contribute to the nucleosynthesis in this mass region. Another

underproduced region, however, is in the mass range 150 ≤ A ≤ 167 [3] where no

alternative processes have been suggested so far. In this region no experimental (α, γ)

cross sections are available at all, leaving the calculated reaction rates completely

untested. Several (α, γ) reactions in this region show a high impact on the γ-process

models [16], the 151Eu(α, γ)155Tb reaction being one of them. Therefore, this reaction

has been chosen for the present study.

2.1. Activation method and the decay of the 151Eu+α reaction products

Almost all low energy (α, γ) cross section measurements for γ-process studies have been

carried out using the activation technique. Although the in-beam γ-detection technique

with γ-detector arrays [22] or 4π summing crystals [23] has also been successfully applied

in some measurements, the activation method has a clear advantage in those cases where

it is applicable [21].

Alpha capture on 151Eu leads to 155Tb which is radioactive. It decays by electron

capture to 155Gd with a half-life of 5.32 d. The decay is followed by γ-ray emission.

Therefore, the 151Eu(α, γ)155Tb cross section can be measured by the activation method

based on off-line γ-detection. Moreover, the 151Eu(α,n)154Tb reaction again leads to a

radioactive residual nucleus and thus the cross section of this reaction can be determined

simultaneously in the activation. This reaction does not have a direct relevance for the

γ-process but helps to study the optical α+nucleus potential for the statistical model

calculations (see section 5).

The left panel of figure 1 shows schematically the production and decay of the two

produced isotopes. The decay of 154Tb is rather complicated and is shown in the right

panel of figure 1. Besides its ground state, which decays by β+ and electron capture to
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Table 1. Decay data of the reaction products. Only those γ-transitions are listed

which have been used for the analysis. The decay parameters are taken from

[24, 25, 26].

Isotope Half-life γ-energy Relative

[keV] γ-intensity [%]

155Tb 5.23± 0.06 d 105.3 25.1± 1.3

148.6 2.65± 0.14

180.1 7.45± 0.41
154Tbg.s. 21.5± 0.4 h 704.9 4.76± 0.35

1414.5 1.92± 0.17

2064.1 7.10± 0.30

2119.7 4.19± 0.33
154Tbm1 9.994± 0.039h 415.9 2.16± 0.45

540.2 20.0± 4.0

1208.1 0.52± 0.11

1965.0 1.98± 0.42
154Tbm2 22.7± 0.5 h 141.3 7.27± 0.86

225.9 26.8± 2.8

154Gd, it has two long lived isomers. These isomers have unknown excitation energies

but well established level ordering and they decay by either isomeric transition or β+/e.c.

The 151Eu(α,n) reaction can populate any of these three states. The decays of these

states are followed by many γ-transitions in the 154Gd daughter nucleus. By selecting

and measuring those γ-transitions which are specific for a given state only, one can

measure partial cross sections leading to the various states.

Table 1 shows some relevant decay data of the product nuclei. Only those γ-

transitions are listed which have been used for the analysis. All the decay data are

taken from [24] and [25] with the exception of the half-life of 154Tbm1. The half-life of

this isomer has a relatively high uncertainty in the literature: 9.4± 0.4 h, and this value

is based on ambiguous data. Therefore, we have measured precisely this half-life and

the updated value of 9.994 h± 0.039 h has been used for the analysis. Details of this

half-life measurement can be found in [26].

3. Experimental procedure

3.1. Target preparation and definition

The targets were prepared by vacuum evaporation. Eu2O3 powder enriched to 99.2% in
151Eu has been evaporated onto 2µm thick Al foils. The Eu2O3 powder was placed into

a Ta crucible heated by AC current and the Al foil fixed in a holder was placed 5 cm

above the crucible. The heated Eu2O3 loses oxygen and metallic Eu deposits onto the Al

foil. After removal from the vacuum chamber Eu oxidizes again to Eu2O3. Altogether

seven targets have been prepared and two different procedures have been followed. For

four targets the evaporated layers were allowed to oxidize and they were used as Eu2O3
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targets. For the other three targets a protective Al layer (typically 10µg/cm2) has been

evaporated onto the Eu layer directly after the Eu evaporation. This protective layer

prevented the targets from oxidation and these targets were considered as pure metallic

ones.

The number of target atoms has been determined by weighing. The weight of the

Al foils was measured before and after the evaporation with a precision of about 3µg

and from the difference the target thickness could be determined. For this method one

needs the assumption that the metallic targets contain only Eu atoms and the oxide

targets have the stoichiometry of Eu2O3. Since the oxidation of Eu takes place relatively

slowly, the weight of the oxide targets was measured twice: directly after the evaporation

and typically one hour later. The increase of the weight was consistent with the Eu →

Eu2O3 transition. For testing further the target composition, the target thicknesses have

also been determined by the Rutherford Backscattering (RBS) method. The targets

have been bombarded with a 2.5MeV α-beam from the Van de Graaff accelerator of

ATOMKI and the backscattered alphas were detected by a particle detector put at

150◦ with respect to the beam direction. From the analysis of the RBS spectra the Eu

target thickness was determined and found to be in agreement with the weighing results

within 8%. These 8% have been adopted as the uncertainty of the target thickness

determination. At a few energies the cross section measurements were repeated with

different kind of targets (metallic or oxide) and consistent results were obtained. This

also supports the reliability of the target thickness determination. The number density

of 130Ba atoms were in the range between (2.5 – 6)·1017 /cm2. Each target was used for

two or three irradiations.

3.2. Irradiations

The cyclotron accelerator of ATOMKI provided the α-beam for the activations. The

target chamber is described elsewhere [27]. The maximum tolerable beam current on

the targets has been tested using a test target with natural isotopic composition. The

intensity of the 14MeV α-beam was gradually increased from 0.1 to 2.5µA and the

stability of the target was checked by detecting the backscattered α particles by a Si

detector built into the activation chamber. No target deterioration was observed during

several hours of irradiation at the maximum possible beam current. Nevertheless, RBS

spectra as a function of collected charge was always measured during the activations

and a beam current not exceeding 2.0µA was used.

The investigated energy range between Eα≈ 11.5 and 17.5MeV was covered with

about 0.5MeV steps. The length of the irradiations varied between 5 and 24 hours.

Longer irradiations were used at lower energies where the reaction cross sections are

smaller. For an activation experiment the precise knowledge of the number of projectiles

impinging on the target as a function of time is important. In the present work this

is especially true for the 151Eu(α,n)154Tb reaction because the half-lives of the reaction

products are shorter than or comparable to the length of the irradiation. In order to
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Figure 2. Gamma-spectrum measured for 12 hours after the irradiation with a

14.5MeV α-beam. The very high number of γ-transitions from the decay of the three

states in 154Tb is apparent. The insets show the most intense lines for the three states

used in the analysis.

follow the changes in the beam current, the digitized signals of the current integrator

were recorded in multichannel scaling mode, stepping the channel in every minute. This

recorded beam current profile has been used in the cross section analysis.

3.3. Gamma-counting

The induced γ-activity of the targets has been measured with a 40% relative efficiency

HPGe detector. The countings have been started typically one hour after the end of the

irradiation, lasted for 10 to 62 hours and the spectra were stored regularly (every hour)

to follow the decay of the reaction products. In this period the spectrum was dominated

by the decay of 154Tb and the low energy γ-lines for the longer half-life 155Tb decay were

not observable because of the high Compton background. Therefore, the γ-counting of

each target has been repeated typically 5 – 8 days after the irradiation when the 154Tb

activity was already largely reduced and 155Tb could be measured. Figures 2 and 3

show typical γ-spectra taken in the first and second counting period, respectively. In
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Figure 3. Low energy part of the γ-spectrum measured for 18 hours on a target

irradiated with a 15MeV α-beam. The spectrum was taken 6 days after the irradiation

when the activity of the 151Eu(α,n) reaction products were largely reduced. The lines

from the 155Tb decay used in the analysis are indicated by arrows and the subtracted

linear background as well as the Gaussian peak fits are also shown.

the figures the insets and the arrows show the region of the most intense γ-lines of

the given isotope used in the analysis. In all cases the source activities have been

determined using several γ-transitions (see table 1), consistent results were obtained

and their weighted averages were adopted as the final results.

3.4. Determination of the detector efficiency

For a precise cross section measurement the determination of the detector efficiency is

of high importance. The low cross sections measured in the present work necessitated

the use of a small source-detector distance and the efficiency had to be known in this

geometry in a wide energy range between 105 and 2120 keV. Moreover, the decay of all

reaction products involve many cascading γ-transitions. Therefore, in close geometry

the true coincidence summing effect can be significant. This holds also for any multi-line

calibration sources.

This problem was circumvented by using the following procedure. First the absolute

detector efficiency was measured in far geometry: at 10 cm distance from the end cap
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Figure 4. Measured and fitted absolute efficiency of the HPGe detector in far

geometry. The low and high energy parts have been fitted separately.

of the detector. In this geometry the true coincidence summing is negligible (below

1% for the used relatively small 40% detector). Six calibrated sources (57Co, 60Co,
133Ba, 137Cs, 152Eu, 241Am) and an uncalibrated 56Co source have been used. The

activity of the uncalibrated 56Co source has been determined using its γ-lines in the

energy range overlapping with the other sources. Efficiency curves have been fitted to

the measured points separately at the low and high energy parts. Figure 4 shows the

measured efficiencies and the fitted curves.

The actual γ-countings of the irradiated samples were carried out in a close

geometry, at 3 cm distance from the detector end cap. For all measured γ-transitions

a conversion factor has been calculated between the far and close geometry efficiencies.

For this purpose, strong sources of 154Tb and 155Tb have been prepared and their spectra

have been measured at both close and far geometry‡. Taking into account the decay

between the two measurements, the conversion factor for all γ-transitions between the

‡ The 154Tb sources produced by the 151Eu(α,n)154Tb reaction at the highest energies have been

used for the 155Tb conversion factor measurement. For 155Tb, however, the sources from the
151Eu(α, γ)155Tb reaction were not strong enough. Therefore, the 155Gd(p,n)155Tb reaction has been

used to produce 155Tb. This was done by irradiating evaporated natural Gd targets with 11.4MeV

protons at the cyclotron of ATOMKI.
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Table 2. Measured cross section of the 151Eu(α, γ)155Tb reaction. The last three rows

show the average results of the measurement carried out at the same energy.

Eα Eeff
c.m. cross section

[MeV] [MeV] [µb]

12.59 12.25 ± 0.04 4.93 ± 1.16

13.00 12.65 ± 0.04 12.2 ± 2.4

13.50 13.14 ± 0.04 18.8 ± 2.7

14.10 13.72 ± 0.04 40.3 ± 5.1

14.50 14.11 ± 0.04 50.7 ± 6.9

14.50 14.11 ± 0.04 57.3 ± 7.3

15.09 14.69 ± 0.05 99.3 ± 12.7

15.09 14.69 ± 0.04 80.2 ± 11.6

15.51 15.10 ± 0.05 123 ± 18

16.00 15.58 ± 0.05 187 ± 24

16.00 15.58 ± 0.05 190 ± 27

16.50 16.07 ± 0.05 228 ± 29

17.07 16.62 ± 0.05 287 ± 37

17.50 17.04 ± 0.05 305 ± 43

14.50 14.11 ± 0.04 52.7 ± 5.9

15.09 14.69 ± 0.05 90.2 ± 10.7

16.00 15.58 ± 0.05 188 ± 22

two geometries could be calculated. This conversion factor (its value ranges between 3

and 5 depending on the specific transition) contains both the ratio of efficiency at the

two geometries and the true coincidence summing effect.

4. Experimental results

The astrophysically relevant energy range for the 151Eu(α, γ)155Tb reaction at a typical

γ-process temperature of 3GK is between Ec.m.=7.4 and 10.4MeV [28]. In this energy

range, the cross section is very small and could not be measured. Therefore, the

investigated energy range in the present work is a compromise between astrophysical

relevance and technical feasibility. The 151Eu(α, γ)155Tb excitation function has been

measured from Eα =17.5MeV down to the lowest possible energy of 12.5MeV.

The 151Eu(α,n)154Tb reaction has a threshold at Eα=10.4MeV. Above the

threshold the (α,n) channel becomes dominant quickly and its cross section becomes

much higher than that of the (α, γ) channel. Moreover, the decay half-life and relative

γ-intensities of 154Tb are more favourable than those of 155Tb, thus the (α,n) could

be measured also at lower energies down to Eα=11.5MeV, close above the threshold.

Partial cross sections leading to the ground state and the two isomeric states have been

determined separately. In the whole investigated energy range the population of the m1

isomer is dominant. At the lowest measured energies only upper limits could be given

to the partial cross sections to the ground or m2 states.
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Tables 2 and 3 show the results of the 151Eu(α, γ)155Tb and 151Eu(α,n)154Tb cross

section measurements, respectively. The effective center of mass energies in the second

columns take into account the energy loss of the beam in the target which was between 15

and 35 keV. Since the cross section changes only a little in such a small energy range, the

effective energy has been assigned to the center of the target thickness. The uncertainty

in the center of mass energy is the quadratic sum of the beam energy uncertainty (0.3%)

and half of the energy loss in the target.

The uncertainty of the cross section values includes the following components:

number of target atoms (8%), detector efficiency at far geometry (5%), conversion

factor between far and close detection geometry (1 - 20%), number of incident alphas on

the target (3%), decay parameters (< 25%), counting statistics (< 20%)§. The cross

section of a given reaction channel has been calculated based on the analysis of the

different γ-transitions listed in Table 1. The final cross sections have been obtained

by calculating the weighted mean of these data, taking into account the common and

independent uncertainties. For the final uncertainties the independent uncertainties

have been added quadratically. The uncertainties for each data point given in Tables 2

and 3 are not independent as they contain both the independent uncertainties (like the

counting statistics) and the common systematic uncertainties.

At three bombarding energies (Eα=14.5, 15.1 and 16.0MeV) two irradiations have

been carried out with different type of targets (metallic or oxide). The results of these

measurements, which are listed separately in the tables, are in agreement within their

error bars. To give final results for these energies, the last three rows of the tables show

the average cross section values of the corresponding measurements.

5. Comparison to theory

As already laid out in sections 2 and 4, the reaction 151Eu(α,γ)155Tb was chosen because

it is in the mass range where (α,γ) and (γ,α) reactions, respectively, are important to

improve our understanding of the current shortcomings in p-nuclide nucleosynthesis.

The γ-process occurs in the temperature range 2 ≤ T ≤ 3 GK. This translates to

an energy range of 5.8 ≤ Ec.m. ≤ 10.4 MeV [28] where cross sections are required for

the calculation of astrophysical reaction rates used in reaction network calculations.

Owing to the large Coulomb barrier, the cross sections become very small and currently

unmeasurable in the astrophysically relevant energy range. Therefore we are forced

to compare the data to predictions at higher energy. This introduces the further

complication that discrepancies found between data and theory may not (or differently)

appear at astrophysically relevant energies. Therefore we have to carefully separate

nuclear properties relevant in the astrophysical energy range from those not relevant.

The predictions were obtained with the statistical model code NON-SMOKERWEB

§ Higher uncertainties of the conversion factor, decay parameters, and counting statistics are typical

for the weakest γ-transitions used in the analysis. The final cross sections are mainly determined by

the strongest transitions for which these uncertainties are much lower.
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Table 3. Measured cross section of the 151Eu(α,n)154Tb reaction. Partial cross

sections to the ground state and two isomeric states as well as the total cross section

are given. The last three rows show the average results of the measurement carried

out at the same energy.

Eα Eeff
c.m. partial cross section to total

154Tbg.s. 154Tbm1 154Tbm2 cross section

[MeV] [µb]

11.65 11.34 ± 0.04 < 6.5 7.34 ± 2.06 < 3.1 7.3+7.5
−2.1

11.99 11.67 ± 0.04 < 8.1 11.6 ± 2.7 < 3.8 11.6+9.3
−2.7

12.59 12.25 ± 0.04 28.9 ± 5.8 77.7 ± 15.6 < 3.4 107 ± 18

13.00 12.65 ± 0.04 62.2 ± 11.9 211 ± 42 < 2.8 276 ± 47

13.50 13.14 ± 0.04 158 ± 26 502 ± 100 5.97 ± 2.52 666 ± 111

14.10 13.72 ± 0.04 406 ± 71 1468 ± 294 23.9 ± 7.3 1898 ± 322

14.50 14.11 ± 0.04 897 ± 159 3167 ± 633 53.3 ± 16.3 4117 ± 698

14.50 14.11 ± 0.04 851 ± 137 3329 ± 666 55.7 ± 9.8 4235 ± 722

15.09 14.69 ± 0.05 2533 ± 344 9927 ± 1982 176 ± 29 12636 ± 2143

15.09 14.69 ± 0.04 3128 ± 464 9463 ± 1893 179 ± 55 12770 ± 2104

15.51 15.10 ± 0.05 3147 ± 448 13505 ± 2701 279 ± 40 16932 ± 2904

16.00 15.58 ± 0.05 8423 ± 1334 32361 ± 6473 719 ± 217 41503 ± 7045

16.00 15.58 ± 0.05 6261 ± 1914 32415 ± 6484 751 ± 226 39427 ± 7092

16.50 16.07 ± 0.05 12551 ± 1779 55276 ± 11048 1447 ± 204 69274 ± 11793

17.07 16.62 ± 0.05 13967 ± 2055 54051 ± 10811 1472 ± 443 69490 ± 11750

17.50 17.04 ± 0.05 16272 ± 2570 80667 ± 16139 2547 ± 379 99486 ± 17256

14.50 14.11 ± 0.04 870 ± 120 3244 ± 512 55.2 ± 9.0 4169 ± 580

15.09 14.69 ± 0.04 2721 ± 332 9684 ± 1527 177 ± 27 12583 ± 1733

16.00 15.58 ± 0.05 7886 ± 1194 32388 ± 5111 734 ± 165 41008 ± 5759

version v5.8.1 [29]. The standard prediction for the 151Eu(α,γ)155Tb reaction compared

to the data obtained in this work as a function of center of mass energy Ec.m. is shown

in figure 5 and denoted as ’theory1’. Here, we use the astrophysical S-factor S which is

related to the cross section σ by

S = σEe2πη , (1)

with η being the Sommerfeld parameter. The predicted S-factors are too high by a factor

of about 2 across the measured energy range, with a slightly steeper energy dependence

than the data.

In order to identify the cause of the discrepancy between theory and measurement

it is useful to investigate the sensitivity of the S-factor to a variation of the nuclear

parameters involved. The statistical model [33, 34] is making use of averaged widths

〈Γ〉 for the formation and decay of a compound state. The (laboratory) cross section is

then given by a fraction similar as in the Breit-Wigner formula [28, 35]

σ ∝
∑

i

(2Ji + 1)
〈Γform

i 〉〈Γex
i 〉

〈Γtot〉
. (2)

The sum runs over all compound states at the compound excitation energy Ecmp =
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Figure 5. Comparison of experimental and theoretical astrophysical S-factors of
151Eu(α,γ)155Tb as a function of α energy. The predictions were obtained with the

NON-SMOKERWEB code version v5.8.1, using the α+nucleus optical potential by [30]

(theory1) and by [31, 32] (theory2). The additional calculation (theory2 mod) shown

was made by using the potential of [31, 32] and multiplying the resulting averaged α

transmission coefficients by a factor of 1.5.

Ec.m. + Esep
pro, where Esep

pro is the separation energy of the projectile in the compound

nucleus. The fraction includes the compound formation width 〈Γform
i 〉 (for the laboratory

cross section this accounts for α transitions commencing on the ground state of the

target) and the exit channel width 〈Γex
i 〉. The latter sums over all energetically possible

transitions to ground and excited states of the final nucleus. Finally, the total width

〈Γtot〉 sums over the exit widths of all open reaction channels (including inelastic re-

emission of the projectile). For the reaction 151Eu(α,γ)155Tb, the averaged α-width

to the target ground state and the averaged γ-width in the compound nucleus 155Tb

appear in the numerator of equation 2. The denominator contains the same γ-width

as the numerator but the α-width calculated from all energetically allowed transitions

to ground and excited states of the target nucleus 151Eu. Additionally, it contains the

averaged proton-width and, above the threshold for neutron emission, the averaged

neutron-width. Each of these widths requires different nuclear properties to be known

and accordingly is sensitive to different input. For the calculation of the γ-width the

excited nuclear levels and/or level density in 155Tb and the γ-strength function have
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Figure 6. Sensitivity of the 151Eu(α,γ)155Tb cross section (and S-factor) to variations

in the averaged γ-, neutron-, and α-widths as a function of α energy. The sensitivity

to the proton width is negligible. The shaded energy region shows the astrophysically

relevant energy range (Gamow window) for the p-process for stellar temperatures

2 ≤ T ≤ 3 GK [28].

to be known [36]. The α-width is calculated utilizing an optical α+151Eu potential for

transitions to known levels in 151Eu. The neutron-width requires the knowledge of the

optical potential n+154Tb and the nuclear levels in 154Tb, whereas the proton-width is

calculated with the p+154Gd potential and the levels of 154Gd. Nuclear deformation may

play a role in all channels. The nuclear masses, which determine the relative energies of

the contributing transitions, are known experimentally and are not free parameters.

Let us define a sensitivity s as the relative change factor f ′ of the cross section (and

S-factor) when one of the widths is changed by a factor f , i.e. σ′ = f ′σ and

s =
f ′ − 1

f − 1
. (3)

Therefore, f ′ = (f − 1)s + 1. Thus, the sensitivity tells us the impact of a change in a

width on the resulting cross section. The original cross section is σ and the cross section

obtained with a modified width is σ′. For example, if we multiply a width by a factor

f = 2 and this leads to a change in the cross section σ′/σ = 2, then the sensitivity is

s = 1. Would the cross section be unaffected by the change in width, then the sensitivity

would be s = 0. Here, we always assumed sign(f − 1) = sign(f ′ − 1) but the definition
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Figure 7. Comparison of experimental and theoretical astrophysical S-factors of
151Eu(α,n)154Tb as a function of α energy. The predictions are obtained with the

NON-SMOKERWEB code version v5.8.1, using the α+nucleus optical potential by [30]

(theory1) and by [31, 32] (theory2). The additional calculation (theory2 mod) shown

was made by using the potential of [31, 32] and multiplying the resulting averaged α

transmission coefficients by a factor of 1.5.

can be generalized when adopting the strategy to use 1/f ′ whenever f and f ′ would

indicate changes in different directions.

Figure 6 shows the sensitivities according to equation 3 for the reaction
151Eu(α,γ)155Tb as a function of energy Ec.m.. All widths were varied separately by

a factor of two. The sensitivity to the proton-width is not plotted as it turned out to be

negligible. In the measured energy range, the results are almost equally sensitive to a

variation of neutron-, α-, and γ-widths. Therefore it is impossible from this measurement

alone to tell which of the width predictions is responsible for the discrepancy of the

standard calculation found in figure 5. An interesting fact, however, can be seen in

figure 6: The S-factors in the astrophysically relevant energy range (as shown by the

grey area) are only sensitive to the α-width. This is due to the fact that the α-width is

strongly suppressed by the Coulomb barrier and becomes smaller than both the γ- and

the proton-width towards lower energies. (The neutron-width does not contribute below

the threshold.) It is then determining the S-factor because the γ-width cancels with the

denominator in equation 2 (see also [28]). Since the most relevant low-lying excited
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states in 151Eu are known, this implies that the knowledge of the α+nucleus potential

is essential at astrophysical energies whereas other properties are not important.

The measurement of the reaction 151Eu(α,n)154Tb proves to be important in the

above context. The S-factor of this reaction is only sensitive to the α-width because

it remains the smallest width except within a few tens of keV above the reaction

threshold. A comparison of predicted and measured S-factors is shown in figure 7.

Again, the standard calculation (theory1) using the global α-potential of [30] is too

high by comparable factors as for the (α,γ) reaction. The curve labeled ’theory2’ was

obtained when using the potential of [31, 32]. This potential was derived by fitting

reaction data to three reactions at low α energies with compound nuclei at masses

A = 144, 148. It turned out that the potential can describe low-energy reaction data

across a large range of masses better then the potential of [30] but that it fails in the

reproduction of scattering data (especially at large angles) [27, 37, 38, 39, 40, 41]. For

the 151Eu(α,n)154Tb case here, the use of this potential leads to a result which is closer

to the data than the one obtained with the potential of [30] but is lower than the data.

Neither potential describes the features of S-factor variations seen in figure 7 but any

statistical model calculation will give a smooth S-factor. Apart from these features, the

results obtained with both potentials seem to describe the energy dependence acceptably

well.

Multiplying the α-widths obtained with the potential of [31, 32] by a factor of 1.5

(curve labeled ’theory2 mod’ in figure 7) yields a better overall reproduction of the

experimental (α,n) data. The resulting change for the (α,γ) reaction can be seen in

figure 5 where the curves for ’theory2’ and ’theory2 mod’ are also shown. Interestingly,

there the ’theory2’ results give a better overall description than the ’theory2 mod’ ones.

Since the ’theory2 mod’ case is preferred by the (α,n) reaction data, the remaining

deficiencies have to be attributed to the treatment of the γ- and/or the neutron-width.

A different treatment of these widths may result in a slightly changed slope of the

S-factor function.

Since the astrophysically relevant S-factors are determined by the α-width, we can

attempt to extrapolate our findings to astrophysical energies. It has to be cautioned,

however, that we thereby have to assume that the properties of the optical potential do

not change at lower energy. This is not ruled out, especially the imaginary part may

be strongly energy dependent with variable geometry [41, 42, 43, 44]. Since there is

no data to constrain the optical potential at low energy, we apply the same rescaling

of the α-widths as was found suitable to describe the (α,n) data. This leads to the

same rescaling of the S-factors and thus also of the astrophysical reaction rates. In

consequence, we conclude that the 151Eu(α,γ)155Tb rate given in [14, 45] (and, in fact,

any prediction for this reaction using the α potential by [30]) has to be reduced by a

factor of two.
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6. Summary

We have measured the cross section of the 151Eu(α, γ)155Tb and 151Eu(α,n)154Tb

reactions slightly above the relevant energy window for the astrophysical γ-process and

compared the results with statistical model calculations using the NON-SMOKERWEB

code. With the standard parameter set the calculations for the 151Eu(α, γ)155Tb reaction

overestimate the measured cross sections by about a factor of two. By examining the

influence of different nuclear parameters on the calculated cross section it has been found

that in the astrophysically relevant energy range the calculations are mostly sensitive to

the α-nucleus optical potential, while at the measured energies other parameters play a

role as well. In order to find the best α-nucleus optical potential, the 151Eu(α,n)154Tb

reaction has been studied which even at the measured higher energies is sensitive solely

to this parameter. By applying this potential to the case of 151Eu(α, γ)155Tb it is

suggested that the reaction rate of this reaction should be reduced by a factor of two

with respect to rates from calculations using the optical potential by [30].

Although a new reaction rate is recommended for the 151Eu(α, γ)155Tb reaction

based on the present work, it is still impossible to make a general statement about

how to improve the model calculations relevant for the astrophysical γ-process. This

is a current challenge in nuclear astrophysics and remains unsolved for the moment.

More low-energy experiments are clearly needed for both α-capture reactions and elastic

scattering especially in the mass range of heavy p-nuclei.
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[18] Mohr P, Fülöp Zs and Utsunomiya H 2007 Eur. Phys. J. A 32 357

[19] Kiss G G, Rauscher T, Gyürky Gy, Simon A, Fülöp Zs and Somorjai E 2008 Phys. Rev. Lett. 101
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